[Frontiers in Bioscience 14, 4386-4400, January 1, 2009]

Death of effector memory T cells characterizes AIDS

Laforge Mireille2, Senik Anna2, Cumont Marie-Christine1, Monceaux Valerie1, Hurtrel Bruno1, Estaquier Jerome1,2,3

1CNRS URA 1930, Unite de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28 rue du Docteur Roux, Paris, France, 2 INSERM U 841, Creteil, Paris, France, 3AP-HP, Hopital Henri Mondor, Creteil, France

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. The level of apoptosis predicts further progression to AIDS
4. Effector memory T cell subpopulation expressing CCR5 is the main population prone to die by apoptosis
5. Productive HIV-1 infection mediates CD4 T cell death
6. Exposure to HIV viral particles primes memory CD4 T cells for apoptosis
7. Cytokines regulate memory CD4 T cell apoptosis
8. Death of memory CD4 T cells is associated with mitochondrial permeabilization
9. Acknowledgements
10. References

1. ABSTRACT

The adaptive effector CD4+ T helper-mediated immune response is highly heterogeneous, based on the development of distinct subsets that are characterized by the expression of different profiles of cell surface markers. Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. Excessive induction of apoptosis in infected and uninfected CD4+ T cells has been proposed as one of the pathogenic mechanisms that may impair the immune response and cause the development of acquired immune deficiency syndrome (AIDS). Thus, the death of effector/memory CD4+ T cells during both the acute and chronic phase represents one the main characteristic of such viral infection that predicts disease outcome. Improving our understanding of the molecular mechanisms leading to the death of memory CD4+ T cells should enable us to improve vaccination protocols and treatments, by combining them with antiretroviral drugs and molecules designed to decrease apoptotic phenomena.

2. INTRODUCTION

Programmed cell death and its main phenotype, apoptosis, is a cell suicide program essential for development and for adult tissue homeostasis of all metazoan animals (1). The stereotypical death throes of a cell undergoing apoptosis include DNA fragmentation, nuclear condensation, cell shrinkage, blebbing, and phosphatidylserine externalization (2-4), all features that promote the physiologically silent removal of the cell by its phagocytic neighbors.

Mitochondria are implicated in the two major apoptotic pathways currently accepted as the model (s) for cell death. The death receptor-mediated pathway (� extrinsic pathway �) involves mitochondria mainly as an amplification loop, whereas cellular deprival and stress-mediated apoptosis is regulated predominantly at the mitochondrial level (� intrinsic pathway �). In both pathways, the involvement of the mitochondria is manifested by the release of cytochrome c. The release of apoptogenic factors from the mitochondria is regulated by the members of the Bcl-2 family (5-8). Members of the Bcl-2 family proteins can be subdivided into three distinct groups: (i) anti-apoptotic members such as Bcl-2 and Bcl-XL with sequence homology at BH1 (Bcl-2 homology region), BH2, BH3, and BH4 domains; (ii) pro-apoptotic molecules, such as Bax and Bak, with sequence homology at BH1, BH2 and BH3; and (iii) pro-apoptotic proteins that share homology only at the BH3 domain, such as Bid, Bik, Noxa, and Bim (5).

Defaults (inhibition or exacerbation) in programmed cell death are involved in several pathologies like neurodegenerative diseases, cancers or AIDS (9-11).

3. THE LEVEL OF APOPTOSIS PREDICTS FURTHER PROGRESSION TO AIDS

The depletion of CD4+ T cells is a major determinant of pathogenicity in human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell depletion is associated with high viral turnover (12), and is preceded by the progressive loss of T-cell-mediated immunity (13). T cell apoptosis may be one of the mechanisms that is responsible for T cell depletion during HIV infection. Several studies have found that abnormal levels of apoptosis occur both in vitro (9, 14-20) and in vivo (21, 22) in CD4+ and CD8+ T cells from HIV-1-infected persons. Excessive induction of apoptosis in infected and uninfected T cells (22) has been proposed as one of the pathogenic mechanisms that may impair the immune response and cause the development of immune deficiency. The magnitude of apoptosis observed in HIV-infected individuals correlates well with the stage of HIV disease (23-28) and changes in apoptosis during antiretroviral therapy confirm the link between disease progression and apoptosis (29). Finally, it has been shown excessive apoptosis in patients treated with drugs in which despite having undetectable plasma viral loads they display persistent low CD4+ T cell counts. This result suggests that apoptosis may represent a mechanism responsible for the low level of reconstitution in these patients (30).

Several studies have found that HIV originally resulted from viruses circulating in African non human primates (NHP) So far, thirty distinct African NHP species have been shown to carry SIV (31). Interestingly, these natural hosts for SIV do not show any signs of AIDS (32-36). The lack of induction of AIDS in the natural hosts contrasts with their capacity to support SIV replication. Importantly, transmission of SIV from natural hosts, ie sooty mangabeys (SMs) or African green monkeys (AGMs, C. aethiops), to Asian NHP, such as pigtailed macaques, induces AIDS. This demonstrates that the lack of induction of AIDS is not due to viral attenuation, but that host specific responses play a crucial role in protection.

Studies performed in pathogenic and non-pathogenic primate models of HIV or simian (SIV) immunodeficiency virus infection have identified during the chronic phase a correlation between the induction of enhanced in vitro T cell apoptosis and the in vivo pathogenic nature of the retroviral infection (16, 19, 33, 37-39). Thus, enhanced levels of apoptosis in CD4+ T cells were observed in the models leading to AIDS: HIV-1-infected human individuals, Rhesus Macaques (RMs) infected with a pathogenic strain of SIVmac, and chimpanzees infected with a pathogenic strain of SIVcpz (37, 40). In contrary, no apoptosis was observed in AGMs or SMs (19, 33).

The primary acute phase of HIV and SIV infections is characterized by an early burst in viral replication, an exponential rise in plasma viral load, the dissemination and seeding of the virus in all the peripheral lymphoid organs (41-45). The steady state plasma viral load levels that are reached at the end of this primary phase around 2 months after infection predict the progression towards disease, ranging from rapid development of AIDS to long term slow progressive infection (46-49). Several observations indicate that the early induction of an effective immune response against the virus plays a role in determining levels of viral load at the end of the primary phase (i.e., set-point) Importantly, the early stages of non-pathogenic SIV infection of AGMs and SMs are also characterized by a peak of virus replication in peripheral blood accompanied by rapid dissemination of the virus and depletion of CD4+ T-cells from the MALT (50, 51).

T cells from peripheral blood of SIV-infected macaques were more prone to die during primary infection (52). Moreover, cell death in tissues was higher in animals infected with pathogenic SIV than in those infected with the attenuated strain SIV∆nef (53, 54). We also found that the extent of T cell death in LNs during primary infection predicts disease progression (55) and increase of apoptosis was also seen in lamina propria (56). Interestingly, SIVmac infection is milder in Chinese RMs as compared to Indian RMs. It has been initially proposed that this may have resulted in the selection of viral variants that are adapted for more efficient replication and/or increased pathogenicity for these animals (57). Thus, the SIVmac strains were propagated either in vivo or in vitro in cells derived from Indian monkeys (57, 58). We showed by using a SIVmac251 propagated on cells of Chinese origin that the levels of apoptosis correlated with the extent of viral replication and the rate of disease progression to AIDS (59). Thus, the extent of apoptosis was higher in RMs of Indian genetic background when compared to those of Chinese origin. This demonstrated that increased pathogenicity is due to host factors. In stark contrast, no changes in the levels of lymphocyte apoptosis were observed during primary infection in the non-pathogenic model of SIVagm-sab infection of AGMs despite similarly high viral replication (59-61).

4. EFFECTOR MEMORY T CELL SUBPOPULATION EXPRESSING CCR5 IS THE MAIN POPULATION PRONE TO DIE BY APOPTOSIS

During antigenic stimulation, T cell differentiation takes place according to the following sequence: naive T cells (CD45RA+ CD62L+) forming a population of "central" (central-memory T cells, TCM) or early memory T cells that lose the CD45RA molecule. Further stimulation of central-memory T cells leads to proliferation of intermediate memory cells that have lost CCR7 followed by the production of "effector" (effector memory T cells, TEM) which lack CD62L expression. These effector-memory T cells may re-express the CD45RA molecule, in response to antigen stimulation, becoming "terminal differentiated" effector T cells (TDT). We have previously shown that the response to recall-antigens (for example, BCG) is lost at an early stage following SIV-infection (55, 62, 63). In humans, it has been shown that CD4+ T cell differentiation was abortive and HIV-specific CD4+ T cells died during the asymptomatic phase (64) and that early highly active antiretroviral therapy (HAART) preserved CD4+ T cell immune response (65, 66). We recently demonstrated that effector memory CD4+ T cells (TEM) were more prone to apoptosis during primary infection (62), explaining, at least in part, how HIV and SIV infections impair the immune response very early. Interestingly, variable rates of T cell death were observed amongst the individual animals, despite the fact that they received the same batch of virus and the same dose via the same route. These results suggest the existence of individual host factors that predispose to AIDS.

Among host factors, it has been shown that chemokine receptors may contribute to AIDS. The risk of progressing to AIDS in SIV-infected Indian RMs is associated with a rapid and sustained depletion of circulating and mucosal CD4+CCR5+ memory T-cells (67-71). This observation represents a somewhat striking difference with HIV infection, as several studies reported that, in HIV-infected individuals, the proportion of CD4+ T-cells expressing CCR5 greatly increases following HIV infection (72, 73) and that this increase in CD4+CCR5+ T-cells is a marker of disease progression associated with apoptosis (74-76). Collectively, these findings raise the concern that, beyond a series of obvious similarities, the SIVmac-infected RM model does not reproduce correctly the pathogenic events occurring during HIV infection, particularly with respect to the dynamics of the CD4+CCR5+ T-cell subset. To this end, it should be noted that the two main driving forces behind the dynamics of CD4+CCR5+ T-cells during SIV infection are viral replication (that tends to reduce the number of these cells) (67-69) and the immune activation that promotes the expression of CCR5 (and thus increases the number of CCR5+ T-cells) (77, 78). As such, the differences in CD4+CCR5+ T-cell dynamics observed between humans and RMs of Indian origin may reflect a different contribution of the two above-described mechanisms by which a retroviral infection affects this cellular subset. In this context, we demonstrated that the dynamics of CD4+CCR5+ T-cells in SIV-infected Chinese RMs are more similar to those in HIV-infected humans (63). Thus, we have proposed that SIV infection of Chinese RMs may be an extremely useful and particularly relevant model to study AIDS pathogenesis and vaccines.

