[Frontiers in Bioscience 14, 3024-3040, January 1, 2009]

The host immunologic response to West Nile encephalitis virus

Michael S. Diamond1,2,3, Erin Mehlhop1, Theodore Oliphant3, Melanie A. Samuel3

1Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 2Department of Medicine,, Washington University School of Medicine, St. Louis, MO, 3Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Pathogenesis of West Nile virus
4. Innate immune response to West Nile virus
4.1. Interferon
4.2. Virus recognition
4.3. Complement
4.4. Cellular innate immunity
5. Adaptive immune responses to West Nile virus
5.1. Humoral responses
5.2. T cell responses during primary infection
6. Immunopathogenesis after West Nile virus infection
7. Perspectives
8. Acknowledgement
9. References

1. ABSTRACT

West Nile encephalitis virus (WNV) is a small, enveloped, mosquito-transmitted, positive-polarity RNA virus of the Flaviviridae family. This virus is closely related to other arthropod-borne viruses that cause human disease including Dengue, Yellow fever, and Japanese encephalitis viruses. WNV cycles in nature between mosquitoes and birds, but also infects human, horses, and other vertebrates. In humans, WNV disseminates to the central nervous system (CNS) and causes severe disease primarily in the immunocompromised and elderly. Experimental studies have made significant progress in dissecting the viral and host factors that determine the pathogenesis and outcome of WNV infection. This review will focus on the interactions between WNV and the protective and pathogenic host immune responses.

2. INTRODUCTION

West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis. WNV is maintained in an enzootic cycle between mosquitoes and birds (reviewed in reference (1)), but can also infect and cause disease in other vertebrate animals. Infection of humans is associated with a febrile illness that can progress to the neuroinvasive forms of WNV infection, which include acute flaccid paralysis, meningitis, and encephalitis (2). Overall, about 1 of 150 WNV infections, result in the most severe and potentially lethal form of the disease. The mortality rate following neuroinvasive infection is approximately 5 to 10% (2-4), and long term neurological sequelae are common (>50%) (2, 5, 6). Neuronal damage is most prevalent in the brain stem and anterior horn neurons of the spinal cord, although in immunosuppressed individuals infection can disseminate throughout the CNS (7).

WNV historically caused sporadic outbreaks of a mild febrile illness in regions of Africa, the Middle East, Asia, and Australia (8). However, in the 1990's, the epidemiology of infection appeared to change. New outbreaks in parts of Eastern Europe were associated with higher rates of severe neurological disease. In 1999, WNV entered North America, and caused seven human fatalities in the New York area as well the deaths of a large number of birds and horses. Since then, WNV has spread to all 48 of the lower United States as well as to parts of Canada, Mexico, South America and the Caribbean (9). Because of the increased range, virulence, and amplification in birds (10), the number of human cases that have presented to clinical attention continues to rise: in the United States between 1999 and 2007, 26,000 clinical cases were diagnosed and associated with ~1,000 deaths (http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm). Based on seroprevalence screening of human blood donations, it is now estimated that at least 2 million people in the United States have been infected with WNV (11, 12). No vaccines or specific therapies for WNV are currently approved for humans.

WNV is a member of the Flaviviridae family of RNA viruses and is related to other important human pathogens, including dengue (DENV), yellow fever (YFV), Japanese encephalitis (JEV), and tick-borne encephalitis (TBEV) viruses. Similar to other flaviviruses, WNV is an enveloped virus with a single-stranded, positive sense, ~11 kilobase RNA genome. The flavivirus genome is transcribed as a single polyprotein that is cleaved by host and viral proteases into three structural and seven non-structural proteins (13, 14). The structural proteins include a capsid protein (C) that binds viral RNA, a pre-membrane (prM) protein that blocks premature viral fusion and may chaperone E protein folding, and an envelope (E) protein that mediates viral attachment, membrane fusion, and viral assembly (15). The flavivirus non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A NS4B, and NS5) regulate viral transcription, translation, and replication and attenuate host antiviral responses. NS1 has co-factor activity for the viral replicase (16, 17), is secreted from infected cells (18, 19), and attenuates complement activation (20). NS2A inhibits IFN responses (21, 22) and may participate in virus assembly (23), and NS3 has protease, NTPase, and helicase activities (23, 24). NS2B is a co-factor required for NS3 proteolytic activity (25) and contributes to antagonism of IFN responses (26). NS3 has protease, NTPase, and helicase activities (24). NS4A and NS4B modulate IFN signaling (27, 28), and NS5 encodes the RNA-dependent RNA polymerase and a methyltransferase (29, 30) and also inhibits IFN responses (31-33).

WNV infection occurs following cellular attachment and receptor-mediated endocytosis. Although both DC-SIGN-R and the alphavbeta3 integrin have been suggested as WNV attachment ligands (34, 35), the cellular receptors for WNV on physiologically relevant cell types such as neurons remain uncharacterized. Cellular entry of WNV requires the formation of clathrin-coated pits (36, 37). Following a pH-dependent conformational change in the E protein (38, 39), the viral and endosomal membranes fuse, releasing the viral nucleocapsid into the cytoplasm (40, 41). Upon nucleocapsid release, viral RNA associates with endoplasmic reticulum (ER) membranes and is translated. Translation is a prerequisite for generating a negative-strand RNA intermediate that serves as a template for nascent positive-strand genomic RNA synthesis (42). Flavivirus RNA synthesis is semi-conservative and asymmetric, as positive-strand RNA genome production is about ten times more efficient than negative-strand synthesis (14). Positive strand RNA is either packaged within progeny virions or used to translate additional viral proteins. WNV assembles and buds into the ER to form enveloped immature particles containing the prM protein. Following transport through the trans-Golgi network, furin-mediated cleavage of prM to M generates mature, infectious virions that are released by exocytosis (43-45).

Intensive study of WNV pathogenesis and the nature of the protective immune system response have accompanied the current epidemic. Host factors clearly influence the expression of WNV disease in humans (46-49). Infants, the elderly, and those with impaired immune systems are at greatest risk for severe neurological disease (8, 50, 51). Similarly, in animals, the maturation and integrity of the immune system correlates with resistance to WNV infection (reviewed in (52)).

3. PATHOGENESIS OF WNV INFECTION

Rodent models have provided insight into the mechanisms of WNV dissemination and pathogenesis. Following peripheral inoculation, initial WNV replication is thought to occur in skin dendritic cells (53). These cells migrate to and seed draining lymph nodes, resulting in a primary viremia and subsequent infection of peripheral tissues such as the spleen and kidney. By the end of the first week, WNV is largely cleared from the serum and peripheral organs, and infection in the different regions of the CNS is observed in a subset of immunocompetent animals. Rodents that succumb to infection develop CNS pathology similar to that observed in human WNV cases, including infection and injury of cerebellar, basal ganglia, brain stem, hippocampal, and spinal cord neurons (4, 7, 50, 54-61). WNV infection is not significantly detected in non-neuronal CNS cell populations in humans or animals. In most surviving rodents, WNV is cleared from all tissue compartments within two to three weeks after infection. However, persistent viral infection in the brains of CD4 or CD8+ T cell (62, 63) or perforin deficient mice (64) and in brains and kidneys of infected hamsters has been reported (58, 59). Persistent infection has also been documented in a WNV-infected immunosuppressed patient in which viremia was detected for over 60 days (65).

The mechanisms by which WNV crosses the blood-brain-barrier (BBB) and enters the CNS remain largely uncharacterized, although TNF-alpha-mediated changes in endothelial cell permeability may facilitate CNS entry (66, 67). It is likely that WNV infects the CNS at least in part via hematogenous spread, as increased viral burden in the serum correlates with earlier viral entry into the brain (54, 68). Additional mechanisms may contribute to WNV CNS infection, including: (i) infection or passive transport through the endothelium or choroid plexus epithelial cells (69), (ii) infection of olfactory neurons and spread to the olfactory bulb (70), (iii) a "Trojan horse" mechanism in which WNV-infected immune cells or WNV-adsorbed to the surface of erythrocytes traffics to the CNS (68, 71, 72), and (iv) direct axonal transport from infected peripheral neurons (56, 73, 74). In support of this latter entry mechanism, recent studies have established that WNV undergoes retrograde and anterograde spread in neurons and that axonal transport promotes viral entry into the spinal cord and acute limb paralysis in hamsters (75). Although the precise mechanism (s) of WNV entry into the brain requires additional study, changes in cytokine levels that modulate BBB permeability and infection of blood monocytes and choroid plexus cells have been documented in animal models (61, 76, 77).

4. INNATE IMMUNE RESPONSES TO WNV INFECTION

4.1. Interferon (IFN)

Type I (IFN-alpha and IFN-beta), type II (IFN-g ), and type III (IFN-l ) IFN are important host response cytokines that enable control of infections of most RNA and DNA viruses (reviewed in references (78-80)). IFN-alpha and beta are produced by many cell types following virus infection and induce an antiviral state by upregulating genes with direct and indirect antiviral functions. IFN-alpha and -beta also link innate and adaptive immune responses through stimulation of dendritic cell maturation (81), direct activation of B and T cells (82, 83), and by promoting survival of recently activated T cells (84). Pretreatment of cells with IFN-alpha or -beta inhibits WNV replication in vitro, but treatment after infection is much less effective (68, 85, 86). Although WNV can directly antagonize IFN induced responses after infection (22, 26-28, 87), type I IFN is still required to restrict WNV replication and spread in vivo (22, 68, 88). Mice lacking the IFN-alpha and -beta receptors (IFN-alpha/betaR-/-) show uncontrolled viral replication, rapid dissemination to the CNS, and enhanced lethality. Altered viral tropism in IFN-alpha/betaR-/- mice was also observed with enhanced infection in normally resistant cell populations and peripheral tissues.

IFN-gamma is produced primarily by g d T cells, CD8+ T cells and natural killer (NK) cells and limits infection through several mechanisms. IFN-gamma restricts viral replication directly by inducing an antiviral state, or indirectly by modulating the adaptive immune response through the activation of myeloid-derived cells, inducing CD4+ T-cell activation and TH1/TH2 polarization, and increasing cell surface expression of MHC class I molecules (89, 90). Although WNV is also resistant to the antiviral effects of IFN-gamma after infection in vitro (68), in vivo IFN-gamma limits early viral dissemination to the CNS: mice deficient in either IFN-gamma or the IFN-gammaR showed higher peripheral viral burden, earlier entry into the CNS, and increased lethality (91, 92). Interestingly, no major deficits in adaptive immune responses were observed in these studies, suggesting that the dominant function of IFN-gamma in controlling WNV infection is innate and antiviral. Additional experiments demonstrated a cell-specific requirement for IFN-gamma, as g d T cells utilized IFN-g to limit WNV dissemination whereas CD8+ T cells did not (64, 92, 93). Finally, recent studies suggest that IFN-amma may also have an immunopathological effect in the CNS as seizure incidence was decreased after WNV infection in IFN-amma-/- mice (94).

4.2. Virus Recognition

Cells recognize and respond to RNA virus infection through several nucleic acid sensors, including Toll-like receptor 3 (TLR-3) and 7 (TLR-7), and the cytoplasmic dsRNA sensors retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5) (95, 96). Binding of RNA to these pathogen recognition receptors results in downstream activation of transcription factors, such as interferon regulatory factors 3 and 7 (IRF-3 and IRF-7), and the expression of IFN stimulated genes. An emerging literature suggests that RIG-I, MDA5, and TLR-3 have essential functions in responding to WNV infection. Murine embryonic fibroblasts (MEF) deficient in RIG-I, MDA5, and IPS-1 demonstrated delayed induction of host responses, decreased IRF-3 activation, and augmented viral replication (97-99). Nonetheless, MDA5 may be less essential for cellular recognition and host response to WNV in some myeloid cell types, as IFN production by MDA-5-/- myeloid dendritic cells remains largely intact after WNV infection (100). Unlike RIG-I and MDA5, TLR-3 is expressed primarily in endosomes and activates IRF-3 downstream of the kinases TBK1 and IKKe (101, 102). Although WNV appears to interfere with poly I:C induced interferon responses (103), initial studies suggest that TLR-3 may be dispensable for recognition of WNV in vitro (98). TLR-3-/- mice injected by an intraperitoneal route paradoxically showed decreased lethality despite higher peripheral viral titers, presumably because of blunted cytokine responses (e.g., TNF-alpha) that normally facilitate WNV entry into the CNS (66). However, when TLR-3-/- mice are infected with WNV via a subcutaneous route, increased viral burden in the spleen, early entry into the brain, and enhanced lethality are observed (104), as might be expected for a pathogen recognition molecule that triggers a protective host immune response.

