Natural Tregs and autoimmunity
Antonio La Cava
Department of Medicine, University of California Los Angeles, 1000 Veteran Avenue 32-59, Los Angeles, California 90095-1670
TABLE OF CONTENTS
- 1. Abstract
- 2. Introduction
- 3. Regulatory T cells (Tregs)
- 3.1. Types of Tregs
- 3.1.1. Natural Tregs
- 3.1.2. Adaptive Tregs
- 4. Phenotype of Tregs
- 5. Mechanisms of action of Tregs
- 5.1. In vitro suppression
- 5.2. In vivo suppression
- 6. Natural Tregs and autoimmunity
- 6.1. Natural Tregs and organ-specific autoimmunity
- 6.1.1. Multiple sclerosis
- 6.1.2. Type-1 diabetes
- 6.1.3. Inflammatory bowel disease
- 6.1.4. Experimental autoimmune thyroiditis
- 6.2. Natural Tregs and systemic autoimmunity
- 6.2.1. Systemic lupus erythematosus
- 6.2.2. Autoimmune rheumatic diseases
- 7. Conclusion
- 8. Acknowledgments
- 9. References
1. ABSTRACT
The subset of CD4+ T lymphocytes that coexpress high levels of the interleukin (IL)-2 a receptor and the transcription factor Foxp3 (CD4+CD25highFoxp3+ cells), commonly called regulatory T cells (Tregs), have a key role in the mechanisms of peripheral immune tolerance. Tregs modulate innate and adaptive immune responses in vitro and in vivo by suppressing the proliferation and cytokine production in different subsets of immune cells. Their key role in autoimmunity is suggested by the finding that reconstitution of normal numbers and/or function of Tregs in autoimmune animals associates with a delay of disease development and progression, whereas the elimination of Tregs can anticipate or precipitate disease. Since naturally occurring ("natural") Tregs represent only a small fraction of peripheral blood cells, the investigations for possible therapeutic use of Tregs in autoimmunity has largely focused on the use of "adaptive" Tregs, which can be induced through several different modalities. This review discusses the role of natural Tregs in the suppression of autoimmune responses and the relevance of these cells for possible therapeutic applications in autoimmunity.
2. INTRODUCTION
Two arms of the immune system act in concert to fight the challenges that come from the environment (i.e. pathogens) and/or from the host itself (i.e. transformed cells). One arm is the innate immunity - a first-line, primordial defense against bacterial or viral pathogens. The other arm is the adaptive immunity, which provides a somehow delayed, yet more efficient and specific response. While the innate immune system lacks a fine specificity in lieu of a broader recognition of common features shared by many pathogens, the adaptive immune system typically employs cells that have a defined antigenic specificity. Because of the vast number of epitopes that can be encountered - and their possible structural similarity with self antigens - the adaptive immune system carries an intrinsic risk for generating autoreactive cells potentially capable to trigger autoimmune responses (1-2). To limit this risk, one mechanism to keep self-reactive lymphocytes under control is immune tolerance, which helps to avert autoimmunity by preventing and/or shifting potentially deleterious autoreactive immune response towards non-injurious immune responses. Immune tolerance operates at a central level (i.e. thymus, bone marrow) and in the periphery, through mechanisms that include the deletion of potentially pathogenic clones, the hyporesponsiveness to antigenic stimulation (anergy), an ignorance for the antigen, and the suppression of immune responses by regulatory cells.
Regulatory/suppressor cells are phenotypically heterogeneous and include subsets of CD4+ T cells (see below) but also natural killer (NK) and NK T (NKT) cells, CD4-CD8- T cells, CD8 cells (CD8+CD28-, CD8+CD122+, CD8+CD25+ and Qa-1-restricted CD8+ T cells), dendritic cells (DC), B cells, and gd T cells (3-10). The mechanism of action of each of these immunoregulatory cell populations may be specific for a subset or common to other subsets, i.e. the secretion of transforming growth factor (TGF)-b and interleukin (IL)-10 can have a central role in the suppressive activity of Tr1 cells (see below) and NKT cells (5), while natural Tregs need a cell-to-cell contact to exert their suppression on target cells (see below). Aspects such as the interplay between Tregs and DC have been reviewed elsewhere (11).
In general, Tregs can be important in suppressing autoimmune reactivity but can be deleterious in tumor immune surveillance because of their capacity to suppress the activation, proliferation, and effector function of tumor-infiltrating T-cells (12-13). Analogous considerations on possible undesired effects of the Tregs can be made in regard to the capacity of these cells to suppress the effector function of immune cells reactive to pathogens in infection (as considered at the end of the chapter).
3. REGULATORY T CELLS (TREGS)
As schematically shown in figure 1, naïve CD4+ T cells can differentiate towards T helper (Th)1, Th2, Th17, and regulatory T cells (Tregs), both in vitro and in vivo, depending on the type of stimulation, antigen concentration, co-stimulation, and cytokine milieu where the immune response takes place (14-15). In general, the presence of interleukin (IL)-12 skews the CD4+ T cells towards a Th1 phenotype, IL-4 towards Th2, TGF-b (+/- IL-2) towards Tregs, and IL-6 and TGF-b towards Th17 - with possible mutually exclusive skewing between Tregs and Th17 phenotypes (16). The committed cells typically express specific transcription factors: T-bet for Th1, GATA-3 for Th2, Foxp3 for Tregs, and RORgt for Th17 cells (17-22).
The best characterized subsets of CD4+ T cells with immune suppressive capacity described so far are the T-regulatory 1 (Tr1) cells (23), the Th3 cells (24), and the CD4+CD25+ T cells (25-26).
Tr1 cells are IL-10 producing CD4+ regulatory T cells induced from CD4+ T cells by repetitive antigenic stimulation in the presence of IL-10 (23) or immature DC (27). Tr1 cells produce high levels of IL-10 and can be generated by chronic activation in the presence of IL-10, both in humans and in mice (23, 28).
Th3 regulatory T cells are TGF-b-producing CD4+ T cells that suppress CD4+ T cells in an antigen-nonspecific manner (24). These cells secrete TGF-b, IL-4 and IL-10 (29), and can be induced in vitro after exposure of CD4+CD25- T cells to TGF-b or in vivo following oral or intravenous administration of antigen (30). The suppressive effect of ex vivo-induced Th3 cells appears mediated by suppressive cytokines and is thus, at least in part, cell-contact independent (30-31).
Finally, the most widely studied and best characterized regulatory CD4+ T cells are the CD4+CD25+ T cells. In organ-specific autoimmunity, a deficiency of Tregs typically associates with development of organ damage (32-34), and a restoration of the number and/or function of Tregs confers protection from autoimmunity (33-37). In systemic autoimmunity, Treg-depleted animals typically develop multi-organ autoimmune disease (38), while supplementation of syngeneic Tregs or adoptive transfer of in vitro expanded Tregs abrogates the development of autoimmune disease manifestations (39).
