[Frontiers in Bioscience 14, 4631-4639, January 1, 2009]

Hemorrhagic shock: an overview of animal models

Shabbir Moochhala, Jian Wu , Jia Lu

Combat Care Laboratory, Combat Casualty Care Programme, Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive #09-01, Singapore 117510

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Models of hemorrhagic shock - controlled and uncontrolled
3.1. Fixed-pressure hemorrhagic shock model
3.2. Fixed-volume hemorrhagic shock model
3.3. Uncontrolled hemorrhagic shock model
4. Conscious animal hemorrhagic shock model
5. Combined hemorrhagic shock
5.1. Combined soft tissue injury and hemorrhagic shock
5.2. Combined traumatic brain injury (TBI) and hemorrhagic shock
5.3. Combined sepsis and hemorrhagic shock (two-hit model)
6. Conclusion
7. References

1. ABSTRACT

Extensive efforts have been made to try to elucidate the pathophysiological mechanisms and the immunologic alterations associated with severe hemorrhage. A broad variety of experimental conditions have been established that enable investigators to study the effects of hypovolemic shock and to assess the potential benefits of a wide spectrum of treatment options. However, translating these experimental findings into clinically applicable therapy has been challenging, suggesting the need for a better understanding of the animal models being used. As certain advantages and disadvantages are associated with the different models of hemorrhage (such as controlled and uncontrolled hemorrhagic shock and combined trauma with hemorrhagic shock models, for this review, we have selected representative studies that reflect the current status of experimental shock research that looks at acute blood loss, and that may serve as a guide when considering which model or models to apply

2. INTRODUCTION

Hemorrhagic shock accounts for majority of deaths in both combat injuries and civilian trauma. Data from Vietnam War shows that around 50% of deaths are caused by torso and peripheral exsanguinations(1). Also, trauma and bleeding are the reasons for most of the deaths in young people, even more than all other reasons together.

Most of what we know about hemorrhagic shock is from studies on animal models. For decades, considerable efforts have been made to develop experimental hemorrhagic shock model to investigate the pathophysiological mechanisms of shock and to evaluate the efficacy of different therapeutic options. However, transiting the experimental results to clinical application is challenging, and there is still a need for better understanding of the animal models being used.

In this chapter we have reviewed currently used hemorrhagic shock models of different animal species and for various purposes. The advantages and disadvantages of these models have also been discussed.

3. MODELS OF HEMORRHAGIC SHOCK - CONTROLLED AND UNCONTROLLED

Basically, there are two types of experimental animal model of hemorrhagic shock: controlled hemorrhage and uncontrolled hemorrhage. Controlled models are either of fixed-pressure or of fixed-volume.

3.1. Fixed-pressure hemorrhagic shock model

Many investigators today use a modification of the fixed-pressure model of hemorrhagic shock described by Wiggers(2). In this model, anesthetized animals are bled to a predetermined mean arterial pressure and are maintained at that pressure, with periodic bleeding, for a specified period of time based on the animal species as well as on the degree or outcome of hypotensive shock. Mean arterial pressures varying from 70 to 35 mm Hg and durations as short as 30 min(3,4,5,6,7,8,9,10) and as long as 5 h have been studied. Fixed-pressure hemorrhage enables the investigator to regulate the intensity of hypotensive shock administered based on physiological and end-organ injury outcome, an important consideration in designing therapeutic interventions. This model has been used to study the effects of hypotensive shock on inflammatory responses, and on gut(11,12,13), liver(14,15), lung(16,17), adrenal(10), cardiovascular function alterations(18,19,20), immunological system changes(21,22) as well as the effects of various resuscitation strategies(23,24) on organ function and outcome .

Several studies have examined the physiological complications of severe blood loss. Also, the significant advantage of fixed-pressure hemorrhagic shock model is its excellent reproducibility and standardization. However, this model does not reveal the real life situation of uncontrolled hemorrhage in field settings. Moreover, fixed-pressure model eliminates the physiological self-compensation mechanisms that occur as the patient bleeds.

3.2. Fixed-volume hemorrhagic shock model

Besides fixed-pressure hemorrhagic shock model, fixed-volume hemorrhagic shock model is another commonly used model by investigators. In this model, a fixed blood volume, usually calculated by the percentage of body weight, and then translated to the percentage of total circulating blood volume, is drawn. After withdrawal of certain volume of blood, the blood pressure is not maintained during the shock period. Although fixed-volume bleeding can be performed without catheterization (for example, orbital bleed or cardiac stick), the animal typically is anesthetized and catheterized for blood withdrawal, physiological monitoring, and resuscitation and administration of therapy. After hemorrhage, the animal is either monitored or resuscitated.

The shed volume varies from 20%(25,26), 33%(27), 35%(28), 40%(29,30), 50%(31), 55%(32,33,34), to 60%(35) of total circulating blood volume, or 30ml/kg(36), 45ml/kg(37) of body weight.

This model is usually used to investigate organ damages such as gut(38), cardiovascular function alterations(26,33), subsequent central nervous system and spinal injuries(39), immunological changes(32) and fluid resuscitation(26,28,30,32,33,35,40).