Activation of pathogen recognition receptors stimulates IFN production and feedback amplification of the IFN stimulated gene response. Despite data from MEF suggesting that RIG-I and MDA5 are critical for recognition of WNV and induction of IFN responses (99), IFN-alpha and beta production in mice appears largely independent of the downstream transcription factor, IRF-3 (105, 106). Recent studies suggest individual cell types (myeloid, fibroblast, and neuronal) use distinct IRF-3 responses to protect against WNV infection through both IFN-dependent and independent pathways (106). In cells that generate robust IFN responses after WNV infection in the absence of IRF-3, it is likely that alternate sets of pathogen recognition and transcription regulators are used, including TLR-7 and IRF-7. Recent studies also suggest a role for dsRNA-dependent protein kinase R (PKR) in the early induction of IFN in fibroblasts after WNV infection (107).

Studies have begun to elucidate the specific antiviral effector molecules that control WNV infection. PKR and 2'-5'-oligoadenylate synthase (OAS) proteins independently mediate intracellular resistance to WNV (108). PKR is activated by binding dsRNA and phosphorylates the eukaryotic translation initiation factor 2 (eIF2-alpha) resulting in attenuation of protein synthesis (109). RNase L is activated by 2'-5'-linked oligoadenylates synthesized by OAS enzymes and functions as an endoribonuclease that cleaves viral and host RNA (110). RNase L-/- MEFs and PKR-/- x RNase L-/- bone marrow derived macrophages supported increased WNV replication in vitro (111, 112). Moreover, mice deficient in both PKR and RNase L showed increased lethality following WNV infection, with higher viral loads in peripheral tissues at early time points after infection (112). Flavivirus susceptibility in mice has been mapped to a mutation in the Oas gene 1b that results in the expression of a truncated Oas isoform (113, 114). However, the mechanisms by which Oas gene alleles affect flavivirus pathogenesis remain uncertain; the Oas1b gene effects on WNV replication are independent of RNase L and IFN (111).

4.3. Complement

The complement system is a family of serum proteins and cell surface molecules that participate in pathogen recognition and clearance. Complement activation occurs through the classical, lectin, and alternative pathways, which are initiated by binding of C1q or mannan-binding lectins, or through the spontaneous hydrolysis of C3, respectively. Complement contributes to host protection through direct oposnization and/or cytolysis, chemotaxis, immune clearance, and modulation of B and T cell functions (115). Complement is required for protection from lethal WNV infection in mice. WNV activates complement in vivo, and mice lacking in the central complement component C3 or complement receptors 1 and 2 showed enhanced lethality after WNV infection (116, 117). All three pathways of complement activation are important for controlling WNV, as mice deficient in alternative, classical, or lectin pathway molecules exhibited increased mortality. Interestingly, the activation pathways modulated WNV infection through distinct mechanisms. Alternative pathway deficient mice demonstrated normal B cell function but impaired CD8+ T cell responses, whereas classical and lectin pathway deficient mice had defects both in WNV-specific antibody production and T cell responsiveness (116).

Complement also augments the protective efficacy of IgG antibodies against WNV. Whereas initial studies with anti-WNV IgM antibodies suggested that complement could efficiently enhance WNV infection in macrophages in vitro (118, 119), more recent investigations indicate that the complement component C1q augments the potency of neutralizing antibody against WNV in an IgG subclass-specific manner (E. Mehlhop, T.Pierson, and M. Diamond, manuscript in preparation), analogous to that observed for other viruses including measles (120), influenza (121, 122), vesicular stomatitis (123), hepatitis C (124) and human immunodeficiency (125, 126) viruses. C1q also restricts antibody-dependent enhancement of WNV infection in vitro and in vivo (127).

4.4. Cellular innate immunity

While few studies have directly addressed the function of cellular innate immunity in WNV infection, limited data suggests that macrophages and dendritic cells likely inhibit WNV though direct viral clearance, enhanced antigen presentation, and cytokine and chemokine secretion. Consistent with this, depletion of myeloid cells in mice enhanced lethality after WNV infection (128). Macrophages basally express key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and thus, restrict WNV infection by induction of IFN-alpha and -beta (106). Macrophages may also control flaviviruses through the production of nitric oxide (NO) intermediates (129, 130), although the role of NO in WNV infection has not been established. Less is known about the specific protective roles of DCs in WNV infection, although it is likely that they produce IFN-alpha and beta soon after infection and function as antigen presenting cells to prime the adaptive immune response (131).

g d T cells also function in early immune responses and directly limit WNV infection. As they lack MHC restriction, g d T cells can react with viral antigens in the absence of conventional antigen processing (132). g d T cells expand following WNV infection in wild type mice, and increased viral burden and mortality and delayed priming of adaptive immune responses were observed in mice deficient in g d T cells (92, 133). Bone marrow chimera reconstitution experiments demonstrated that g d T cells require IFN-gamma to limit WNV infection (91). Natural killer (NK) cells also have the potential to control WNV infection through recognition and elimination of virus-infected cells. NK cell activity was transiently activated and then suppressed following flavivirus infection in mice (134). As WNV infection in vitro increases surface expression of class I MHC molecules by enhancing the transport activity of TAP and by NF-B-dependent transcriptional activation of MHC class I genes (135-137), natural killing may be inhibited (138-140). Notably, antibody depletion of NK cells in mice did not alter morbidity or mortality after WNV infection (64, 141), and similar results were seen using Ly49A transgenic mice (142) that lack functional circulating NK cells (M. Engle and M. Diamond unpublished results).

5. ADAPTIVE IMMUNE RESPONSES TO WNV INFECTION

5.1. Humoral responses

Humoral immunity is an essential aspect of immune mediated protection from WNV (46, 54, 143-151). B cell deficient mice uniformly died after WNV infection, but were protected by passive transfer of immune sera (54). IgM is required, as IgM-/- mice developed high viral loads in all tested tissues and demonstrated complete lethality after WNV infection (143). In prospective studies the level of WNV-specific IgM at day 4 after infection in mice predicted disease outcome. While it is apparent from passive transfer studies that immune IgG can protect against flavivirus infection, the function of IgG during primary infection is less clear. In mice, WNV-specific IgG is not produced until somewhat late in infection (day 6 to 8), after both viral seeding of the CNS and clearance from peripheral tissues have occurred (54, 152). Thus, while it is possible that WNV-specific IgG alters WNV infection in the CNS, current data suggests that by the time IgG is produced the survival of the animal may already have been largely determined (152). Additional studies are required to more clearly establish how IgG modulates WNV pathogenesis during primary infection.

The E glycoprotein is the major surface protein on the flavivirus virion and is the principal antigen that elicits protective neutralizing antibodies (153). However, a subset of neutralizing antibodies to Flaviviruses may also recognize the prM protein on the virion (154, 155). Interestingly, antibodies to the non-structural protein NS1, which is absent from the virion, also are protective against WNV in vivo (141, 156). Antibody responses to NS3 and NS5 have also been observed during WNV infection (154, 157, 158), although their functional significance remains uncertain.

Recent studies have elucidated critical structural determinants of antibody-mediated protection against WNV E protein (159-163). The E protein has three structural domains that mediate viral attachment, entry, and viral assembly Domain I (DI), the central structural domain, is an 8-stranded beta-barrel that contributes to the conformational changes that occur after exposure to acid pH in the endosome. Domain II (DII) is a 12-stranded beta-barrel that is involved in dimerization (164) and contains a highly conserved hydrophobic fusion-peptide that mediates the class II acid-catalyzed fusion event (38, 165, 166). Domain III (DIII) adopts an immunoglobulin-like fold and contains a putative receptor-binding domain (164, 167, 168). Short, flexible linkers connect the E protein domains and allow for the conformational changes associated with virus maturation and membrane fusion. Several unique characteristics of WNV E protein relative to other flaviviruses have been identified by x-ray crystallography. Differences in the angle observed at the DI-DII hinge between WNV and DENV suggest critical WNV E dimer contact residues may be weaker or more easily disrupted. Additionally, the single N-linked glycosylation site on E, which is essential for DC-SIGN-R recognition (35) and neurovirulence of WNV (169, 170) is located on a unique alpha-helical segment in DI of WNV E in comparison to other Flaviviruses. Differences in the location of the glycosylation site may contribute to differences in viral tropism and pathogenesis among flaviviruses (171-173).

Understanding E protein structure in the context of WNV virion assembly has provided fundamental insights into the potential mechanisms of antibody-mediated neutralization. The glycoproteins on the surface of the 600 Å immature virion are organized into 60 asymmetric trimeric spikes of prM-E heterodimers (174, 175). At the apices of the spikes, prM caps the fusion loop of E (176), presumably to prevent premature fusion as the virus passes through the acidic secretory pathway (177, 178). A membrane proximal furin-catalyzed cleavage releases the N-terminal pre-peptide from prM (45, 179) allowing the transition from trimeric prM-E heterodimers to E homodimers found in the mature 500 Å enveloped virion (39, 175, 180). Cryoelectron microscopy (cryoEM) has shown that in the mature virus head-to-tail homodimers of E form a smooth icosahedral protein shell over the lipid bilayer in a "herringbone" pattern that defines three repeating environments. The 2-fold, 3-fold, and 5-fold axes of symmetry are defined by the dimerization of E, radial arrangement of DI, and DIII, respectively (180, 181). Antibody recognition or receptor binding may occur in different symmetry environments, resulting in differential occupancy of the virion (182, 183). This likely has functional consequences for the recognition of viral particles by different cell types and the immune system.

The antigenic domains of E proteins were initially characterized by mapping and competition experiments with mAbs (reviewed in (153)). These studies identified three antigenic domains (C, A, and B), which were later correlated with the structural domains DI, DII, and DIII on the E protein (164, 184-186). Many of the B domain epitopes of DENV-2, JEV, and TBE elicited neutralizing virus-specific antibody responses (184, 185, 187-190). However, not all E-glycoprotein-reactive antibodies neutralize virus infectivity. Indeed, some virus-specific non-neutralizing mAbs were found to recognize C domain epitopes of DENV recombinant proteins (191). Additionally, mAb recognition of TBE A domain epitopes was inhibited by low pH treatment, but recognition of B domain was unaffected (184, 192). These studies suggest that distinct domains of WNV E protein elicit antibodies with distinct functional activities.

Sequencing of neutralization escape mutants identified DIII as a major target of mAb-mediated flavivirus neutralization (162, 185, 187, 193-195). More recent studies have confirmed the epitopes on DIII responsible for eliciting potently neutralizing antibodies. Using both forward and reverse genetic strategies, several groups have established the most potent WNV neutralizing mAbs bind to the distal lateral ridge of DIII with key contacts to residues K307, T330, and T332 (144, 162, 163, 195, 196). Neutralizing mAbs that recognize the same residues were also characterized by NMR (163, 197) and x-ray crystallography (161). The latter structural studies demonstrated that one DIII-specific neutralizing antibody engaged 16 residues in four discontinuous regions that localize to the amino terminus (residues 302-309) and three strand connecting loops (residues 330-333, 365-368, and 389-391). Antibody binding at this epitope correlated with potent in vitro neutralization and strong in vivo protection (144, 183) suggesting this site in DIII may be an important neutralizing epitope. Both Fab fragments and single chain Fv that recognize the DIII lateral ridge epitope neutralize infection, indicating that bivalent cross-linking is not required for DIII-directed antibody-mediated inhibition of WNV infection (147). Although DIII has been suggested to contribute to virus attachment, at least some DIII-directed neutralizing mAbs appear to block at a post-attachment step. Potent neutralization was still observed following pre-incubation of cells with WNV prior to the addition of DIII-directed mAb (161). In contrast, the activity of a neutralizing mAb directed at the fusion peptide in DII was completely lost if virus was bound to cells prior to mAb addition.

