[Frontiers in Bioscience 14, 2004-2016, January 1, 2009]

Differential calcium signalling in neuronal-glial networks

Alexei Verkhratsky1,2, Miroslava Anderova1, Alexandr Chvatal1

1Institute of Experimental Medicine, ASCR, Videnska 1083, 142 20 Prague 4, Czech Republic, 2Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK

TABLE OF CONTENTS

1. Abstract
2. Introduction: Glial-neuronal networks as a substrate for brain function
3. Molecular physiology of calcium signalling and calcium excitability
4. Calcium signalling in neurones
5. Calcium signalling in glial cells
5.1. Ca2+-permeable plasmalemmal channels
5.2. Endoplasmic reticulum takes the leading role in glial Ca2+ signalling
5.3. Ca2+ extrusion
6. Propagating glial Ca2+ waves
7. Ca2+ signals control communications in neuronal-glial networks via release of gliotransmitters
8. Calcium signalling integrate neuronal-glial-vascular units
8.1. Astroglia define brain microarchitecture
8.2. Astrocytes form neuronal-glial-vascular units
9. Conclusions
10. Acknowledgements
11. References

1. ABSTRACT

Calcium ions are the probably the most ancient, the most universal and omnipresent intracellular signalling molecules, which are involved in regulation of a host of cellular functional reactions. In the nervous system Ca2+ signalling is intimately involved in information transfer and integration within neural circuits. Local Ca2+ signals or Ca2+ microdomains control neurotransmitter release; more global Ca2+ signals regulate synaptic strength and accomplish postsynaptic processing. In the glial syncytium Ca2+ ions provide for glial "Ca2+ excitability", convey long-range signalling by means of propagating Ca2+ waves and control the release of gliotransmitters. Differential Ca2+ signals in various elements of neural circuits represent therefore molecular mechanisms of integration in the nervous system.

2. INTRODUCTION: GLIAL-NEURONAL NETWORKS AS A SUBSTRATE FOR BRAIN FUNCTION

Human brain, where our thoughts, emotions and hopes dwell, is formed by an exceedingly complex cellular circuitry, which comprises more than 100 billion neurones and probably about 1 trillion glial cells (37, 45, 73, 124, 125, 145). Glial-neuronal circuits form dynamic ensembles, which act as a substrate for brain function. Integration and communications between glial and neuronal networks is generally achieved through extracellular space via the release of chemical neurotransmitters from synaptic terminals or gliotransmitters from astroglial processes (71, 72, 143, 154, 156); signal transduction within the circuits is, however, accomplished by two fundamentally distinct mechanisms. The neuronal networking relies upon rapidly propagating electrical signals, the action potentials, which are generated by voltage-gated channels residing in the plasmalemma (60-62). When reaching the synaptic terminals, electrical signals transform into the release of neurotransmitters, which, by activating receptors expressed in postsynaptic neurones or perisynaptic astroglia, accomplish information transfer within neuronal-glial network. Glial cells in contrast, are unable to generate action potentials, chiefly due to a very low density of voltage-gated channels in their membrane (152). Nevertheless, glial circuits are integrated via intracellular route, through the excitable media formed by the membrane of the endoplasmic reticulum (28, 146, 149) in combination with intercellular volume transmission through gap junctions (33, 44). Combination of plasmalemmal and intracellular excitability, release of neuro- and gliotransmitters and intercellular volume transmission are central for integration within neuronal-glial circuits. On the molecular level the central stage is occupied by Ca2+ ions, which control the release of chemical transmitters, regulate synaptic plasticity and provide glia with calcium excitability.

3. MOLECULAR PHYSIOLOGY OF CALCIUM SIGNALLING AND CALCIUM EXCITABILITY

Calcium signalling system is unique in its omnipresence and pluripotency; it has developed initially at the very dawn of life as an ultimate survival mechanism, which protected intracellular environment against Ca2+ ions of the primordial ocean (25). Indeed, at the moment polyphosphates (in the form of ATP) were chosen as energy accumulators, protection against Ca2+ became vital because Ca2+ phosphates are insoluble (160). Therefore, survival of proto-cells was critically dependent on their ability to rigidly control movements of Ca2+ ions through their membrane and to keep Ca2+ low within the cytoplasmic compartment. Thus the foundation for Ca2+ homeostatic/signalling system was laid. Ca2+ however, comes not only in the disguise of universal killer; as an ion it has highly flexible coordination number (6 to 10) and can therefore interact with a huge variety of biological molecules (65). It was not surprising, hence, that evolution swiftly utilised calcium as a universal signalling molecule.

Conceptually, calcium homeostasis/signalling system is operated by several molecular cascades, which provide for Ca2+ transport across membranes that create and delineate cellular compartments (see (9-11, 81, 118, 119, 144, 153) and Fig. 1 for review). These compartments, represented by the cytoplasm, the endoplasmic reticulum (ER) with nuclear envelope, the Golgi complex and mitochondria are endowed with distinct complements of Ca2+ homeostatic molecules that are responsible for creating steep Ca2+ gradients. For example, free Ca2+ concentration in the cytosol is ~ 10 - 20 thousand times lower compared with both extracellular space and the ER lumen; resulting transmembrane gradients determine the direction of Ca2+ diffusion.

Molecules of Ca2+ homeostasis/signalling are relatively few; they are represented by evolutionary conserved families of Ca2+ channels, Ca2+ transporters (comprising Ca2+ pumps and Ca2+ exchangers) and Ca2+ buffers; these molecular cascades, working in concert, provide for spatially and temporally organised fluctuations of intracellular Ca2+ concentration, generally known as Ca2+ signals (11, 81, 117, 118).

Calcium channels are responsible for diffusion-based Ca2+ movements down their electro-chemical gradients and can be generally subdivided into plasmalemmal Ca2+ channels (e.g. voltage- or ligand-gated channels, non-selective channels, store-operated channels, etc. (19, 26, 102, 108, 116)) and intracellular Ca2+ channels residing in the endomembrane (such as InsP3 receptors, Ca2+-gated channels, generally referred to as ryanodine receptors, and possibly some other channels, for example NAADP receptors, pannexins or indeed some types of TRP channels) or mitochondrial Ca2+ uniporter (12, 42, 55, 68, 70, 74, 142)). Calcium transporters, represented by Ca2+ ATP-ases (plasmalemmal - PMCA and endomembrane - SERCA) and Ca2+ exchangers (operative in both plasmalemma and in mitochondrial membrane) transport Ca2+ ions against concentration gradients using energy from either ATP hydrolysis or from pre-existing ion gradients (50, 161). Finally, Ca2+ buffers regulate Ca2+ diffusion within various cellular compartments. At the receiving end of Ca2+-signalling chain a host of Ca2+-sensitive enzymes (or "Ca2+ sensors") act as effectors, responsible for various physiological responses. Most importantly all components of Ca2+ homeostatic/signalling are regulated by Ca2+ ions themselves (via e.g. Ca2+-dependent inactivation of Ca2+ channels; control of SERCA pumping activity by intraluminal free Ca2+ etc. - see e.g. (17)), which determines high versatility of this molecular machinery.

4. CALCIUM SIGNALLING IN NEURONES

Neuronal calcium signalling, in contrast to the majority of other cell types, very much relies on the Ca2+ entry through plasmalemmal channels of both voltage-gated and ligand gated varieties (10, 81), which, most likely, is dictated by the rapid nature of signalling transfer within neuronal networks. Indeed the binary code imposed by the excitable properties of neuronal membrane necessitates high velocity and temporal confinement of signalling events. The basis for signal transfer between neurones is formed by Ca2+ entry through voltage-gated channels (VGCCs) located in the presynaptic terminals, which in turn provide for the formation of local microdomains of high Ca2+ concentration that govern exocytosis of neurotransmitters (130). The postsynaptic membrane, being the place for the primary integration of incoming information, requites more complex Ca2+ regulation, which is achieved by virtue of multitude of ionotropic Ca2+ receptors with different Ca2+ permeabilities and biophysical properties and a host of metabotropic receptors regulating Ca2+ release from the intracellular source. All in all neurones must re-conciliate the need for both highly localised and propagating signalling, which are required for effective synaptic transmission and postsynaptic integration.