5. PRODUCTIVE HIV-1 INFECTION MEDIATES CD4 T CELL DEATH

Excessive induction of apoptosis in infected and uninfected T cells (22) has been proposed as one of the pathogenic mechanisms that may impair the immune response and cause the development of immune deficiency. Thus, despite intensive investigations, several important questions remain about the mechanisms through which HIV infection induces CD4+ T cell death. Classical apoptosis with its hallmarks (cell shrinkage, strong chromatin condensation, OMM rupture and caspase activation) has long been viewed as the major cell death mechanism affecting the cells of HIV-1-infected CD4+ T cell cultures (79). However, several studies with productively HIV-1-infected primary CD4+ T cell cultures described a programmed death pathway insensitive to the peptide z-VAD-fmk (a broad-spectrum caspase inhibitor) and to reagents that specifically inhibit the death receptors of the TNF-R superfamily (80, 81). This suggests that a caspase-independent death pathway, also operating in infected cells, could substitute for the caspase-dependent one. In a number of cell death models, lysosomal destabilization and ensuing efflux of cathepsins play an early and important role in the destruction of the cells (82, 83). Cathepsin-B, which is an essential mediator of TNF-a -induced cell death in murine embryonic fibroblasts, depends on caspase-9-induced lysosomal membrane permeabilization (84). On the contrary, Cathepsin-D, which is primarily involved in oxidative stress and staurosporine (STS)-induced apoptosis in human fibroblasts, acts upstream from cytochrome c release and caspase activation (85). Released Cat-D has been shown important by promoting Bax activation and insertion into the OMM (86). Thus, we demonstrated that lysosomes are rapidly permeabilized in CD4+ T lymphocytes productively infected with HIV-1, resulting in the release of cathepsins into the cytosol, and that the permeabilization of lysosomes precedes that of mitochondria (87). During early commitment to apoptosis, released Cathepsin-D acts upstream from Bax conformational change and subsequent Bax insertion into the OMM. Inhibition of Cathepsin-D activity confers a transient survival advantage upon infected cells, indicating that Cathepsin-D behaves as an early trigger of apoptosis.

Among the factors encoded by HIV-1, the Nef protein is essential for AIDS pathogenesis, promoting high-level viral replication (88). Nef has multiple effects, including the downregulation of cell surface proteins such as CD4, MHC class I, CD28 (reviewed in (89)) and chemokine receptors (90). Studies with cell lines stably expressing nef have shown that Nef also enhances the apoptotic responses to a number of cell death agonists (91). In mice, nef transgene expression alone induces the development of a severe AIDS-like disease, whereas vpu, vpr or tat transgene expression are dispensable for the emergence of this disease phenotype (92). Interestingly, the transfection of activated CD4+ T lymphocytes with a Nef expression vector rapidly induced the permeabilization of lysosomes and the release of Cat-D (87). Thus, Nef HIV-1 protein in activated CD4+ T lymphocytes is sufficient to trigger lysosomal membrane permeabilization and its effects.

6. EXPOSURE TO HIV VIRAL PARTICLES PRIMES MEMORY CD4 T CELLS FOR APOPTOSIS

The increased level of T cell apoptosis observed in HIV-infected human individuals is associated with enhanced expression of the CD95 receptor and its ligand (CD95L), and increased sensitivity of T cells to apoptosis mediated by CD95 ligation using either agonistic CD95 monoclonal antibodies (mAb) or recombinant CD95L (19, 93-105). Other members of the TNF-receptor ligand family (TRAIL, TNF-a ) have also been implicated in the increased T cell apoptosis seen in HIV-1 infected individuals (106-110). Similarly, T cells from macaques infected with a pathogenic strain (SIVmac251) are more prone to undergo apoptosis following ligation of CD95/Fas than the other death receptors (111).

CD95/CD95L interactions play a significant role in peripheral T cell homeostasis. Several reports have reported that CD95L is significantly expressed by macrophages independently of posttranslational mechanisms following HIV infection (27, 107, 112, 113). Thus, macrophages can provide a source for CD95L, following HIV infection and can thus participate in CD4+ T cell depletion in HIV-infected individuals. Moreover, we also demonstrated the presence of CD95L within vesicles derived from apoptotic cells capable to induce the death of uninfected CD4+ T cells (114). Thus, cell death induced in vivo during HIV-1 infection may by itself provide an amplification loop in AIDS pathogenesis.

Ligation of CD95/Fas by its counterpart CD95L, induces the aggregation of several proteins from the death-inducing signaling complex (DISC) leading to the activation of the initiator caspase-8 (115). In macaque as well as in humans, zVAD-fmk prevents CD95-mediated T cell death. Interestingly, the enhancement in CD95-mediated T cell death in rhesus macaques is not associated with either an up-regulation of caspase-3 and caspase-8 or a decrease of FLIP-L and FLIP-S (111). Similarly, Badley et al. (116) found that death of T cells of HIV-infected individuals was not associated with a change in the amount of FLIP. T cell activation occurring in the course of immune responses has been shown to increase sensitivity to CD95 induced apoptosis, and may be involved. Antiretroviral therapy show a significant decrease in CD95-induced, activation-induced, and spontaneous apoptosis in ex vivo cultured PBLs which correlates with decreased immune activation (29). Thus, effective viral suppression decreases apoptosis, which in turn may contribute to immune reconstitution.

The envelope glycoprotein complex (Env) appears to be one of the dominant apoptosis-inducing molecules encoded by the HIV-1 genome. The gp120 is present on the surface of infected cells, on viral particles, or as a soluble protein and can bind to and cross-link CD4. The interaction of the gp 120 with the CD4 molecule can prime CD4+ and CD8+ T cells for apoptosis (106, 117-122). Thus, contact of primary uninfected CD4+ T cells with HIV-infected or HIV envelope glycoprotein-expressing cells results in apoptotic cell death (123). Cytoskeletal components play a major role in HIV-1 infection. In fact, it has been shown that gp120 is able to induce cytoskeleton-driven polarization, thus sensitizing T cells to CD95-mediated apoptosis. In particular, an early and stable ezrin activation through phosphorylation, consistent with a role of ezrin in CD95 sensitization was reported (124). The HIV envelope protein has also been reported to cause apoptosis by binding to chemokine co-receptor (125-128). We demonstrated that incubation of resting CD4+ T cells from healthy donors with HIV-1 or macaque cells with SIVmac251, even in the presence of an inhibitor of the viral replication, is sufficient to prime CD4+ T cells for apoptosis (62, 129, 130) and sensitizing T cells to CD95-mediated apoptosis. It has been shown that apoptosis can be induced by conformationally noninfectious HIV particles suggesting that immunopathogenesis may not depend solely on direct cytopathic effects of HIV replication but that HIV-1 virions may also contribute importantly (131, 132).

Individual variations in chemokine receptor expression (133, 134) may also determine CD4+ T cell death because the sensitivity of CD4+ T cells to die in vitro depends on the levels and on the nature of the chemokine receptors expressed (117, 129, 130, 135, 136). In peripheral blood mononuclear cells, syncytium-inducing (SI, X4-tropic strains) human immunodeficiency virus type 1 (HIV-1) infects and depletes all CD4+ T cells, including naive T cells. Non-SI HIV-1 infects and depletes only the CCR5-expressing T-cell subset. This may explain the accelerated CD4+ T cell loss after SI conversion in vivo, and associated with a poor prognostic and aids outcome. It has been proposed that ligation of the CXCR4 molecule, the main coreceptor of syncytia inducing (SI) virus, alone causes p38 activation and apoptosis ("direct effect") (137). Moreover, we found that a strain of SIV that uses CCR5 and BOB/GPR15 as co-receptors causes also death of noncycling primary CD4+ T cells (62). Thus, the extent of in vivo expression of BOB/GRP15 and of CCR5 could impact on disease outcome. Strategies involving the use of molecules which block viral binding to CCR5 have been assessed in the past few years in the macaque model for their ability to prevent SIV infection or to induce a decrease in viral load but their efficacy is incomplete (138), suggesting either that the levels of CCR5 differ between individuals or that an alternative co-receptor is involved in cell death induction such as BOB/GRP15. Paradoxically, its dynamics is unknown. Finally, given that the engagement of co-receptors may induce the release of interleukins that have been reported to exert pro-apoptotic activities, such as IL-10 (18, 97) and more recently type 1 interferon through a TRAIL-dependent pathway (139, 140), an indirect effect may be also operating.

Therefore, as most of the HIV particles produced are non infectious, the simple fixation and/or penetration of viruses, without integration, may be sufficient to prime T cells for apoptosis in quiescent cells.

7. CYTOKINES REGULATE MEMORY CD4 T CELL APOPTOSIS

In keeping with the idea that costimulatory signals and cytokines play a key role in the control of T cell survival and T cell death during HIV infection, we and others have found that several cytokines exert a preventive effect on T cell death of HIV-infected individuals (18, 97, 98, 141-144). Thus, the addition of antibodies to IL-10 or the addition of IL-12 have a preventive effect on abnormal programmed cell death induction in response to in vitro stimulation in HIV-infected persons. Moreover, IL-12, which up-regulates TH1 functions and prevents TCR-mediated CD4+ T cell apoptosis, also prevents Fas-mediated apoptosis of CD4+ T cells from HIV-infected persons (97, 98). In contrast, IL-10 prevents Fas-mediated apoptosis of CD8+ T cells from HIV-infected persons while having no preventive effect on CD4+ T cell death. IL-2, a cytokine secreted by activated T cells and involved in cell-mediated immunity, had a preventive effect on Fas-mediated death of both CD4+ and CD8+ T cells from HIV infected individuals. IL-15 can also inhibit T cell apoptosis and enhances the function of HIV-specific CD8+ T cells. Similarly, these cytokines prevent apoptosis of T cells from SIV-infected macaques (111). In humans, interleukin 7 (IL-7) is involved in normal T lymphopoiesis, but also acts as a survival factor for peripheral T lymphocytes (145, 146). IL-7 prevent activated T cell death in vitro via a signal thought to be mediated by the gamma chain receptor (147). IL-7 is a key cytokine in HIV pathogenesis and is associated with an unfavorable prognosis (148-150). Serum IL-7 concentrations are inversely correlated with CD4+ and CD8+ T cell counts during HIV infection. In vitro treatment of naive T cells with IL-7 may favor the replication of X4 and R5 HIV strains (151, 152) and the emergence of X4 variants (148). We found that in vitro treatment with IL-7 favors X4-mediated CD4+ T cell apoptosis through Fas (136). Moreover, IL-7 not only sensitized T lymphocytes to undergo apoptosis (153) but also neurons (154). Altogether these data suggest that IL-7 may have a deleterious effect on HIV pathogenesis and that exogenous IL-7 must be used with caution during HIV infection.