Cross-reactive, neutralizing mAbs against Flaviviruses generally map to the fusion peptide (amino acids 98-110) in DII (145, 198, 199). In one study 45% (40 of 89) of the DI-DII-specific mAbs showed markedly reduced binding to WNV E protein with mutations at the W101 residue in the fusion peptide, and 85% of these (34 of 40) cross-reacted with the distantly related DENV (145). Other groups also have established that mutations at either G106 or L107 in the fusion peptide eliminate mAb recognition of Flavivirus group-specific epitopes (198, 199). Additionally, ~30% of the cross-reactive antibodies in DENV patient sera mapped to a single amino acid (L107) in the fusion loop (199). Preliminary studies with human mAbs and serum suggest that the cross-reactive fusion-peptide epitope may be immunodominant, whereas the DIII-specific neutralizing epitope appears less dominant (147, 148, 152).

Less strongly neutralizing WNV-specific mAbs mapped to six additional sites in DI and DII outside of the fusion loop: the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, the lateral ridge, the central interface, and the dimer interface of DII (145). These mAbs exhibited little neutralization activity by classical plaque reduction assays, but inhibited infection on cells expressing alternate WNV attachment receptors, such as DC-SIGN-R. Interestingly, most DI-DII-specific mAbs still protected mice from lethal WNV challenge (145), although they were less effective than that observed with DIII-specific neutralizing mAbs. This data suggests DIII- and DI-DII-specific mAbs neutralize and protect against WNV infection through independent mechanisms.

5.2. T cell responses during primary infection

Experiments in small animal models demonstrate that T lymphocytes are an essential component of protection against WNV (62-64, 93, 200-202). Consistent with this, individuals with hematologic malignancies and impaired T cell function have an increased risk of neuroinvasive WNV infection (203, 204). Upon recognition of a WNV-infected cell that expresses class I MHC molecules, antigen-restricted cytotoxic T lymphocytes (CTL) proliferate, release proinflamatory cytokines (136, 201, 202, 205, 206), and lyse cells directly through the delivery of perforin and granzymes A and B, or via Fas-Fas ligand interactions. Mice deficient in CD8+ T cells or class I MHC molecules had normal humoral responses but higher and sustained WNV burdens in the spleen and CNS and increased mortality (62, 200). Granzymes appear important for control of the lineage II isolate Sarafend, with perforin, Fas and Fas ligand having a more limited role in modulating infection (207). In contrast, CD8+ T cells require perforin and Fas ligand interactions to control lineage I WNV as mice deficient in these molecules had increased CNS viral burdens and lethality (64, 208). Moreover, adoptive transfer of wild type but not perforin or Fas-ligand deficient CD8+ T cells decreased CNS viral burden and enhanced survival. CD4+ T cells also restrict WNV pathogenesis in vivo. A genetic or acquired deficiency of CD4+ T cells resulted in a protracted WNV infection in the CNS that culminated in uniform lethality by 50 days after infection. Virologic and immunologic experiments indicate that the dominant protective role of CD4+ T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8+ T cell responses in the CNS that enable viral clearance (63).

T cell-mediated immunity is essential for controlling WNV infection in the CNS. CD8+ T cells traffic to the brain after WNV infection in mice, and their presence correlates temporally with viral clearance (62, 116, 200). CD8+ T cell-/-, MHC class I-/-, MHC class II-/-, and perforin-/- mice all showed WNV persistence in the brain, with detectable infectious virus up through 1 to 2 months after infection (62-64). Thus, the absence of functional CD8+ or CD4+ T cells results in a failure to clear WNV from infected neurons in the CNS. Since the CNS experiences limited immune surveillance in the absence of inflammation, chemokine-dependent T cell recruitment to infected CNS tissues modulates viral pathogenesis. Following viral infection in the CNS, inflammatory chemokines (e.g. CCL5) are expressed by trafficking leukocytes and resident astrocytes and microglia (209, 210). Surprisingly, WNV infection also induced expression of the chemokine CXCL10 in neurons, which recruited effector CD8+ T cells through its cognate ligand CXCR3 (76, 77). A genetic deficiency in CXCL10 resulted in reduced T cell trafficking to the CNS, higher viral loads in the brain, and enhanced mortality. The chemokine receptor CCR5 also regulates T cell trafficking to the brain during WNV infection; its absence resulted in depressed CNS leukocyte migration and increased lethality in mice (211), and may be associated with more severe WNV disease in humans (47). More recently, we have observed that CD40-CD40L interactions also facilitate T cell migration across the blood-brain barrier and perivascular space to control WNV infection (212).

6. IMMUNOPATHOGENESIS AFTER WNV INFECTION

Injury to neurons after WNV infection is believed to occur because of both viral and host immune-mediated effects. In vitro studies have begun to elucidate the pathways involved in WNV-induced cell death. WNV infection triggers apoptosis in different transformed cell lines, resulting in caspase-3 activation, cytochrome C release, and exposure of phosphatidylserine on the outer leaflet of the plasma membrane (213, 214). Primary cortical neurons, mouse embryonic stem cell-derived neurons and neuroblastoma cells rapidly undergo apoptosis within 2 to 3 days after WNV infection (57, 214, 215). Several other encephalitic flaviviruses also induce apoptosis: St. Louis encephalitis virus (SLEV) triggered apoptosis in neuroblastoma cells, and Japanese encephalitis virus (JEV) induced apoptosis in cell lines via the endoplasmic reticulum stress pathway (216, 217). These results suggest that induction of programmed cell death may be a common feature of flavivirus replication.

The cellular outcome of WNV replication depends on interactions between host and viral factors. Viral replication is required to trigger apoptosis (214) and several WNV proteins may contribute directly to this process. Ectopic expression of the WNV NS3 protein or its helicase or protease domains induces apoptosis and activation of caspase-3 and -8 (218). Expression of WNV caspid protein either in vitro or in the striatum of mouse brains also triggers apoptosis downstream of caspase-3 and caspase-9 activation (219). Transcriptional profiling analysis of WNV infected cells and mice demonstrated upregulation of several apoptosis related genes, although the physiologic relevance of these observations is unclear (220, 221).

Caspase-3-dependent apoptotic cell death of WNV-infected neurons could be a protective or pathologic host response. Apoptosis can act as an innate defense that restricts viral spread by eliminating infected cells and triggering pathogen recognition pathways (222). Alternatively, cell death could directly contribute to the spread and replication of WNV. Recent studies suggests that caspase-3 dependent apoptosis has an immunopathologic effect after WNV infection. Mice that were genetically deficient in caspase-3 mice were more resistant to lethal WNV infection, although there were no significant differences in tissue viral burden or the kinetics of viral spread (215). Instead, decreased neuronal death was observed in the cerebral cortex, brain stem, and cerebellum of caspase-3-/- mice. Analogously, primary central nervous system (CNS)-derived neurons demonstrated caspase-3 activation and apoptosis after WNV infection, and treatment with caspase inhibitors or a genetic deficiency in caspase-3 significantly decreased virus-induced death (215, 223). These experiments establish that caspase-3 dependent apoptosis contributes to the pathogenesis of lethal WNV encephalitis. Recent studies also indicate that WNV infection activates the pro-apoptotic cAMP response element-binding transcription factor homologous protein (CHOP); this pathway also leads to virus-induced cell death and may contribute to the wide-spread neuronal loss observed in infected animals (224).

7. PERSPECTIVES

The use of animal and cell culture models has fostered an improved understanding of the balance between WNV pathogenesis and immune control. These studies establish that innate, humoral, and T cell-mediated immunity are all required to orchestrate effective control of WNV. To modulate these host defenses, WNV has developed mechanisms that attenuate immune responses and facilitate infectivity in vivo. Several questions regarding WNV infection and the host interaction remain unanswered. Although WNV induces lethal encephalitis, the exact mechanisms by which WNV crosses the BBB, and causes neuronal dysfunction and death require further study. Few studies have characterized which aspects of the memory response to WNV mediate protection, obviously an area that is central to the development of effective vaccines. Enhanced investigation of the immunologic basis of protection and injury may also facilitate the design of targeted immunotherapies. Such efforts also will likely enhance our understanding of the pathogenesis of related flaviviruses that cause human disease.

8. ACKWNOLEDGEMENTS

The authors thank the members of our laboratory for their helpful discussions and criticisms. This work was supported by the Pediatric Dengue Vaccine Initiative, NIH (grants AI061373 (M.S.D.) and U54 AI057160 (Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research), and a Predoctoral Fellowship from the Howard Hughes Medical Institute (M.A.S.).

9. REFERENCES

1. Hayes, E. B., N. Komar, R. S. Nasci, S. P. Montgomery, D. R. O'Leary & G. L. Campbell: Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis, 11, 1167-73(2005)

2. Sejvar, J. J., M. B. Haddad, B. C. Tierney, G. L. Campbell, A. A. Marfin, J. A. Van Gerpen, A. Fleischauer, A. A. Leis, D. S. Stokic & L. R. Petersen: Neurologic manifestations and outcome of West Nile virus infection. JAMA, 290, 511-5(2003)
doi:10.1001/jama.290.4.511
http://dx.doi.org/10.1001/jama.290.4.511

3. Petersen, L. R., A. A. Marfin & D. J. Gubler: West Nile virus. Jama, 290, 524-8(2003)
doi:10.1001/jama.290.4.524
http://dx.doi.org/10.1001/jama.290.4.524

4. Davis, L. E., R. DeBiasi, D. E. Goade, K. Y. Haaland, J. A. Harrington, J. B. Harnar, S. A. Pergam, M. K. King, B. K. DeMasters & K. L. Tyler: West Nile virus neuroinvasive disease. Ann Neurol, 60, 286-300(2006)
doi:10.1002/ana.20959
http://dx.doi.org/10.1002/ana.20959

5. Sejvar, J. J., A. V. Bode, A. A. Marfin, G. L. Campbell, J. Pape, B. J. Biggerstaff & L. R. Petersen: West Nile Virus-associated flaccid paralysis outcome. Emerg Infect Dis, 12, 514-6(2006)

6. Sejvar, J. J.: The long-term outcomes of human West Nile virus infection. Clin Infect Dis, 44, 1617-24(2007)
doi:10.1086/518281
http://dx.doi.org/10.1086/518281

7. Kleinschmidt-DeMasters, B. K., B. A. Marder, M. E. Levi, S. P. Laird, J. T. McNutt, E. J. Escott, G. T. Everson & K. L. Tyler: Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch Neurol, 61, 1210-20(2004)
doi:10.1001/archneur.61.8.1210
http://dx.doi.org/10.1001/archneur.61.8.1210

8. Hubalek, Z. & J. Halouzka: West Nile fever - a reemerging mosquito-borne viral disease in Europe. Emerg Inf Dis, 5, 643-650(1999)

9. Komar, N. & G. G. Clark: West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica, 19, 112-7(2006)
doi:10.1590/S1020-49892006000200006
http://dx.doi.org/10.1590/S1020-49892006000200006

10. Brault, A. C., C. Y. Huang, S. A. Langevin, R. M. Kinney, R. A. Bowen, W. N. Ramey, N. A. Panella, E. C. Holmes, A. M. Powers & B. R. Miller: A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet, 39, 1162-1166(2007)
doi:10.1038/ng2097
http://dx.doi.org/10.1038/ng2097