3.1. Types of Tregs
CD4+ regulatory T cells can be schematically divided into two groups: naturally occurring ("natural") Tregs, and induced ("adaptive") Tregs.
3.1.1. Natural Tregs
Natural Tregs arise from the thymus during ontogeny and, in the mouse, they seed the periphery around day 3 of neonatal life (40-41, 17). The number of natural Tregs circulating in the peripheral blood of adult mice remains virtually constant throughout life, comprising 5-10% of the CD4+ cells. The fraction of Tregs is smaller in humans, where they represent the 1% to 2% of total CD4+ T cells, e.g. the ones with highest CD25 expression (CD25high) (42).
Natural Tregs constitutively express CD4, CD25 and Foxp3, and suppress the proliferation and cytokine production of target cells in vitro and in vivo. These cells contribute to avert autoimmune disease by suppressing activated immune cells through cell contact-dependent and cytokine-independent mechanisms (43-45). The cell-to-cell contact suppressive mechanisms used by Tregs include cytotoxic functions involving the synthesis of perforin, CD18, and granzyme A in a Fas-independent manner (46). The targets of the cytotoxic activity of the Tregs include CD4+CD25- T cells, CD8+ T cells, monocytes, antigen-presenting B cells, and DC (46-47, 25-26). A role for lymphocyte activation gene 3 (LAG-3) in the cell-to-cell mediated suppression of natural Tregs has been suggested by the blockade of the suppressive function of these cells using anti-LAG-3 antibody in vitro and in vivo, and by the finding that transduction of LAG-3 into CD4+CD25− T cells conveys a suppressive function to these cells (48). Also, natural Tregs may require the ligation of B7 molecules on target T cells to mediate suppression of conventional T cells, since target cells deficient in B7 molecules (CD80 and, to a lesser degree, CD86) are resistant to Treg suppression (49).
Although anergic in vitro, natural Tregs can be expanded ex vivo and retain their functional suppressive activity when stimulated with anti-CD3 and IL-2 or when cultured with high ratios of antigen-loaded DC (50-51). Another mean to expand natural Tregs and increase their survival is through the combination of anti-CD3 and anti-CD28 antibodies (52).
Interestingly, CD4+CD25+ Tregs can promote infectious tolerance - a phenomenon by which they can induce conventional CD4+ T cells to also become suppressor cells (53). The capacity of natural Tregs to amplify immune regulatory responses is shared with adaptive Tregs induced ex vivo using TGF-b and IL-2, as these cells can also "infectiously" tolerize CD4+CD25− cells to become suppressor cells (54).
3.1.2. Adaptive Tregs
Adaptive Tregs can be generated in cultures or in the periphery. For example, CD4+CD25+Foxp3+ Tregs can be induced in vitro from CD4+CD25- T cells using TGF-b (54-55), and adoptively transferred polyclonal CD4+CD25-Foxp3- T cells can differentiate into CD4+CD25+Foxp3+ T cells in recipient mice following homeostatic proliferation (56).
Additionally, CD4+ cells can become IL-10-producing Tr1 cells when repeatedly stimulated with IL-10 or with immature DC (23), vitamin D3 and dexamethasone (57). Adaptive Tregs may have similar phenotype and function as natural Tregs since both types of lymphocytes can suppress immunological responses, yet they may differ in the mechanisms of action because natural Tregs can require direct cell-cell interaction for suppression (as shown in transwell experiments where supernatants from activated Tregs do not display suppressive properties) (49), whereas soluble factors (e.g. TGF-b) may be necessary for optimal action and maintenance of adaptive Tregs (54).
4. PHENOTYPE OF TREGS
Since CD25 - the a receptor for IL-2 - may not be unique to Tregs but is also expressed by conventional activated CD4+ T cells, additional surface marker have been searched for reliable identification of suppressor Tregs. Recently, the a chain of the IL-7 receptor (CD127) has been proposed for a rapid phenotypic identification of the Tregs. This marker is present at low levels on the surface of Tregs (CD127low) and at high levels on activated effector T cells (CD127high) (58-59).
Other molecules that contribute to the phenotype of the CD4+CD25+ Tregs and that cannot yet be considered unique markers because of some overlap of expression with effector CD4 T cells include the glucocorticoid-induced tumor necrosis factor receptor (GITR), the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4 or CD152 - high intracellularly, low on cell surface), CD62Lhigh, CD45RBlow, CD103 (integrin aEb7), neuropilin-1, membrane-bound TGF-b (in form of latency-associated protein, LAP), CD5, CD27, CD38, CD39, CD69, CD73, CD122, OX-40 (CD134), CCR4, CCR7, CCR8, TNF-R2, LAG-3 and, last but not least, the intracellular forkhead/winged helix transcription factor Foxp3 (60-63), which is currently considered the most reliable marker to monitor functional Tregs (64).
The important role of Foxp3 in the activity of Tregs and in autoimmunity is best exemplified by the observation that genetic deficiency of Foxp3+ cells in scurfy mice (17) or in humans affected by the IPEX syndrome (an X-linked syndrome characterized by immune dysregulation, polyendocrinopathy, enteropathy) (65) causes lymphoproliferative, rapidly lethal autoimmune disease.
5. MECHANISMS OF ACTION OF TREGS
Tregs may not require antigen specificity in their mechanisms of suppression, although the activation of these cells seems to occur preferentially via the engagement of the T-cell receptors (TCR) on these cells (69). Like conventional T cells, Tregs are selected with different affinity/avidity for the TCR and are enriched in self-reactive cells, as suggested by adoptive transfer studies (66-70). Overall, Tregs can be activated by self-antigens and non-self-antigens and may use or not antigen specificity for suppression in vitro and in vivo (71-75, 26).
Regarding IL-2, many studies have shown that this cytokine is important for the development, peripheral survival, and suppressive function of Tregs through events that may not be linked to a modulated expression of Foxp3 (76). IL-2 produced at sites of inflammation could contribute to drive Treg suppression (77), and peripheral survival and expansion of Tregs could depend on the presence of IL-2 (78).
Notably, mice deficient in IL-2, IL-2R, or IL-2Rb have reduced numbers of natural Tregs and die from a lymphoproliferative autoimmune syndrome (79) despite the fact that IL-2-/- and IL-2R-/- Tregs are functional and can suppress T-cell proliferation in vitro (80). These observations suggest that IL-2 can be required to sustain in vivo the homeostasis of natural Tregs (78) - possibly together with other signals for peripheral T cell survival including the encounter with MHC/self peptides (81), cytokines, and co-stimulatory molecules (82-84). Moreover, it has been shown that thymic generation of Tregs requires an intact IL-2/IL-2R pathway (85-86), yet the presence of a thymus is not an absolute requirement for the generation of Tregs and these cells can be generated in the periphery and/or from CD4+CD25- T cells (87-88).