The protein PD-1 (programmed death 1) was originally isolated from a cytotoxic T-cell line CTTL-2 following IL-2 deprival that promote apoptosis (155). During HIV infection, it has been proposed a defect in IL-2 expression coincident with the progressive depletion of CD4+ T cells and disease outcome. Recently, in HIV-infected individuals, it has been shown greater expression of PD-1, and that blocking the interaction between PD-1 and PD-L1 increases the capacity of peripheral blood HIV-specific T cells to proliferate and survive (156-158). We found in SIV-infected RMs that PD-1 is more abundantly expressed on T cells from Mesenteric LNs than in peripheral blood. Most importantly, PD-1 is higher expressed on cell surface of T cells from individuals that progress more rapidly to AIDS ("non-controllers"). Interestingly, we found that PD-1 expression is enhanced by incubation in the presence of TGF-ß (159), an immunosuppressive cytokine highly expressed in the tissues of SIV-infected monkeys. In fact, PD-1 signaling inhibits Akt phosphorylation by preventing CD28-mediated activation of phosphatidylinositol 3-kinase (PI3K) favoring cell death (160). In addition to PD-1, it has been shown that the inhibitory immunoregulatory receptor CTLA-4 signaling inhibits Akt phosphorylation. CTLA-4 was selectively upregulated in human immunodeficiency virus (HIV)-specific CD4+ T cells but not CD8 T cells and CTLA-4 expression correlated positively with disease progression and negatively with the capacity of CD4+ T cells to produce interleukin 2 in response to viral antigen (161). Thus, several molecules expressed on the surface of T cells that may impact cell signaling in inducing apoptosis.

8. DEATH OF MEMORY CD4 T CELL IS ASSOCIATED WITH MITOCHONDRIAL PERMEABILIZATION

Spontaneous T cell apoptosis is associated with a loss of the inner mitochondrial transmembrane potential (∆y m), suggesting that changes in mitochondrial permeability could be a central event in the regulation of T cell death in HIV-infected individuals (162) and in SIV-infected RMS (62, 111). Thus, the rate of spontaneous CD4+ T cell apoptosis early after SIV infection post-infection is predictive of progression towards AIDS, and that this apoptotic process follows the intrinsic (rather than the extrinsic) cell death pathway (62). Indeed, the broad caspase inhibitor zVAD-fmk has no preventive effect on T cell death (62, 111). AIF has been proposed as a major effector released from the mitochondria into the cytosol in a caspase-independent pathway (163). However, this observation remains controversial (164). During SIV-infection, no major changes in the release of AIF from the mitochondria was observed (62). Bax and Bak, in the regulation of death-by-neglect and loss of mitochondrial homeostasis, represent the main actors controlling mitochondria (165). Because Bax and Bak affects the mitochondria electron transport (following cytochrome c release and loss of ATP), which results in the disruption of the mitochondrial membrane potential (166), this may provide at least one mechanism leading to the death of the CD4+ T cells during primary infection. Alteration of mitochondria has been observed in peripheral blood mononuclear cells from HIV-infected individuals (167). During SIV-infection, both during the acute and the chronic phase, greater expression of Bak in CD4+ T cells was observed (62, 111). Although, it has been reported in HIV-infected individuals that p53 phosphorylation on serine 15 is correlated with plasma viral load and death (168) as well p38 MAP kinase, we do not observed a correlation with p53ser15 in CD4+ T cells but in CD8+ T cells (62). The level of p53ser15 in CD8+ T cells is predictive of disease progression and viral dissemination in the body (159). Interestingly, IL-2 and IL-15 reduced the death rate of CD4+ and CD8+ T cells from SIVmac251-infected macaques suggesting that cytokines prevent mitochondrial outer membrane permeabilization (169, 170).

Bim is required for efficient death-by-neglect (growth factor deprival), as Bim-/- mice have lymphoid hyperplasia and lymphocytes display partial resistance to death-by-neglect (171, 172). The cell death observed in multiple tissues of Bcl-2-/- mice also require Bim activity, because Bim deficiency can rescue some aspects of Bcl-2-deficiency. Bim is localized to intracellular membranes to regulate Bcl-2 and Bcl-XL. More recently, a cooperation between Bim and CD95 has been proposed in the shutdown of autoimmunity (173-175). During SIV infection of RMs, we found that in addition to the extrinsic pathway involving Fas, Bim is increased in T cells from SIV-infected monkeys (111). More recently, it has been proposed a role of the transcription factor Foxo3a in the regulation of Bim and T cell apoptosis in HIV-infected individuals (176). However, the authors proposed a role of Bim in preventing Fas-mediated cell death which is a non classical cascade of event. An increased lymphocyte susceptibility to apoptosis, that is though to be related to heightened levels of immune activation, has been proposed as one of the main mechanisms responsible for the CD4+ T-cell depletion in vivo during pathogenic HIV and SIV infections (22, 111, 177). Thus, in non-progressing hosts such as SMs or AGMs, it has been shown during the chronic phase that the level of the immune activation remains relatively low when compared to RMs (19, 32, 33, 50, 51). Similarly, a further and early divergence between SIV-infected RMs and AGMs was also observed during the acute phase in terms of dynamics of T and B cell proliferation in lymph nodes, with RMs showing significantly higher levels of Ki67+ cells in the T cell zones, whereas AGMs displayed a low frequency of Ki67+ (59). Therefore, Fas and Bim could represent the two main components controlling the balance between survival and death of activated memory T cells during HIV and SIV infection.

In conclusion, altogether these results demonstrate that early after infection, the death of effector memory CD4+ T cells is a key event in further progression to AIDS. At this stage, based on animal models, we can conclude that viral replication by itself can not support the extent of cell death, and therefore involves indirect mechanisms (for i.e. immune activation, immunosuppressive cytokines, or apoptogenic factors). Clearly, CD95 and Bim may represent potent targets to prevent T cell apoptois during HIV infection and must be used with caution due to the risk of autoimmunity. Therapies based on the used of cytokines or inhibitors of immunosuppressive factors as well represent alternative approaches to modulate the death of CD4+ T cells. Since the quality of the CD4+ T cells affects the cytotoxic CD8+ T cell response, it is likely that inhibiting the death of effector memory CD4+ T cells early after infection could favor the control of infection and prevent AIDS.

9. ACKNOWLEDGEMENTS

ML was supported by grants from Sidaction. Funding from the ANRS, Sidaction, Fondation de France and FRM to JE supported this work.

This work is dedicated to the memory of BH.

10. REFERENCES

1. M. D. Jacobson, M. Weil and M. C. Raff: Programmed celldeath in animal development. Cell 88, 347-354. (1997)
doi:10.1016/S0092-8674(00)81873-5

2. J. F. Kerr, A. H. Wyllie and A. R. Currie: Apoptosis: a basic biologicalphenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26,239-257. (1972)

3. S. J. Martin, C. P. Reutelingsperger, A. J. McGahon, J. A. Rader, R. C. vanSchie, D. M. LaFace and D. R. Green: Early redistribution of plasma membranephosphatidylserine is a general feature of apoptosis regardless of theinitiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med182, 1545-1556 (1995)
doi:10.1084/jem.182.5.1545

4. A. H. Wyllie, J. F. Kerr and A. R. Currie: Cell death: the significance ofapoptosis. Int Rev Cytol 68, 251-306 (1980)
doi:10.1016/S0074-7696(08)62312-8

5. A. Gross, J. M. McDonnell and S. J. Korsmeyer: BCL-2 family members and themitochondria in apoptosis. Genes Dev 13, 1899-1911 (1999)
doi:10.1101/gad.13.15.1899

6. J. Yang, X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D.P. Jones and X. Wang: Prevention of apoptosis by Bcl-2: release of cytochrome cfrom mitochondria blocked (see comments). Science 275, 1129-1132 (1997)
doi:10.1126/science.275.5303.1129

7. R. M. Kluck, E. Bossy-Wetzel, D. R. Green and D. D. Newmeyer: The release ofcytochrome c from mitochondria: a primary site for Bcl-2 regulation ofapoptosis (see comments). Science 275, 1132-1136 (1997)
doi:10.1126/science.275.5303.1132

8. J. C. Martinou and D. R. Green: Breaking the mitochondrial barrier. Nat RevMol Cell Biol 2, 63-67. (2001)
doi:10.1038/35048069

9. J. C. Ameisen, J. Estaquier and T. Idziorek: From AIDS to parasiteinfection: pathogen-mediated subversion of programmed cell death as a mechanismfor immune dysregulation. Immunol Rev 142, 9-51 (1994)
doi:10.1111/j.1600-065X.1994.tb00882.x

10. G. Kroemer and J. C. Reed: Mitochondrial control of cell death. Nat Med 6,513-519. (2000)
doi:10.1038/74994

11. C. B. Thompson: Apoptosis in the pathogenesis and treatment of disease.Science 267, 1456-1462. (1995)
doi:10.1126/science.7878464

12. D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M.Markowitz: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1infection (see comments). Nature 373, 123-126 (1995)
doi:10.1038/373123a0

13. M. Clerici, N. I. Stocks, R. A. Zajac, R. N. Boswell, D. R. Lucey, C. S.Via and G. M. Shearer: Detection of three distinct patterns of T helper celldysfunction in asymptomatic, human immunodeficiency virus-seropositivepatients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest84, 1892-1899. (1989)
doi:10.1172/JCI114376

14. L. Meyaard, S. A. Otto, R. R. Jonker, M. J. Mijnster, R. P. Keet and F. Miedema:Programmed death of T cells in HIV-1 infection. Science 257, 217-219(1992)
doi:10.1126/science.1352911

15. A. Sarin, M. Clerici, S. P. Blatt, C. W. Hendrix, G. M. Shearer and P. A.Henkart: Inhibition of activation-induced programmed cell death and restorationof defective immune responses of HIV+ donors by cysteine protease inhibitors. JImmunol 153, 862-872. (1994)

16. M. L. Gougeon, S. Garcia, J. Heeney, R. Tschopp, H. Lecoeur, D. Guetard, V.Rame, C. Dauguet and L. Montagnier: Programmed cell death in AIDS-related HIVand SIV infections. AIDS Res Hum Retroviruses 9, 553-563 (1993)

17. N. Oyaizu, T. W. McCloskey, M. Coronesi, N. Chirmule, V. S. Kalyanaramanand S. Pahwa: Accelerated apoptosis in peripheral blood mononuclear cells(PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4cross-linked PBMCs from normal individuals. Blood 82, 3392-3400 (1993)

18. M. Clerici, A. Sarin, R. L. Coffman, T. A. Wynn, S. P. Blatt, C. W.Hendrix, S. F. Wolf, G. M. Shearer and P. A. Henkart: Type 1/type 2 cytokinemodulation of T-cell programmed cell death as a model for humanimmunodeficiency virus pathogenesis. Proc Natl Acad Sci U S A 91, 11811-11815(1994)
doi:10.1073/pnas.91.25.11811

19. J. Estaquier, T. Idziorek, F. de Bels, F. Barre-Sinoussi, B. Hurtrel, A. M.Aubertin, A. Venet, M. Mehtali, E. Muchmore, P. Michel and et al.: Programmedcell death and AIDS: significance of T-cell apoptosis in pathogenic andnonpathogenic primate lentiviral infections. Proc Natl Acad Sci U S A 91,9431-9435 (1994)
doi:10.1073/pnas.91.20.9431

20. D. E. Lewis, D. S. Tang, A. Adu-Oppong, W. Schober and J. R. Rodgers:Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J Immunol 153,412-420 (1994)