11. Busch, M. P., S. Caglioti, E. F. Robertson, J. D. McAuley, L. H. Tobler, H. Kamel, J. M. Linnen, V. Shyamala, P. Tomasulo & S. H. Kleinman: Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med, 353, 460-7(2005)
doi:10.1056/NEJMoa044029
http://dx.doi.org/10.1056/NEJMoa044029

12. Busch, M. P., D. J. Wright, B. Custer, L. H. Tobler, S. L. Stramer, S. H. Kleinman, H. E. Prince, C. Bianco, G. Foster, L. R. Petersen, G. Nemo & S. A. Glynn: West Nile virus infections projected from blood donor screening data, United States, 2003. Emerg Infect Dis, 12, 395-402(2006)

13. Chambers, T. J., C. S. Hahn, R. Galler & C. M. Rice: Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 44, 649-88(1990)
doi:10.1146/annurev.mi.44.100190.003245
http://dx.doi.org/10.1146/annurev.mi.44.100190.003245

14. Brinton, M. A.: The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol, 56, 371-402(2002)
doi:10.1146/annurev.micro.56.012302.160654
http://dx.doi.org/10.1146/annurev.micro.56.012302.160654

15. Mukhopadhyay, S., R. J. Kuhn & M. G. Rossmann: A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3, 13-22(2005)
doi:10.1038/nrmicro1067
http://dx.doi.org/10.1038/nrmicro1067

16. Lindenbach, B. D. & C. M. Rice: trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol, 71, 9608-17(1997)

17. Khromykh, A. A., P. L. Sedlak, K. J. Guyatt, R. A. Hall & E. G. Westaway: Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol, 73, 10272-80(1999)

18. Winkler, G., S. E. Maxwell, C. Ruemmler & V. Stollar: Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology, 171, 302-5(1989)
doi:10.1016/0042-6822(89)90544-8
http://dx.doi.org/10.1016/0042-6822(89)90544-8

19. Macdonald, J., J. Tonry, R. A. Hall, B. Williams, G. Palacios, M. S. Ashok, O. Jabado, D. Clark, R. B. Tesh, T. Briese & W. I. Lipkin: NS1 Protein Secretion during the Acute Phase of West Nile Virus Infection. J Virol, 79, 13924-13933(2005)
doi:10.1128/JVI.79.22.13924-13933.2005
http://dx.doi.org/10.1128/JVI.79.22.13924-13933.2005

20. Chung, K. M., M. K. Liszewski, G. Nybakken, A. E. Davis, R. R. Townsend, D. H. Fremont, J. P. Atkinson & M. S. Diamond: West Nile virus non-structural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A, 103, 19111-19116(2006)
doi:10.1073/pnas.0605668103
http://dx.doi.org/10.1073/pnas.0605668103

21. Liu, W. J., H. B. Chen, X. J. Wang, H. Huang & A. A. Khromykh: Analysis of adaptive mutations in kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol, 78, 12225-12235(2004)
doi:10.1128/JVI.78.22.12225-12235.2004
http://dx.doi.org/10.1128/JVI.78.22.12225-12235.2004

22. Liu, W. J., X. J. Wang, D. C. Clark, M. Lobigs, R. A. Hall & A. A. Khromykh: A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol, 80, 2396-404(2006)
doi:10.1128/JVI.80.5.2396-2404.2006
http://dx.doi.org/10.1128/JVI.80.5.2396-2404.2006

23. Liu, W. J., H. B. Chen & A. A. Khromykh: Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol, 77, 7804-13(2003)
doi:10.1128/JVI.77.14.7804-7813.2003
http://dx.doi.org/10.1128/JVI.77.14.7804-7813.2003

24. Khromykh, A. A., P. L. Sedlak & E. G. Westaway: cis- and trans-acting elements in flavivirus RNA replication. J Virol, 74, 3253-63(2000)
doi:10.1128/JVI.74.7.3253-3263.2000
http://dx.doi.org/10.1128/JVI.74.7.3253-3263.2000

25. Yusof, R., S. Clum, M. Wetzel, H. M. Murthy & R. Padmanabhan: Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem, 275, 9963-9(2000)
doi:10.1074/jbc.275.14.9963
http://dx.doi.org/10.1074/jbc.275.14.9963

26. Liu, W. J., X. J. Wang, V. V. Mokhonov, P. Y. Shi, R. Randall & A. A. Khromykh: Inhibition of interferon signaling by the New York 99 strain and kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol, 79, 1934-1942(2005)
doi:10.1128/JVI.79.3.1934-1942.2005
http://dx.doi.org/10.1128/JVI.79.3.1934-1942.2005

27. Munoz-Jordan, J. L., M. Laurent-Rolle, J. Ashour, L. Martinez-Sobrido, M. Ashok, W. I. Lipkin & A. Garcia-Sastre: Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol, 79, 8004-13(2005)
doi:10.1128/JVI.79.13.8004-8013.2005
http://dx.doi.org/10.1128/JVI.79.13.8004-8013.2005

28. Guo, J. T., J. Hayashi & C. Seeger: West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol, 79, 1343-50(2005)
doi:10.1128/JVI.79.3.1343-1350.2005
http://dx.doi.org/10.1128/JVI.79.3.1343-1350.2005

29. Egloff, M. P., D. Benarroch, B. Selisko, J. L. Romette & B. Canard: An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J, 21, 2757-68(2002)
doi:10.1093/emboj/21.11.2757
http://dx.doi.org/10.1093/emboj/21.11.2757

30. Khromykh, A. A., P. L. Sedlak & E. G. Westaway: trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol, 73, 9247-55(1999)

31. Best, S. M., K. L. Morris, J. G. Shannon, S. J. Robertson, D. N. Mitzel, G. S. Park, E. Boer, J. B. Wolfinbarger & M. E. Bloom: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol, 79, 12828-39(2005)
doi:10.1128/JVI.79.20.12828-12839.2005
http://dx.doi.org/10.1128/JVI.79.20.12828-12839.2005

32. Lin, R. J., B. L. Chang, H. P. Yu, C. L. Liao & Y. L. Lin: Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol, 80, 5908-5918(2006)
doi:10.1128/JVI.02714-05
http://dx.doi.org/10.1128/JVI.02714-05

33. Park, G. S., K. L. Morris, R. G. Hallett, M. E. Bloom & S. M. Best: Identification of Residues Critical for the Interferon Antagonist Function of Langat Virus NS5 Reveals a Role for the RNA-Dependent RNA Polymerase Domain. J Virol, 81, 6936-46(2007)
doi:10.1128/JVI.02830-06
http://dx.doi.org/10.1128/JVI.02830-06

34. Chu, J. J. & M. L. Ng: Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem, 279, 54533-41(2004)
doi:10.1074/jbc.M410208200
http://dx.doi.org/10.1074/jbc.M410208200

35. Davis, C. W., H. Y. Nguyen, S. L. Hanna, M. D. Sanchez, R. W. Doms & T. C. Pierson: West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol, 80, 1290-301(2006)
doi:10.1128/JVI.80.3.1290-1301.2006
http://dx.doi.org/10.1128/JVI.80.3.1290-1301.2006

36. Chu, J. J. & M. L. Ng: Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol, 78, 10543-55(2004)
doi:10.1128/JVI.78.19.10543-10555.2004
http://dx.doi.org/10.1128/JVI.78.19.10543-10555.2004

37. Krishnan, M. N., B. Sukumaran, U. Pal, H. Agaisse, J. L. Murray, T. W. Hodge & E. Fikrig: Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol, 81, 4881-5(2007)
doi:10.1128/JVI.02210-06
http://dx.doi.org/10.1128/JVI.02210-06

38. Modis, Y., S. Ogata, D. Clements & S. C. Harrison: Structure of the dengue virus envelope protein after membrane fusion. Nature, 427, 313-9(2004)
doi:10.1038/nature02165
http://dx.doi.org/10.1038/nature02165

39. Zhang, Y., W. Zhang, S. Ogata, D. Clements, J. H. Strauss, T. S. Baker, R. J. Kuhn & M. G. Rossmann: Conformational changes of the flavivirus E glycoprotein. Structure (Camb), 12, 1607-18(2004)
doi:10.1016/j.str.2004.06.019
http://dx.doi.org/10.1016/j.str.2004.06.019

40. Allison, S. L., J. Schalich, K. Stiasny, C. W. Mandl, C. Kunz & F. X. Heinz: Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol, 69, 695-700(1995)

41. Gollins, S. & J. Porterfield: The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J.Gen.Virol., 67, 1941-1950(1986)

42. Mackenzie, J. M. & E. G. Westaway: Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol, 75, 10787-99(2001)
doi:10.1128/JVI.75.22.10787-10799.2001
http://dx.doi.org/10.1128/JVI.75.22.10787-10799.2001

43. Elshuber, S., S. L. Allison, F. X. Heinz & C. W. Mandl: Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol, 84, 183-91(2003)
doi:10.1099/vir.0.18723-0
http://dx.doi.org/10.1099/vir.0.18723-0

44. Guirakhoo, F., R. A. Bolin & J. T. Roehrig: The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology, 191, 921-31(1992)
doi:10.1016/0042-6822(92)90267-S
http://dx.doi.org/10.1016/0042-6822(92)90267-S

45. Stadler, K., S. L. Allison, J. Schalich & F. X. Heinz: Proteolytic activation of tick-borne encephalitis virus by furin. J Virol, 71, 8475-81(1997)

46. Camenga, D. L., N. Nathanson & G. A. Cole: Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors. J Infect Dis, 130, 634-41(1974)

47. Glass, W. G., D. H. McDermott, J. K. Lim, S. Lekhong, S. F. Yu, W. A. Frank, J. Pape, R. C. Cheshier & P. M. Murphy: CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med, 203, 35-40(2006)
doi:10.1084/jem.20051970
http://dx.doi.org/10.1084/jem.20051970

48. Diamond, M. S. & R. S. Klein: A genetic basis for human susceptibility to West Nile virus. Trends Microbiol, 14, 287-9(2006)
doi:10.1016/j.tim.2006.05.004
http://dx.doi.org/10.1016/j.tim.2006.05.004

49. Lim, J. K., W. G. Glass, D. H. McDermott & P. M. Murphy: CCR5: no longer a "good for nothing" gene--chemokine control of West Nile virus infection. Trends Immunol, 27, 308-12(2006)
doi:10.1016/j.it.2006.05.007
http://dx.doi.org/10.1016/j.it.2006.05.007

50. Asnis, D. S., R. Conetta, A. A. Teixeira, G. Waldman & B. A. Sampson: The West Nile Virus outbreak of 1999 in New York: the Flushing Hospital experience. Clin Infect Dis, 30, 413-8.(2000)
doi:10.1086/313737
http://dx.doi.org/10.1086/313737

51. Tsai, T. F., F. Popovici, C. Cernescu, G. L. Campbell & N. I. Nedelcu: West Nile encephalitis epidemic in southeastern Romania. Lancet, 352, 767-71.(1998)
doi:10.1016/S0140-6736(98)03538-7
http://dx.doi.org/10.1016/S0140-6736(98)03538-7

52. Samuel, M. A. & M. S. Diamond: Pathogenesis of West Nile virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. J Virol, 80, 9349-9360(2006)
doi:10.1128/JVI.01122-06
http://dx.doi.org/10.1128/JVI.01122-06

53. Byrne, S. N., G. M. Halliday, L. J. Johnston & N. J. King: Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol, 117, 702-9(2001)
doi:10.1046/j.0022-202x.2001.01454.x
http://dx.doi.org/10.1046/j.0022-202x.2001.01454.x

54. Diamond, M. S., B. Shrestha, A. Marri, D. Mahan & M. Engle: B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol, 77, 2578-2586(2003)
doi:10.1128/JVI.77.4.2578-2586.2003
http://dx.doi.org/10.1128/JVI.77.4.2578-2586.2003

55. Eldadah, A. H. & N. Nathanson: Pathogenesis of West Nile Virus encepahlitis in mice and rats. II. Virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. Am J Epidemiol, 86, 776-90.(1967)