5.1. In vitro suppression
Activated Tregs suppress target cells in a cell-contact-dependent, cytokine-independent mechanism (89). CD80 and CD86 ligands on T cells might bind to CTLA-4 on the Tregs during suppression, and this might be a reason why cell contact is necessary. Other molecules influencing the susceptibility of target cells to suppression by Tregs include GITR and GITR-ligand (GITR-L) (90) and, possibly, cell surface-bound TGF-b (91).
Regarding the target cell, after the encounter with the Tregs the effector T cells can display an arrest in cell cycle progression caused by uncoupled IL-2 signaling (92). Moreover, the activation of Tregs by anti-CD3 and anti-CD46 results in the expression of granzyme A, which facilitates the killing of the targets by a perforin-dependent Fas-Fas ligand-independent mechanism (46, 43). A granzyme B-dependent perforin-independent mechanism has also been identified for the suppressive activity of the Tregs (93).
The specific mechanisms of action of Foxp3, GITR, and CTLA-4 in Treg suppression are currently under intense investigation. It is clear that abrogation of the activity of any of these molecules reduces significantly the suppressive capacity of the Tregs. For example, antibody-mediated inhibition of CTLA-4 can abrogate the protective effects of Tregs in murine inflammatory bowel disease (94), possibly because CTLA-4 on Tregs could transduce a costimulatory activating signal along with TCR signaling (95).
It has also to be considered that there are molecules that can counteract the suppressive activity of the Tregs. For example, ligation of Toll-like receptor-2, -4, -8 and -9 results in the abrogation of Treg-mediated suppression (see below). Toll-like receptors (TLR) are molecules that recognize pathogen-associated molecular patterns (PAMP) common to different pathogens. Upon activation, TLR can stimulate adaptive immune responses through the activation of DC and the upregulation of costimulatory molecules and inflammatory cytokines including IL-6, TNF-a and IL-12 (96). The engagement of TLR-4 or TLR-9 on murine splenic DC can abrogate the suppressive activity of Tregs in vitro - possibly via the induction of a resistance of target cells to Treg-mediated suppression (a phenomenon that is dependent in part on DC-derived IL-6) (97). Also, TLR-9 deficiency in MRL mice leads to exacerbated lupus apparently as a result of increased T-cell activation associated with impaired Treg suppressive capacity in vitro (98-99).
5.2. In vivo suppression
The in vitro hyporesponsiveness to antigenic stimulation of the Tregs can be overcome by stimulation with anti-CD3 antibody and IL-2. Although Tregs are anergic in vitro, they do proliferate in vivo in response to antigen (100-101, 68). Available data suggest that the suppression in vitro of the Tregs may not reflect their in vivo activity, and additional factors such as Tregs migration and homing might influence significantly the activity of these cells, particularly at sites of inflammation (75). In particular, the differential expression of CD62L and CD27 on human CD4+CD25high Tregs could distinguish Treg subsets with migratory properties, i.e. CD27-CD62L- Tregs could be destined to periphery, CD62L+CD27+ Tregs would home to lymph nodes (102-106), and Tregs expressing CCR6 and CD45RO would accumulate in tissue (105). Ultimately, the accumulation of Tregs in tissue could limit the activity of effector target cells and subsequent inflammation at sites of organ damage. These considerations could contribute to explain why soluble factors may not be involved in the in vitro suppression mediated by the Tregs whereas in vivo the Tregs may need IL-10 and TGF-b to suppress target cells (106-107), and/or why Tregs can inhibit target cell transcription of IL-2 in vitro (108) while in vivo they may suppress independently on IL-2 involvement (80).
6. NATURAL TREGS AND AUTOIMMUNITY
The dysregulation of immune tolerance has a central role in the development and progression of pathogenic autoimmunity, and mice with an autoimmune background typically have reduced numbers of CD4+CD25+ T cells when compared to non-autoimmune mice. We summarize below the role of Tregs in the pathogenesis of several organ specific and systemic autoimmune diseases.
6.1. Natural Tregs and organ-specific autoimmunity
6.1.1. Multiple sclerosis
Experimental autoimmune encephalomyelitis (EAE) is a disease model for human multiple sclerosis (MS), and is mediated by encephalitogenic CD4+ T cells. Mice that harbor myelin basic protein (MBP)-specific CD4+ T cells have high incidence of disease due to the failure of Tregs to control pathogenic T cells (109). Tregs can inhibit in vitro the proliferation and cytokine production by myelin oligodendrocyte glycoprotein (MOG)-specific Th1 cells and can confer in vivo protection against EAE (33).
In humans, a functional dysfunction and a reduced number of Tregs has been described in patients with MS (110-111).
6.1.2. Type-1 diabetes
The progression of benign to aggressive insulitis in type-1 diabetes-prone female nonobese diabetic (NOD) mice is associated with a peripheral deficit of Tregs in pancreatic lymph nodes and pancreatic islets (112-115). In NOD mice, the functional potency and intra-pancreatic proliferative potential of natural Tregs declines with age, augmenting in turn the diabetogenic responses and the development of the disease (116). Notably, the adoptive transfer of Treg-depleted splenocytes in rodents exacerbates disease (113), whereas the transfer of either Tregs from diabetes-resistant animals (117) or Tregs expanded in vitro suppresses the disease (118). Since Tregs isolated from pancreatic lymph nodes - but not from peripheral lymph nodes - delay the progression of diabetes (119), it has been proposed to use antigen-specific Tregs for the prevention and/or reversal of experimental diabetes, with encouraging preliminary results (120).
In humans, the role of Tregs in type-1 diabetes is suggested by the finding of a functional deficit and impaired suppressive capacity of these cells (121). Importantly, rapamycin can allow the growth of functional Tregs while contributing to the depletion of effector T cells, envisioning a rapamycin-based, Treg-targeted immunotherapy in the disease (122).
6.1.3. Inflammatory bowel disease
The development of experimental colitis induced by the transfer of naïve CD4+CD45RBhigh T cells into syngeneic immuno-deficient mice (123) is prevented by co-transfer of regulatory CD4+CD45RBlow T-cells (124). In a murine model for human inflammatory bowel disease (IBD), CD4+CD25+Foxp3+ Tregs suppress effector T cell responses through mechanisms of cytokine deprivation-induced apoptosis (125), and their suppressive activity can be shown at the site of organ damage - the intestinal lamina propria (126).