21. C. A. Muro-Cacho, G. Pantaleo and A. S. Fauci: Analysis of apoptosis inlymph nodes of HIV-infected persons. Intensity of apoptosis correlates with thegeneral state of activation of the lymphoid tissue and not with stage ofdisease or viral burden. J Immunol 154, 5555-5566 (1995)

22. T. H. Finkel, G. Tudor-Williams, N. K. Banda, M. F. Cotton, T. Curiel, C.Monks, T. W. Baba, R. M. Ruprecht and A. Kupfer: Apoptosis occurs predominantlyin bystander cells and not in productively infected cells of HIV- andSIV-infected lymph nodes (see comments). Nat Med 1, 129-134 (1995)
doi:10.1038/nm0295-129

23. E. Prati, R. Gorla, F. Malacarne, P. Airo, D. Brugnoni, F. Gargiulo, A.Tebaldi, F. Castelli, G. Carosi and R. Cattaneo: Study of spontaneous apoptosisin HIV+ patients: correlation with clinical progression and T cell loss. AIDSRes Hum Retroviruses 13, 1501-1508 (1997)

24. T. J. Liegler, W. Yonemoto, T. Elbeik, E. Vittinghoff, S. P. Buchbinder andW. C. Greene: Diminished spontaneous apoptosis in lymphocytes from humanimmunodeficiency virus-infected long-term nonprogressors. J Infect Dis 178,669-679 (1998)

25. S. J. Chavan, S. L. Tamma, M. Kaplan, M. Gersten and S. G. Pahwa: Reductionin T cell apoptosis in patients with HIV disease following antiretroviraltherapy. Clin Immunol 93, 24-33 (1999)
doi:10.1006/clim.1999.4770

26. S. P. Aries, K. Weyrich, B. Schaaf, F. Hansen, R. H. Dennin and K. Dalhoff:Early T-cell apoptosis and Fas expression during antiretroviral therapy inindividuals infected with human immunodeficiency virus-1. Scand J Immunol 48,86-91 (1998)
doi:10.1046/j.1365-3083.1998.00347.x

27. A. D. Badley, D. H. Dockrell, A. Algeciras, S. Ziesmer, A. Landay, M. M.Lederman, E. Connick, H. Kessler, D. Kuritzkes, D. H. Lynch, P. Roche, H.Yagita and C. V. Paya: In vivo analysis of Fas/FasL interactions inHIV-infected patients. J Clin Invest 102, 79-87. (1998)
doi:10.1172/JCI2691

28. T. Bohler, J. Walcher, G. Holzl-Wenig, M. Geiss, B. Buchholz, R. Linde andK. M. Debatin: Early effects of antiretroviral combination therapy onactivation, apoptosis and regeneration of T cells in HIV-1-infected childrenand adolescents. Aids 13, 779-789 (1999)
doi:10.1097/00002030-199905070-00006

29. A. D. Badley, A. A. Pilon, A. Landay and D. H. Lynch: Mechanisms ofHIV-associated lymphocyte apoptosis. Blood 96, 2951-2964. (2000)

30. O. Benveniste, A. Flahault, F. Rollot, C. Elbim, J. Estaquier, B. Pedron,X. Duval, N. Dereuddre-Bosquet, P. Clayette, G. Sterkers, A. Simon, J. C.Ameisen and C. Leport: Mechanisms involved in the low-level regeneration ofCD4+ cells in HIV-1-infected patients receiving highly active antiretroviraltherapy who have prolonged undetectable plasma viral loads. J Infect Dis 191,1670-1679 (2005)
doi:10.1086/429670

31. B. H. Hahn, G. M. Shaw, K. M. De Cock and P. M. Sharp: AIDS as a zoonosis:scientific and public health implications. Science 287, 607-614 (2000)
doi:10.1126/science.287.5453.607

32. S. R. Broussard, S. I. Staprans, R. White, E. M. Whitehead, M. B. Feinbergand J. S. Allan: Simian immunodeficiency virus replicates to high levels innaturally infected African green monkeys without inducing immunologic orneurologic disease. J Virol 75, 2262-2275 (2001)
doi:10.1128/JVI.75.5.2262-2275.2001

33. G. Silvestri, D. L. Sodora, R. A. Koup, M. Paiardini, S. P. O'Neil, H. M.McClure, S. I. Staprans and M. B. Feinberg: Nonpathogenic SIV Infection ofSooty Mangabeys Is Characterized by Limited Bystander Immunopathology DespiteChronic High-Level Viremia. Immunity 18, 441-452 (2003)
doi:10.1016/S1074-7613(03)00060-8

34. M. A. Rey-Cuille, J. L. Berthier, M. C. Bomsel-Demontoy, Y. Chaduc, L.Montagnier, A. G. Hovanessian and L. A. Chakrabarti: Simian immunodeficiencyvirus replicates to high levels in sooty mangabeys without inducing disease. JVirol 72, 3872-3886 (1998)

35. O. M. Diop, A. Gueye, M. Dias-Tavares, C. Kornfeld, A. Faye, P. Ave, M.Huerre, S. Corbet, F. Barre-Sinoussi and M. C. Muller-Trutwin: High levels ofviral replication during primary simian immunodeficiency virus SIVagm infectionare rapidly and strongly controlled in African green monkeys. J Virol 74,7538-7547 (2000)
doi:10.1128/JVI.74.16.7538-7547.2000

36. R. Onanga, C. Kornfeld, I. Pandrea, J. Estaquier, S. Souquiere, P. Rouquet,V. P. Mavoungou, O. Bourry, S. M'Boup, F. Barre-Sinoussi, F. Simon, C. Apetrei,P. Roques and M. C. Muller-Trutwin: High levels of viral replication contrastwith only transient changes in CD4(+) and CD8(+) cell numbers during the earlyphase of experimental infection with simian immunodeficiency virus SIVmnd-1 inMandrillus sphinx. J Virol 76, 10256-10263 (2002)
doi:10.1128/JVI.76.20.10256-10263.2002

37. I. C. Davis, M. Girard and P. N. Fultz: Loss of CD4+ T cells in humanimmunodeficiency virus type 1-infected chimpanzees is associated with increasedlymphocyte apoptosis. J Virol 72, 4623-4632. (1998)

38. A. M. del Llano, J. P. Amieiro-Puig, E. N. Kraiselburd, M. J. Kessler, C.A. Malaga and J. A. Lavergne: The combined assessment of cellular apoptosis,mitochondrial function and proliferative response to pokeweed mitogen hasprognostic value in SIV infection. J Med Primatol 22, 147-153 (1993)

39. H. Schuitemaker, L. Meyaard, N. A. Kootstra, R. Dubbes, S. A. Otto, M.Tersmette, J. L. Heeney and F. Miedema: Lack of T cell dysfunction andprogrammed cell death in human immunodeficiency virus type 1-infectedchimpanzees correlates with absence of monocytotropic variants. J Infect Dis168, 1140-1147. (1993)

40. F. J. Novembre, J. de Rosayro, S. Nidtha, S. P. O'Neil, T. R. Gibson, T.Evans-Strickfaden, C. E. Hart and H. M. McClure: Rapid CD4(+) T-cell lossinduced by human immunodeficiency virus type 1(NC) in uninfected and previouslyinfected chimpanzees. J Virol 75, 1533-1539 (2001)
doi:10.1128/JVI.75.3.1533-1539.2001

41. S. J. Little, A. R. McLean, C. A. Spina, D. D. Richman and D. V. Havlir:Viral dynamics of acute HIV-1 infection. J Exp Med 190, 841-850 (1999)
doi:10.1084/jem.190.6.841

42. H. Soudeyns and G. Pantaleo: The moving target: mechanisms of HIVpersistence during primary infection. Immunol Today 20, 446-450 (1999)
doi:10.1016/S0167-5699(99)01504-2

43. M. P. D'Souza and B. J. Mathieson: Early phases of HIV type 1 infection.AIDS Res Hum Retroviruses 12, 1-9 (1996)

44. K. A. Reimann, K. Tenner-Racz, P. Racz, D. C. Montefiori, Y. Yasutomi, W.Lin, B. J. Ransil and N. L. Letvin: Immunopathogenic events in acute infectionof rhesus monkeys with simian immunodeficiency virus of macaques. J Virol 68,2362-2370 (1994)

45. L. Chakrabarti, P. Isola, M. C. Cumont, M. A. Claessens-Maire, M. Hurtrel,L. Montagnier and B. Hurtrel: Early stages of simian immunodeficiency virusinfection in lymph nodes. Evidence for high viral load and successivepopulations of target cells. Am J Pathol 144, 1226-1237 (1994)

46. J. W. Mellors, L. A. Kingsley, C. R. Rinaldo, Jr., J. A. Todd, B. S. Hoo,R. P. Kokka and P. Gupta: Quantitation of HIV-1 RNA in plasma predicts outcomeafter seroconversion. Ann Intern Med 122, 573-579 (1995)

47. A. Watson, J. Ranchalis, B. Travis, J. McClure, W. Sutton, P. R. Johnson,S. L. Hu and N. L. Haigwood: Plasma viremia in macaques infected with simianimmunodeficiency virus: plasma viral load early in infection predicts survival.J Virol 71, 284-290 (1997)

48. J. D. Lifson, M. A. Nowak, S. Goldstein, J. L. Rossio, A. Kinter, G.Vasquez, T. A. Wiltrout, C. Brown, D. Schneider, L. Wahl, A. L. Lloyd, J.Williams, W. R. Elkins, A. S. Fauci and V. M. Hirsch: The extent of early viralreplication is a critical determinant of the natural history of simianimmunodeficiency virus infection. J Virol 71, 9508-9514 (1997)

49. S. I. Staprans, P. J. Dailey, A. Rosenthal, C. Horton, R. M. Grant, N.Lerche and M. B. Feinberg: Simian immunodeficiency virus disease course ispredicted by the extent of virus replication during primary infection. J Virol73, 4829-4839 (1999)

50. I. Pandrea, C. Apetrei, J. Dufour, N. Dillon, J. Barbercheck, M. Metzger,B. Jacquelin, R. Bohm, P. A. Marx, F. Barre-Sinoussi, V. M. Hirsch, M. C.Muller-Trutwin, A. A. Lackner and R. S. Veazey: Simian immunodeficiency virusSIVagm.sab infection of Caribbean African green monkeys: a new model for the studyof SIV pathogenesis in natural hosts. J Virol 80, 4858-4867 (2006)
doi:10.1128/JVI.80.10.4858-4867.2006

51. C. Kornfeld, M. J. Ploquin, I. Pandrea, A. Faye, R. Onanga, C. Apetrei, V.Poaty-Mavoungou, P. Rouquet, J. Estaquier, L. Mortara, J. F. Desoutter, C.Butor, R. Le Grand, P. Roques, F. Simon, F. Barre-Sinoussi, O. M. Diop and M.C. Muller-Trutwin: Antiinflammatory profiles during primary SIV infection inAfrican green monkeys are associated with protection against AIDS. J ClinInvest 115, 1082-1091 (2005)