The locality of Ca2+ signalling is accomplished by spatial segregation of voltage-gated Ca2+ channels, which are often clustered in strategically important sites - e.g. in the vicinity of synaptic vesicles (157) and by relatively high concentration of cytosolic Ca2+ buffers that very much limits Ca2+ diffusion (150). Generation of propagating Ca2+ signals is mainly confined to the endoplasmic reticulum, whose membrane forms an intracellular excitable media (10).

Neuronal ER is one of the largest organelles, formed by the continuous endomembrane; it extends from the nuclear envelope to peripheral dendrites and presynaptic terminals (144). The ER acts as a universal signalling organelle, accommodating variety of incoming signals, matching cellular activity with protein synthesis and posttranslational processing and generating output signalling cascades (9). Further, the ER serves as a dynamic Ca2+ store (9, 16, 117, 144), containing very high intraluminal free Ca2+ concentration, which may reach levels of 0.5 - 0.8 mM (3, 135, 137, 140). The ER acts as both generator and amplifier of Ca2+ signals (through Ca2+ release produced by InsP3 and ryanodine receptors) and as a powerful Ca2+ buffer (through Ca2+ uptake via SERCA pumps). In addition, the ER forms a substrate for Ca2+ signal propagation by (i) creating Ca2+ waves via Ca2+ assisted recruitment of Ca2+ release channels (both RyRs and InsP3Rs - see (10, 11)) and (ii) by Ca2+ diffusion through Ca2+ tunnels formed by continuous ER lumen (120, 121, 144).

Finally, termination of neuronal Ca2+ signals involves a coordinated activity of plasmalemmal Ca2+ pumps, sodium-calcium exchanger, SERCA pumps of endomembrane and mitochondria (50); failure of any of the components of Ca2+ extrusion system can initiate Ca2+ excitotoxicity (7).

5. CALCIUM SIGNALLING IN GLIAL CELLS

Glial cells are endowed with a full complement of Ca2+ homeostatic/signalling molecules, which have been reviewed in detail in numerous publications (e.g. (22, 32, 39, 40, 87, 93, 146, 149) to name but a few). Here therefore we shall only briefly outline the main properties of Ca2+ signalling pathways expressed in glia. It has to be stressed however, that the heterogeneity of glial cells is truly remarkable and glia residing in different brain regions often display very specific and distinct physiological properties.

5.1. Ca2+-permeable plasmalemmal channels

Both types of macroglial cells, oligodendrocytes and astrocytes express various types of plasmalemmal Ca2+-permeable channels. Voltage-gated Ca2+ channels have been identified in several glial preparations, both in culture and in situ (2, 31, 80, 85, 155). Glial cells demonstrated low- and high-voltage activated Ca2+ currents; more detailed pharmacological (31) and RT-PCR analysis (85) revealed expression of L-, N-, R- and T- types of VGCCs in cultured astrocytes. The role of VGCC-mediated Ca2+ influx in mature glial cells remains unclear; in thalamic astrocytes in situ, for example, inhibition of VGCCs by cobalt and nifedipine reduced spontaneous Ca2+ oscillations (111, 112). In contrast in other brain regions the role of voltage-activated Ca2+ influx pathway is negligible (24, 39). In immature glial cells VGCCs may have a specific role; in oligodendroglial precursors, for example, T-type Ca2+ channels are concentrated in the tips of processes which might be important for recognition of active axons in the neighborhood (80). Marked changes in the expression of glial VGCCs occur in response to different types of injury, such as ischemia, traumatic brain injury, hypomyelination or epilepsy; as a consequence VGCCs may play an important role in CNS pathophysiology (27, 159, 162).

Many types of ligand-gated channels expressed in glia are also Ca2+ permeable (152). Among these, particularly important are ionotropic glutamate receptors. AMPA receptors expressed in many types of glial cells are devoid of GluR-B subunit and thus have appreciable Ca2+ permeability (PCa/ PNa ~ 1 - (20, 147)). In addition both astrocytes (in spinal cord and cortex) and oligodendrocytes express NMDA receptors, which (i) have high Ca2+ permeability and (ii) demonstrate a very weak Mg2+ block, which permits their activation at negative membrane potentials, so characteristic for glial cells (69, 84, 94, 126, 148, 166).

The second class of highly Ca2+ permeable ionotropic receptors is represented by P2X purinoreceptors (103), which are expressed in certain types of glial cells. Functional presence of P2X receptors in astrocytes is somewhat controversial. The ATP-mediated ion currents were detected in cultured astrocytes (158), and mRNA specific for P2X1-4 and P2X6 receptors were found in astrocytes from hippocampus and nucleus accumbens (41, 83). At the same time exhaustive investigations failed to detect P2X-mediated responses in hippocampal astrocytes (63), although ATP-induced currents, carried through presumed P2X1/5 heteromeric receptors were identified in cortical astrocytes (Lalo, Pankratov, Kirchhoff, North & Verkhratsky, own observations). The P2X receptors, however, are abundant in microglia (38, 52, 56, 97), and P2X7 receptors can trigger large Ca2+ influx into oligodendrocytes, which can be, under certain circumstances, excitotoxic (91).

Further plasmalemmal pathways participating in Ca2+ entry in glia are represented by store-operated channels. Molecular identity of these channels in glia is still unknown, yet they are functionally expressed in many types of astrocytes and oligodendrocytes both in culture and in situ (e.g. (46, 66, 134, 141)). In cultured astrocytes the store-operated channels were reported to cluster in plasma membrane-ER junctions, providing thus Ca2+ influx into the restricted space (46).

5.2. Endoplasmic reticulum takes the leading role in glial Ca2+ signalling

The main route for glial Ca2+ signalling is associated with the ER, and in particular with metabotropic receptor-driven InsP3-induced Ca2+ release (32, 39, 77-79, 122, 123, 149). The role for ryanodine receptors and Ca2+-induced Ca2+ release (CICR) is much less clear. Astrocytes express ryanodine receptors, as indicated by staining with fluorescent ryanodine (151) by RT-PCR analysis (92) and by immunocytochemistry (89, 133). Nonetheless, functional role for glial RyRs remains uncertain. Several groups have demonstrated caffeine-induced Ca2+ signals in cultured astrocytes (47, 48); however others were not able to confirm these observations (8, 32, 35, 151).

Expression of functional CICR, however, can be different in different brain areas; for example CICR was virtually absent in hippocampus (8), but present in ventrobasal thalamus (112). In oligodendrocytes from spinal cord functional CICR was identified; interestingly it involved direct coupling between plasmalemmal VGCCs and ryanodine receptors (106), being thus similar to depolarization-induced Ca2+ release operational in skeletal muscle. In addition the ER, being internally continuous Ca2+ store (120, 136), may play an important role in long-range Ca2+ transport through Ca2+ tunnels (96, 121).

5.3. Ca2+ extrusion

Termination of Ca2+ signals in glia is achieved by combined activity of plasmalemmal and endomembrane pumps and mitochondrial buffering. Interestingly, astrocytes also express sodium-calcium exchanger, NCX (76, 139). Astroglial expression of NCX is somehow surprising, as the NCX usually operates under conditions of high and rapid Ca2+ loads, as for example in cardiac cells (36). It can well be, however, that astroglial NCX plays a very specific role, by removing excess of Na+ ions, which accumulate in astroglia following activation of Na+/glutamate transporters (75). Increase in (Na+)i hampers glutamate uptake by reducing transmembrane Na+ gradient; rapid removal of Na+ ions from the cytoplasm can therefore be critically important for glutamate clearance. The NCX working in the reverse mode can accomplish this function (75). The possibility of functional coupling between Na+/glutamate transporter and NCX is indirectly supported by demonstration of co-localisation of glutamate transporters and NCX in astroglial processes (95). Even more intriguing is the recent observation that Ca2+ influx supported by the reversed NCX may drive the exocytotic release of glutamate in cultured cortical astrocytes (107).