In humans, the number of peripheral Tregs in IBD patients correlates with changes in disease activity, as it increases during remission and decreases with active disease (127).
6.1.4. Experimental autoimmune thyroiditis
Several studies suggest that Tregs might effectively modulate experimental autoimmune thyroiditis, a mouse model for Hashimoto's thyroiditis (128-130). This is relevant because patients with autoimmune thyroiditis may suffer from a reduced suppressive capacity of the Tregs.
6.2. Natural Tregs and systemic autoimmunity
6.2.1. Systemic lupus erythematosus
Studies in murine models of SLE have suggested that a deficit of Tregs can contribute to loss of self-tolerance and subsequent development of clinical manifestations of the disease (131). Additionally, adoptive transfer of ex vivo expanded Tregs can slow the progression of renal disease and decrease the mortality in transferred mice (39).
In view of the finding that some lupus-prone mice also have a reduced sensitivity of CD4+CD25- effector T cells to the suppression by Tregs (132), it can be hypothesized that the dysfunction of immune homeostasis in murine lupus might be partly associated with an abnormal number/function of Tregs and/or a reduced resistance of the target cells to Treg suppression, depending on the animal model considered.
In human SLE, the number of natural Tregs is decreased during active disease flares (133-134) and in active SLE pediatric patients (135). Interestingly, those defects can be reversed in vitro by Treg activation - a process which renders the defective SLE Tregs functional suppressor cells (136).
6.2.2. Autoimmune rheumatic diseases
Depletion of Tregs accelerates collagen-induced arthritis in mice (137), whereas adoptive transfer of Tregs protects mice from the systemic, chronic joint inflammation (138).
In humans, early rheumatoid arthritis (RA) associates with a reduced number of peripheral Tregs (139), although functional Tregs can be found enriched in the synovial fluid of patients with RA (140). It is possible that these cells may not be fully functional also because they have a decreased in vitro capacity to suppress the production of IFN-g and TNF-a in target CD4+CD25− T cells (141).
Of note, patients with relatively benign oligoarticular juvenile idiopathic arthritis have higher frequency of Tregs than patients with oligoarticular juvenile arthritis, a disease with a less favorable prognosis (142).
7. CONCLUSION
Although Tregs have the potential to reestablish immune tolerance to self-antigens both in new-onset and established disease in several experimental settings, they carry at the meantime the potential for detrimental effects due to the suppression of effector immune responses to tumors and microorganisms. Therapeutic considerations for targeting Tregs in autoimmunity remain nonetheless an appealing possibility, particularly because of the encouraging data obtained in animal models. Future studies of Treg-based immunotherapy will need to focus on how to circumvent the current obstacles, i.e. to define more specific markers for these cells, to keep in mind the differences between human and rodent Tregs, and to consider their site of action and the interactions with other immune cells and cytokine milieu where they operate.
8. ACKNOWLEDGMENTS
A.L.C. is supported by the National Institutes of Health grants AR53239 and AI63515.
9. REFERENCES
1. Nossal, G. J. Negative selection of lymphocytes. Cell 76, 229-239 (1994)
doi:10.1016/0092-8674(94)90331-X
PMid:8293461
2. von Boehmer, H. Positive selection of lymphocytes. Cell 76, 219-228 (1994)
doi:10.1016/0092-8674(94)90330-1
PMid:8293460
3. La Cava, A., F.-D. Shi. Natural and adaptive immune cell-based therapies in autoimmunity. Curr Med Chem 13, 1557-1566 (2006)
doi:10.2174/092986706777442020
PMid:16787203
4. Ghiringhelli, F., C. Menard, M. Terme, C. Flament, J. Taieb, N. Chaput, P. E. Puig, S. Novault, B. Escudier, E. Vivier, A. Lecesne, C. Robert, J. Y. Blay, J. Bernard, S. Caillat-Zucman, A. Freitas, T. Tursz, O. Wagner-Ballon, C. Capron, W. Vainchencker, F. Martin, L. Zitvogel. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J Exp Med 202, 1075-1085 (2005)
doi:10.1084/jem.20051511
PMid:16230475 PMCid:2213209
5. Filaci, G., N. Suciu-Foca. CD8+ T suppressors are back in the game: are they players in autoimmunity? Autoimmun Rev 1, 279-283 (2002)
doi:10.1016/S1568-9972(02)00065-4
PMid:12848981
6. Lu, L., M. B. Werneck, H. Cantor. The immunoregulatory effects of Qa-1. Immunol Rev 212, 51-59 (2006)
doi:10.1111/j.0105-2896.2006.00418.x
PMid:16903905
7. Rifa'I, M., Y. Kawamoto, I. Nakashima, H. Suzuki. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 200, 1123-1134 (2004)
doi:10.1084/jem.20040395
PMid:15520244 PMCid:2211869
8. Hanninen, A., L. C. Harrison. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol Rev 173, 109-119 (2000)
doi:10.1034/j.1600-065X.2000.917303.x
PMid:10719672
9. Bacchetta, R., S. Gregori, M. G. Roncarolo. CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev 4, 491-496 (2005)
doi:10.1016/j.autrev.2005.04.005
PMid:16214084
10. Jiang, S., R. I. Lechler, X. S. He, J. F. Huang. Regulatory T cells and transplantation tolerance. Hum Immunol 67, 765-776 (2006)
doi:10.1016/j.humimm.2006.07.013
PMid:17055353
11. Tang, Q., J. A. Bluestone. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev 212, 217-237 (2006)
doi:10.1111/j.0105-2896.2006.00421.x
PMid:16903917
12. Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, S. Sakaguchi. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a function of the thymus in maintaining immunologic self-tolerance. J Immunol 162, 5317-5326 (1999)
13. Bluestone, J. A., A. K. Abbas. Natural versus adaptive regulatory T cells. Nature 3, 253-257 (2003)
14. Afzali, B., G. Lombardi, R. I. Lechler, G. M. Lord. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148, 32-46 (2007)
15. Constant, S. L., K. Bottomly. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15, 297-322 (1997)
doi:10.1146/annurev.immunol.15.1.297