52. J. Estaquier, V. Monceaux, M. C. Cumont, A. M. Aubertin, B. Hurtrel and J.C. Ameisen: Early changes in peripheral blood T cells during primary infectionof rhesus macaques with a pathogenic SIV. J Med Primatol 29, 127-135(2000)
doi:10.1034/j.1600-0684.2000.290305.x

53. T. Iida, H. Ichimura, M. Ui, T. Shimada, W. Akahata, T. Igarashi, T.Kuwata, E. Ido, S. Yonehara, J. Imanishi and M. Hayami: Sequential analysis ofapoptosis induction in peripheral blood mononuclear cells and lymph nodes inthe early phase of pathogenic and nonpathogenic SIVmac infection. AIDS Res HumRetroviruses 15, 721-729 (1999)
doi:10.1089/088922299310818

54. J. J. Wykrzykowska, M. Rosenzweig, R. S. Veazey, M. A. Simon, K. Halvorsen,R. C. Desrosiers, R. P. Johnson and A. A. Lackner: Early regeneration of thymicprogenitors in rhesus macaques infected with simian immunodeficiency virus. JExp Med 187, 1767-1778 (1998)
doi:10.1084/jem.187.11.1767

55. V. Monceaux, J. Estaquier, M. Fevrier, M. C. Cumont, Y. Riviere, A. M.Aubertin, J. C. Ameisen and B. Hurtrel: Extensive apoptosis in lymphoid organsduring primary SIV infection predicts rapid progression towards AIDS. Aids 17,1585-1596 (2003)
doi:10.1097/00002030-200307250-00002

56. Q. Li, L. Duan, J. D. Estes, Z. M. Ma, T. Rourke, Y. Wang, C. Reilly, J.Carlis, C. J. Miller and A. T. Haase: Peak SIV replication in resting memoryCD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148-1152(2005)

57. K. A. Reimann, R. A. Parker, M. S. Seaman, K. Beaudry, M. Beddall, L.Peterson, K. C. Williams, R. S. Veazey, D. C. Montefiori, J. R. Mascola, G. J.Nabel and N. L. Letvin: Pathogenicity of simian-human immunodeficiency virusSHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated withearly T-lymphocyte responses. J Virol 79, 8878-8885 (2005)
doi:10.1128/JVI.79.14.8878-8885.2005

58. B. Ling, R. S. Veazey, A. Luckay, C. Penedo, K. Xu, J. D. Lifson and P. A.Marx: SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origincompared with primary HIV infections in humans. Aids 16, 1489-1496 (2002)
doi:10.1097/00002030-200207260-00005

59. M. C. Cumont, O. Diop, B. Vaslin, C. Elbim, L. Viollet, V. Monceaux, S.Lay, G. Silvestri, R. Le Grand, M. Muller-Trutwin, B. Hurtrel and J. Estaquier:Early divergence in lymphoid tissue apoptosis between pathogenic andnonpathogenic simian immunodeficiency virus infections of nonhuman primates. JVirol 82, 1175-1184 (2008)
doi:10.1128/JVI.00450-07

60. I. Pandrea, R. M. Ribeiro, R. Gautam, T. Gaufin, M. Pattison, M. Barnes, C.Monjure, C. Stoulig, J. Dufour, W. Cyprian, G. Silvestri, M. D. Miller, A. S.Perelson and C. Apetrei: Simian immunodeficiency virus SIVagm dynamics inAfrican green monkeys. J Virol 82, 3713-3724 (2008)
doi:10.1128/JVI.02402-07

61. I. V. Pandrea, R. Gautam, R. M. Ribeiro, J. M. Brenchley, I. F. Butler, M.Pattison, T. Rasmussen, P. A. Marx, G. Silvestri, A. A. Lackner, A. S.Perelson, D. C. Douek, R. S. Veazey and C. Apetrei: Acute loss of intestinalCD4+ T cells is not predictive of simian immunodeficiency virus virulence. JImmunol 179, 3035-3046 (2007)

62. L. Viollet, V. Monceaux, F. Petit, R. Ho Tsong Fang, M. C. Cumont, B.Hurtrel and J. Estaquier: Death of CD4+ T cells from lymph nodes during primarySIVmac251 infection predicts the rate of AIDS progression. J Immunol 177,6685-6694 (2006)

63. V. Monceaux, L. Viollet, F. Petit, M. C. Cumont, G. R. Kaufmann, A. M.Aubertin, B. Hurtrel, G. Silvestri and J. Estaquier: CD4+ CCR5+ T-cell dynamicsduring simian immunodeficiency virus infection of Chinese rhesus macaques. JVirol 81, 13865-13875 (2007)
doi:10.1128/JVI.00452-07

64. A. Harari, S. Petitpierre, F. Vallelian and G. Pantaleo: Skewedrepresentation of functionally distinct populations of virus-specific CD4 Tcells in HIV-1-infected subjects with progressive disease: changes afterantiretroviral therapy. Blood 103, 966-972 (2004)
doi:10.1182/blood-2003-04-1203

65. E. S. Rosenberg, J. M. Billingsley, A. M. Caliendo, S. L. Boswell, P. E.Sax, S. A. Kalams and B. D. Walker: Vigorous HIV-1-specific CD4+ T cellresponses associated with control of viremia. Science 278, 1447-1450(1997)
doi:10.1126/science.278.5342.1447

66. E. S. Rosenberg, M. Altfeld, S. H. Poon, M. N. Phillips, B. M. Wilkes, R.L. Eldridge, G. K. Robbins, R. T. D'Aquila, P. J. Goulder and B. D. Walker:Immune control of HIV-1 after early treatment of acute infection. Nature 407,523-526 (2000)
doi:10.1038/35035103

67. J. J. Mattapallil, N. L. Letvin and M. Roederer: T-cell dynamics duringacute SIV infection. Aids 18, 13-23 (2004)
doi:10.1097/00002030-200401020-00002

68. J. J. Mattapallil, D. C. Douek, B. Hill, Y. Nishimura, M. Martin and M.Roederer: Massive infection and loss of memory CD4(+) T cells in multipletissues during acute SIV infection. Nature (2005)

69. L. J. Picker, S. I. Hagen, R. Lum, E. F. Reed-Inderbitzin, L. M. Daly, A.W. Sylwester, J. M. Walker, D. C. Siess, M. Piatak, Jr., C. Wang, D. B.Allison, V. C. Maino, J. D. Lifson, T. Kodama and M. K. Axthelm: InsufficientProduction and Tissue Delivery of CD4+ Memory T Cells in Rapidly ProgressiveSimian Immunodeficiency Virus Infection. J Exp Med 200, 1299-1314 (2004)
doi:10.1084/jem.20041049

70. R. S. Veazey, K. G. Mansfield, I. C. Tham, A. C. Carville, D. E. Shvetz, A.E. Forand and A. A. Lackner: Dynamics of CCR5 expression by CD4(+) T cells inlymphoid tissues during simian immunodeficiency virus infection. J Virol 74,11001-11007. (2000)
doi:10.1128/JVI.74.23.11001-11007.2000

71. R. Veazey, B. Ling, I. Pandrea, H. McClure, A. Lackner and P. Marx:Decreased CCR5 expression on CD4+ T cells of SIV-infected sooty mangabeys. AIDSRes Hum Retroviruses 19, 227-233 (2003)
doi:10.1089/088922203763315731

72. A. M. de Roda Husman, H. Blaak, M. Brouwer and H. Schuitemaker: CCchemokine receptor 5 cell-surface expression in relation to CC chemokinereceptor 5 genotype and the clinical course of HIV-1 infection. J Immunol 163,4597-4603. (1999)

73. M. A. Ostrowski, S. J. Justement, A. Catanzaro, C. A. Hallahan, L. A.Ehler, S. B. Mizell, P. N. Kumar, J. A. Mican, T. W. Chun and A. S. Fauci:Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected anduninfected individuals. J Immunol 161, 3195-3201 (1998)

74. J. Reynes, P. Portales, M. Segondy, V. Baillat, P. Andre, B. Reant, O.Avinens, G. Couderc, M. Benkirane, J. Clot, J. F. Eliaou and P. Corbeau: CD4+ Tcell surface CCR5 density as a determining factor of virus load in personsinfected with human immunodeficiency virus type 1. J Infect Dis 181, 927-932.(2000)
doi:10.1086/315315

75. J. Reynes, P. Portales, M. Segondy, V. Baillat, P. Andre, O. Avinens, M. C.Picot, J. Clot, J. F. Eliaou and P. Corbeau: CD4 T cell surface CCR5 density asa host factor in HIV-1 disease progression. Aids 15, 1627-1634 (2001)
doi:10.1097/00002030-200109070-00004

76. J. J. Zaunders, L. Moutouh-de Parseval, S. Kitada, J. C. Reed, S. Rought,D. Genini, L. Leoni, A. Kelleher, D. A. Cooper, D. E. Smith, P. Grey, J.Estaquier, S. Little, D. D. Richman and J. Corbeil: Polyclonal proliferationand apoptosis of CCR5+ T lymphocytes during primary human immunodeficiencyvirus type 1 infection: regulation by interleukin (IL)-2, IL-15, and Bcl-2. JInfect Dis 187, 1735-1747 (2003)
doi:10.1086/375030

77. P. Loetscher, M. Seitz, M. Baggiolini and B. Moser: Interleukin-2 regulatesCC chemokine receptor expression and chemotactic responsiveness in Tlymphocytes. J Exp Med 184, 569-577 (1996)
doi:10.1084/jem.184.2.569

78. V. Monceaux, L. Viollet, F. Petit, R. H. Fang, M. C. Cumont, J. Zaunders,B. Hurtrel and J. Estaquier: CD8+ T cell dynamics during primary simianimmunodeficiency virus infection in macaques: relationship of effector celldifferentiation with the extent of viral replication. J Immunol 174, 6898-6908(2005)

79. C. Terai, R. S. Kornbluth, C. D. Pauza, D. D. Richman and D. A. Carson:Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutelyinfected with HIV-1. J Clin Invest 87, 1710-1715 (1991)
doi:10.1172/JCI115188

80. R. T. Gandhi, B. K. Chen, S. E. Straus, J. K. Dale, M. J. Lenardo and D.Baltimore: HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. JExp Med 187, 1113-1122 (1998)
doi:10.1084/jem.187.7.1113

81. F. Petit, D. Arnoult, J. D. Lelievre, L. Moutouh-de Parseval, A. J. Hance,P. Schneider, J. Corbeil, J. C. Ameisen and J. Estaquier: Productive HIV-1infection of primary CD4+ T cells induces mitochondrial membranepermeabilization leading to a caspase-independent cell death. J Biol Chem 277,1477-1487 (2002)
doi:10.1074/jbc.M102671200

82. M. Jaattela, C. Cande and G. Kroemer: Lysosomes and mitochondria in thecommitment to apoptosis: a potential role for cathepsin D and AIF. Cell DeathDiffer 11, 135-136 (2004)
doi:10.1038/sj.cdd.4401333