An advantage to this model is the ability to elucidate an animal's hemodynamic response specific to a fixed volume of blood loss. However, conversion from volume-to-body weight to volume-to-total circulating blood volume differs from species to species and even differs from individual to individual within same species. The reproducibility and standardization of this model, thus are not as reliable as fixed-pressure model.

Both fixed-pressure and fixed-volume hemorrhagic shock model provide investigators with standardized and easy-to-handle models and allow the studies of shock mechanisms and therapeutic strategies under controlled condition. Shock severity and duration can be controlled to satisfy the purpose of the research.

3.3. Uncontrolled hemorrhagic shock model

Although fixed-volume and fixed-pressure hemorrhagic shock models offer a controlled manipulation of blood loss, these models do not truly resemble the uncontrolled hemorrhage situation observed in trauma patients. Of primary interest have been the timing, volume, and nature of resuscitation fluid given to hemorrhaging trauma patients. Fluid resuscitation has been studied in different animals by a number of investigators. Uncontrolled hemorrhagic shock model allows free bleeding from either organ transaction or aorta laceration. The commonly used uncontrolled hemorrhagic shock models include: liver injury in pigs(41,42,43,44) and rats(45), 75% tail amputation in rats(46,47,48), infrarenal aorta(49,50,51), abdominal aorta(52), or aorta(53,54) laceration in pigs, common iliac artery tear in pigs(55,56) and dogs(57), and massive splenic injury in rats(58,59). In some animal models, a combination of fixed-volume blood withdrawal and uncontrolled hemorrhage is generated(46,60,61).

Uncontrolled hemorrhagic shock model is widely used to evaluate different fluid resuscitation strategies. Takasu et al concluded that therapeutic mild hypothermia prolongs animal survivability in a lethal uncontrolled hemorrhagic shock model in rats(62). In the rat infrarenal aorta puncture model, Burris et al(63) found that attempts to restore normal MABP (100 mmHg) lead to increased blood loss and mortality. Moderate improvement in MABP (80 mmHg) achieve better survivability and lower bleeding. They concluded that controlled fluid use should be considered when surgical care is not readily available.

Stern et al(64) evaluated the effects of comparable and clinically relevant resuscitation regimens of 7.5% sodium chloride/6% dextran 70 (HSD) and 0.9% sodium chloride (NS) in a near-fatal uncontrolled hemorrhage model. The results showed that resuscitation with HSD or NS, administered in volumes that provided equivalent sodium loads at similar rates, had similar effects on mortality, hemodynamic parameters, and hemorrhage from the injury site. Bruttig et al52 hypothesized that a slow rate of infusion after delayed resuscitation, reflecting the clinical environment, might improve survival in the presence of uncontrolled hemorrhage. They investigated resuscitation strategy with 30 min-delay and slow infusion of 4 mL/kg hypertonic saline/Dextran solution (over 12 min) Their results showed that slow infusion of hypertonic saline/Dextran solution significantly improved animal survivability, reduced blood loss, and increased cardiac output and blood pressure.The disadvantage of this model is also obvious, that is low reproducibility and standardization.The advantages and disadvantages of each animal model utilized (Table 1) and type of hemorrhagic shock model (Table 2) respectively are summarized below.

4. CONSCIOUS ANIMAL HEMORRHAGIC SHOCK MODEL

Both controlled and uncontrolled hemorrhagic shock models usually operate under general anesthesia, which is either injectable or gaseous inhalation. However, it has been reported that anesthesia may affect the animal's cardiovascular and immunological functions(65,66,67).

Pagel et al demonstrated the cardiac depressant effects of various inhalational anesthetic agents(68,69). In hemorrhaged animals, anesthetic agents cause changes in basic physiologic control mechanisms, subsequently, resulting in alterations in blood flow, oxygen delivery, tissue oxygenation and even survivability(70,71,72,73,74). Therefore, the hemorrhagic shock model without anesthesia is worthy of consideration, for it most closely mimics the clinical scenario.

In a model of delayed hemorrhagic shock in conscious rats, Shirhan et al(75) found that selective inducible nitric oxide synthase inhibitors significantly reduced brain infarct volume and improved neurological performance and animal survival rate. Wettstein et al(76) resuscitated hemorrhaged conscious rats with shed blood, hydroxyethyl starch and modified human hemoglobin. They found that modified human hemoglobin greatly improved microvascular blood flow and oxygen transport. In conscious sheep hemorrhagic shock model Landau et al reported that combination of military antishock trousers and hypertonic saline increased MABP and improved cardiac output and tissue perfusion.

5. COMBINED HEMORRHAGIC SHOCK WITH MULTIPLE INJURIES

In real scenario, hemorrhagic shock usually combines with traumatic injuries. The release of cytokines and other mediators from injured tissue contributes significantly to organ function disorders associated with shock. Various combined trauma and hemorrhagic shock models have been developed by different investigators.