6. PROPAGATING GLIAL CA2+ WAVES

Although glial cells, and particularly astrocytes, express plasmalemmal voltage- and ligand- gated channels, the excitability of glia is intracellular, because it is associated with the endomembrane forming the endoplasmic reticulum. The endomembrane, by virtue of Ca2+ release channels and SERCA pumps, forms the excitable media, tightly controlled by Ca2+ concentration gradients and local free Ca2+ microdomains. Indeed, the SERCAs provide for Ca2+ concentration gradient and build up high intraluminal Ca2+ concentration; free Ca2+ in the ER in turn controls both SERCA pumping velocity and availability of Ca2+ release channels for activation (17, 18, 23). From the cytosolic side, the InsP3 receptor is positively regulated by free cytosolic Ca2+, so that local increases in (Ca2+)i can generate openings of InsP3Rs even at sub-threshold concentrations of InsP3 (12). This Ca2+-dependece forms the basis for the propagating activation of Ca2+ release channels along the endomembrane.

In glia, activation of metabotropic receptors often triggers initial (Ca2+)i rises in the distal processes; where they can either localise (49), or initiate propagating intracellular Ca2+ wave, resulting from Ca2+-assisted recruiting of InsP3Rs along the ER membrane (78, 163). In addition astroglial cells are capable of generating spontaneous Ca2+ oscillations (101), although in many cases these oscillations are driven by neuronal activity (1, 39). Propagating Ca2+ signals either initiated by activation of metabotropic receptors or occurring spontaneously can cross cell-to-cell boundaries and thus serve as a means for long-range astroglial communications. Intercellular Ca2+ waves were initially discovered in cultured astroglia (28); experimental evidence supporting the occurrence of propagating Ca2+ signals in astrocytes in situ, in brain slices begun to accumulate recently (51, 111, 129).

Mechanisms of glial Ca2+ waves propagation are complex and may involve (i) direct intercellular diffusion of InsP3 via gap junctions; (ii) regenerative release of a diffusible extracellular messenger (e.g. ATP) triggering metabotropic receptor-mediated Ca2+ release in neighbouring cells; (iii) diffusion of an extracellular messenger after release from a single cell (which may be important in microglia as well as astrocytes); and (iv) any combination of the above (6, 127, 138).

Importantly, mechanisms of intercellular Ca2+ wave propagation can be different in astroglial networks from different areas of the brain. For example, genetic deletion of Cx43, which forms gap junctions between brain astrocytes, results in the complete disappearance of astroglial Ca2+ waves in the neocortex, but not in the corpus callosum or hippocampus, where Ca2+ wave propagation relies primarily on ATP release (51).

7. CA2+ SIGNALS CONTROL COMMUNICATIONS IN NEURONAL-GLIAL NETWORKS VIA RELEASE OF GLIOTRANSMITTERS

It is now well established that neuronal activity triggers Ca2+ signalling in glia (1, 29, 39, 49, 101, 123). The leading mechanism of this neuron to glia signalling is associated with the release of neurotransmitters and activation of glial receptors. Neurotransmitters can either diffuse from the synaptic cleft, and interact with glial membranes enwrapping synapses, or can mediate transmission in specialised neuronal-glial synapses (43, 64, 86, 115) or can be secreted from the ectopic release sites in neuronal terminals (90). In most of the cases the glial Ca2+ signalling results from activation of metabotropic receptors and subsequent InsP3-induced Ca2+ release from the ER (see above); although some alternative mechanisms (e.g. through extracellular K+ accumulation and subsequent activation of glial VGCCs - (57)) may also be operative.

Astroglial Ca2+ signals in turn, directly control information transfer from glia to neurones, as glial (Ca2+)i elevation trigger vesicular release of gliotransmitters, which act upon both neighbouring astrocytes and closely associated neurones. It is yet unclear whether glial cells can form "synapses" either with other glia or with neurones; although this cannot be excluded at present. The release of gliotransmitters is different from exocytosis in neuronal terminals in respect to the source of trigger Ca2+: in the latter case Ca2+ enters the cytosol via plasmalemmal channels, whereas in the former Ca2+ comes from the intracellular stores; this difference determines slower exocytosis in glia (143, 156). On molecular level, astrocytes do possess all components of Ca2+-regulated vesicular release. Astroglial cells contain vesicles, which can be concentrated in their processes; these vesicles are endowed with vesicle glutamate transporters of VGLUT1, 2 and 3 types, and bear vesicle-associated protein 3 (VAMP3 or cellubrevin), which allows vesicle to perform exocytotic fusion (14, 98, 110, 156). Physiologically, exocytotic release of glutamate from astrocytes was identified in several ways, including biochemical (109) and functional (4, 5, 13); it was also directly monitored by total internal reflection fluorescence imaging and by membrane capacitance recordings (14, 82, 156).

Transient Ca2+ increases in astrocytes trigger release of several gliotransmitters, which include not only glutamate but also ATP, D-serine and taurine (113, 128, 164, 165); release of gliotransmitters actively modulate neuronal excitability and synaptic transmission. Astroglial Ca2+ signals and related gliotransmitter release were shown to trigger variety of neuronal responses (111, 114) and affect synaptic transmission in neuronal glial co-cultures (5) and in brain slices (13, 67). It was shown that variations in glial intracellular Ca2+ may affect neuronal signal transduction in two ways: local and distal, (for reviews see (15, 53) and Fig. 2). For example, intracellular Ca2+ signals observed in Bergmann glial cells in response to neuronal stimulation were restricted to cell microdomains adjacent to active synapses (49). It was suggested, that these rapid and spatially restricted Ca2+ transients underlie quick responses to the neuronal activity and provide for modulation at a local, probably synaptic, level. On the other hand, transient Ca2+ increases represented by spreading "calcium waves" over the astrocytic functional syncytium, i.e. gliotransmission, may represent the second, distal, type of neural modulation (Fig. 2). Gliotransmitters released from astrocytes far away from the active synapses may modulate neuronal activity in distant areas of the nervous tissue. Recent studies demonstrated prolonged Ca2+ signals mediated by activation of mGluR5 in astrocytes, which resulted in Ca2+-dependent release of gliotransmitters, which for minutes outlasted the initial stimulus (30). The function of D-serine, which is synthesised in glial cells and released upon activation of glutamate receptors, was emphasized in regulating synaptic excitatory transmission and plasticity in different brain areas (88, 105).

In addition to the possible physiological role of gliotransmission, the dysregulation of the latter could be involved in variety of pathological states, such as for example schizophrenia and epilepsy (53). Indeed, enhanced astroglial Ca2+ signals contributed to neuronal excitotoxicity after status epilepticus corroborating thus the neurotoxic role of astrocytic gliotransmission (34).

8. CALCIUM SIGNALLING INTEGRATE NEURONAL-GLIAL-VASCULAR UNITS

8.1. Astroglia define brain microarchitecture

Astroglia determine the functional micro-architecture throughout the grey matter, by creating relatively independent domains confined to the territories of individual astrocytes. Indeed recent experiments employing in situ high-resolution imaging of astrocytes infused with fluorescent dues or genetically labelled by selectively targeted fluorescent proteins (59, 156) revealed this specific spatial organisation of astrocytes in the grey matter. It was demonstrated that every protoplasmic astrocyte occupies a clearly defined territorial domain, which is free from the processes of other astrocytes (21, 104). The contacts between astrocytes, where the astroglial syncytium is formed, occur only at the level of very fine and most distant processes. This particular morphological arrangement creates grey matter compartments in which a single astrocyte forms contacts with all neuronal membranes and synapses residing within its confines (100). The fine processes formed by astrocytes enwrap neuronal terminals and form tripartite synapses, which are grouped into functional islands (54). Incidentally, astroglial processes also appear as highly dynamic structures as they produce filopodia and lamellopodia, which are able either glide along neuronal surfaces or extend and retract between astroglial and neuronal membranes (58).