PMid:9143690
16. Bettelli, E., Y. Carrier, W. Gao, T. Korn, T. B. Strom, M. Oukka, H. L. Weiner, V. K. Kuchroo. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238 (2006)
doi:10.1038/nature04753
PMid:16648838
17. Fontenot, J. D., M. A. Gavin, A. Y. Rudensky. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336 (2003)
doi:10.1038/ni904
PMid:12612578
18. Gately, M. K., L. M. Renzetti, J. Magram, A. S. Stern, L. Adorini, U. Gubler, D. H. Presky. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16, 495-521 (1998)
doi:10.1146/annurev.immunol.16.1.495
PMid:9597139
19. Nelms, K., A. D. Keegan, J. Zamorano, J. J. Ryan, W. E. Paul. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17, 701-738 (1999)
doi:10.1146/annurev.immunol.17.1.701
PMid:10358772
20. Szabo, S. J., S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, L. H. Glimcher. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669 (2000)
doi:10.1016/S0092-8674(00)80702-3
PMid:10761931
21. Zheng, W., R. A. Flavell. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587-596 (1997)
doi:10.1016/S0092-8674(00)80240-8
PMid:9160750
22. Ivanov, I. I., B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, D. R. Littman. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133 (2006)
doi:10.1016/j.cell.2006.07.035
PMid:16990136
23. Groux, H., A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J. E. de Vries, M. G. Roncarolo. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737-742 (1997)
doi:10.1038/39614
PMid:9338786
24. Weiner, H. L. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol Rev 182, 207-214 (2001)
doi:10.1034/j.1600-065X.2001.1820117.x
PMid:11722636
25. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562 (2004)
doi:10.1146/annurev.immunol.21.120601.141122
PMid:15032588
26. Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2, 389-400 (2002)
27. Levings, M. K., M. G. Roncarolo. T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. J Allergy Clin Immunol 106, S109-112 (2000)
doi:10.1067/mai.2000.106635
28. Dieckmann, D., C. H. Bruett, H. Ploettner, M. B. Lutz, G. Schuler. Human CD4+CD25+ regulatory, contact-dependent T-cells induce interleukin-10-producing, contact-independent type 1-like regulatory T-cells. J Exp Med 196, 247-253 (2002)
doi:10.1084/jem.20020642
PMid:12119349 PMCid:2193931
29. Chen, Y., J. Inobe, V. K. Kuchroo, J. L. Baron, C. A. Janeway Jr., H. L. Weiner. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 93, 388-391 (1996)
doi:10.1073/pnas.93.1.388
30. Thorstenson, K. M., A. Khoruts. Generation of anergic and potentially immunoregulatory CD25+CD4+ T-cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 167, 188-195 (2001)
31. Zheng, S. G., J. D. Gray, K. Ohtsuka, S. Yamagiwa, D. A. Horwitz. Generation ex vivo of TGF-β-producing regulatory T cells from CD4+CD25- precursors. J Immunol 169, 4183-4189 (2002)
32. Lepault, F., M. C. Gagnerault. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol 164, 240-247 (2000)
33. Kohm, A. P., P. A. Carpentier, H. A. Anger, S. D. Miller. CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169, 4712-4716 (2002)
34. Bach, J. F., L. Chatenoud. Tolerance to islet autoantigens and type 1 diabetes. Annu Rev Immunol 19, 131-161 (2001)
doi:10.1146/annurev.immunol.19.1.131
PMid:11244033
35. Wu, A., S. Hua, S. Munson, H. McDevitt. Tumor necrosis factor-α regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci USA 99, 12287-12292 (2002)
doi:10.1073/pnas.172382999
36. Szanya, V., J. Ermann, C. Taylor, C. Holness, C. G. Fathman. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 169, 2461-2465 (2002)
37. Mekala, D. J., T. L. Geiger. Immunotherapy of autoimmune encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Blood 105, 2090-2092 (2005)
doi:10.1182/blood-2004-09-3579
PMid:15528313
38. Sakaguchi, S., T. Takahashi, Y. Nishizuka. Study on cellular events in post-thymectomy autoimmune oophoritis in mice: II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 156, 1577-1586 (1982)
doi:10.1084/jem.156.6.1577
PMid:6983558 PMCid:2186864
39. Scalapino, K. J., Q. Tang, J. A. Bluestone, M. L. Bonyhadi, D. I. Daikh. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177, 1451-1459 (2006)
40. Hori, S., T. Nomura, S. Sakaguchi. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061 (2003)
doi:10.1126/science.1079490
PMid:12522256
41. Khattri, R., T. Cox, S. A. Yasayko, F. Ramsdell. An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342 (2003)
doi:10.1038/ni909
PMid:12612581
42. Baecher-Allan, C., J. A. Brown, G. J. Freeman, D. A. Hafler. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253 (2001)
43. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat Immunol 6, 338-344 (2005)
doi:10.1038/ni1180
PMid:15785759
44. Thornton, A. M., E. M. Shevach. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164, 183-190 (2000)
45. Thornton, A. M., E. M. Shevach. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188, 287-296 (1998)
doi:10.1084/jem.188.2.287
PMid:9670041 PMCid:2212461
46. Grossman, W. J., J. W. Verbsky, W. Barchet, M. Colonna, J. P. Atkinson, T. J. Ley. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589-601 (2004)
doi:10.1016/j.immuni.2004.09.002
PMid:15485635
47. Lim, H. W., P. Hillsamer, A. H. Banham, C. H. Kim. Direct suppression of B cells by CD4+CD25+ regulatory T cells. J Immunol 175, 4180-4183 (2005)
48. Huang, C. T., C. J. Workman, D. Flies, X. Pan, A. L. Marson, G. Zhou, E. L. Hipkiss, S. Ravi, J. Kowalski, H. I. Levitsky, J. D. Powell, D. M. Pardoll, C. G. Drake, D. A. Vignali. Role of LAG-3 in regulatory T cells. Immunity 21, 503-513 (2004)
doi:10.1016/j.immuni.2004.08.010
PMid:15485628
49. Fehervari, Z., S. Sakaguchi. CD4+ Tregs and immune control. J Clin Invest 114, 1209-1217 (2004)
50. Taylor, P. A., C. J. Lees, B. R. Blazar. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493-3499 (2002)
doi:10.1182/blood.V99.10.3493
PMid:11986199
51. Yamazaki, S., T. Iyoda, K. Tarbell, K. Olson, K. Velinzon, K. Inaba, R. M. Steinman. Direct expansion of functional CD25+CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198, 235-247 (2003)