83. M. E. Guicciardi, M. Leist and G. J. Gores: Lysosomes in cell death.Oncogene 23, 2881-2890 (2004)
doi:10.1038/sj.onc.1207512

84. M. Gyrd-Hansen, T. Farkas, N. Fehrenbacher, L. Bastholm, M. Hoyer-Hansen,F. Elling, D. Wallach, R. Flavell, G. Kroemer, J. Nylandsted and M. Jaattela:Apoptosome-independent activation of the lysosomal cell death pathway bycaspase-9. Mol Cell Biol 26, 7880-7891 (2006)
doi:10.1128/MCB.00716-06

85. A. C. Johansson, H. Steen, K. Ollinger and K. Roberg: Cathepsin D mediatescytochrome c release and caspase activation in human fibroblast apoptosis inducedby staurosporine. Cell Death Differ 10, 1253-1259 (2003)
doi:10.1038/sj.cdd.4401290

86. N. Bidere, H. K. Lorenzo, S. Carmona, M. Laforge, F. Harper, C. Dumont andA. Senik: Cathepsin D triggers Bax activation, resulting in selectiveapoptosis-inducing factor (AIF) relocation in T lymphocytes entering the earlycommitment phase to apoptosis. J Biol Chem 278, 31401-31411 (2003)
doi:10.1074/jbc.M301911200

87. M. Laforge, F. Petit, J. Estaquier and A. Senik: Commitment to apoptosis inCD4(+) T lymphocytes productively infected with human immunodeficiency virustype 1 is initiated by lysosomal membrane permeabilization, itself induced bythe isolated expression of the viral protein Nef. J Virol 81, 11426-11440(2007)
doi:10.1128/JVI.00597-07

88. H. W. Kestler, 3rd, D. J. Ringler, K. Mori, D. L. Panicali, P. K. Sehgal,M. D. Daniel and R. C. Desrosiers: Importance of the nef gene for maintenanceof high virus loads and for development of AIDS. Cell 65, 651-662 (1991)
doi:10.1016/0092-8674(91)90097-I

89. B. L. Wei, V. K. Arora, J. L. Foster, D. L. Sodora and J. V. Garcia: Invivo analysis of Nef function. Curr HIV Res 1, 41-50 (2003)
doi:10.2174/1570162033352057

90. N. Michel, K. Ganter, S. Venzke, J. Bitzegeio, O. T. Fackler and O. T.Keppler: The Nef protein of human immunodeficiency virus is a broad-spectrummodulator of chemokine receptor cell surface levels that acts independently ofclassical motifs for receptor endocytosis and Galphai signaling. Mol Biol Cell17, 3578-3590 (2006)
doi:10.1091/mbc.E06-02-0117

91. A. Rasola, D. Gramaglia, C. Boccaccio and P. M. Comoglio: Apoptosisenhancement by the HIV-1 Nef protein. J Immunol 166, 81-88 (2001)

92. Z. Hanna, D. G. Kay, N. Rebai, A. Guimond, S. Jothy and P. Jolicoeur: Nefharbors a major determinant of pathogenicity for an AIDS-like disease inducedby HIV-1 in transgenic mice. Cell 95, 163-175 (1998)
doi:10.1016/S0092-8674(00)81748-1

93. S. P. Aries, B. Schaaf, C. Muller, R. H. Dennin and K. Dalhoff: Fas (CD95)expression on CD4+ T cells from HIV-infected patients increases with diseaseprogression. J Mol Med 73, 591-593 (1995)
doi:10.1007/BF00196352

94. C. B. Baumler, T. Bohler, I. Herr, A. Benner, P. H. Krammer and K. M.Debatin: Activation of the CD95 (APO-1/Fas) system in T cells from humanimmunodeficiency virus type-1-infected children. Blood 88, 1741-1746 (1996)

95. T. Bohler, K. M. Debatin and R. Linde: Sensitivity of CD4+ peripheral bloodT cells toward spontaneous and CD95 (APO-1/Fas)-induced apoptosis in pediatrichuman immunodeficiency virus infection (letter; comment). Blood 94, 1829-1833(1999)

96. D. H. Dockrell, A. D. Badley, A. Algeciras-Schimnich, M. Simpson, R. Schut,D. H. Lynch and C. V. Paya: Activation-induced CD4+ T cell death in HIV-positiveindividuals correlates with Fas susceptibility, CD4+ T cell count, and HIVplasma viral copy number. AIDS Res Hum Retroviruses 15, 1509-1518 (1999)
doi:10.1089/088922299309793

97. J. Estaquier, T. Idziorek, W. Zou, D. Emilie, C. M. Farber, J. M. Bourezand J. C. Ameisen: T helper type 1/T helper type 2 cytokines and T cell death:preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus- infectedpersons. J Exp Med 182, 1759-1767 (1995)
doi:10.1084/jem.182.6.1759

98. J. Estaquier, M. Tanaka, T. Suda, S. Nagata, P. Golstein and J. C. Ameisen:Fas-mediated apoptosis of CD4+ and CD8+ T cells from human immunodeficiencyvirus-infected persons: differential in vitro preventive effect of cytokinesand protease antagonists. Blood 87, 4959-4966 (1996)

99. R. Gehri, S. Hahn, M. Rothen, M. Steuerwald, R. Nuesch and P. Erb: The Fasreceptor in HIV infection: expression on peripheral blood lymphocytes and rolein the depletion of T cells. Aids 10, 9-16 (1996)
doi:10.1097/00002030-199601000-00002

100. N. Hosaka, N. Oyaizu, M. H. Kaplan, H. Yagita and S. Pahwa: Membrane andsoluble forms of Fas (CD95) and Fas ligand in peripheral blood mononuclearcells and in plasma from human immunodeficiency virus- infected persons. JInfect Dis 178, 1030-1039 (1998)
doi:10.1086/515700

101. P. D. Katsikis, E. S. Wunderlich, C. A. Smith and L. A. Herzenberg: Fasantigen stimulation induces marked apoptosis of T lymphocytes in humanimmunodeficiency virus-infected individuals. J Exp Med 181, 2029-2036(1995)
doi:10.1084/jem.181.6.2029

102. P. D. Katsikis, M. E. Garcia-Ojeda, E. S. Wunderlich, C. A. Smith, H.Yagita, K. Okumura, N. Kayagaki, M. Alderson and L. A. Herzenberg:Activation-induced peripheral blood T cell apoptosis is Fas independent inHIV-infected individuals. Int Immunol 8, 1311-1317. (1996)
doi:10.1093/intimm/8.8.1311

103. F. Silvestris, P. Cafforio, M. A. Frassanito, M. Tucci, A. Romito, S.Nagata and F. Dammacco: Overexpression of Fas antigen on T cells in advancedHIV-1 infection: differential ligation constantly induces apoptosis. Aids 10,131-141 (1996)

104. E. M. Sloand, N. S. Young, P. Kumar, F. F. Weichold, T. Sato and J. P.Maciejewski: Role of Fas ligand and receptor in the mechanism of T-celldepletion in acquired immunodeficiency syndrome: effect on CD4+ lymphocytedepletion and human immunodeficiency virus replication. Blood 89, 1357-1363(1997)

105. T. W. McCloskey, N. Oyaizu, M. Kaplan and S. Pahwa: Expression of the Fasantigen in patients infected with human immunodeficiency virus. Cytometry 22,111-114 (1995)
doi:10.1002/cyto.990220206

106. A. Algeciras, D. H. Dockrell, D. H. Lynch and C. V. Paya: CD4 regulatessusceptibility to Fas ligand- and tumor necrosis factor- mediated apoptosis. JExp Med 187, 711-720. (1998)
doi:10.1084/jem.187.5.711

107. A. D. Badley, D. Dockrell, M. Simpson, R. Schut, D. H. Lynch, P. Leibsonand C. V. Paya: Macrophage-dependent apoptosis of CD4+ T lymphocytes fromHIV-infected individuals is mediated by FasL and tumor necrosis factor. J ExpMed 185, 55-64. (1997)
doi:10.1084/jem.185.1.55

108. I. Jeremias, I. Herr, T. Boehler and K. M. Debatin:TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 28,143-152 (1998)
doi:10.1002/(SICI)1521-4141(199801)28:01<143::AID-IMMU143>3.0.CO;2-3

109. G. Herbein, U. Mahlknecht, F. Batliwalla, P. Gregersen, T. Pappas, J.Butler, W. A. O'Brien and E. Verdin: Apoptosis of CD8+ T cells is mediated bymacrophages through interaction of HIV gp120 with chemokine receptor CXCR4.Nature 395, 189-194. (1998)
doi:10.1038/26026

110. L. M. de Oliveira Pinto, S. Garcia, H. Lecoeur, C. Rapp and M. L. Gougeon:Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1(TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expressionof Bcl-2 and active caspase-8 and caspase-3. Blood 99, 1666-1675. (2002)
doi:10.1182/blood.V99.5.1666

111. D. Arnoult, F. Petit, J. D. Lelievre, D. Lecossier, A. J. Hance, V.Monceaux, R. Ho Tsong Fang, B. Hurtrel, J. C. Ameisen and J. Estaquier:Caspase-dependent and -independent T cell death pathways in pathogenic SimianImmunodeficiency Virus infection. Relationship with disease evolution. CellDeath Differ in Press, (2003)

112. D. Mitra, M. Steiner, D. H. Lynch, L. Staiano-Coico and J. Laurence: HIV-1upregulates Fas ligand expression in CD4+ T cells in vitro and in vivo:association with Fas-mediated apoptosis and modulation by aurintricarboxylicacid. Immunology 87, 581-585 (1996)
doi:10.1046/j.1365-2567.1996.510589.x

113. D. H. Dockrell, A. D. Badley, J. S. Villacian, C. J. Heppelmann, A.Algeciras, S. Ziesmer, H. Yagita, D. H. Lynch, P. C. Roche, P. J. Leibson andC. V. Paya: The expression of Fas Ligand by macrophages and its upregulation byhuman immunodeficiency virus infection. J Clin Invest 101, 2394-2405(1998)
doi:10.1172/JCI1171

114. J. D. Lelievre, F. Mammano, D. Arnoult, F. Petit, A. Grodet, J. Estaquierand J. C. Ameisen: A novel mechanism for HIV1-mediated bystander CD4+ T-celldeath: neighboring dying cells drive the capacity of HIV1 to kill noncyclingprimary CD4+ T cells. Cell Death Differ 11, 1017-1027 (2004)
doi:10.1038/sj.cdd.4401441

115. M. O. Hengartner: The biochemistry of apoptosis. Nature 407, 770-776.(2000)
doi:10.1038/35037710

116. A. D. Badley, K. Parato, D. W. Cameron, S. Kravcik, B. N. Phenix, D.Ashby, A. Kumar, D. H. Lynch, J. Tschopp and J. B. Angel: Dynamic correlationof apoptosis and immune activation during treatment of HIV infection. CellDeath Differ 6, 420-432 (1999)
doi:10.1038/sj.cdd.4400509