8.2. Astrocytes form neuronal-glial-vascular units

The specific territorial organisation of astroglia in the grey matter provides for a further functional compartmentalisation as every astrocyte extends processes towards neighbouring capillaries where these processes form endfeet. These astroglial endfeet completely cover the capillary wall from the side of brain parenchyma creating thus a glial-vascular interface; moreover astroglia release yet undefined factors which ascertain formation of tight junctions between vascular endothelial cells thus sealing the blood-brain barrier. Membranes of astroglial endfeet express numerous receptors, transporters and channels, which are instrumental for glial-capillary communications (132). In this way every astrocyte integrates neuronal membranes residing within its territory with nearby capillary, forming an independent glial-neuronal-vascular unit. This unit provides for morphological and functional link between brain parenchyma and microcirculation and accomplishes dynamic regulation of blood supply associated with neural activity (132).

Calcium ions represent the functional substrate for signalling within glial-neuronal vascular unit, being for example responsible for initiation of functional hyperaemia; the latter representing rapid increase in local circulation, which follows an increase in neural activity (131). Mechanisms of functional signalling linking increases in synaptic activity with circulation involve activation of receptors residing in perisynaptic astrocytes with subsequent generation of Ca2+ wave, which triggers release of either vasodilating agents (for example prostaglandin derivatives produced from arachidonic acid - (167)), or vasoconstrictors (e.g. 20-hydroxyeicosatetraenois acid also derived from arachidonic acid - (99)) . Therefore astrocytes, through local endfeet-vascular interactions, regulate focal changes in blood supply to support the functional activity of a single neuron-glia-vascular unit they delineate and control.

9.CONCLUSIONS

Calcium signalling machinery represents one of the most ancient, versatile and omnipresent systems providing multi-level regulation of cellular functions. In the brain, Ca2+ signals generated in neurones and glia act as a universal molecular mechanism, which regulates inter- and intracellular communications and determines integration within neuronal-glial networks. This is achieved by either highly compartmentalised Ca2+ microdomains, which control release of transmitters or by long-range propagating Ca2+ waves, which determine post-synaptic integration and signal transfer within glial syncytium.

10. ACKNOWLEDGEMENTS

A.V. research was supported by The National Institute of Health, The Royal Society, The Wellcome Trust and The Alzheimer Research Trust (UK).

M.A. and A.C. research was supported by the Grant Agency of the Czech Republic (#305/06/1316 and #305/06/1464), by the Ministery of Education, Youth and Sports of the Czech Republic (#1M0538 and #LC554) and by the Academy of Sciences of the Czech Republic (#AVOZ50390512).

11.REFERENCES

1. F. Aguado, J.F. Espinosa-Parrilla, M.A. Carmona and E. Soriano: Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22, 9430-9444 (2002)

 

2. G. Akopian, K. Kressin, A. Derouiche and C. Steinhauser: Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents. Glia, 17,181-194 (1996)

doi:10.1002/(SICI)1098-1136(199607)17:3<181::AID-GLIA1>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1098-1136(199607)17:3<181::AID-GLIA1>3.0.CO;2-4

3. M.T. Alonso, M.J. Barrero, P. Michelena, E. Carnicero, I. Cuchillo, A.G. Garcia, J. Garcia-Sancho, M. Montero and J. Alvarez: Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol 144, 241-254 (1999)

doi:10.1083/jcb.144.2.241
http://dx.doi.org/10.1083/jcb.144.2.241

4. A. Araque, V. Parpura, R.P. Sanzgiri P.G. Haydon: Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10, 2129-2142 (1998)

doi:10.1046/j.1460-9568.1998.00221.x
http://dx.doi.org/10.1046/j.1460-9568.1998.00221.x

5. A. Araque, R.P. Sanzgiri, V. Parpura and P.G. Haydon: Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18, 6822-6829 (1998)

 

6. G. Arcuino, J.H. Lin, T. Takano, C. Liu, L. Jiang, Q. Gao, J. Kang and M. Nedergaard: Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99, 9840-9845 (2002)

doi:10.1073/pnas.152588599
http://dx.doi.org/10.1073/pnas.152588599

7. D. Bano, K.W. Young, C.J. Guerin, R. Lefeuvre, N.J. Rothwell, L. Naldini, R. Rizzuto, E. Carafoli and P. Nicotera: Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275-285 (2005)

doi:10.1016/j.cell.2004.11.049
http://dx.doi.org/10.1016/j.cell.2004.11.049

8. A. Beck, R.Z. Nieden, H.P. Schneider and J.W. Deitmer: Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35, 47-58 (2004)

doi:10.1016/S0143-4160(03)00171-4
http://dx.doi.org/10.1016/S0143-4160(03)00171-4

9. M.J. Berridge: The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235-249 (2002)

doi:10.1016/S0143416002001823
http://dx.doi.org/10.1016/S0143416002001823

10. M.J. Berridge: Neuronal calcium signalling. Neuron 21, 13-26 (1998)

doi:10.1016/S0896-6273(00)80510-3
http://dx.doi.org/10.1016/S0896-6273(00)80510-3

11. M.J. Berridge, M.D. Bootman and H.L. Roderick: Calcium signalling: dynamics, homeostasis and remodelling Nat Rev Mol Cell Biol 4, 517-529 (2003).

doi:10.1038/nrm1155
http://dx.doi.org/10.1038/nrm1155

12. I. Bezprozvanny: The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38, 261-272 (2005)

doi:10.1016/j.ceca.2005.06.030
http://dx.doi.org/10.1016/j.ceca.2005.06.030

13. P. Bezzi, G. Carmignoto, L. Pasti, S. Vesce, D. Rossi, B.L. Rizzini, T. Pozzan and A. Volterra: Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281-285 (1998)

doi:10.1038/34651
http://dx.doi.org/10.1038/34651

14. P. Bezzi, V. Gundersen, J.L. Galbete, G. Seifert, C. Steinhauser, E. Pilati and A. Volterra: Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7, 613-620 (2004).

doi:10.1038/nn1246
http://dx.doi.org/10.1038/nn1246

15. P. Bezzi and A. Volterra: A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11, 387-394 (2001).

doi:10.1016/S0959-4388(00)00223-3
http://dx.doi.org/10.1016/S0959-4388(00)00223-3

16. M.D. Bootman, O.H. Petersen and A. Verkhratsky: The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32, 231-234 (2002)

doi:10.1016/S0143416002002002
http://dx.doi.org/10.1016/S0143416002002002

17. D. Burdakov, O.H. Petersen and A. Verkhratsky: Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38, 303-310 (2005)

doi:10.1016/j.ceca.2005.06.010
http://dx.doi.org/10.1016/j.ceca.2005.06.010

18. D. Burdakov and A. Verkhratsky: Biophysical re-equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett 580, 463-468 (2006)

doi:10.1016/j.febslet.2005.12.042
http://dx.doi.org/10.1016/j.febslet.2005.12.042

19. N. Burnashev: Calcium permeability of ligand-gated channels. Cell Calcium 24, 325-332 (1998).

doi:10.1016/S0143-4160(98)90056-2
http://dx.doi.org/10.1016/S0143-4160(98)90056-2

20. N. Burnashev, A. Khodorova, P. Jonas, P.J. Helm, W. Wisden, H. Monyer, P.H. Seeburg and B. Sakmann: Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566-1570 (1992)

doi:10.1126/science.1317970
http://dx.doi.org/10.1126/science.1317970

21. E.A. Bushong, M.E. Martone, Y.Z. Jones and M.H. Ellisman: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22, 183-192 (2002)

 

22. A.M. Butt: Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54, 666-675 (2006)

doi:10.1002/glia.20424
http://dx.doi.org/10.1002/glia.20424

23. P. Camacho and J.D. Lechleiter: Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82, 765-771 (1995)

doi:10.1016/0092-8674(95)90473-5
http://dx.doi.org/10.1016/0092-8674(95)90473-5

24. G. Carmignoto, L. Pasti and T. Pozzan: On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18, 4637-4645 (1998)

 

25. R.M. Case, D. Eisner, A. Gurney, O. Jones, S. Muallem and A. Verkhratsky: Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42, 345-350 (2007)

doi:10.1016/j.ceca.2007.05.001
http://dx.doi.org/10.1016/j.ceca.2007.05.001

26. W.A. Catterall: Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24, 307-323 (1998)

doi:10.1016/S0143-4160(98)90055-0
http://dx.doi.org/10.1016/S0143-4160(98)90055-0