doi:10.1084/jem.20030422
PMid:12874257 PMCid:2194081
52. Tang, Q., K. J. Henriksen, E. K. Boden, A. J. Tooley, J. Ye, S. K. Subudhi, X. X. Zheng, T. B. Strom, J. A. Bluestone. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171, 3348-3352 (2003)
53. Cobbold, S. P., L. Graca, C. Y. Lin, E. Adams, H. Waldmann. Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transpl Int 16, 66-75 (2003)
doi:10.1111/j.1432-2277.2003.tb00266.x
PMid:12595967
54. Zheng, S. G., J. H. Wang, J. G. Gray, H. Soucier, D. A. Horwitz. Natural and induced CD4+CD25+ cells educate CD4+CD25− cells to develop suppressive activity: role of IL-2, TGF-β and IL-10. J Immunol 172, 5213-5221 (2004)
55. Chen, W., W. Jin, N. Hardegen, K. J. Lei, L. Li, N. Marinos, G. McGrady, S. M. Wahl. Conversion of peripheral CD4+CD25- naïve T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 198, 1875-1886 (2003)
doi:10.1084/jem.20030152
PMid:14676299 PMCid:2194145
56. Curotto de Lafaille, M. A., A. C. Lino, N. Kutchukhidze, J. J. Lafaille. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173, 7259-7268 (2004)
57. Barrat, F. J., D. J. Cua, A. Boonstra, D. F. Richards, C. Crain, H. F. Savelkoul, R. de Waal-Malefyt, R. L. Coffman, C. M. Hawrylowicz, A. O'Garra. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195, 603-616 (2002)
doi:10.1084/jem.20011629
PMid:11877483 PMCid:2193760
58. Banham, A. H. Cell-surface IL-7 receptor expression facilitates the purification of FOXP3+ regulatory T cells. Trends Immunol 27, 541-544 (2006)
doi:10.1016/j.it.2006.10.002
PMid:17045841
59. Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S. I. Alexander, R. Nanan, A. Kelleher, B. Fazekas de St Groth. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203, 1693-1700 (2006)
doi:10.1084/jem.20060468
PMid:16818676 PMCid:2118333
60. Piccirillo, C. A., E. M. Shevach. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16, 81-88 (2004)
doi:10.1016/j.smim.2003.12.003
PMid:15036231
61. Yi, H., Y. Zhen, L. Jiang, J. Zheng, Y. Zhao. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol 3, 189-195 (2006)
62. Wing, K., E. Suri-Payer, A. Rudin. CD4+CD25+ regulatory T cells from mouse to man. Scand J Immunol 62, 1-15 (2005)
doi:10.1111/j.1365-3083.2005.01634.x
PMid:16091121
63. Miyara, M., S. Sakaguchi. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13, 108-116 (2007)
doi:10.1016/j.molmed.2007.01.003
PMid:17257897
64. Yagi, H., T. Nomura, K. Nakamura, S. Yamazaki, T. Kitawaki, S. Hori, M. Maeda, M. Onodera, T. Uchiyama, S. Fujii, S. Sakaguchi. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 16, 1643-1656 (2004)
doi:10.1093/intimm/dxh165
PMid:15466453
65. Bennett, C. L., J. Christie, F. Ramsdell, M. E. Brunkow, P. J. Ferguson, L. Whitesell, T. E. Kelly, F. T. Saulsbury, P. F. Chance, H. D. Ochs. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FoxP3. Nat Genet 27, 20-21 (2001)
doi:10.1038/83713
PMid:11137993
66. Bensinger, S. J., A. Bandeira, M. S. Jordan, A. J. Caton, T. M. Laufer. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J Exp Med 194, 427-438 (2001)
doi:10.1084/jem.194.4.427
PMid:11514600 PMCid:2193499
67. Jordan, M. S., A. Boesteanu, A. J. Reed, A. L. Petrone, A. E. Holenbeck, M. A. Lerman, A. Naji, A. J. Caton. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2, 301-306 (2001)
doi:10.1038/86302
PMid:11276200
68. Fisson, S., G. Darrasse-Jeze, E. Litvinova, F. Septier, D. Klatzmann, R. Liblau, B. L. Salomon. Continuous activation of autoreactive CD4+CD25+ regulatory T cells in the steady state. J Exp Med 198, 737-746 (2003)
doi:10.1084/jem.20030686
PMid:12939344 PMCid:2194185
69. Kumar, V. Homeostatic control of immunity by TCR-specific Tregs. J. Clin. Invest. 114, 1222-1226 (2004)
70. Picca, C. C., A. J. Caton. The role of self-peptides in the development of CD4+CD25+ regulatory T cells. Curr Opin Immunol 17, 131-136 (2005)
doi:10.1016/j.coi.2005.01.003
PMid:15766671
71. Samy, E. T., L. A. Parker, C. P. Sharp, K. S. Tung. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med 202, 771-781 (2005)
doi:10.1084/jem.20041033
PMid:16172257 PMCid:2212949
72. Seddon, B., D. Mason. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med 189, 877-882 (1999)
doi:10.1084/jem.189.5.877
PMid:10049952 PMCid:2192957
73. Tanchot, C., F. Vasseur, C. Pontoux, C. Garcia, A. Sarukhan. Immune regulation by self-reactive T cells is antigen specific. J Immunol 172, 4285-4291 (2004)
74. Shevach, E. M., R. A. DiPaolo, J. Andersson, D. M. Zhao, G. L. Stephens, A. M. Thornton. The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells. Immunol Rev 212, 60-73 (2006)
doi:10.1111/j.0105-2896.2006.00415.x
PMid:16903906
75. Matarese, G., V. De Rosa, A. La Cava. Regulatory CD4 T cells: sensing the environment. Trends Immunol 29, 12-17 (2008)
doi:10.1016/j.it.2007.10.006
PMid:18289503
76. D'Cruz, L. M., L. Klein. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6, 1152-1159 (2005)
doi:10.1038/ni1264
PMid:16227983
77. Malek, T. R. The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 74, 961-965 (2003)
doi:10.1189/jlb.0603272
PMid:12960253
78. Fontenot, J. D., J. P. Rasmussen, M. A. Gavin, A. Y. Rudensky. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6, 1142-1151 (2005)
doi:10.1038/ni1263
PMid:16227984
79. Nelson, B. H. IL-2, regulatory T cells, and tolerance. J Immunol 172, 3983-3988 (2004)
80. Fontenot, J. D., A. Y. Rudensky. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6, 331-337 (2005)
doi:10.1038/ni1179
PMid:15785758
81. Bensinger, S. J., A. Bandeira, M. S. Jordan, A. J. Caton, T. M. Laufer. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J Exp Med 194, 427-448 (2001)
doi:10.1084/jem.194.4.427
PMid:11514600 PMCid:2193499
82. Papiernik, M., M. L. de Moraes, C. Pontoux, F. Vasseur, C. Penit. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 10, 371-378 (1998)
doi:10.1093/intimm/10.4.371
PMid:9620592