5.1. Combined soft tissue injury and hemorrhagic shock

Rupani et al(77) investigated the effects of combined laparotomy and hemorrhagic shock on the morphological and functional changes in intestine of rats. They found that soft tissue injury and hemorrhagic shock leads to changes in the intestinal mucus layer as well as increased villous injury, apoptosis and gut permeability. Additionally, increased gut permeability was associated with loss of the intestinal mucus layer suggesting that T/HS-induced injury to the mucus layer may contribute to the loss of gut barrier function.

The premature, mature and aged mice, both male and female, were challenged with trauma and hemorrhagic shock. Sex- and age-specific effects in bone marrow differentiation and immune responses occur after trauma-hemorrhage, which are likely to contribute to the sex- and age-related differences in the systemic immune responses under such conditions.

Szalay et al(78) hypothesized that the induction of heat shock proteins (HSPs) contributes to the salutary effects of estradiol on cardiac and hepatic functions after trauma-hemorrhage. In rat laparotomy and hemorrhagic shock model, 17 beta-estradiol increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions and significantly prevented the increase in plasma levels of ALT, TNF-alpha and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions.

5.2. Combined traumatic brain injury (TBI) and hemorrhagic shock

Atan et al(79) investigated the effects of nitric oxide synthase (iNOS) inhibitors in the rat model of combined traumatic brain injury and hemorrhagic shock. Aminoguanidine (AG), a selective iNOS inhibitor, showed a significant increase in mean survival time and cerebral tissue perfusion and decreased the number of apoptotic neurons. The authors asserted that treatment with AG, which causes the inhibition of iNOS, might contribute to improved physiological parameters and neuronal cell survival following TBI and hemorrhagic shock.

Sanui et al(80) resuscitated TBI and hemorrhagic shocked pigs with crystalloid solution and arginine vasopressin. The results showed that early supplemental arginine vasopressin rapidly corrected cerebral perfusion pressure, improved cerebrovascular compliance and prevented circulatory collapse during fluid resuscitation after traumatic brain injury.

Gibson et al(81) evaluated different resuscitation regiments (saline, shed blood, and blood substitute) for combined TBI and hemorrhagic shock in pigs. They reported that resuscitation with shed blood effectively increased arterial O2 saturation (SaO2), mixed venous O2 saturation (SvO2), cerebral perfusion pressure (CPP) and cerebral venous O2 saturation (ScvO2), decreased intracranial pressure (ICP) and improved animal survival rate. Thus, whole blood was found to be more effective than saline for resuscitation of TBI/hemorrhagic shock, whereas blood substitutes were less effective than saline resuscitation.

5.3. Combined sepsis and hemorrhagic shock (two-hit model)

In laparotomy-hemorrhagic shock-sepsis (induced by cecal ligation and puncture) rats, Suzuki et al(82) found that androstenediol markedly decreased plasma IL-6 and TNF-alpha levels, prevented the increased production of IL-6 and TNF-alpha by Kupffer cells and alveolar macrophages and attenuated the decrease in IL-6 and TNF-alpha production by splenic macrophages. The depressed IL-2 and IFN-gamma production by splenocytes was attenuated by the administration of androstenediol. Furthermore, survival rate was improved by androstenediol treatment.

Schulman et al(83) investigated immune response and lung injury caused by hemorrhagic shock and sepsis. Hemorrhagic shock blunted serum TNF-alpha expression to lipopolysaccharide (LPS), but primed for increased bronchoalveolar lavage TNF-alpha. Elevated serum TNF-alpha corresponded with greater bronchoalveolar lavage neutrophil infiltration.

Coimbra et al(84) hypothesized that improvements in cellular immune function after hypertonic saline (HTS) resuscitation alter the outcome of sepsis after hemorrhage. Their results suggest that HTS resuscitation leads to increased survival after hemorrhage and CLP. Marked improvements were observed in lung and liver injury compared with isotonic resuscitation. The better containment of the infection observed with HTS resuscitation corresponds to a marked decreased in bacteremia. HTS resuscitation stands as an alternative resuscitation regimen with immunomodulatory potential.

6. CONCLUSION

There are wide variety of hemorrhagic shock models (controlled/uncontrolled and combined hemorrhagic shock with poly trauma) which can provide investigators with more options to investigate the pathophysiological mechanisms and therapeutic strategies. However, there must be a desire to establish a balance between clinical relevance and the need to maximize experimental standardization and reproducibility. Therefore, it is necessary for every investigator to choose carefully which model to use to address a particular question. This chapter may serve as an initial guide in selecting a model or models of hemorrhage. In addition, we also hope to encourage the development of new models of hemorrhagic shock to better elucidate pathophysiological mechanisms and immunological alterations that shock produces, and to relieve the human, medical and economic burden of traumatic injury.