27. Y.H. Chung, H.S. Kim, C.M. Shin, M.J. Kim and C.I. Cha: Immunohistochemical study on the distribution of voltage-gated K+ channels in rat brain following transient focal ischemia. Neurosci Lett 308, 157-160 (2001)

doi:10.1016/S0304-3940(01)01996-6
http://dx.doi.org/10.1016/S0304-3940(01)01996-6

28. A.H. Cornell Bell, S.M. Finkbeiner, M.S. Cooper and S.J. Smith: Glutamate induces calcium waves in cultured astrocytes: long- range glial signalling. Science 247, 470-473 (1990)

doi:10.1126/science.1967852
http://dx.doi.org/10.1126/science.1967852

29. J.W.Dani, A. Chernjavsky and S.J. Smith: Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429-440 (1992)

doi:10.1016/0896-6273(92)90271-E
http://dx.doi.org/10.1016/0896-6273(92)90271-E

30. M. D'Ascenzo, T. Fellin, M. Terunuma, R. Revilla-Sanchez, D.F. Meaney, Y.P. Auberson, S.J. Moss and P.G. Haydon: mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 104, 1995-2000 (2007)

doi:10.1073/pnas.0609408104
http://dx.doi.org/10.1073/pnas.0609408104

31. M. D'Ascenzo, M., Vairano, C. Andreassi, P. Navarra, G.B. Azzena and C. Grassi: Electrophysiological and molecular evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) type Ca2+ channels in rat cortical astrocytes. Glia 45, 354-363 (2004)

doi:10.1002/glia.10336
http://dx.doi.org/10.1002/glia.10336

32. J.W. Deitmer, A. Verkhratsky and C. Lohr: Calcium signalling in glial cells. Cell Calcium 24, 405-416 (1998).

doi:10.1016/S0143-4160(98)90063-X
http://dx.doi.org/10.1016/S0143-4160(98)90063-X

33. R. Dermietzel: Gap junction wiring: a 'new' principle in cell-to-cell communication in the nervous system? Brain Res Brain Res Rev 26, 176-183 (1998)

doi:10.1016/S0165-0173(97)00031-3
http://dx.doi.org/10.1016/S0165-0173(97)00031-3

34. S. Ding, T. Fellin, Y. Zhu, S.Y. Lee, Y.P. Auberson, D.F. Meaney, D.A. Coulter, G. Carmignoto and P.G. Haydon: Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27, 10674-10684 (2007)

doi:10.1523/JNEUROSCI.2001-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.2001-07.2007

35. S. Duffy and B.A. MacVicar: Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neuroscience 61, 51-61 (1994).

doi:10.1016/0306-4522(94)90059-0
http://dx.doi.org/10.1016/0306-4522(94)90059-0

36. D.A. Eisner and K.R. Sipido: Sodium calcium exchange in the heart: necessity or luxury? Circ Res 95, 549-551 (2004)

doi:10.1161/01.RES.0000143419.87518.9e
http://dx.doi.org/10.1161/01.RES.0000143419.87518.9e

37. S. Exner: Entwurf zur physiologischen Erklärung der Psychischen Erscheinungen. Deiticke, Leipzig (1894)

 

38. K. Farber and H. Kettenmann: Purinergic signaling and microglia. Pflugers Arch 452, 615-621 (2006)

doi:10.1007/s00424-006-0064-7
http://dx.doi.org/10.1007/s00424-006-0064-7

39. T.A. Fiacco and K.D. McCarthy: Astrocyte calcium elevations: properties, propagation, and effects on brain signalling. Glia 54, 676-690 (2006)

doi:10.1002/glia.20396
http://dx.doi.org/10.1002/glia.20396

40. S.M. Finkbeiner: Glial calcium. Glia 9, 83-104 (1993)

doi:10.1002/glia.440090202
http://dx.doi.org/10.1002/glia.440090202

41. H. Franke, J. Grosche, H. Schadlich, U. Krugel, C. Allgaier and P. Illes: P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108, 421-429 (2001)

doi:10.1016/S0306-4522(01)00416-X
http://dx.doi.org/10.1016/S0306-4522(01)00416-X

42. A. Galione and M. Ruas: NAADP receptors. Cell Calcium 38, 273-280 (2005)

doi:10.1016/j.ceca.2005.06.031
http://dx.doi.org/10.1016/j.ceca.2005.06.031

43. W.P. Ge, X,J, Yang, Z Zhang, H.K. Wang, W Shen, Q.D. Deng and S. Duan: Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533-1537 (2006)

doi:10.1126/science.1124669
http://dx.doi.org/10.1126/science.1124669

44. C. Giaume and L. Venance: Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50-64 (1998)

doi:10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4

45. C. Golgi: Opera Omnia, Hoepli Editore, Milano (1903)

 

46. V.A. Golovina: Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564, 737-749 (2005)

doi:10.1113/jphysiol.2005.085035
http://dx.doi.org/10.1113/jphysiol.2005.085035

47. V.A. Golovina, L.L. Bambrick, P.J. Yarowsky, B.K. Krueger and M.P. Blaustein: Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia 16, 296-305 (1996)

doi:10.1002/(SICI)1098-1136(199604)16:4<296::AID-GLIA2>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-1136(199604)16:4<296::AID-GLIA2>3.0.CO;2-Z

48. V.A. Golovina and M.P. Blaustein: Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca2+ stores in astrocytes. Glia 31, 15-28 (2000)

doi:10.1002/(SICI)1098-1136(200007)31:1<15::AID-GLIA20>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1098-1136(200007)31:1<15::AID-GLIA20>3.0.CO;2-H

49. J. Grosche, V. Matyash, T. Moller, A. Verkhratsky, A. Reichenbach and H. Kettenmann: Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci, 2, 139-143 (1999)

doi:10.1038/5692
http://dx.doi.org/10.1038/5692

50. D. Guerini,L. Coletto and E. Carafoli: Exporting calcium from cells. Cell Calcium 38, 281-289 (2005)

doi:10.1016/j.ceca.2005.06.032
http://dx.doi.org/10.1016/j.ceca.2005.06.032

51. B. Haas, C.G. Schipke, O. Peters, G. Sohl, K. Willecke and H. Kettenmann: Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex 16, 237-246 (2006)

doi:10.1093/cercor/bhi101
http://dx.doi.org/10.1093/cercor/bhi101

52. S. Haas, J. Brockhaus, A. Verkhratsky and H. Kettenmann: ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75, 257-261 (1996)

doi:10.1016/0306-4522(96)00270-9
http://dx.doi.org/10.1016/0306-4522(96)00270-9

53. M.M. Halassa, T. Fellin and P.G. Haydon: The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13, 54-63 (2007)

doi:10.1016/j.molmed.2006.12.005
http://dx.doi.org/10.1016/j.molmed.2006.12.005

54. M.M. Halassa, T. Fellin, H. Takano, J.H. Dong and P.G. Haydon: Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27, 6473-6477 (2007)

doi:10.1523/JNEUROSCI.1419-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1419-07.2007

55. S.L. Hamilton: Ryanodine receptors. Cell Calcium 38, 253-260 (2005)

doi:10.1016/j.ceca.2005.06.037
http://dx.doi.org/10.1016/j.ceca.2005.06.037

56. U.K. Hanisch and H. Kettenmann: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10, 1387-1394 (2007)

doi:10.1038/nn1997
http://dx.doi.org/10.1038/nn1997

57. S. Hartl, J.E. Heil, A. Hirsekorn and C. Lohr: A novel neurotransmitter-independent communication pathway between axons and glial cells. Eur J Neurosci 25, 945-956 (2007)

doi:10.1111/j.1460-9568.2007.05351.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05351.x

58. J. Hirrlinger, S. Hulsmann and F. Kirchhoff: Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20, 2235-2239 (2004)

doi:10.1111/j.1460-9568.2004.03689.x
http://dx.doi.org/10.1111/j.1460-9568.2004.03689.x

59. P.G. Hirrlinger, A. Scheller, C. Braun, M. Quintela-Schneider, B. Fuss, J. Hirrlinger and F. Kirchhoff: Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30, 291-303 (2005)

doi:10.1016/j.mcn.2005.08.011
http://dx.doi.org/10.1016/j.mcn.2005.08.011

60. A.L. Hodgkin and A.F. Huxley: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116, 449-472 (1952)

 