56. Hunsperger, E. A. & J. T. Roehrig: Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol, 12, 129-39(2006)
doi:10.1080/13550280600758341
http://dx.doi.org/10.1080/13550280600758341

57. Shrestha, B., D. I. Gottlieb & M. S. Diamond: Infection and injury of neurons by West Nile Encephalitis virus. J Virol, 77, 13203-13213(2003)
doi:10.1128/JVI.77.24.13203-13213.2003
http://dx.doi.org/10.1128/JVI.77.24.13203-13213.2003

58. Xiao, S. Y., H. Guzman, H. Zhang, A. P. Travassos da Rosa & R. B. Tesh: West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis, 7, 714-21.(2001)

59. Tesh, R. B., M. Siirin, H. Guzman, A. P. Travassos da Rosa, X. Wu, T. Duan, H. Lei, M. R. Nunes & S. Y. Xiao: Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis, 192, 287-95(2005)
doi:10.1086/431153
http://dx.doi.org/10.1086/431153

60. Omalu, B. I., A. A. Shakir, G. Wang, W. I. Lipkin & C. A. Wiley: Fatal fulminant pan-meningo-polioencephalitis due to West Nile virus. Brain Pathol, 13, 465-72(2003)

61. Garcia-Tapia, D., D. E. Hassett, W. J. Mitchell, Jr., G. C. Johnson & S. B. Kleiboeker: West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol, 13, 130-8(2007)
doi:10.1080/13550280601187185
http://dx.doi.org/10.1080/13550280601187185

62. Shrestha, B. & M. S. Diamond: The role of CD8+ T cells in the control of West Nile virus infection. J Virol, 78, 8312-8321(2004)
doi:10.1128/JVI.78.15.8312-8321.2004
http://dx.doi.org/10.1128/JVI.78.15.8312-8321.2004

63. Sitati, E. & M. S. Diamond: CD4+ T Cell responses are required for clearance of West Nile Virus from the central nervous system. J Virol, 80, 12060-12069(2006)
doi:10.1128/JVI.01650-06
http://dx.doi.org/10.1128/JVI.01650-06

64. Shrestha, B., M. A. Samuel & M. S. Diamond: CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol, 80, 119-129(2006)
doi:10.1128/JVI.80.1.119-129.2006
http://dx.doi.org/10.1128/JVI.80.1.119-129.2006

65. Brenner, W., G. Storch, R. Buller, R. Vij, S. Devine & J. DiPersio: West Nile Virus encephalopathy in an allogeneic stem cell transplant recipient: use of quantitative PCR for diagnosis and assessment of viral clearance. Bone Marrow Transplant, 36, 369-70(2005)
doi:10.1038/sj.bmt.1705059
http://dx.doi.org/10.1038/sj.bmt.1705059

66. Wang, T., T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig & R. A. Flavell: Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med, 10, 1366-73(2004)
doi:10.1038/nm1140
http://dx.doi.org/10.1038/nm1140

67. Diamond, M. S. & R. S. Klein: West Nile virus: crossing the blood-brain barrier. Nat Med, 10, 1294-1295(2004)
doi:10.1038/nm1204-1294
http://dx.doi.org/10.1038/nm1204-1294

68. Samuel, M. A. & M. S. Diamond: Type I IFN protects against lethal West Nile Virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol, 79, 13350-13361(2005)
doi:10.1128/JVI.79.21.13350-13361.2005
http://dx.doi.org/10.1128/JVI.79.21.13350-13361.2005

69. Kramer-Hammerle, S., I. Rothenaigner, H. Wolff, J. E. Bell & R. Brack-Werner: Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res, 111, 194-213(2005)
doi:10.1016/j.virusres.2005.04.009
http://dx.doi.org/10.1016/j.virusres.2005.04.009

70. Monath, T. P., C. B. Cropp & A. K. Harrison: Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy. Lab Invest, 48, 399-410(1983)

71. Garcia-Tapia, D., C. M. Loiacono & S. B. Kleiboeker: Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol, 110, 229-244(2005)
doi:10.1016/j.vetimm.2005.10.003
http://dx.doi.org/10.1016/j.vetimm.2005.10.003

72. Rios, M., S. Daniel, C. Chancey, I. K. Hewlett & S. L. Stramer: West Nile virus adheres to human red blood cells in whole blood. Clin Infect Dis, 45, 181-6(2007)
doi:10.1086/518850
http://dx.doi.org/10.1086/518850

73. Johnson, R. T.: Viral infections of the nervous system. Raven Press, New York (1982)

74. Hunsperger, E. & J. T. Roehrig: Characterization of West Nile viral replication and maturation in peripheral neurons in culture. J Neurovirol, 11, 11-22(2005)
doi:10.1080/13550280590900454
http://dx.doi.org/10.1080/13550280590900454

75. Samuel, M. A., H. Wang, V. Siddharthan, J. D. Morrey & M. S. Diamond: Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S AIn press(2007)

76. Klein, R. S., E. Lin, B. Zhang, A. D. Luster, J. Tollett, M. A. Samuel, M. Engle & M. S. Diamond: Neuronal CXCL10 directs CD8+ T cell recruitment and control of West Nile virus encephalitis. J Virol, 79, 11457-11466(2005)
doi:10.1128/JVI.79.17.11457-11466.2005
http://dx.doi.org/10.1128/JVI.79.17.11457-11466.2005

77. Shirato, K., T. Kimura, T. Mizutani, H. Kariwa & I. Takashima: Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol, 74, 507-13(2004)
doi:10.1002/jmv.20205
http://dx.doi.org/10.1002/jmv.20205

78. Platanias, L. C., S. Uddin, P. Domanski & O. R. Colamonici: Differences in Interferon α and β signalling. J.Biol.Chem., 271, 23630-23633(1996)

79. Ank, N., H. West & S. R. Paludan: IFN-lambda: novel antiviral cytokines. J Interferon Cytokine Res, 26, 373-9(2006)
doi:10.1089/jir.2006.26.373
http://dx.doi.org/10.1089/jir.2006.26.373

80. Garcia-Sastre, A. & C. A. Biron: Type 1 interferons and the virus-host relationship: a lesson in detente. Science, 312, 879-82(2006)
doi:10.1126/science.1125676
http://dx.doi.org/10.1126/science.1125676

81. Asselin-Paturel, C. & G. Trinchieri: Production of type I interferons: plasmacytoid dendritic cells and beyond. J Exp Med, 202, 461-5(2005)
doi:10.1084/jem.20051395
http://dx.doi.org/10.1084/jem.20051395

82. Le Bon, A. & D. F. Tough: Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol, 14, 432-6(2002)
doi:10.1016/S0952-7915(02)00354-0
http://dx.doi.org/10.1016/S0952-7915(02)00354-0

83. Le Bon, A., C. Thompson, E. Kamphuis, V. Durand, C. Rossmann, U. Kalinke & D. F. Tough: Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol, 176, 2074-8(2006)

84. Marrack, P., J. Kappler & T. Mitchell: Type I interferons keep activated T cells alive. J Exp Med, 189, 521-30(1999)
doi:10.1084/jem.189.3.521
http://dx.doi.org/10.1084/jem.189.3.521

85. Anderson, J. F. & J. J. Rahal: Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis, 8, 107-8(2002)

86. Crance, J. M., N. Scaramozzino, A. Jouan & D. Garin: Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Res, 58, 73-9(2003)
doi:10.1016/S0166-3542(02)00185-7
http://dx.doi.org/10.1016/S0166-3542(02)00185-7

87. Evans, J. D. & C. Seeger: Differential Effects of Mutations in NS4B on WNV Replication and Inhibition of Interferon Signaling. J Virol, 81:11809-16 (2007)

88. Keller, B. C., B. L. Fredericksen, M. A. Samuel, R. E. Mock, P. W. Mason, M. S. Diamond & M. Gale, Jr.: Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol, 80, 9424-34(2006)
doi:10.1128/JVI.00768-06
http://dx.doi.org/10.1128/JVI.00768-06

89. Schroder, K., P. J. Hertzog, T. Ravasi & D. A. Hume: Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol, 75, 163-89(2004)
doi:10.1189/jlb.0603252
http://dx.doi.org/10.1189/jlb.0603252

90. Chesler, D. A. & C. S. Reiss: The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev, 13, 441-54(2002)
doi:10.1016/S1359-6101(02)00044-8
http://dx.doi.org/10.1016/S1359-6101(02)00044-8

91. Shrestha, B., T. Wang, M. A. Samuel, K. Whitby, J. Craft, E. Fikrig & M. S. Diamond: Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol, 80, 5338-48(2006)
doi:10.1128/JVI.00274-06
http://dx.doi.org/10.1128/JVI.00274-06

92. Wang, T., E. Scully, Z. Yin, J. H. Kim, S. Wang, J. Yan, M. Mamula, J. F. Anderson, J. Craft & E. Fikrig: IFN-γ-producing γδ T cells help control murine West Nile virus infection. J Immunol, 171, 2524-2531(2003)

93. Wang, Y., M. Lobigs, E. Lee, A. Koskinen & A. Mullbacher: CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. J Gen Virol, 87, 3599-609(2006)
doi:10.1099/vir.0.81306-0
http://dx.doi.org/10.1099/vir.0.81306-0

94. Getts, D. R., I. Matsumoto, M. Muller, M. T. Getts, J. Radford, B. Shrestha, I. L. Campbell & N. J. King: Role of IFN-gamma in an experimental murine model of West Nile virus-induced seizures. J Neurochem(2007)

95. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira & T. Fujita: The RNA helicase RIG-I has an essential function in double stranded RNA-induced innate antiviral responses. Nat Immunol, 5, 730-737(2004)
doi:10.1038/ni1087
http://dx.doi.org/10.1038/ni1087

96. Kawai, T. & S. Akira: Innate immune recognition of viral infection. Nat Immunol, 7, 131-7(2006)
doi:10.1038/ni1303
http://dx.doi.org/10.1038/ni1303

97. Fredericksen, B. L., M. Smith, M. G. Katze, P. Y. Shi & M. Gale: The host response to West Nile virus infection limits spread through the activation of the interferon regulatory factor 3 pathway. J Virol, 78, 7737-7747(2004)
doi:10.1128/JVI.78.14.7737-7747.2004
http://dx.doi.org/10.1128/JVI.78.14.7737-7747.2004

98. Fredericksen, B. L. & M. Gale, Jr.: West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol, 80, 2913-23(2006)
doi:10.1128/JVI.80.6.2913-2923.2006
http://dx.doi.org/10.1128/JVI.80.6.2913-2923.2006

99. Fredericksen, B. L., B. C. Keller, J. Fornek, M. G. Katze & M. Gale, Jr.: Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1Submitted for publication(2007)

100. Gitlin, L., W. Barchet, S. Gilfillan, M. Cella, B. Beutler, R. A. Flavell, M. S. Diamond & M. Colonna: Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A, 103, 8459-64(2006)
doi:10.1073/pnas.0603082103
http://dx.doi.org/10.1073/pnas.0603082103

101. Schroder, M. & A. G. Bowie: TLR3 in antiviral immunity: key player or bystander? Trends Immunol, 26, 462-8(2005)
doi:10.1016/j.it.2005.07.002
http://dx.doi.org/10.1016/j.it.2005.07.002

102. Matsumoto, M., K. Funami, H. Oshiumi & T. Seya: Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. Microbiol Immunol, 48, 147-54(2004)

103. Scholle, F. & P. W. Mason: West Nile virus replication interferes with both poly(I:C)-induced interferon gene transcription and response to interferon treatment. Virology, 342, 77-87(2005)
doi:10.1016/j.virol.2005.07.021
http://dx.doi.org/10.1016/j.virol.2005.07.021

104. Daffis, S., C. E. Samuel, B. C. Keller, M. Gale, Jr. & M. S. Diamond: Toll-like receptor 3 responses in peripheral tissues protect against lethal West Nile virus infectionManuscript submitted(2007)