7. REFERENCES

1. Prien T, H. A. Linares, L. D. Traber, D. N. Herndon, D. L. Traber: Lack of hematogenous mediated pulmonary injury with smoke inhalation. J Burn Care Rehabil 9(5), 462-466 (1988)
doi:10.1097/00004630-198809000-00002

2. Harkema JR, G. Keeler, J. Wagner, M. Morishita, E. Timm, J. Hotchkiss, F. Marsik, T. Dvonch, N. Kaminski, E. Barr: Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Res Rep Health Eff Inst 120, 1-79 (2004)

3. Enkhbaatar P, D. L. Traber: Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond) 107(2),137-143 (2004)
doi:10.1042/CS20040135

4. Fidan F, M. Unlu, M. Sezer, O. Sahin, C. Tokyol, H. Esme: Acute effects of environmental tobacco smoke and dried dung smoke on lung histopathology in rabbits. Pathology 38(1), 53-57 (2006)
doi:10.1080/00313020500459615

5. Joad JP, S. Sekizawa, C. Y. Chen, A. C. Bonham: Air pollutants and cough. Pulm Pharmacol Ther 20(4), 347-354 (2007)
doi:10.1016/j.pupt.2006.10.013

6. Traber DL, H. K. Hawkins, P. Enkhbaatar, R. A. Cox, F. C. Schmalstieg, J. B. Zwischenberger, L. D. Traber: The role of the bronchial circulation in the acute lung injury resulting from burn and smoke inhalation. Pulm Pharmacol Ther 20(2), 163-166 (2007)
doi:10.1016/j.pupt.2005.12.006

7. Witten ML, S. F. Quan, R. E. Sobonya, R. J. Lemen: New developments in the pathogenesis of smoke inhalation-induced pulmonary edema. West J Med 148, 33-36 (1988)

8. Traber DL, D. N. Herndon, M. D. Stein, L. D. Traber, J. T. Flynn, G. D. Niehaus: The pulmonary lesion of smoke inhalation in an ovine model. Circ Shock 18, 311-323 (1986)

9. Basadre JO, K. Sugi, D. L. Traber, L. D. Traber, G. D. Niehaus, D. N. Herndon: The effect of leukocyte depletion on smoke inhalation injury in sheep. Surgery 104(2), 208-215 (1988)

10. Isago T, S. Noshima, L. D. Traber, D. N. Herndon, D. L. Traber: Analysis of pulmonary microvascular permeability after smoke inhalation. J Appl Physiol 71, 1403-1408 (1991)

11. Kramer GC, D. N. Herndon, H. A. Linares, D. L. Traber: Effects of inhalation injury on airway blood flow and edema formation. J Burn Care Rehabil 10(1), 45-51 (1989)
doi:10.1097/00004630-198901000-00007

12. Efimova O, A. B. Volokhov, S. Iliaifar, C. A. Hales: Ligation of the bronchial artery in sheep attenuates early pulmonary changes following exposure to smoke. J Appl Physiol 88(3), 888-893 (2000)

13. Stothert JC Jr, K. D. Ashley, G. C. Kramer, D. N. Herndon, L. D. Traber, K. Deubel-Ashley, D. L. Traber: Intrapulmonary distribution of bronchial blood flow after moderate smoke inhalation. J Appl Physiol 69(5), 1734-1739 (1990)

14. Schenarts PJ, H. G. Bone, L. D. Traber, D. L. Traber: Effect of severe smoke inhalation injury on systemic microvascular blood flow in sheep. Shock 6(3), 201-205 (1996)
doi:10.1097/00024382-199609000-00008
doi:10.1097/00024382-199609010-00008

15. Kikuchi Y, L. D. Traber, D. N. Herndon, D. L. Traber: Unilateral smoke inhalation in sheep: effect on left lung lymph flow with right lung injury. Am J Physiol 271(6 Pt 2), R1620-1624 (1996)

16. Abdi S, D. N. Herndon, L. D. Traber, K. D. Ashley, J. C. Stothert Jr, J. Maguire, R. Butler, D. L. Traber: Lung edema formation following inhalation injury: role of the bronchial blood flow. J Apl Physiol 71(2), 727-734 (1991)

17. Abdi S, D. Herndon, J. McGuire, L. Traber, D. L. Traber: Time course of alterations in lung lymph and bronchial blood flows after inhalation injury. J Burn Care Rehabil 11(6), 510-515 (1990)
doi:10.1097/00004630-199011000-00005

18. Haponick E, W. Summer: Respiratory complications in burned patients: pathogenesis and spectrum of inhalation injury. J Crit Care 2, 49-54 (1987)
doi:10.1016/0883-9441(87)90121-3

19. Murakami K, D. L. Traber: Pathophysiological basis of smoke inhalation injury. News Physiol Sci 18, 125-129 (2003)

20. Soejima K, L. D. Traber, F. C. Schmlstieg, H. Hawkins, J. M. Jodoin, C. Szabo, E. Szabo, L. Varig, A. Salzman, D. L. Traber: Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med 163, 745-752 (2001)

21. Soejima K, F. C. Schmalstieg, L. D. Traber, C. Szabo, A. Salzman, D. L. Traber: Role of nitric oxide in myocardial dysfunction after combined burn and smoke inhalation injury. Burns 27(8), 809-815 (2001)
doi:10.1016/S0305-4179(01)00051-1