61. A.L. Hodgkin and A.F. Huxley: Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17, 43-52 (1952)

 

62. A.L. Hodgkin and A.F. Huxley: Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140, 177-183 (1952)

 

63. R. Jabs, K. Matthias, A. Grote, M. Grauer, G. Seifert and C. Steinhauser: Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 55, 1648-1655 (2007)

doi:10.1002/glia.20580
http://dx.doi.org/10.1002/glia.20580

64. R. Jabs, T. Pivneva, K. Huttmann, A. Wyczynski, C. Nolte, H. Kettenmann and C. Steinhauser: Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci 118, 3791-3803 (2005)

doi:10.1242/jcs.02515
http://dx.doi.org/10.1242/jcs.02515

65. J.K. Jaiswal: Calcium - how and why? J Biosci 26, 357-363 (2001)

doi:10.1007/BF02703745
http://dx.doi.org/10.1007/BF02703745

66. S. Jung, F. Pfeiffer and J.W. Deitmer: Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol 527, 549-561 (2000)

doi:10.1111/j.1469-7793.2000.00549.x
http://dx.doi.org/10.1111/j.1469-7793.2000.00549.x

67. J. Kang, L. Jiang, S.A. Goldman and M. Nedergaard: Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1, 683-692 (1998)

doi:10.1038/3684
http://dx.doi.org/10.1038/3684

68. M. Kano, O. Garaschuk, A. Verkhratsky and A. Konnerth: Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol 487, 1-16 (1995)

 

69. R. Karadottir, P. Cavelier, L.H. Bergersen and D. Attwell: NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162-1166 (2005)

doi:10.1038/nature04302
http://dx.doi.org/10.1038/nature04302

70. L.J. Karai, J.T. Russell, M.J. Iadarola and Z. Olah: Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem 279, 16377-16387 (2004)

doi:10.1074/jbc.M310891200
http://dx.doi.org/10.1074/jbc.M310891200

71. B. Katz and R. Miledi: Ionic requirements of synaptic transmitter release Nature 215, 651 (1967)

doi:10.1038/215651a0
http://dx.doi.org/10.1038/215651a0

72. B. Katz and R. Miledi: The timing of calcium action during neuromuscular transmission. J Physiol 189, 535-544 (1967)

 

73. H. Kettenmann and B.R. Ransom (Eds): Neuroglia, OUP, Oxford (2005)

 

74. Y. Kirichok, G. Krapivinsky and D.E. Clapham: The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360-364 (2004)

doi:10.1038/nature02246
http://dx.doi.org/10.1038/nature02246

75. S. Kirischuk, H. Kettenmann and A. Verkhratsky: Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch 454, 245-252 (2007)

doi:10.1007/s00424-007-0207-5
http://dx.doi.org/10.1007/s00424-007-0207-5

76. S. Kirischuk, H. Kettenmann and A. Verkhratsky: Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. Faseb J 11, 566-572 (1997)

 

77. S. Kirischuk, F. Kirchhoff, V. Matyash, H. Kettenmann and A. Verkhratsky: Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92, 1051-1059 (1999)

doi:10.1016/S0306-4522(99)00067-6
http://dx.doi.org/10.1016/S0306-4522(99)00067-6

78. S. Kirischuk, T. Moller, N. Voitenko, H. Kettenmann and A. Verkhratsky: ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15, 7861-7871 (1995)

 

79. S. Kirischuk, J. Scherer, H. Kettenmann and A. Verkhratsky: Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483, 41-57 (1995)

 

80. S. Kirischuk, J. Scherer, T. Moller, A. Verkhratsky and H. Kettenmann: Subcellular heterogeneity of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage. Glia 13, 1-12 (1995)

doi:10.1002/glia.440130102
http://dx.doi.org/10.1002/glia.440130102

81. P. Kostyuk and A. Verkhratsky Calcium Signalling in the Nervous System, Wiley & Sons, Chichester (1995)

 

82. M. Kreft, M. Stenovec, M. Rupnik, S. Grilc, M. Krzan, M., Potokar, T. Pangrsic, P.G. Haydon and R. Zorec: Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia 46, 437-445 (2004)

 

83. M. Kukley, J.A. Barden, C. Steinhauser and R. Jabs: Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36, 11-21 (2001)

doi:10.1002/glia.1091
http://dx.doi.org/10.1002/glia.1091

84. U. Lalo, Y. Pankratov, F. Kirchhoff, R.A. North and A. Verkhratsky: NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26, 2673-2683 (2006)

doi:10.1523/JNEUROSCI.4689-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.4689-05.2006

85. I. Latour, J. Hamid, A.M. Beedle, G.W. Zamponi and B.A. Macvicar: Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41, 347-353 (2003).

doi:10.1002/glia.10162
http://dx.doi.org/10.1002/glia.10162

86. S.C. Lin and D.E. Bergles: Synaptic signaling between neurons and glia. Glia 47, 290-298 (2004)

doi:10.1002/glia.20060
http://dx.doi.org/10.1002/glia.20060

87. C. Lohr and J.W. Deitmer: Calcium signaling in invertebrate glial cells. Glia 54, 642-649 (2006)

doi:10.1002/glia.20368
http://dx.doi.org/10.1002/glia.20368

88. M. Martineau, G. Baux and J.P. Mothet: D-serine signalling in the brain: friend and foe. Trends Neurosci 29, 481-491 (2006)

doi:10.1016/j.tins.2006.06.008
http://dx.doi.org/10.1016/j.tins.2006.06.008

89. M.E. Martone, S.A. Alba, V.M. Edelman, J.A. Airey and M.H. Ellisman: Distribution of inositol-1,4,5-trisphosphate and ryanodine receptors in rat neostriatum. Brain Res 756, 9-21 (1997)

doi:10.1016/S0006-8993(96)01430-8
http://dx.doi.org/10.1016/S0006-8993(96)01430-8

90. K. Matsui, C.E. Jahr. and M.E. Rubio: High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25, 7538-7547 (2005)

doi:10.1523/JNEUROSCI.1927-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.1927-05.2005

91. C. Matute, I. Torre, F. Perez-Cerda, A. Perez-Samartin, E. Alberdi, E., Etxebarria, A.M. Arranz, R. Ravid, A. Rodriguez-Antiguedad, M. Sanchez-Gomez and M. Domercq: P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27, 9525-9533 (2007)

 

92. M. Matyash, V. Matyash, C. Nolte, V. Sorrentino and H. Kettenmann: Requirement of functional ryanodine receptor type 3 for astrocyte migration. Faseb J 16 84-86 (2002)

 

93. M.R. Metea and E.A. Newman: Calcium signaling in specialized glial cells. Glia 54, 650-655 (2006)

doi:10.1002/glia.20352
http://dx.doi.org/10.1002/glia.20352

94. I. Micu, Q. Jiang, E. Coderre, A. Ridsdale, L. Zhang, J. Woulfe, X. Yin, B.D. Trapp, J.E. McRory, R. Rehak, G.W. Zamponi, W. Wang and P.K. Stys: NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988-992 (2006)

 

95. A. Minelli, P. Castaldo, P., Gobbi, S. Salucci, S., Magi and S. Amoroso: Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41, 221-234 (2007)

doi:10.1016/j.ceca.2006.06.004
http://dx.doi.org/10.1016/j.ceca.2006.06.004

96. H. Mogami, K. Nakano, A.V. Tepikin and O.H. Petersen: Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88, 49-55 (1997)

doi:10.1016/S0092-8674(00)81857-7
http://dx.doi.org/10.1016/S0092-8674(00)81857-7

97. T. Moller, O. Kann, A. Verkhratsky and H. Kettenmann: Activation of mouse microglial cells affects P2 receptor signaling, Brain Res 853, 49-59 (2000)

doi:10.1016/S0006-8993(99)02244-1
http://dx.doi.org/10.1016/S0006-8993(99)02244-1

98. V. Montana, Y. Ni, V. Sunjara, X. Hua and V. Parpura: Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24 2633-2642 (2004)

doi:10.1523/JNEUROSCI.3770-03.2004
http://dx.doi.org/10.1523/JNEUROSCI.3770-03.2004