117. S. R. Vlahakis, A. Algeciras-Schimnich, G. Bou, C. J. Heppelmann, A.Villasis-Keever, R. C. Collman and C. V. Paya: Chemokine-receptor activation byenv determines the mechanism of death in HIV-infected and uninfected Tlymphocytes. J Clin Invest 107, 207-215. (2001)
doi:10.1172/JCI11109

118. Z. Q. Wang, A. Dudhane, T. Orlikowsky, K. Clarke, X. Li, Z. Darzynkiewiczand M. K. Hoffmann: CD4 engagement induces Fas antigen-dependent apoptosis of Tcells in vivo. Eur J Immunol 24, 1549-1552 (1994)
doi:10.1002/eji.1830240714

119. J. Desbarats, J. H. Freed, P. A. Campbell and M. K. Newell: Fas (CD95)expression and death-mediating function are induced by CD4 cross-linking onCD4+ T cells. Proc Natl Acad Sci U S A 93, 11014-11018. (1996)
doi:10.1073/pnas.93.20.11014

120. N. Oyaizu, T. W. McCloskey, S. Than, R. Hu, V. S. Kalyanaraman and S.Pahwa: Cross-linking of CD4 molecules upregulates Fas antigen expression inlymphocytes by inducing interferon-gamma and tumor necrosis factor-alphasecretion. Blood 84, 2622-2631 (1994)

121. M. Tateyama, N. Oyaizu, T. W. McCloskey, S. Than and S. Pahwa: CD4 Tlymphocytes are primed to express Fas ligand by CD4 cross-linking and tocontribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood96, 195-202 (2000)

122. N. K. Banda, J. Bernier, D. K. Kurahara, R. Kurrle, N. Haigwood, R. P.Sekaly and T. H. Finkel: Crosslinking CD4 by human immunodeficiency virus gp120primes T cells for activation-induced apoptosis. J Exp Med 176, 1099-1106(1992)
doi:10.1084/jem.176.4.1099

123. H. Ohnimus, M. Heinkelein and C. Jassoy: Apoptotic cell death upon contactof CD4+ T lymphocytes with HIV glycoprotein-expressing cells is mediated bycaspases but bypasses CD95 (Fas/Apo-1) and TNF receptor 1. J Immunol 159,5246-5252 (1997)

124. F. Luciani, P. Matarrese, A. M. Giammarioli, L. Lugini, F. Lozupone, C.Federici, E. Iessi, W. Malorni and S. Fais: CD95/phosphorylated ezrinassociation underlies HIV-1 GP120/IL-2-induced susceptibility toCD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes. CellDeath Differ 11, 574-582 (2004)
doi:10.1038/sj.cdd.4401374

125. C. Berndt, B. Mopps, S. Angermuller, P. Gierschik and P. H. Krammer: CXCR4and CD4 mediate a rapid CD95-independent cell death in CD4(+) T cells. ProcNatl Acad Sci U S A 95, 12556-12561. (1998)
doi:10.1073/pnas.95.21.12556

126. M. Biard-Piechaczyk, V. Robert-Hebmann, V. Richard, J. Roland, R. A.Hipskind and C. Devaux: Caspase-dependent apoptosis of cells expressing thechemokine receptor CXCR4 is induced by cell membrane-associated humanimmunodeficiency virus type 1 envelope glycoprotein (gp120). Virology 268,329-344 (2000)
doi:10.1006/viro.1999.0151

127. J. Blanco, E. Jacotot, C. Cabrera, A. Cardona, B. Clotet, E. De Clercq andJ. A. Este: The implication of the chemokine receptor CXCR4 in HIV-1 envelopeprotein-induced apoptosis is independent of the G protein-mediated signalling.Aids 13, 909-917 (1999)
doi:10.1097/00002030-199905280-00006

128. J. Hesselgesser, D. Taub, P. Baskar, M. Greenberg, J. Hoxie, D. L. Kolsonand R. Horuk: Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8, 595-598.(1998)
doi:10.1016/S0960-9822(98)70230-1

129. F. Petit, J. Corbeil, J. D. Lelievre, L. M. Parseval, G. Pinon, D. R.Green, J. C. Ameisen and J. Estaquier: Role of CD95-activated caspase-1processing of IL-1beta in TCR-mediated proliferation of HIV-infected CD4(+) Tcells. Eur J Immunol 31, 3513-3524. (2001)
doi:10.1002/1521-4141(200112)31:12<3513::AID-IMMU3513>3.0.CO;2-J

130. J. Estaquier, J. D. Lelievre, F. Petit, T. Brunner, L. Moutouh-DeParseval, D. D. Richman, J. C. Ameisen and J. Corbeil: Effects ofantiretroviral drugs on human immunodeficiency virus type 1-induced CD4(+)T-cell death. J Virol 76, 5966-5973 (2002)
doi:10.1128/JVI.76.12.5966-5973.2002

131. G. H. Holm and D. Gabuzda: Distinct mechanisms of CD4+ and CD8+ T-cellactivation and bystander apoptosis induced by human immunodeficiency virus type1 virions. J Virol 79, 6299-6311 (2005)
doi:10.1128/JVI.79.10.6299-6311.2005

132. M. T. Esser, J. W. Bess, Jr., K. Suryanarayana, E. Chertova, D. Marti, M.Carrington, L. O. Arthur and J. D. Lifson: Partial activation and induction ofapoptosis in CD4(+) and CD8(+) T lymphocytes by conformationally authenticnoninfectious human immunodeficiency virus type 1. J Virol 75, 1152-1164(2001)
doi:10.1128/JVI.75.3.1152-1164.2001

133. E. A. Berger, P. M. Murphy and J. M. Farber: Chemokine receptors as HIV-1coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17,657-700 (1999)
doi:10.1146/annurev.immunol.17.1.657

134. R. D. Berkowitz, S. Alexander, C. Bare, V. Linquist-Stepps, M. Bogan, M.E. Moreno, L. Gibson, E. D. Wieder, J. Kosek, C. A. Stoddart and J. M. McCune:CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1exhibit differential tropism and pathogenesis in vivo. J Virol 72, 10108-10117.(1998)

135. J. D. Lelievre, F. Petit, L. Perrin, F. Mammano, D. Arnoult, J. C.Ameisen, J. Corbeil, A. Gervaix and J. Estaquier: The density of coreceptors atthe surface of CD4+ T cells contributes to the extent of human immunodeficiencyvirus type 1 viral replication-mediated T cell death. AIDS Res Hum Retroviruses20, 1230-1243 (2004)

136. J. D. Lelievre, F. Petit, D. Arnoult, J. C. Ameisen and J. Estaquier:Interleukin 7 increases human immunodeficiency virus type 1 LAI-mediatedFas-induced T-cell death. J Virol 79, 3195-3199 (2005)
doi:10.1128/JVI.79.5.3195-3199.2005

137. S. A. Trushin, A. Algeciras-Schimnich, S. R. Vlahakis, G. D. Bren, S.Warren, D. J. Schnepple and A. D. Badley: Glycoprotein 120 binding to CXCR4causes p38-dependent primary T cell death that is facilitated by, but does notrequire cell-associated CD4. J Immunol 178, 4846-4853 (2007)

138. R. S. Veazey, P. J. Klasse, T. J. Ketas, J. D. Reeves, M. Piatak, Jr., K.Kunstman, S. E. Kuhmann, P. A. Marx, J. D. Lifson, J. Dufour, M. Mefford, I.Pandrea, S. M. Wolinsky, R. W. Doms, J. A. DeMartino, S. J. Siciliano, K.Lyons, M. S. Springer and J. P. Moore: Use of a small molecule CCR5 inhibitorin macaques to treat simian immunodeficiency virus infection or preventsimian-human immunodeficiency virus infection. J Exp Med 198, 1551-1562(2003)
doi:10.1084/jem.20031266

139. J. P. Herbeuval, A. Boasso, J. C. Grivel, A. W. Hardy, S. A. Anderson, M.J. Dolan, C. Chougnet, J. D. Lifson and G. M. Shearer: TNF-relatedapoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitroproduction by antigen-presenting cells. Blood 105, 2458-2464 (2005)
doi:10.1182/blood-2004-08-3058

140. J. P. Herbeuval, J. C. Grivel, A. Boasso, A. W. Hardy, C. Chougnet, M. J.Dolan, H. Yagita, J. D. Lifson and G. M. Shearer: CD4+ T-cell death induced byinfectious and noninfectious HIV-1: role of type 1 interferon-dependent,TRAIL/DR5-mediated apoptosis. Blood 106, 3524-3531 (2005)
doi:10.1182/blood-2005-03-1243

141. Y. Adachi, N. Oyaizu, S. Than, T. W. McCloskey and S. Pahwa: IL-2 rescuesin vitro lymphocyte apoptosis in patients with HIV infection: correlation withits ability to block culture-induced down-modulation of Bcl-2. J Immunol 157,4184-4193 (1996)

142. J. Chehimi, J. D. Marshall, O. Salvucci, I. Frank, S. Chehimi, S. Kawecki,D. Bacheller, S. Rifat and S. Chouaib: IL-15 enhances immune functions duringHIV infection. J Immunol 158, 5978-5987 (1997)

143. Y. M. Mueller, S. C. De Rosa, J. A. Hutton, J. Witek, M. Roederer, J. D.Altman and P. D. Katsikis: Increased CD95/Fas-induced apoptosis of HIV-specificCD8(+) T cells. Immunity 15, 871-882 (2001)
doi:10.1016/S1074-7613(01)00246-1

144. Y. M. Mueller, V. Makar, P. M. Bojczuk, J. Witek and P. D. Katsikis: IL-15enhances the function and inhibits CD95/Fas-induced apoptosis of human CD4(+)and CD8(+) effector-memory T cells. Int Immunol 15, 49-58 (2003)
doi:10.1093/intimm/dxg013

145. T. J. Fry, E. Connick, J. Falloon, M. M. Lederman, D. J. Liewehr, J.Spritzler, S. M. Steinberg, L. V. Wood, R. Yarchoan, J. Zuckerman, A. Landayand C. L. Mackall: A potential role for interleukin-7 in T-cell homeostasis.Blood 97, 2983-2990. (2001)
doi:10.1182/blood.V97.10.2983

146. C. L. Mackall, T. J. Fry, C. Bare, P. Morgan, A. Galbraith and R. E.Gress: IL-7 increases both thymic-dependent and thymic-independent T-cellregeneration after bone marrow transplantation. Blood 97, 1491-1497.(2001)
doi:10.1182/blood.V97.5.1491

147. A. T. Vella, S. Dow, T. A. Potter, J. Kappler and P. Marrack:Cytokine-induced survival of activated T cells in vitro and in vivo. Proc NatlAcad Sci U S A 95, 3810-3815. (1998)
doi:10.1073/pnas.95.7.3810