22. Westphal M, R. A. Cox, L. D. Traber, N. Morita, P. Enkhbaatar, F. C. Schmalstieg, H. K. Hawkins, D. M. Maybauer, M. O. Maybauer, K. Murakami, A. S. Burke, B. B. Westphal-Varghese, H. E. Rudloff, J. R. Salsbury, J. M. Jodoin, S. Lee, D. L. Traber: Combined burn and smoke inhalation injury impairs ovine hypoxic pulmonary vasoconstriction. Crit Care Med 34(5), 1428-1436 (2006)
doi:10.1097/01.CCM.0000215828.00289.B9

23. Park MS, L. C. Cancio, B. S. Jordan, W. W. Brinkley, V. R. Rivera, M. A. Dubick: Assessment of oxidative stress in lungs from shep after inhalation of wood smoke. Toxicology 195(2-3), 97-112 (2004)
doi:10.1016/j.tox.2003.09.005

24. Jeanes YM, W. L. Hall, A. R. Proteggente, J. K. Lodge: Cigarette smokers have decreased lymphocyte and platelet alpha-tocopherol levels and increased excretion of the gamma-tocopherol metabolite gamma-carboxyethyl-hydroxychroman (gamma-CEHC). Free Radic Res 38(8), 861-868 (2004)
doi:10.1080/10715760410001715149

25. Leonard SW, R. S. Bruno, R. Ramakrishnan, T. Bray, M. G. Traber: Cigarette smoking increases human vitamin E requirements as estimated by plasma deuterium-labeled CEHC. Ann N Y Acad Sci 1031, 357-360 (2004)
doi:10.1196/annals.1331.044

26. Bruno RS, R. Ramakrishnan, T. J. Montine, T. M. Bray, M. G. Traber: alpha-Tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am J Clin Nutr 81(1), 95-103 (2005)

27. Bruno RS, S. W. Leonard, J. Li, T. M. Bray, M. G. Traber: Lower plasma alpha-carboxyethyl-hydroxychroman after deuterium-labeled alpha-tocopherol supplementation suggests decreased vitamin E metabolism in smokers. Am J Clin Nutr 81(5), 1052-1059 (2005)

28. Dourado VZ, S. E. Tanni, S. A. Vale, M. M. Faganello, F. F. Sanchez, I. Godoy: Systemic manifestations in chronic obstructive pulmonary disease. J Bras Pneumol 32(2), 161-171 (2006)

29. Bhattacharyya SN, M. A. Dubick, L. D. Yantis, J. I. Enriquez, K. C. Buchanan, S. K. Batra, R. A. Smiley: In vivo effect of wood smoke on the expression of two mucin genes in rat airways. Inflammation 28(2), 67-76 (2004)
doi:10.1023/B:IFLA.0000033022.66289.04

30. Cox RA, R. P. Mlcak, D. L. Chinkes, S. Jacob, P. Enkhbaatar, J. Jaso, L. P. Parish, D. L. Traber, M. Jeschke, D. N. Herndon, H. K. Hawkins: Upper airway mucus deposition in lung tissue of burn trauma victims. Shock 29(3), 356-361 (2007)

31. Bidani A, C. Z. Wang, T. A. Heming: Cotton smoke inhalation primes alveolar macrophages for tumor necrosis factor-alpha production and suppresses macrophage antimicrobial activities. Lung 176(5), 325-336 (1998)
doi:10.1007/PL00007614

32. Bidani A, C. Z. Wang, T. A. Heming: Early effects of smoke inhalation on alveolar macrophage functions. Burns 22(2), 101-106 (1996)
doi:10.1016/0305-4179(95)00096-8

33. Laffon M, J. F. Pittet, K Modelska, M. A. Matthay, D. M. Young: Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med 160(5 Pt 1), 1443-1449 (1999)

34. Park GY, J. W. Park, D. H. Jeong, S. H. Jeong: Prolonged airway and systemic inflammatory reactions after smoke inhalation. Chest 123(2), 475-480 (2003)
doi:10.1378/chest.123.2.475

35. Whitehead GS, K. A. Grasman, E. C. Kimmel: Lung function and airway inflammation in rats following exposure to combustion products of carbon-graphite/epoxy composite material: comparison to a rodent model of acute lung injury. Toxicology 183(1-3), 175-197 (2003)
doi:10.1016/S0300-483X(02)00542-5

36. Wright MJ, J. T. Murphy: Smoke inhalation enhances early alveolar leukocyte responsiveness to endotoxin. J Trauma 59(1), 64-70 (2005)
doi:10.1097/01.TA.0000171588.25618.87

37. Cox RA, A. S. Burke, G. Oliveras, P. Enkhbaatar, L. D. Traber, J. B. Zwischenberger, M. G. Jeschke, F. C. Schmalstieg, D. N. Herndon, D. L. Traber, H. K. Hawkins: Acute bronchial obstruction in sheep: histopathology and gland cytokine expression. Exp Lung Res 31(9-10), 819-837 (2005)
doi:10.1080/01902140600574967