99. S.J. Mulligan, S.J. and B.A. MacVicar: Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195-199 (2004)

doi:10.1038/nature02827
http://dx.doi.org/10.1038/nature02827

100. M. Nedergaard, B. Ransom and S.A. Goldman: New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci 26, 523-530 (2003)

doi:10.1016/j.tins.2003.08.008
http://dx.doi.org/10.1016/j.tins.2003.08.008

101. W.J. Nett, S.H. Oloff and K.D. McCarthy: Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87, 528-537 (2002)

 

102. B. Nilius, K. Talavera and A. Verkhratsky: T-type calcium channels: the never ending story. Cell Calcium 40, 81-88 (2006)

doi:10.1016/j.ceca.2006.04.011
http://dx.doi.org/10.1016/j.ceca.2006.04.011

103. R.A. North and A. Verkhratsky: Purinergic transmission in the central nervous system. Pflugers Arch 452, 479-485 (2006)

doi:10.1007/s00424-006-0060-y
http://dx.doi.org/10.1007/s00424-006-0060-y

104. K. Ogata and T. Kosaka: Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221-233 (2002)

doi:10.1016/S0306-4522(02)00041-6
http://dx.doi.org/10.1016/S0306-4522(02)00041-6

105. S.H. Oliet and J.P. Mothet: Molecular determinants of D-serine-mediated gliotransmission: from release to function. Glia 54, 726-737 (2006)

doi:10.1002/glia.20356
http://dx.doi.org/10.1002/glia.20356

106. M. Ouardouz, M.A. Nikolaeva, E. Coderre, G.W. Zamponi, J.E. McRory, B.D. Trapp, X. Yin, W. Wang, J. Woulfe and P.K. Stys: Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40, 53-63 (2003)

doi:10.1016/j.neuron.2003.08.016
http://dx.doi.org/10.1016/j.neuron.2003.08.016

107. S. Paluzzi, S., Alloisio, S., Zappettini, M. Milanese, L. Raiteri, M. Nobile and G. Bonanno: Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization. J Neurochem 103, 1196-1207 (2007)

 

108. A.B. Parekh and J.W. Putney, Jr: Store-operated calcium channels. Physiol Rev 85, 757-810 (2005)

doi:10.1152/physrev.00057.2003
http://dx.doi.org/10.1152/physrev.00057.2003

109. V. Parpura, T.A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija and P.G. Haydon: Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744-747 (1994)

doi:10.1038/369744a0
http://dx.doi.org/10.1038/369744a0

110. V. Parpura, Y. Fang, T. Basarsky, R. Jahn and P.G. Haydon: Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377, 489-492 (1995)

doi:10.1016/0014-5793(95)01401-2
http://dx.doi.org/10.1016/0014-5793(95)01401-2

111. H.R. Parri and V. Crunelli: Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12, 3897-3900 (2001)

doi:10.1097/00001756-200112210-00008
http://dx.doi.org/10.1097/00001756-200112210-00008

112. H.R. Parri and V. Crunelli: The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120, 979-992 (2003)

doi:10.1016/S0306-4522(03)00379-8
http://dx.doi.org/10.1016/S0306-4522(03)00379-8

113. O. Pascual, K.B. Casper, C. Kubera, J. Zhang, R. Revilla-Sanchez, J.T. Sul, H. Takano, S.J. Moss, K. McCarthy and P.G. Haydon: Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113-116 (2005)

doi:10.1126/science.1116916
http://dx.doi.org/10.1126/science.1116916

114. L. Pasti, A. Volterra, T. Pozzan and G. Carmignoto: Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17, 7817-7830 (1997)

 

115. M. Paukert and D.E. Bergles: Synaptic communication between neurons and NG-2+ cells. Curr Opin Neurobiol 16, 515-521 (2006)

doi:10.1016/j.conb.2006.08.009
http://dx.doi.org/10.1016/j.conb.2006.08.009

116. S.F. Pedersen, G. Owsianik and B. Nilius: TRP channels: an overview. Cell Calcium 38, 233-252 (2005)

doi:10.1016/j.ceca.2005.06.028
http://dx.doi.org/10.1016/j.ceca.2005.06.028

117. O.H. Petersen: Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 38, 171-200 (2005)

doi:10.1016/j.ceca.2005.06.024
http://dx.doi.org/10.1016/j.ceca.2005.06.024

118. O.H. Petersen, M. Michalak and A. Verkhratsky: Calcium signalling: past, present and future. Cell Calcium 38, 161-169 (2005)

doi:10.1016/j.ceca.2005.06.023
http://dx.doi.org/10.1016/j.ceca.2005.06.023

119. O.H. Petersen, C.C. Petersen. and H. Kasai: Calcium and hormone action. Annu Rev Physiol 56, 297-319 (1994)

doi:10.1146/annurev.ph.56.030194.001501
http://dx.doi.org/10.1146/annurev.ph.56.030194.001501

120. O.H. Petersen, A. Tepikin and M.K. Park: The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci 24, 271-276 (2001)

doi:10.1016/S0166-2236(00)01787-2
http://dx.doi.org/10.1016/S0166-2236(00)01787-2

121. O.H. Petersen and A. Verkhratsky: Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium 42, 373-378 (2007)

doi:10.1016/j.ceca.2007.05.012
http://dx.doi.org/10.1016/j.ceca.2007.05.012

122. J.T. Porter and K.D. McCarthy: GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in (Ca2+)i. Glia 13, 101-112 (1995)

doi:10.1002/glia.440130204
http://dx.doi.org/10.1002/glia.440130204

123. J.T. Porter and K.D. McCarthy: Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16, 5073-5081 (1996)

 

124. S. Ramon y Cajal: Histologie du systeme nerveux de l'homme et des vertebras. A. Maloine, Paris (1909-1911)

 

125. G.M. Retzius, G.M., Biologische Untersuchungen, Samson and Wallin, Stockholm (1890-1916)

 

126. M.G. Salter and R. Fern: NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167-1171 (2005)

doi:10.1038/nature04301
http://dx.doi.org/10.1038/nature04301

127. E. Scemes and C. Giaume: Astrocyte calcium waves: what they are and what they do. Glia 54, 716-725 (2006)

doi:10.1002/glia.20374
http://dx.doi.org/10.1002/glia.20374

128. M.J. Schell, M.E. Molliver and S.H. Snyder: D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92, 3948-3952 (1995)

doi:10.1073/pnas.92.9.3948
http://dx.doi.org/10.1073/pnas.92.9.3948

129. C.G. Schipke, C. Boucsein, C., Ohlemeyer, F. Kirchhoff and H. Kettenmann: Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. Faseb J 16, 255-257 (2002)

 

130. R. Schneggenburger and E. Neher: Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15, 266-274 (2005)

doi:10.1016/j.conb.2005.05.006
http://dx.doi.org/10.1016/j.conb.2005.05.006

131. C.S. Sherrington: The integrative action of the nervous system. Charles Scribner's Sons, NY (1906)

 

132. M. Simard, G. Arcuino, T. Takano, Q.S. Liu and M. Nedergaard: Signaling at the gliovascular interface. J Neurosci 23, 9254-9262 (2003)

 

133. P.B. Simpson, L.A. Holtzclaw, D.B. Langley and J.T. Russell: Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors. J Neurosci Res 52, 468-482 (1998)

doi:10.1002/(SICI)1097-4547(19980515)52:4<468::AID-JNR11>3.0.CO;2-#
http://dx.doi.org/10.1002/(SICI)1097-4547(19980515)52:4<468::AID-JNR11>3.0.CO;2-#

134. K. Singaravelu, C. Lohr and J.W. Deitmer: Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci 26, 9579-9592 (2006)

doi:10.1523/JNEUROSCI.2604-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.2604-06.2006

135. N. Solovyova and A. Verkhratsky: Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches. J Neurosci Methods 122, 1-12 (2002)

doi:10.1016/S0165-0270(02)00300-X
http://dx.doi.org/10.1016/S0165-0270(02)00300-X