105. Bourne, N., F. Scholle, M. C. Silva, S. L. Rossi, N. Dewsbury, B. Judy, J. B. De Aguiar, M. A. Leon, D. M. Estes, R. Fayzulin & P. W. Mason: Early production of type I interferon during West Nile virus infection: role for lymphoid tissues in IRF3-independent interferon production. J Virol(2007)

106. Daffis, S., M. A. Samuel, B. C. Keller, M. Gale, Jr. & M. S. Diamond: Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and independent mechanisms. PLoS Pathog, 3, e106(2007)
doi:10.1371/journal.ppat.0030106
http://dx.doi.org/10.1371/journal.ppat.0030106

107. Gilfoy, F. D. & P. W. Mason: West Nile virus-induced IFN production is mediated by the double-stranded RNA-dependent protein kinase, PKR. J Virol(2007)

108. Kajaste-Rudnitski, A., T. Mashimo, M. P. Frenkiel, J. L. Guenet, M. Lucas & P. Despres: The 2',5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J Biol Chem, 281, 4624-37(2006)
doi:10.1074/jbc.M508649200
http://dx.doi.org/10.1074/jbc.M508649200

109. Meurs, E. F., Y. Watanabe, S. Kadereit, G. N. Barber, M. G. Katze, K. Chong, B. R. Williams & A. G. Hovanessian: Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J Virol, 66, 5804-14(1992)

110. Zhou, A., J. Paranjape, T. L. Brown, H. Nie, S. Naik, B. Dong, A. Chang, B. Trapp, R. Fairchild, C. Colmenares & R. H. Silverman: Interferon action and apoptosis are defective in mice devoid of 2',5'- oligoadenylate-dependent RNase L. Embo J, 16, 6355-63(1997)
doi:10.1093/emboj/16.21.6355
http://dx.doi.org/10.1093/emboj/16.21.6355

111. Scherbik, S. V., J. M. Paranjape, B. M. Stockman, R. H. Silverman & M. A. Brinton: RNase L plays a role in the antiviral response to West Nile virus. J Virol, 80, 2987-99(2006)
doi:10.1128/JVI.80.6.2987-2999.2006
http://dx.doi.org/10.1128/JVI.80.6.2987-2999.2006

112. Samuel, M. A., K. Whitby, B. C. Keller, A. Marri, W. Barchet, B. R. G. Williams, R. H. Silverman, M. Gale & M. S. Diamond: PKR and RNAse L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol, 80, 7009-7019(2006)
doi:10.1128/JVI.00489-06
http://dx.doi.org/10.1128/JVI.00489-06

113. Perelygin, A. A., S. V. Scherbik, I. B. Zhulin, B. M. Stockman, Y. Li & M. A. Brinton: Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci U S A, 99, 9322-7(2002)
doi:10.1073/pnas.142287799
http://dx.doi.org/10.1073/pnas.142287799

114. Mashimo, T., M. Lucas, D. Simon-Chazottes, M. P. Frenkiel, X. Montagutelli, P. E. Ceccaldi, V. Deubel, J. L. Guenet & P. Despres: A nonsense mutation in the gene encoding 2'-5'-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci U S A, 99, 11311-6(2002)
doi:10.1073/pnas.172195399
http://dx.doi.org/10.1073/pnas.172195399

115. Carroll, M. C.: The complement system in regulation of adaptive immunity. Nat Immunol, 5, 981-6(2004)
doi:10.1038/ni1113
http://dx.doi.org/10.1038/ni1113

116. Mehlhop, E. & M. S. Diamond: Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J Exp Med, 203, 1371-81(2006)
doi:10.1084/jem.20052388
http://dx.doi.org/10.1084/jem.20052388

117. Mehlhop, E., K. Whitby, T. Oliphant, A. Marri, M. Engle & M. S. Diamond: Complement activation is required for the induction of a protective antibody response against West Nile virus infection. J Virol, 79, 7466-7477(2005)
doi:10.1128/JVI.79.12.7466-7477.2005
http://dx.doi.org/10.1128/JVI.79.12.7466-7477.2005

118. Cardosa, M. J., J. S. Porterfield & S. Gordon: Complement receptor mediates enhanced flavivirus replication in macrophages. J Exp Med, 158, 258-63(1983)
doi:10.1084/jem.158.1.258
http://dx.doi.org/10.1084/jem.158.1.258

119. Cardosa, M. J., S. Gordon, S. Hirsch, T. A. Springer & J. S. Porterfield: Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J Virol, 57, 952-9(1986)

120. Iankov, I. D., M. Pandey, M. Harvey, G. E. Griesmann, M. J. Federspiel & S. J. Russell: Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J Virol, 80, 8530-40(2006)
doi:10.1128/JVI.00593-06
http://dx.doi.org/10.1128/JVI.00593-06

121. Feng, J. Q., K. Mozdzanowska & W. Gerhard: Complement component C1q enhances the biological activity of influenza virus hemagglutinin-specific antibodies depending on their fine antigen specificity and heavy-chain isotype. J Virol, 76, 1369-78(2002)

122. Mozdzanowska, K., J. Feng, M. Eid, D. Zharikova & W. Gerhard: Enhancement of neutralizing activity of influenza virus-specific antibodies by serum components. Virology, 352, 418-26(2006)
doi:10.1016/j.virol.2006.05.008
http://dx.doi.org/10.1016/j.virol.2006.05.008

123. Beebe, D. P. & N. R. Cooper: Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum. J Immunol, 126, 1562-8(1981)

124. Meyer, K., A. Basu, C. T. Przysiecki, L. M. Lagging, A. M. Di Bisceglie, A. J. Conley & R. Ray: Complement-mediated enhancement of antibody function for neutralization of pseudotype virus containing hepatitis C virus E2 chimeric glycoprotein. J Virol, 76, 2150-8(2002)
doi:10.1128/jvi.76.5.2150-2158.2002
http://dx.doi.org/10.1128/jvi.76.5.2150-2158.2002

125. Spruth, M., H. Stoiber, L. Kacani, D. Schonitzer & M. P. Dierich: Neutralization of HIV type 1 by alloimmune sera derived from polytransfused patients. AIDS Res Hum Retroviruses, 15, 533-43(1999)
doi:10.1089/088922299311051
http://dx.doi.org/10.1089/088922299311051

126. Aasa-Chapman, M. M., S. Holuigue, K. Aubin, M. Wong, N. A. Jones, D. Cornforth, P. Pellegrino, P. Newton, I. Williams, P. Borrow & A. McKnight: Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol, 79, 2823-30(2005)
doi:10.1128/JVI.79.5.2823-2830.2005
http://dx.doi.org/10.1128/JVI.79.5.2823-2830.2005

127. Mehlhop, E., C. Ansarah-Sobrinho, S. Johnson, M. Engle, D. H. Fremont, T. C. Pierson & M. S. Diamond: C1q Inhibits Antibody-Dependent Enhancement of Flavivirus Infection In Vitro and In Vivo in an IgG Subclass Specific Manner. Cell Host and Microbe, In press(2007)

128. Ben-Nathan, D., I. Huitinga, S. Lustig, N. van Rooijen & D. Kobiler: West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch Virol, 141, 459-69(1996)
doi:10.1007/BF01718310
http://dx.doi.org/10.1007/BF01718310

129. Kreil, T. R. & M. M. Eibl: Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology, 219, 304-6(1996)
doi:10.1006/viro.1996.0252
http://dx.doi.org/10.1006/viro.1996.0252

130. Lin, Y. L., Y. L. Huang, S. H. Ma, C. T. Yeh, S. Y. Chiou, L. K. Chen & C. L. Liao: Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol, 71, 5227-35(1997)

131. Johnston, L. J., G. M. Halliday & N. J. King: Phenotypic changes in Langerhans' cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol, 70, 4761-6.(1996)

132. Steele, C. R., D. E. Oppenheim & A. C. Hayday: Gamma(delta) T cells: non-classical ligands for non-classical cells. Curr Biol, 10, R282-5(2000)

133. Wang, T., Y. Gao, E. Scully, C. T. Davis, J. F. Anderson, T. Welte, M. Ledizet, R. Koski, J. A. Madri, A. Barrett, Z. Yin, J. Craft & E. Fikrig: Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. J Immunol, 177, 1825-32(2006)

134. Vargin, V. V. & B. F. Semenov: Changes of natural killer cell activity in different mouse lines by acute and asymptomatic flavivirus infections. Acta Virol, 30, 303-8(1986)

135. King, N. J. & A. M. Kesson: Interferon-independent increases in class I major histocompatibility complex antigen expression follow flavivirus infection. J Gen Virol, 69, 2535-43(1988)

136. Douglas, M. W., A. M. Kesson & N. J. King: CTL recognition of west Nile virus-infected fibroblasts is cell cycle dependent and is associated with virus-induced increases in class I MHC antigen expression. Immunology, 82, 561-70.(1994)

137. Liu, Y., N. King, A. Kesson, R. V. Blanden & A. Mullbacher: West Nile virus infection modulates the expression of class I and class II MHC antigens on astrocytes in vitro. Ann N Y Acad Sci, 540, 483-5(1988)
doi:10.1111/j.1749-6632.1988.tb27143.x
http://dx.doi.org/10.1111/j.1749-6632.1988.tb27143.x

138. King, N. J. & A. M. Kesson: Interaction of flaviviruses with cells of the vertebrate host and decoy of the immune response. Immunol Cell Biol, 81, 207-16(2003)
doi:10.1046/j.1440-1711.2003.01167.x
http://dx.doi.org/10.1046/j.1440-1711.2003.01167.x

139. King, N. J., L. E. Maxwell & A. M. Kesson: Induction of class I major histocompatibility complex antigen expression by West Nile virus on gamma interferon-refractory early murine trophoblast cells. Proc Natl Acad Sci U S A, 86, 911-5(1989)
doi:10.1073/pnas.86.3.911
http://dx.doi.org/10.1073/pnas.86.3.911

140. Diamond, M. S.: Evasion of innate and adaptive immunity by flaviviruses. Immunology and Cell Biology, 81, 196-206(2003)
doi:10.1046/j.1440-1711.2003.01157.x
http://dx.doi.org/10.1046/j.1440-1711.2003.01157.x

141. Chung, K. M., B. S. Thompson, D. H. Fremont & M. S. Diamond: Antibody recognition of cell surface-associated NS1 triggers Fc-g receptor mediated phagocytosis and clearance of WNV infected cells. J VirolIn press(2007)

142. Kim, S., K. Iizuka, H. L. Aguila, I. L. Weissman & W. M. Yokoyama: In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A, 97, 2731-6(2000)
doi:10.1073/pnas.050588297
http://dx.doi.org/10.1073/pnas.050588297

143. Diamond, M. S., E. Sitati, L. Friend, B. Shrestha, S. Higgs & M. Engle: Induced IgM protects against lethal West Nile Virus infection. J Exp Med, 198, 1-11(2003)
doi:10.1084/jem.20031223
http://dx.doi.org/10.1084/jem.20031223

144. Oliphant, T., M. Engle, G. Nybakken, C. Doane, S. Johnson, L. Huang, S. Gorlatov, E. Mehlhop, A. Marri, K. M. Chung, G. D. Ebel, L. D. Kramer, D. H. Fremont & M. S. Diamond: Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Medicine, 11, 522-530(2005)
doi:10.1038/nm1240
http://dx.doi.org/10.1038/nm1240

145. Oliphant, T., G. Nybakken, M. Engle, Q. Xu, C. A. Nelson, S. Sukupolvi-Petty, A. Marri, B. Lachmi, U. Olshevsky, D. H. Fremont, T. C. Pierson & M. S. Diamond: Determinants of West Nile Virus Envelope Protein Domains I and II Antibody Recognition and Neutralization. J Virol, 80, 12149-12159(2006)
doi:10.1128/JVI.01732-06
http://dx.doi.org/10.1128/JVI.01732-06