38. Chou KJ, J. L. Fisher, E. J. Silver: Characteristics and outcome of children with carbon monoxide poisoning with and without smoke exposure referred for hyperbaric oxygen therapy. Pediatr Emerg Care 16(3), 151-155 (2000)
doi:10.1097/00006565-200006000-00002

39. Cha SI, C. H. Kim, J. H. Lee, J. Y. Park, T. H. Jung, W. I. Choi, S. B. Han, Y. J. Jeon, K. C. Shin, J. H. Chung, K. H. Lee, Y. J. Kim, B. K. Lee: Isolated smoke inhalation injuries: Acute respiratory dysfunction, clinical outcomes, and short-term evolution of pulmonary functions with the effects of steroids. Burns 33, 200-208 (2007)
doi:10.1016/j.burns.2006.07.017

40. Mellins RB, S. Park: Respiratory complications of smoke inhalation in victims of fires. J Pediatr 87, 1-7 (1975)
doi:10.1016/S0022-3476(75)80059-X

41. Lo CP, S. Y. Chen, K. W. Lee, W. L. Chen, C. Y. Chen, C. J. Hsueh, G. S. Huang: Brain injury after acute carbon monoxide poisoning: early and late complications. AJR Am J Roentgenol 189(4), W205-211 (2007)
doi:10.2214/AJR.07.2425

42. Zagami AS, A. K. Lethlean, R. Mellick: Delayed neurological deterioration following carbon monoxide poisoning: MRI findings. J Neurol 240(2), 113-116 (1993)
doi:10.1007/BF00858727

43. Werner B, W. Bäck, H. Akerblom, P. O. Barr: Two cases of acute carbon monoxide poisoning with delayed neurological sequelae after a "free" interval. J Toxicol Clin Toxicol 23(4-6), 249-265 (1985)

44. Hsiao CL, H. C. Kuo, C. C. Huang: Delayed encephalopathy after carbon monoxide intoxication--long-term prognosis and correlation of clinical manifestations and neuroimages. Acta Neurol Taiwan 13(2), 64-70 (2004)

45. Chang KH, M. H. Han, H. S. Kim, B. A. Wie, M. C. Han: Delayed encephalopathy after acute carbon monoxide intoxication: MR imaging features and distribution of cerebral white matter lesions. Radiology 184(1), 117-122 (1992)

46. Seet RC, E. P. Wilder-Smith, E. C. Lim: Hemorrhagic leukoencephalopathy following acute carbon monoxide poisoning. Eur J Neurol 15(6), e49-50 (2008)
doi:10.1111/j.1468-1331.2005.01272.x

47. Finelli PF, F. J. DiMario Jr: Hemorrhagic infarction in white matter following acute carbon monoxide poisoning. Neurology 63(6), 1102-1104 (2004)

48. Varol E, M. Ozaydin, S. M. Aslan, A. Dogan, A. Altinbas: A rare cause of myocardial infarction: acute carbon monoxide poisoning. Anadolu Kardiyol Derg 7(3), 322-323 (2007)

49. Sorodoc L, C. Lionte, V. Laba: A rare cause of non-Q myocardial infarction--acute carbon monoxide poisoning. Rev Med Chir Soc Med Nat Iasi 108(4), 782-785 (2004)

50. Mokaddem A, W. Sdiri, K. Selmi, B. Darghouth, H. Mahjoub, K. Bachraoui, H. Makni, S. Kachboura, M. R. Boujnah: A rare cause of myocardial infarction: carbon monoxide intoxication. Tunis Med 82(3), 320-323 (2004)

51. Tan ES, D. J. van Veldhuisen, K. I. Lie: Carbon monoxide poisoning as a trigger for myocardial infarction. Ned Tijdschr Geneeskd 137(44), 2266-2268 (1993)

52. Wierzbicka-Chmiel J, A. Chmiel, T. Dzielski: Myocardial infarction after carbon monoxide exposure--a case report. Pol Arch Med Wewn 116(1), 683-686 (2006)

53. Skrzypczak W, K. Galecka, A. Shorek: Sensorineural hearing loss as a consequence of carbon monoxide poisoning. Otolarynol Pol 61(4), 479-483 (2007)

54. Shahbaz Hassan M, J. Ray, F. Wilson: Carbon monoxide poisoning and sensorineural hearing loss. J Laryngol Otol 117(2), 134-137 (2003)
doi:10.1258/002221503762624602

55. Michalska-Piechowiak T, M. Miarzy?ska, I. Perlik-Gattner: Sudden unilateral sensorineural hearing loss after carbon monoxide intoxication. Przegl Lek 61(4), 374-376 (2004)

56. Baker SR, D. J. Lilly: Hearing loss from acute carbon monoxide intoxication. Ann Otol Rhinol Laryngol 86(3 Pt 1), 323-328 (1977)

57. Chambers CA, R. O. Hopkins, L. K. Weaver, C. Key: Cognitive and affective outcomes of more severe compared to less severe carbon monoxide poisoning. Brain Inj 22(5), 387-395 (2008)
doi:10.1080/02699050802008075