136. N. Solovyova and A. Verkhratsky: Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER (Ca2+) recordings in single rat sensory neurones. Pflugers Arch 446, 447-454 (2003)

doi:10.1007/s00424-003-1094-z
http://dx.doi.org/10.1007/s00424-003-1094-z

137. N. Solovyova, N., Veselovsky, E.C. Toescu and A. Verkhratsky: Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry. Embo J 21, 622-630 (2002)

doi:10.1093/emboj/21.4.622
http://dx.doi.org/10.1093/emboj/21.4.622

138. C.E. Stout, J.L. Costantin, C.C. Naus and A.C. Charles: Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277, 10482-10488 (2002)

doi:10.1074/jbc.M109902200
http://dx.doi.org/10.1074/jbc.M109902200

139. K. Takuma, T. Matsuda, H. Hashimoto, J. Kitanaka, S. Asano, Y. Kishida and A. Baba: Role of Na+-Ca2+ exchanger in agonist-induced Ca2+ signaling in cultured rat astrocytes. J Neurochem 67, 1840-1845 (1996)

 

140. F.W. Tse, A. Tse and B. Hille: Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci U S A 91, 9750-9754 (1994)

doi:10.1073/pnas.91.21.9750
http://dx.doi.org/10.1073/pnas.91.21.9750

141. S. Tuschick, S., Kirischuk, F. Kirchhoff, L. Liefeldt, M. Paul, A. Verkhratsky and H. Kettenmann: Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. Cell Calcium 21, 409-419 (1997)

doi:10.1016/S0143-4160(97)90052-X
http://dx.doi.org/10.1016/S0143-4160(97)90052-X

142. F. Vanden Abeele, G. Bidaux, D. Gordienko, B. Beck, Y.V. Panchin, A.V. Baranova, D.V. Ivanov, R. Skryma and N. Prevarskaya: Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174, 535-546 (2006)

doi:10.1083/jcb.200601115
http://dx.doi.org/10.1083/jcb.200601115

143. A. Verkhratsky: Calcium ions and integration in neural circuits. Acta Physiol (Oxf) 187, 357-369 (2006)

 

144. A. Verkhratsky: Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85, 201-279 (2005)

doi:10.1152/physrev.00004.2004
http://dx.doi.org/10.1152/physrev.00004.2004

145. A. Verkhratsky and A. Butt: Glial Neurobiology. A textbook. John Wiley & Sons, Chichester (2007)

 

146. A. Verkhratsky and H. Kettenmann: Calcium signalling in glial cells. Trends Neurosci 19, 346-352 (1996)

doi:10.1016/0166-2236(96)10048-5
http://dx.doi.org/10.1016/0166-2236(96)10048-5

147. A. Verkhratsky and F. Kirchhoff: Glutamate-mediated neuronal-glial transmission. J Anat 210, 651-660 (2007)

doi:10.1111/j.1469-7580.2007.00734.x
http://dx.doi.org/10.1111/j.1469-7580.2007.00734.x

148. A. Verkhratsky and F. Kirchhoff: NMDA Receptors in Glia. Neuroscientist 13, 28-37 (2007)

doi:10.1177/1073858406294270
http://dx.doi.org/10.1177/1073858406294270

149. A. Verkhratsky, R.K. Orkand and H. Kettenmann: Glial calcium: homeostasis and signaling function. Physiol Rev 78, 99-141 (1998)

 

150. A. Verkhratsky and O.H. Petersen: The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 447, 141-154 (2002)

doi:10.1016/S0014-2999(02)01838-1
http://dx.doi.org/10.1016/S0014-2999(02)01838-1

151. A. Verkhratsky, N. Solovyova and E.C. Toescu: Calcium excitability of glial cells. In: A. Volterra, P. Haydon and P. Magistretti (Eds.), Glia in synaptic transmission. OUP, Oxford, 99-109 (2002)

 

152. A. Verkhratsky and C. Steinhauser: Ion channels in glial cells. Brain Res Brain Res Rev 32, 380-412 (2000)

doi:10.1016/S0165-0173(99)00093-4
http://dx.doi.org/10.1016/S0165-0173(99)00093-4

153. A. Verkhratsky and E.C. Toescu: Integrative aspects of calcium signalling. Plenum Press, NY (1998)

 

154. A. Verkhratsky and E.C. Toescu: Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med 10, 826-836 (2006)

 

155. A.N. Verkhratsky, J Trotter and H. Kettenmann: Cultured glial precursor cells from mouse cortex express two types of calcium currents. Neurosci Lett 112, 194-198 (1990)

doi:10.1016/0304-3940(90)90202-K
http://dx.doi.org/10.1016/0304-3940(90)90202-K

156. A. Volterra and J. Meldolesi: Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6, 626-640 (2005)

doi:10.1038/nrn1722
http://dx.doi.org/10.1038/nrn1722

157. K. Wadel, E. Neher and T. Sakaba: The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53, 563-575 (2007)

doi:10.1016/j.neuron.2007.01.021
http://dx.doi.org/10.1016/j.neuron.2007.01.021

158. W. Walz, G. Gimpl, C. Ohlemeyer and H. Kettenmann: Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38, 12-18 (1994)

doi:10.1002/jnr.490380104
http://dx.doi.org/10.1002/jnr.490380104

159. R.E. Westenbroek, S.B. Bausch, R.C. Lin, J.E Franck, J.L. Noebels and W.A. Catterall: Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J Neurosci 18, 2321-2334 (1998)

 

160. J.F. Whitfield and B. Chakravarthy: Calcium: The grand-master cell signaler, NRC Research Press, Toronto (2001)

 

161. F. Wuytack, L. Raeymaekers and L. Missiaen, L.: Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32, 279-305 (2002)

doi:10.1016/S0143416002001847
http://dx.doi.org/10.1016/S0143416002001847

162. J.H. Xu, L. Long, Y.C. Tang, H.T. Hu and F.R. Tang: Ca(v)1.2, Ca(v)1.3, and Ca(v)2.1 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Hippocampus 17, 235-251 (2007)

doi:10.1002/hipo.20263
http://dx.doi.org/10.1002/hipo.20263

163. S.V. Yagodin, L. Holtzclaw, C.A.Sheppard and J.T. Russell: Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. J Neurobiol 25, 265-280 (1994)

doi:10.1002/neu.480250307
http://dx.doi.org/10.1002/neu.480250307

164. J.M. Zhang, H.K. Wang, C.Q. Ye, W. Ge, Y. Chen, Z.L. Jiang, C.P. Wu, M.M. Poo and S. Duan: ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971-982 (2003)

doi:10.1016/S0896-6273(03)00717-7
http://dx.doi.org/10.1016/S0896-6273(03)00717-7

165. Q. Zhang and P.G. Haydon: Roles for gliotransmission in the nervous system. J Neural Transm 112, 121-125 (2005)

doi:10.1007/s00702-004-0119-x
http://dx.doi.org/10.1007/s00702-004-0119-x

166. D. Ziak, A. Chvatal and E. Sykova: Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47, 365-375 (1998)

 

167. M. Zonta, M.C. Angulo, S. Gobbo, B. Rosengarten, K.A. Hossmann, T. Pozzan and G. Carmignoto: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6, 43-50 (2003)

doi:10.1038/nn980
http://dx.doi.org/10.1038/nn980

Abbreviations: AMPA: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, ATP: adenosine triphosphate, CICR: calcium-induced calcium release, Cx: connexin, ER: endoplasmic reticulum, InsP3R: inositol trisphosphate receptor, NAADP: Nicotinic acid adenine dinucleotide phosphate, NCX: sodium-calcium exchanger, NMDA: N-methyl-D-aspartate, PMCA: plasmalemmal calcium ATP-ase, RyR: ryanodine receptor, SERCA: sarco(endo)plasmic reticulum calcium ATP-ase, TRP: transient receptor potential, VAMP: vesicle-associated protein, VGCC: voltage-gated calcium channel, VGLUT: vesicle glutamate transporters

Key Words: Ca2+ Signalling, Neurones, Glia, Gliotransmitters, Ca2+ Waves, Synaptic Transmission, Review

Send correspondence to: Alexei Verkhratsky, Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK, Tel: 44161-2755414, E-mail:alex.verkhratsky@manchester.ac.uk