146. Wang, T., J. F. Anderson, L. A. Magnarelli, S. J. Wong, R. A. Koski & E. Fikrig: Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol, 167, 5273-7.(2001)

147. Gould, L. H., J. Sui, H. Foellmer, T. Oliphant, T. Wang, M. Ledizet, A. Murakami, K. Noonan, C. Lambeth, K. Kar, J. F. Anderson, A. M. de Silva, M. S. Diamond, R. A. Koski, W. A. Marasco & E. Fikrig: Protective and therapeutic capacity of human single chain Fv-Fc fusion proteins against West Nile virus. J Virol, 79, 14606-14613(2005)
doi:10.1128/JVI.79.23.14606-14613.2005
http://dx.doi.org/10.1128/JVI.79.23.14606-14613.2005

148. Throsby, M., C. Geuijen, J. Goudsmit, A. Q. Bakker, J. Korimbocus, R. A. Kramer, M. Clijsters-van der Horst, M. de Jong, M. Jongeneelen, S. Thijsse, R. Smit, T. J. Visser, N. Bijl, W. E. Marissen, M. Loeb, D. J. Kelvin, W. Preiser, J. ter Meulen & J. de Kruif: Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol, 80, 6982-92(2006)
doi:10.1128/JVI.00551-06
http://dx.doi.org/10.1128/JVI.00551-06

149. Engle, M. & M. S. Diamond: Antibody prophylaxis and therapy against West Nile Virus infection in wild type and immunodeficient mice. J Virol, 77, 12941-12949(2003)
doi:10.1128/JVI.77.24.12941-12949.2003
http://dx.doi.org/10.1128/JVI.77.24.12941-12949.2003

150. Ben-Nathan, D., S. Lustig, G. Tam, S. Robinzon, S. Segal & B. Rager-Zisman: Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating west nile virus infection in mice. J Infect Dis, 188, 5-12(2003)
doi:10.1086/376870
http://dx.doi.org/10.1086/376870

51. Tesh, R. B., J. Arroyo, A. P. Travassos Da Rosa, H. Guzman, S. Y. Xiao & T. P. Monath: Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg Infect Dis, 8, 1392-7(2002)

152. Oliphant, T., G. E. Nybakken, S. K. Austin, Q. Xu, J. Bramson, M. Loeb, M. Throsby, D. H. Fremont, T. C. Pierson & M. S. Diamond: The Induction of Epitope-Specific Neutralizing Antibodies against West Nile virus. J VirolIn press(2007)

153. Roehrig, J. T., L. A. Staudinger, A. R. Hunt, J. H. Mathews & C. D. Blair: Antibody prophylaxis and therapy for flaviviral encephalitis infections. Ann NY Acad Sci286-297(2001)

154. Churdboonchart, V., N. Bhamarapravati, S. Peampramprecha & S. Sirinavin: Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am J Trop Med Hyg, 44, 481-93(1991)

155. Vazquez, S., M. G. Guzman, G. Guillen, G. Chinea, A. B. Perez, M. Pupo, R. Rodriguez, O. Reyes, H. E. Garay, I. Delgado, G. Garcia & M. Alvarez: Immune response to synthetic peptides of dengue prM protein. Vaccine, 20, 1823-30(2002)
doi:10.1016/S0264-410X(01)00515-1
http://dx.doi.org/10.1016/S0264-410X(01)00515-1

156. Chung, K. M., G. E. Nybakken, B. S. Thompson, M. J. Engle, A. Marri, D. H. Fremont & M. S. Diamond: Antibodies against West Nile virus non-structural (NS)-1 protein prevent lethal infection through Fc gamma receptor-dependent and independent mechanisms. J Virol, 80, 1340-1351(2006)
doi:10.1128/JVI.80.3.1340-1351.2006
http://dx.doi.org/10.1128/JVI.80.3.1340-1351.2006

157. Valdes, K., M. Alvarez, M. Pupo, S. Vazquez, R. Rodriguez & M. G. Guzman: Human Dengue antibodies against structural and nonstructural proteins. Clin Diagn Lab Immunol, 7, 856-7(2000)
doi:10.1128/CDLI.7.5.856-857.2000
http://dx.doi.org/10.1128/CDLI.7.5.856-857.2000

158. Wong, S. J., R. H. Boyle, V. L. Demarest, A. N. Woodmansee, L. D. Kramer, H. Li, M. Drebot, R. A. Koski, E. Fikrig, D. A. Martin & P. Y. Shi: Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol, 41, 4217-23(2003)
doi:10.1128/JCM.41.9.4217-4223.2003
http://dx.doi.org/10.1128/JCM.41.9.4217-4223.2003

159. Nybakken, G. E., C. A. Nelson, B. R. Chen, M. S. Diamond & D. H. Fremont: Crystal structure of the West Nile virus envelope glycoprotein. J Virol, 80, 11467-11474(2006)
doi:10.1128/JVI.01125-06
http://dx.doi.org/10.1128/JVI.01125-06

160. Kanai, R., K. Kar, K. Anthony, L. H. Gould, M. Ledizet, E. Fikrig, W. A. Marasco, R. A. Koski & Y. Modis: Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol, 80, 11000-8(2006)
doi:10.1128/JVI.01735-06
http://dx.doi.org/10.1128/JVI.01735-06

161. Nybakken, G., T. Oliphant, S. Johnson, S. Burke, M. S. Diamond & D. H. Fremont: Structural basis for neutralization of a therapeutic antibody against West Nile virus. Nature, 437, 764-769(2005)
doi:10.1038/nature03956
http://dx.doi.org/10.1038/nature03956

162. Beasley, D. W. & A. D. Barrett: Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol, 76, 13097-13100(2002)
doi:10.1128/JVI.76.24.13097-13100.2002
http://dx.doi.org/10.1128/JVI.76.24.13097-13100.2002

163. Volk, D. E., D. W. Beasley, D. A. Kallick, M. R. Holbrook, A. D. Barrett & D. G. Gorenstein: Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J Biol Chem, 279, 38755-38761(2004)
doi:10.1074/jbc.M402385200
http://dx.doi.org/10.1074/jbc.M402385200

164. Rey, F. A., F. X. Heinz, C. Mandl, C. Kunz & S. C. Harrison: The envelope glycoprotein from tick-borne encephalitis virus at 2 Angstrom resolution. Nature, 375, 291-8(1995)
doi:10.1038/375291a0
http://dx.doi.org/10.1038/375291a0

165. Allison, S. L., J. Schalich, K. Stiasny, C. W. Mandl & F. X. Heinz: Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol, 75, 4268-75(2001)
doi:10.1128/JVI.75.9.4268-4275.2001
http://dx.doi.org/10.1128/JVI.75.9.4268-4275.2001

166. Bressanelli, S., K. Stiasny, S. L. Allison, E. A. Stura, S. Duquerroy, J. Lescar, F. X. Heinz & F. A. Rey: Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Embo J, 23, 728-38(2004)
doi:10.1038/sj.emboj.7600064
http://dx.doi.org/10.1038/sj.emboj.7600064

167. Bhardwaj, S., M. Holbrook, R. E. Shope, A. D. Barrett & S. J. Watowich: Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol, 75, 4002-7(2001)
doi:10.1128/JVI.75.8.4002-4007.2001
http://dx.doi.org/10.1128/JVI.75.8.4002-4007.2001

168. Chu, J. J., R. Rajamanonmani, J. Li, R. Bhuvanakantham, J. Lescar & M. L. Ng: Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol, 86, 405-12(2005)
doi:10.1099/vir.0.80411-0
http://dx.doi.org/10.1099/vir.0.80411-0

169. Beasley, D. W., M. C. Whiteman, S. Zhang, C. Y. Huang, B. S. Schneider, D. R. Smith, G. D. Gromowski, S. Higgs, R. M. Kinney & A. D. Barrett: Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol, 79, 8339-47(2005)
doi:10.1128/JVI.79.13.8339-8347.2005
http://dx.doi.org/10.1128/JVI.79.13.8339-8347.2005

170. Shirato, K., H. Miyoshi, A. Goto, Y. Ako, T. Ueki, H. Kariwa & I. Takashima: Viral envelope protein glycosylation is a molecular determinant of the nueroinvasiveness of the New York strain of Wesr Nile virus. J Gen Virol, 85, 3637-3645(2004)
doi:10.1099/vir.0.80247-0
http://dx.doi.org/10.1099/vir.0.80247-0

171. Hanna, S. L., T. C. Pierson, M. D. Sanchez, A. A. Ahmed, M. M. Murtadha & R. W. Doms: N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol, 79, 13262-74(2005)
doi:10.1128/JVI.79.21.13262-13274.2005
http://dx.doi.org/10.1128/JVI.79.21.13262-13274.2005

172. Davis, C. W., L. M. Mattei, H. Y. Nguyen, R. W. Doms & T. C. Pierson: The location of N-linked glycans on West Nile virions controls their interactions with CD209. J Biol Chem, 281, 37183-37194(2006)
doi:10.1074/jbc.M605429200
http://dx.doi.org/10.1074/jbc.M605429200

173. Mondotte, J. A., P. Y. Lozach, A. Amara & A. V. Gamarnik: Essential Role of Dengue Virus Envelope Protein N Glycosylation at Asparagine-67 during Viral Propagation. J Virol, 81, 7136-48(2007)
doi:10.1128/JVI.00116-07
http://dx.doi.org/10.1128/JVI.00116-07

174. Zhang, W., P. R. Chipman, J. Corver, P. R. Johnson, Y. Zhang, S. Mukhopadhyay, T. S. Baker, J. H. Strauss, M. G. Rossmann & R. J. Kuhn: Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol, 10, 907-912(2003)
doi:10.1038/nsb990
http://dx.doi.org/10.1038/nsb990

175. Zhang, Y., J. Corver, P. R. Chipman, W. Zhang, S. V. Pletnev, D. Sedlak, T. S. Baker, J. H. Strauss, R. J. Kuhn & M. G. Rossmann: Structures of immature flavivirus particles. Embo J, 22, 2604-13(2003)
doi:10.1093/emboj/cdg270
http://dx.doi.org/10.1093/emboj/cdg270

176. Roehrig, J. T., A. J. Johnson, A. R. Hunt, R. A. Bolin & M. C. Chu: Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology, 177, 668-75(1990)
doi:10.1016/0042-6822(90)90532-V
http://dx.doi.org/10.1016/0042-6822(90)90532-V

177. Heinz, F., K. Stiasny, G. Puschner-Auer, H. Holzmann, S. Allison, C. Mandl & C. Kunz: Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with the protein prM. Virology, 198, 109-117(1994)
doi:10.1006/viro.1994.1013
http://dx.doi.org/10.1006/viro.1994.1013

178. Heinz, F., G. Auer, K. Stiasny, H. Holzmann, C. Mandl, F. Guirakhoo & C. Kunz: The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch.Virol., 9(S), 339-348(1994)

179. Wengler, G.: Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol, 63, 2521-6(1989)

180. Mukhopadhyay, S., B. S. Kim, P. R. Chipman, M. G. Rossmann & R. J. Kuhn: Structure of West Nile virus. Science, 302, 248(2003)
doi:10.1126/science.1089316
http://dx.doi.org/10.1126/science.1089316

181. Kuhn, R. J., W. Zhang, M. G. Rossmann, S. V. Pletnev, J. Corver, E. Lenches, C. T. Jones, S. Mukhopadhyay, P. R. Chipman, E. G. Strauss, T. S. Baker & J. H. Strauss: Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108, 717-25(2002)
doi:10.1016/S0092-8674(02)00660-8
http://dx.doi.org/10.1016/S0092-8674(02)00660-8

182. Kauffman, B., G. Nybakken, P. R. Chipman, W. Zhang, D. H. Fremont, M. S. Diamond, R. J. Kuhn & M. G. Rossmann: West Nile virus in complex with a neutralizing monoclonal antibody. Proc Natl Acad Sci U S A, 103, 12400-12404(2006)
doi:10.1073/pnas.0603488103
http://dx.doi.org/10.1073/pnas.0603488103