58. Raj RS, P. Abdurahiman, J. Jose: Delayed syndrome in carbon monoxide poisoning. J Assoc Physicians India 54, 955-956 (2006)

59. Herndon DN, F. Langner, P. Thompson, H. A. Linares, M. Stein, D. L. Traber: Pulmonary injury in burned patients. Surg Clin North Am 67, 31-46 (1987)

60. Masaki Y, K. Sugiyama, H. Tanaka, Y. Uwabe, M. Takayama, M. Sakai, T. Hayashi, M. Otsuka, S. Suzuki: Effectiveness of CT for clinical stratification of occupational lung edema. Ind Health 45(1), 78-84 (2007)
doi:10.2486/indhealth.45.78

61. Eisner MD, Y. Wang, T. J. Haight, J. Balmes, S. K. Hammond, I. B. Tager: Secondhand smoke exposure, pulmonary function, and cardiovascular mortality. Ann Epidemiol 17(5), 364-373 (2007)
doi:10.1016/j.annepidem.2006.10.008

62. Baud FJ, P. Barriot, V. Toffis, B. Riou, E. Vicaut, Y. Lecarpentier, R. Bourdon, A. Astier, C. Bismuth: Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 325(25), 1761-1766 (1991)

63. Weaver LK, R. O. Hopkins, K. J. Chan, S. Churchill, E. C. Gregory, T. P. Clemmer, J. F. Orme Jr, F. O. Thomas, A. H. Morris: Hyperbaric oxygen for acute carbon monoxide poisoning. New Engl J Med 347(14), 1057-1067 (2002)
doi:10.1056/NEJMoa013121

64. Liebelt EL: Hyperbaric oxygen therapy in childhood carbon monoxide poisoning. Curr Opin Pediatr 11(3), 259-264 (1999)
doi:10.1097/00008480-199906000-00017

65. Dressler DP, W. A. Skornik, S. Kupersmith: Corticosteroid treatment of experimental smoke inhalation. Ann Surg 183(1), 46-52 (1976)
doi:10.1097/00000658-197601000-00010

66. Nieman GF, W. R. Clark, T. Hakim: Methylprednisolone does not protect the lung from inhalation injury. Burns 17(5), 384-390 (1991)
doi:10.1016/S0305-4179(05)80071-3

67. Yamazoe M, H. Tanaka, C. Takezawa, Y. Yamada, S. Abe: A case of severe airflow limitation markedly improved by inhalation therapy in non-smoking woman with chronic obstructive pulmonary disease. Nihon Kokyuki Gakkai Zasshi 44(2), 122-127 (2006)

68. Wiener-Kronish JP, M. A. Matthay: Beta-2-agonist treatment as a potential therapy for acute inhalational lung injury. Crit Care Med 34(6), 1841-1842 (2006)
doi:10.1097/01.CCM.0000220050.03102.ED

69. Nieman GF, A. M. Paskanik, R. R. Fluck, W. R. Clark: Comparison of exogenous surfactants in the treatment of wood smoke inhalation. Am J Respir Crit Care Med 152(2), 597-602 (1995)

70. Chen CM, C. L. Fang, C. H. Chang: Surfactant and corticosteroid effects on lung function in a rat model of acute lung injury. Crit Care Med 29(11), 2169-2175 (2001)
doi:10.1097/00003246-200111000-00020

71. Janssens SP, S. W. Musto, W. G. Hutchison, C. Spence, M. Witten, W. Jung, C. A. Hales: Cyclooxygenase and lipoxygenase inhibition by BW-755C reduces acrolein smoke-induced acute lung injury. J Appl Physiol 77(2), 888-895 (1994)

72. LaLonde C, K. Ikegami, R. Demling: Aerosolized deferoxamine prevents lung and systemic injury caused by smoke inhalation. J Appl Physiol 77, 2057-2064 (1994)

73. Nguyen TT, C. S. Cox Jr, D. N. Herndon, N. A. Biondo, L. D. Traber, P. E. Bush, A. Zophel, D. L. Traber: Effects of manganese superoxide dismutase on lung fluid balance after smoke inhalation. J Appl Physiol 78(6), 2161-2168 (1995)

74. Maybauer MO, Y. Kikuchi, M. Westphal, D. M. Maybauer, K. Nishida, L. D. Traber, B. B. Westphal-Varghese, N. Morita, P. Enkhbaatar, D. N. Herndon, D. L. Traber: Effects of manganese superoxide dismutase nebulisation on pulmonary function in an ovine model of acute lung injury. Shock 23(2), 138-143 (2005)
doi:10.1097/01.shk.0000150777.39484.b0

75. Morita N, M. G. Traber, P. Enkhbaatar, M. Westphal, K. Murakami, S. W. Leonard, R. A. Cox, H. K. Hawkins, D. Herndon, L. D. Traber, D. L. Traber: Aerosolized alpha-tocopherol ameliorates acute lung injury following combined burn and smoke inhalation injury in sheep. Shock 25(3), 277-282 (2006)
doi:10.1097/01.shk.0000208805.23182.a7