83. Takahashi, T., T. Tagami, S.Yamazaki, T. Uede, J. Shimizu, N. Sakaguchi, T. W. Mak, S. Sakaguchi. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310 (2000)
doi:10.1084/jem.192.2.303
PMid:10899917 PMCid:2193248
84. Salomon, B., D. J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, J. A. Bluestone. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431-440 (2000)
doi:10.1016/S1074-7613(00)80195-8
PMid:10795741
85. Scheffold, A., J. Huhn, T. Hofer. Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)2 to tango. Eur J Immunol 35, 1336-1341 (2005)
doi:10.1002/eji.200425887
PMid:15827965
86. Malek, T. R., A. Yu, V. Vincek, P. Scibelli, L. Kong. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the non-redundant function of IL-2. Immunity 17, 167-178 (2002)
doi:10.1016/S1074-7613(02)00367-9
PMid:12196288
87. Apostolou, I., A. Sarukhan, L. Klein, H. von Boehmer. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3, 756-763 (2002)
88. Karim, M., C. I. Kingsley, A. R. Bushell, B. S. Sawitzki, K. J. Wood. Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process. J Immunol 172, 923-928 (2004)
89. Shevach, E. M. Regulatory T cells in autoimmunity. Annu Rev Immunol 18, 423-449 (2000)
doi:10.1146/annurev.immunol.18.1.423
PMid:10837065
90. Stephens, G. L., R. S. McHugh, M. J. Whitters, D. A. Young, D. Luxenberg, B. M. Carreno, M. Collins, E. M. Shevach. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 173, 5008-5020 (2004)
91. Chen, W., S. M. Wahl. TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 14, 85-89 (2003)
doi:10.1016/S1359-6101(03)00003-0
92. Duthoit, C. T., D. J. Mekala, R. S. Alli, T. L. Geiger. Uncoupling of IL-2 signaling from cell cycle progression in naïve CD4+ T cells by regulatory CD4+CD25+ T lymphocytes. J Immunol 174, 155-163 (2005)
93. Gondek, D. C., L. F. Lu, S. A. Quezada, S. Sakaguchi, R. J. Noelle. Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174, 1783-1786 (2005)
94. Read, S., V. Malmstrom, F. Powrie. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med 192, 295-302 (2000)
doi:10.1084/jem.192.2.295
PMid:10899916 PMCid:2193261
95. Paust, S., L. Lu, N. McCarty, H. Cantor. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101, 10398-10403 (2004)
doi:10.1073/pnas.0403342101
96. Medzhitov, R., P. Preston-Hurlburt, C. A. Janeway Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 (1997)
doi:10.1038/41131
PMid:9237759
97. Pasare, C., R. Medzhitov. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033-1036 (2003)
doi:10.1126/science.1078231
PMid:12532024
98. Wu, X., S. L. Peng. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54, 336-342 (2006)
doi:10.1002/art.21553
99. Christensen, S. R., M. Kashgarian, L. Alexopoulou, R. A. Flavell, S. Akira, M. J. Shlomchik. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 202, 321-331 (2005)
doi:10.1084/jem.20050338
PMid:16027240 PMCid:2212997
100. Gavin, M. A., S. R. Clarke, E. Negrou, A. Gallegos, A. Rudensky. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol 3, 33-41 (2002)
doi:10.1038/ni743
PMid:11740498
101. Walker, L. S., A. Chodos, M. Eggena, H. Dooms, A. K. Abbas. Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J Exp Med 198, 249-258 (2003)
doi:10.1084/jem.20030315
PMid:12874258 PMCid:2194065
102. Ermann, J., P. Hoffmann, M. Edinger, S. Dutt, F. G. Blankenberg, J. P. Higgins, R. S. Negrin, C. G. Fathman, S. Strober. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105, 2220-2226 (2005)
doi:10.1182/blood-2004-05-2044
PMid:15546950
103. Ruprecht, C. R., M. Gattorno, F. Ferlito, A. Gregorio, A. Martini, A. Lanzavecchia, F. Sallusto. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med 201, 1793-1803 (2005)
doi:10.1084/jem.20050085
PMid:15939793 PMCid:2213274
104. Koenen, H. J., E. Fasse, I. Joosten. CD27/CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. J Immunol 174, 7573-7583 (2005)
105. Kleinewietfeld, M., F. Puentes, G. Borsellino, L. Battistini, O. Rotzschke, K. Falk. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 105, 2877-2886 (2005)
doi:10.1182/blood-2004-07-2505
PMid:15613550
106. Dieckmann, D., C. H. Bruett, H. Ploettner, M. B. Lutz, G. Schuler. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med 196, 247-253 (2002)
doi:10.1084/jem.20020642
PMid:12119349 PMCid:2193931
107. Longhi, M. S., M. J. Hussain, R. R. Mitry, S. K. Arora, G. Mieli-Vergani, D. Vergani, Y. Ma. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176, 4484-4491 (2006)
108. Belkaid, Y., C. A. Piccirillo, S. Mendez, E. M. Shevach, D. L. Sacks. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502-507 (2002)
doi:10.1038/nature01152
PMid:12466842
109. Paust, S., H. Cantor. Regulatory T cells and autoimmune disease. Immunol Rev 204, 195-207 (2005)
doi:10.1111/j.0105-2896.2005.00247.x
PMid:15790360
110. Viglietta, V., C. Baecher-Allan, H. L. Weiner, D. A. Hafler. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199, 971-979 (2004)
doi:10.1084/jem.20031579
PMid:15067033 PMCid:2211881
111. Matarese, G., P. B. Carrieri, A. La Cava, F. Perna, V. Sanna, V. De Rosa, D. Aufiero, S. Fontana, S. Zappacosta. Leptin increase in multiple sclerosis associates with reduced number of CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 102, 5150-5155 (2005)
doi:10.1073/pnas.0408995102
112. Pop, S. M., C. P. Wong, D. A. Culton, S. H. Clarke, R. Tisch. Single cell analysis shows decreasing FoxP3 and TGF-b1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 201, 1333-1346 (2005)
doi:10.1084/jem.20042398
PMid:15837817 PMCid:2213147
113. Gregori, S., N. Giarratana, S. Smiroldo, L. Adorini. Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171, 4040-4047 (2003)
114. You, S., N. Thieblemont, M. A. Alyanakian, J. F. Bach, L. Chatenoud. Transforming growth factor-b and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 212, 185-202 (2006)
doi:10.1111/j.0105-2896.2006.00410.x
PMid:16903915
115. Pop, S. M., C. P. Wong, Q. He, Y. Wang, M. A. Wallet, K. S. Goudy, R. Tisch. The type and frequency of immunoregulatory CD4+ T-cells govern the efficacy of antigen-specific immunotherapy in nonobese diabetic mice. Diabetes 56, 1395-1402 (2007)