148. A. Llano, J. Barretina, A. Gutierrez, J. Blanco, C. Cabrera, B. Clotet andJ. A. Este: Interleukin-7 in plasma correlates with CD4 T-cell depletion andmay be associated with emergence of syncytium-inducing variants in humanimmunodeficiency virus type 1-positive individuals. J Virol 75, 10319-10325.(2001)
doi:10.1128/JVI.75.21.10319-10325.2001

149. A. Muthukumar, A. Wozniakowsli, MC. Gauduin, M. Palardini, H. Mc Clure,RP. Johnson, G. Silvestri and DL. Sodora: Elevated interleukin-7 levels notsufficient to maintain T-cell homeostasis during simian immunodeficiencyvirus-induced disease progression. Blood 103, 973-979. (2004)
doi:10.1182/blood-2003-03-0874

150. L. A. Napolitano, R. M. Grant, S. G. Deeks, D. Schmidt, S. C. De Rosa, L.A. Herzenberg, B. G. Herndier, J. Andersson and J. M. McCune: Increasedproduction of IL-7 accompanies HIV-1-mediated T-cell depletion: implicationsfor T-cell homeostasis. Nat Med 7, 73-79. (2001)
doi:10.1038/83381

151. M. D. Smithgall, J. G. Wong, K. E. Critchett and O. K. Haffar: IL-7up-regulates HIV-1 replication in naturally infected peripheral bloodmononuclear cells. J Immunol 156, 2324-2330. (1996)

152. CM. Steffens, EZ. Managlia, A. Landay and Al-Harthi L.:Interleukin-7-treated naive T cells can be productively infected byT-cell-adapted and primary isolates of human immunodeficiency virus 1. Blood99, 3310-3318 (2002)
doi:10.1182/blood.V99.9.3310

153. C. Fluur, A. De Milito, T. J. Fry, N. Vivar, L. Eidsmo, A. Atlas, C.Federici, P. Matarrese, M. Logozzi, E. Rajnavolgyi, C. L. Mackall, S. Fais, F.Chiodi and B. Rethi: Potential role for IL-7 in Fas-mediated T cell apoptosisduring HIV infection. J Immunol 178, 5340-5350 (2007)

154. G. Nunnari, Y. Xu, E. A. Acheampong, J. Fang, R. Daniel, C. Zhang, H.Zhang, M. Mukhtar and R. J. Pomerantz: Exogenous IL-7 induces Fas-mediatedhuman neuronal apoptosis: potential effects during human immunodeficiency virustype 1 infection. J Neurovirol 11, 319-328 (2005)
doi:10.1080/13550280500187005

155. Y. Ishida, Y. Agata, K. Shibahara and T. Honjo: Induced expression ofPD-1, a novel member of the immunoglobulin gene superfamily, upon programmedcell death. Embo J 11, 3887-3895 (1992)

156. L. Trautmann, L. Janbazian, N. Chomont, E. A. Said, G. Wang, S. Gimmig, B.Bessette, M. R. Boulassel, E. Delwart, H. Sepulveda, R. S. Balderas, J. P.Routy, E. K. Haddad and R. P. Sekaly: Upregulation of PD-1 expression onHIV-specific CD8 + T cells leads to reversible immune dysfunction. Nat Med(2006)

157. C. Petrovas, J. P. Casazza, J. M. Brenchley, D. A. Price, E. Gostick, W.C. Adams, M. L. Precopio, T. Schacker, M. Roederer, D. C. Douek and R. A. Koup:PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. JExp Med (2006)

158. C. L. Day, D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S.Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. Depierres, Z. Mncube, J.Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E. J. Wherry, H. M. Coovadia, P.J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman and B. D. Walker: PD-1expression on HIV-specific T cells is associated with T-cell exhaustion anddisease progression. Nature (2006)

159. M. C. Cumont, V. Monceaux, L. Viollet, S. Lay, R. Parker, B. Hurtrel andJ. Estaquier: TGF-beta in intestinal lymphoid organs contributes to the deathof armed effector CD8 T cells and is associated with the absence of viruscontainment in rhesus macaques infected with the simian immunodeficiency virus.Cell Death Differ 14, 1747-1758 (2007)
doi:10.1038/sj.cdd.4402192

160. R. V. Parry, J. M. Chemnitz, K. A. Frauwirth, A. R. Lanfranco, I.Braunstein, S. V. Kobayashi, P. S. Linsley, C. B. Thompson and J. L. Riley:CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. MolCell Biol 25, 9543-9553 (2005)
doi:10.1128/MCB.25.21.9543-9553.2005

161. D. E. Kaufmann, D. G. Kavanagh, F. Pereyra, J. J. Zaunders, E. W. Mackey,T. Miura, S. Palmer, M. Brockman, A. Rathod, A. Piechocka-Trocha, B. Baker, B.Zhu, S. Le Gall, M. T. Waring, R. Ahern, K. Moss, A. D. Kelleher, J. M. Coffin,G. J. Freeman, E. S. Rosenberg and B. D. Walker: Upregulation of CTLA-4 byHIV-specific CD4+ T cells correlates with disease progression and defines areversible immune dysfunction. Nat Immunol 8, 1246-1254 (2007)
doi:10.1038/ni1515

162. M. Castedo, A. Macho, N. Zamzami, T. Hirsch, P. Marchetti, J. Uriel and G.Kroemer: Mitochondrial perturbations define lymphocytes undergoing apoptoticdepletion in vivo. Eur J Immunol 25, 3277-3284 (1995)
doi:10.1002/eji.1830251212

163. S. A. Susin, H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M.Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D.R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger and G. Kroemer:Molecular characterization of mitochondrial apoptosis-inducing factor (seecomments). Nature 397, 441-446 (1999)
doi:10.1038/17135

164. D. Arnoult, P. Parone, J. C. Martinou, B. Antonsson, J. Estaquier and J.C. Ameisen: Mitochondrial release of apoptosis-inducing factor occursdownstream of cytochrome c release in response to several proapoptotic stimuli.J Cell Biol 159, 923-929 (2002)
doi:10.1083/jcb.200207071

165. M. C. Wei, W. X. Zong, E. H. Cheng, T. Lindsten, V. Panoutsakopoulou, A.J. Ross, K. A. Roth, G. R. MacGregor, C. B. Thompson and S. J. Korsmeyer:Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction anddeath. Science 292, 727-730. (2001)
doi:10.1126/science.1059108

166. J. E. Ricci, C. Munoz-Pinedo, P. Fitzgerald, B. Bailly-Maitre, G. A.Perkins, N. Yadava, I. E. Scheffler, M. H. Ellisman and D. R. Green: Disruptionof mitochondrial function during apoptosis is mediated by caspase cleavage ofthe p75 subunit of complex I of the electron transport chain. Cell 117, 773-786(2004)
doi:10.1016/j.cell.2004.05.008

167. A. Cossarizza, C. Mussini, N. Mongiardo, V. Borghi, A. Sabbatini, B. DeRienzo and C. Franceschi: Mitochondria alterations and dramatic tendency toundergo apoptosis in peripheral blood lymphocytes during acute HIV syndrome.Aids 11, 19-26 (1997)
doi:10.1097/00002030-199701000-00004

168. J. L. Perfettini, M. Castedo, R. Nardacci, F. Ciccosanti, P. Boya, T.Roumier, N. Larochette, M. Piacentini and G. Kroemer: Essential role of p53phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J ExpMed 201, 279-289 (2005)
doi:10.1084/jem.20041502

169. D. Arnoult, M. Karbowski and R. J. Youle: Caspase inhibition prevents themitochondrial release of apoptosis-inducing factor. Cell Death Differ 10,845-849 (2003)
doi:10.1038/sj.cdd.4401240

170. Y. M. Mueller, P. M. Bojczuk, E. S. Halstead, A. H. Kim, J. Witek, J. D.Altman and P. D. Katsikis: IL-15 enhances survival and function of HIV-specificCD8+ T cells. Blood 101, 1024-1029 (2003)
doi:10.1182/blood-2002-07-1957

171. P. Bouillet, S. Cory, L. C. Zhang, A. Strasser and J. M. Adams:Degenerative disorders caused by Bcl-2 deficiency prevented by loss of itsBH3-only antagonist Bim. Dev Cell 1, 645-653 (2001)
doi:10.1016/S1534-5807(01)00083-1

172. P. Bouillet, D. Metcalf, D. C. Huang, D. M. Tarlinton, T. W. Kay, F.Kontgen, J. M. Adams and A. Strasser: Proapoptotic Bcl-2 relative Bim requiredfor certain apoptotic responses, leukocyte homeostasis, and to precludeautoimmunity. Science 286, 1735-1738 (1999)
doi:10.1126/science.286.5445.1735

173. P. D. Hughes, G. T. Belz, K. A. Fortner, R. C. Budd, A. Strasser and P.Bouillet: Apoptosis regulators Fas and Bim cooperate in shutdown of chronicimmune responses and prevention of autoimmunity. Immunity 28, 197-205(2008)
doi:10.1016/j.immuni.2007.12.017

174. J. Hutcheson, J. C. Scatizzi, A. M. Siddiqui, G. K. Haines, 3rd, T. Wu, Q.Z. Li, L. S. Davis, C. Mohan and H. Perlman: Combined deficiency ofproapoptotic regulators Bim and Fas results in the early onset of systemicautoimmunity. Immunity 28, 206-217 (2008)
doi:10.1016/j.immuni.2007.12.015

175. A. E. Weant, R. D. Michalek, I. U. Khan, B. C. Holbrook, M. C. Willinghamand J. M. Grayson: Apoptosis regulators Bim and Fas function concurrently tocontrol autoimmunity and CD8+ T cell contraction. Immunity 28, 218-230(2008)
doi:10.1016/j.immuni.2007.12.014

176. J. van Grevenynghe, F. A. Procopio, Z. He, N. Chomont, C. Riou, Y. Zhang,S. Gimmig, G. Boucher, P. Wilkinson, Y. Shi, B. Yassine-Diab, E. A. Said, L.Trautmann, M. El Far, R. S. Balderas, M. R. Boulassel, J. P. Routy, E. K.Haddad and R. P. Sekaly: Transcription factor FOXO3a controls the persistenceof memory CD4(+) T cells during HIV infection. Nat Med 14, 266-274 (2008)
doi:10.1038/nm1728

177. B. Hurtrel, F. Petit, D. Arnoult, M. Muller-Trutwin, G. Silvestri and J.Estaquier: Apoptosis in SIV infection. Cell Death Differ 12 Suppl 1, 979-990(2005)
doi:10.1038/sj.cdd.4401600

Key Words HIV, AIDS, Apoptosis, depletion, Fas, Bim, Mitochondria, lysosome, Cathepsin, Review

Send correspondence to: Estaquier Jerome, INSERM 841, equipe 16, Developpement Lymphoide normal et dans l'Infection par le VIH", Faculte de Medecine Henri Mondor, 8 rue du General Sarrail, 94010 Creteil, France, Tel: 33-149813672, Fax: 33149813709, E-mail:estaquier@yahoo.fr