183. Pierson, T. C., Q. Xu, S. Nelson, T. Oliphant, G. E. Nybakken, D. H. Fremont & M. S. Diamond: The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host and Microbe, 1, 135-145(2007)
doi:10.1016/j.chom.2007.03.002
http://dx.doi.org/10.1016/j.chom.2007.03.002

184. Heinz, F. X., R. Berger, W. Tuma & C. Kunz: A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology, 126, 525-37(1983)
doi:10.1016/S0042-6822(83)80010-5
http://dx.doi.org/10.1016/S0042-6822(83)80010-5

185. Roehrig, J. T., R. A. Bolin & R. G. Kelly: Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology, 246, 317-28(1998)
doi:10.1006/viro.1998.9200
http://dx.doi.org/10.1006/viro.1998.9200

186. Kimura-Kuroda, J. & K. Yasui: Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. J Virol, 45, 124-32(1983)

187. Lin, B., C. R. Parrish, J. M. Murray & P. J. Wright: Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology, 202, 885-90(1994)
doi:10.1006/viro.1994.1410
http://dx.doi.org/10.1006/viro.1994.1410

188. Mason, P. W., J. M. Dalrymple, M. K. Gentry, J. M. McCown, C. H. Hoke, D. S. Burke, M. J. Fournier & T. L. Mason: Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J Gen Virol, 70 (Pt 8), 2037-49(1989)

189. Sukupolvi-Petty, S., W. E. Purtha, S. K. Austin, T. Oliphant, G. Nybakken, J. J. Schlesinger, J. T. Roehrig, G. D. Gromowski, A. D. Barrett, D. H. Fremont & M. S. Diamond: Type- and Sub-Complex-Specific Neutralizing Antibodies Against Domain III of Dengue Virus Type-2 Envelope Protein Recognize Adjacent Epitopes. J VirolIn press(2007)

190. Gromowski, G. D. & A. D. Barrett: Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology, 366, 349-60(2007)
doi:10.1016/j.virol.2007.05.042
http://dx.doi.org/10.1016/j.virol.2007.05.042

191. Megret, F., J. P. Hugnot, A. Falconar, M. K. Gentry, D. M. Morens, J. M. Murray, J. J. Schlesinger, P. J. Wright, P. Young, M. H. Van Regenmortel & et al.: Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology, 187, 480-91(1992)
doi:10.1016/0042-6822(92)90450-4
http://dx.doi.org/10.1016/0042-6822(92)90450-4

192. Guirakhoo, F., F. X. Heinz & C. Kunz: Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology, 169, 90-9(1989)
doi:10.1016/0042-6822(89)90044-5
http://dx.doi.org/10.1016/0042-6822(89)90044-5

193. Beasley, D. W. & J. G. Aaskov: Epitopes on the dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies. Virology, 279, 447-58(2001)
doi:10.1006/viro.2000.0721
http://dx.doi.org/10.1006/viro.2000.0721

194. Cecilia, D. & E. A. Gould: Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology, 181, 70-7(1991)
doi:10.1016/0042-6822(91)90471-M
http://dx.doi.org/10.1016/0042-6822(91)90471-M

195. Choi, K. S., J. J. Nah, Y. J. Ko, Y. J. Kim & Y. S. Joo: The DE loop of the domain III of the envelope protein appears to be associated with West Nile virus neutralization. Virus Res(2006)

196. Sanchez, M. D., T. C. Pierson, D. McAllister, S. L. Hanna, B. A. Puffer, L. E. Valentine, M. M. Murtadha, J. A. Hoxie & R. W. Doms: Characterization of neutralizing antibodies to West Nile virus. Virology, 336, 70-82(2005)
doi:10.1016/j.virol.2005.02.020
http://dx.doi.org/10.1016/j.virol.2005.02.020

197. Wu, K. P., C. W. Wu, Y. P. Tsao, T. W. Kuo, Y. C. Lou, C. W. Lin, S. C. Wu & J. W. Cheng: Structural basis of a Flavivirus recognized by its neutralizing antibody: Solution structure of the domain III of the Japanese Encephalitis virus envelope protein. J Biol Chem(2003)

198. Crill, W. D. & G. J. Chang: Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol, 78, 13975-86(2004)
doi:10.1128/JVI.78.24.13975-13986.2004
http://dx.doi.org/10.1128/JVI.78.24.13975-13986.2004

199. Stiasny, K., S. Kiermayr, H. Holzmann & F. X. Heinz: Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol, 80, 9557-68(2006)
doi:10.1128/JVI.00080-06
http://dx.doi.org/10.1128/JVI.00080-06

200. Wang, Y., M. Lobigs, E. Lee & A. Mullbacher: CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol, 77, 13323-34(2003)
doi:10.1128/JVI.77.24.13323-13334.2003
http://dx.doi.org/10.1128/JVI.77.24.13323-13334.2003

201. Purtha, W. E., N. Myers, V. Mitaksov, E. Sitati, J. Connolly, D. H. Fremont, T. H. Hansen & M. S. Diamond: Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J ImmunolIn press(2007)

202. Brien, J. D., J. L. Uhrlaub & J. Nikolich-Zugich: Protective capacity and epitope specificity of CD8(+) T cells responding to lethal West Nile virus infection. Eur J Immunol, 37, 1855-1863(2007)
doi:10.1002/eji.200737196
http://dx.doi.org/10.1002/eji.200737196

203. Murray, K., S. Baraniuk, M. Resnick, R. Arafat, C. Kilborn, K. Cain, R. Shallenberger, T. L. York, D. Martinez, J. S. Hellums, D. Hellums, M. Malkoff, N. Elgawley, W. McNeely, S. A. Khuwaja & R. B. Tesh: Risk factors for encephalitis and death from West Nile virus infection. Epidemiol Infect, 134, 1325-32(2006)
doi:10.1017/S0950268806006339
http://dx.doi.org/10.1017/S0950268806006339

204. Pruitt, A. A.: Central nervous system infections in cancer patients. Semin Neurol, 24, 435-52(2004)
doi:10.1055/s-2004-861538
http://dx.doi.org/10.1055/s-2004-861538

205. Kulkarni, A. B., A. Mullbacher & R. V. Blanden: In vitro T-cell proliferative response to the flavivirus, west Nile. Viral Immunol, 4, 73-82.(1991)

206. Kesson, A. M., R. V. Blanden & A. Mullbacher: The primary in vivo murine cytotoxic T cell response to the flavivirus, West Nile. J Gen Virol, 68, 2001-6.(1987)

207. Wang, Y., M. Lobigs, E. Lee & A. Mullbacher: Exocytosis and Fas mediated cytolytic mechanisms exert protection from West Nile virus induced encephalitis in mice. Immunol Cell Biol, 82, 170-3(2004)
doi:10.1046/j.0818-9641.2004.01227.x
http://dx.doi.org/10.1046/j.0818-9641.2004.01227.x

208. Shrestha, B. & M. S. Diamond: Fas Ligand interactions contribute to CD8+ T cell-mediated control of West Nile virus infection in the central nervous system. J VirolIn press(2007)

209. Ransohoff, R. M.: The chemokine system in neuroinflammation: an update. J Infect Dis, 186 Suppl 2, S152-6(2002)
doi:10.1086/344266
http://dx.doi.org/10.1086/344266

210. Asensio, V. C. & I. L. Campbell: Chemokines and viral diseases of the central nervous system. Adv Virus Res, 56, 127-73(2001)
doi:10.1016/S0065-3527(01)56006-6
http://dx.doi.org/10.1016/S0065-3527(01)56006-6

211. Glass, W. G., J. K. Lim, R. Cholera, A. G. Pletnev, J. L. Gao & P. M. Murphy: Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med, 202, 1087-98(2005)
doi:10.1084/jem.20042530
http://dx.doi.org/10.1084/jem.20042530

212. Sitati, E., E. E. McCandless, R. S. Klein & M. S. Diamond: CD40-CD40 Ligand Interactions Promote Trafficking of CD8+ T Cells into the Brain and Protection against West Nile Virus Encephalitis. J Virol, 81, 9801-9811(2007)
doi:10.1128/JVI.00941-07
http://dx.doi.org/10.1128/JVI.00941-07

213. Chu, J. J. & M. L. Ng: The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol, 84, 3305-14(2003)
doi:10.1099/vir.0.19447-0
http://dx.doi.org/10.1099/vir.0.19447-0

214. Parquet, M. C., A. Kumatori, F. Hasebe, K. Morita & A. Igarashi: West Nile virus-induced bax-dependent apoptosis. FEBS Lett, 500, 17-24(2001)
doi:10.1016/S0014-5793(01)02573-X
http://dx.doi.org/10.1016/S0014-5793(01)02573-X

215. Samuel, M. A., J. D. Morrey & M. S. Diamond: Caspase-3 dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol, 81, 2614-2623(2007)
doi:10.1128/JVI.02311-06
http://dx.doi.org/10.1128/JVI.02311-06

216. Liao, C. L., Y. L. Lin, J. J. Wang, Y. L. Huang, C. T. Yeh, S. H. Ma & L. K. Chen: Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol, 71, 5963-71.(1997)

217. Parquet, M. C., A. Kumatori, F. Hasebe, E. G. Mathenge & K. Morita: St. Louis encephalitis virus induced pathology in cultured cells. Arch Virol, 147, 1105-19(2002)
doi:10.1007/s00705-002-0806-6
http://dx.doi.org/10.1007/s00705-002-0806-6

218. Ramanathan, M. P., J. A. Chambers, P. Pankhong, M. Chattergoon, W. Attatippaholkun, K. Dang, N. Shah & D. B. Weiner: Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology, 345, 56-72(2006)
doi:10.1016/j.virol.2005.08.043
http://dx.doi.org/10.1016/j.virol.2005.08.043

219. Yang, J. S., M. P. Ramanathan, K. Muthumani, A. Y. Choo, S. H. Jin, Q. C. Yu, D. S. Hwang, D. K. Choo, M. D. Lee, K. Dang, W. Tang & J. J. Kim: Induction of Inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis, 8, 1379-84(2002)

220. Koh, W. L. & M. L. Ng: Molecular mechanisms of West Nile virus pathogenesis in brain cell. Emerg Infect Dis, 11, 629-32(2005)

221. Venter, M., T. G. Myers, M. A. Wilson, T. J. Kindt, J. T. Paweska, F. J. Burt, P. A. Leman & R. Swanepoel: Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology, 342, 119-40(2005)
doi:10.1016/j.virol.2005.07.013
http://dx.doi.org/10.1016/j.virol.2005.07.013

222. Sumbayev, V. V. & I. M. Yasinska: Role of MAP kinase-dependent apoptotic pathway in innate immune responses and viral infection. Scand J Immunol, 63, 391-400(2006)
doi:10.1111/j.1365-3083.2006.001764.x
http://dx.doi.org/10.1111/j.1365-3083.2006.001764.x

223. Kleinschmidt, M. C., M. Michaelis, H. Ogbomo, H. W. Doerr & J. Cinatl, Jr.: Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol, 7, 49(2007)
doi:10.1186/1471-2180-7-49
http://dx.doi.org/10.1186/1471-2180-7-49

224. Medigeshi, G. R., A. M. Lancaster, A. J. Hirsch, T. Briese, W. I. Lipkin, V. Defilippis, K. Fruh, P. W. Mason, J. Nikolich-Zugich & J. A. Nelson: West Nile virus infection activates the unfolded protein response leading to CHOP induction and apoptosis. J Virol, 81:10849-60 (2007).
doi:10.1128/JVI.01151-07
http://dx.doi.org/10.1128/JVI.01151-07

Key Words: Flavivirus, Immunology, Antibody, Interferon, Pathogenesis, T cells, Review

Send correspondence to: Michael S. Diamond, Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, Tel: 314-362-2842, Fax: 314-362-9230, -Email: diamond@borcim.wustl.edu