doi:10.2337/db06-0543
PMid:17317763
116. Tritt, M., E. Sgouroudis, E. d'Hennezel, A. Albanese, C. A. Piccirillo. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57, 113-123 (2008)
doi:10.2337/db06-1700
PMid:17928397
117. Poussier, P., T. Ning, T. Murphy, D. Dabrowski, S. Ramanathan. Impaired post-thymic development of regulatory CD4+25+ T cells contributes to diabetes pathogenesis in BB rats. J Immunol 174, 4081-4089 (2005)
118. Tarbell, K. V., S. Yamazaki, K. Olson, P. Toy, R. M. Steinman. CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199, 1467-1477 (2004)
doi:10.1084/jem.20040180
PMid:15184500 PMCid:2211787
119. Green, E. A., Y. Choi, R. A. Flavell. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183-191 (2002)
doi:10.1016/S1074-7613(02)00279-0
PMid:11869680
120. Bluestone, J. A., Q. Tang. Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci USA 101, 14622-14626 (2004)
doi:10.1073/pnas.0405234101
121. Lindley, S., C. M. Dayan, A. Bishop, B. O. Roep, M. Peakman, T. I. Tree. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92-99 (2005)
doi:10.2337/diabetes.54.1.92
PMid:15616015
122. Battaglia, M., A. Stabilini, B. Migliavacca, J. Horejs-Hoeck, T. Kaupper, M. G. Roncarolo. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177, 8338-8347 (2006)
123. Powrie, F., D. Mason. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 172, 1701-1708 (1990)
doi:10.1084/jem.172.6.1701
PMid:2258700 PMCid:2188779
124. Powrie, F., J. Carlino, M. W. Leach, S. Mauze, R. L. Coffman. A critical role for transforming growth factor-b but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J Exp Med 183, 2669-2674 (1996)
doi:10.1084/jem.183.6.2669
PMid:8676088 PMCid:2192626
125. Pandiyan, P., L. Zheng, S. Ishihara, J. Reed, M. J. Lenardo. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8, 1353-1362 (2007)
doi:10.1038/ni1536
PMid:17982458
126. Makita, S., T. Kanai, Y. Nemoto, T. Totsuka, R. Okamoto, K. Tsuchiya, M. Yamamoto, H. Kiyono, M. Watanabe. Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation. J Immunol 178, 4937-4946 (2007)
127. Maul, J., C. Loddenkemper, P. Mundt, E. Berg, T. Giese, A. Stallmach, M. Zeitz, R. Duchmann. Peripheral and intestinal regulatory CD4+CD25high T cells in inflammatory bowel disease. Gastroenterology 128, 1868-1878 (2005)
doi:10.1053/j.gastro.2005.03.043
PMid:15940622
128. Vasu, C., R. N. Dogan, M. J. Holterman, B. S. Prabhakar. Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobulin-specific CD4+CD25+ T cells and suppresses experimental autoimmune thyroiditis. J Immunol 170, 5511-5522 (2003)
129. Gangi, E., C. Vasu, D. Cheatem, B. S. Prabhakar. IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol 174, 7006-7013 (2005)
130. Verginis, P., H. S. Li, G. Carayanniotis. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol 174, 7433-7439 (2005)
131. Wolf, D., K. Hochegger, A. M. Wolf, H. F. Rumpold, G. Gastl, H. Tilg, G. Mayer, E. Gunsilius, A. R. Rosenkranz. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol 16, 1360-1370 (2005)
doi:10.1681/ASN.2004100837
PMid:15788479
132. Monk, C. R., M. Spachidou, F. Rovis, E. Leung, M. Botto, R. I. Lechler, O. A. Garden. MRL/Mp CD4+, CD25- T cells show reduced sensitivity to suppression by CD4+, CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum 52, 1180-1184 (2005)
doi:10.1002/art.20976
133. Miyara, M., Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, D. Nochy, P. Debré, J. C. Piette, G. Gorochov. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175, 8392-8400 (2005)
134. Mellor-Pita, S., M. J. Citores, R. Castejon, P. Tutor-Ureta, M. Yebra-Bango, J. L. Andreu, J. A. Vargas. Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis 65, 553-554 (2006)
doi:10.1136/ard.2005.044974
PMid:16531555
135. Lee, J. H., L. C. Wang, Y. T. Lin, Y. H. Yang, D. T. Lin, B. L. Chiang. Inverse correlation between CD4 regulatory T-cell population and autoantibody levels in pediatric patients with systemic lupus erythematosus. Immunology 117, 280-286 (2006)
doi:10.1111/j.1365-2567.2005.02306.x
PMid:16423064 PMCid:1782210
136. Valencia, X., C. Yarboro, G. Illei, P. Lipsky. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178, 2579-2588 (2007)
137. Morgan, M. E., R. P. Sutmuller, H. J. Witteveen, L. M. van Duivenvoorde, E. Zanelli, C. J. Melief, A. Snijders, R. Offringa, R. R. de Vries, R. E. Toes. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 48, 1452-1460 (2003)
doi:10.1002/art.11063
138. Morgan, M. E., R. Flierman, L. M. van Duivenvoorde, H. J. Witteveen, W. van Ewijk, J. M. van Laar, R. R. de Vries, R. E. Toes. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 52, 2212-2221 (2005)
doi:10.1002/art.21195
139. Lawson, C. A., A. K. Brown, V. Bejarano, S. H. Douglas, C. H. Burgoyne, A. S. Greenstein, A. W. Boylston, P. Emery, F. Ponchel, J. D. Isaacs. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford) 45, 1210-1217 (2006)
doi:10.1093/rheumatology/kel089
PMid:16571607
140. Cao, D., V. Malmstrom, C. Baecher-Allan, D. Hafler, L. Klareskog, C. Trollmo. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33, 215-223 (2003)
doi:10.1002/immu.200390024
PMid:12594850
141. Ehrenstein, M. R., J. G. Evans, A. Singh, S. Moore, G. Warnes, D. A. Isenberg, C. Mauri. Compromised function of regulatory T-cells in rheumatoid arthritis and reversal by anti-TNF-a therapy. J Exp Med 200, 277-285 (2004)
doi:10.1084/jem.20040165
PMid:15280421 PMCid:2211983
142. de Kleer, I. M., L. R. Wedderburn, L. S. Taams, A. Patel, H. Varsani, M. Klein, W. de Jager, G. Pugayung, F. Giannoni, G. Rijkers, S. Albani, W. Kuis, B. Prakken. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172, 6435-6443 (2004)
Key Words: Regulatory T cells (Tregs), Immune tolerance, Autoimmunity, Review
Send correspondence to: Antonio La Cava, Department of Medicine at the University of California Los Angeles, 1000 Veteran Avenue 32-59, Los Angeles, California 90095-1670. Tel: 310-267-4975, Fax: 310-206-8606, E-mail:alacava@mednet.ucla.edu