76. Morita N, K. Shimoda, M. G. Traber, M. Westphal, P. Enkhbaatar, K. Murakami, S. W. Leonard, L. D. Traber, D. L. Traber: Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury. Redox Rep 11(2), 61-70 (2006)
doi:10.1179/135100006X101020

77. Traber MG, K. Shimoda, K. Murakami, S. W. Leonard, P. Enkhbaatar, L. D. Traber, D. L. Traber: Burn and smoke inhalation injury in sheep depletes vitamin E: kinetic studies using deuterated tocopherols. Free Radic Biol Med 42(9), 1421-1429 (2007)
doi:10.1016/j.freeradbiomed.2007.01.041

78. Murakami K, P. Enkhbaatar, Y. M. Yu, L. D. Traber, R. A. Cox, H. K. Hawkins, R. G. Tompkins, D. Herndon, D. L. Traber: L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock 28(4), 477-483 (2007)
doi:10.1097/shk.0b013e31804a59bd

79. Souza-Costa DC, T. Zerbini, I. F. Metzger, J. B. T. Rocha, R. F. Gerlach, J. E. Tanus-Santos: L-Arginine attenuates acute pulmonary embolism-induced oxidative stress and pulmonary hypertension. Nitric Oxide 12(1), 9-14 (2005)
doi:10.1016/j.niox.2004.10.009

80. Bruno RS, S. W. Leonard, J. Atkinson, T. J. Montine, R. Ramakrishnan, T. M. Bray, M. G. Traber: Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 40(4), 689-697 (2006)
doi:10.1016/j.freeradbiomed.2005.10.051

81. Rhoden CR, J. Lawrence, J. J. Godleski, B. Gonzalez-Flecha: N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci 79(2), 296-303 (2004)
doi:10.1093/toxsci/kfh122

82. Palmieri TL, P. Enkhbaatar, R. Bayliss, L. D. Traber, R. A. Cox, H. K. Hawkins, D. N. Herndon, D. G. Greenhalgh, D. L. Traber: Continuous nebulised albuterol attenuates acute lung injury in an ovine model of combined burn and smoke inhalation. Crit Care Med 34(6), 1719-1724 (2006)

83. Nakazawa H, T. O. Gustafsson, L. D. Traber, D. N. Herndon, D. L. Traber: Alpha-Trinositol decreases lung edema formation after smoke inhalation in an ovine model. J Appl Physiol 76(1), 278-282 (1994)

84. Nishida K, N. Matsumoto, Y. Kikuchi, D. N. Herndon, L. D. Traber, D. L. Traber: Effect of phenytoin on smoke inhalation injury in sheep. Shock 4(3), 211-215 (1995)
doi:10.1097/00024382-199509000-00010

85. Enkhbaatar P, K. Murakami, K. Shimoda, A. Mizutani, L. D. Traber, G. B. Phillips, J. F. Parkinson, R. Cox, H. Hawkins, D. N. Herndon, D. L. Traber: The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Care Med 167, 1021-1026 (2003)
doi:10.1164/rccm.200209-1031PP

86. Soejima K, L. D. Traber, F. C. Schmalstieg, H. Hawkins, J. M. Jodoin, C. Szabo, E. Szabo, L. Virag, A. Salzman, D. L. Traber: Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med 163(3Pt1), 745-752 (2001)

87. Enkhbaatar P, Y. Kikuchi, L. D. Traber, M. Westphal, N. Morita, M. O. Maybauer, D. M. Maybauer, D. N. Herndon, D. L. Traber: Effect of inhaled nitric oxide on pulmonary vascular hyperpermeability in sheep following smoke inhalation. Burns 31(8), 1013-1019 (2005)
doi:10.1016/j.burns.2005.06.021

88. Shimoda K, K. Murakami, P. Enkhbaatar: Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep. Am J Physiol Lung Cell Mol Physiol 285, 240-249 (2003)

89. Haponick E, W. Summer: Respiratory complications in burned patients: pathogenesis and spectrum of inhalation injury. J Crit Care 2, 49-54 (1987)
doi:10.1016/0883-9441(87)90121-3

90. Enhkbaatar P, K. Murakami, R. Cox, M. Westphal, N. Morita, K. Brantley, A. Burke, H. Hawkins, F. Schmalstieg, L. D. Traber, D. N. Herndon, D. L. Traber: Aerosolized tissue plasminogen inhibitor improves pulmonary function in sheep with burn and smoke inhalation. Shock 22, 70-75 (2004)
doi:10.1097/01.shk.0000129201.38588.85

91. Cox CS Jr, J. B. Zwischenberger, D. L. Traber, L. D. Traber, A. K. Haque, D. N. Herndon: Heparin improves oxygenation and minimizes barotrauma after severe smoke inhalation in an ovine model. Surg Gynecol Obstet 176(4), 339-349 (1993)

92. Murakami K, R. McGuire, R. A. Cox, J. M. Jodoin, L. J. Bjertnaes, J. Katahira, L. D. Traber, F. C. Schmalstieg, H. K. Hawkins, D. N. Herndon, D. L. Traber: Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep. Shock 18(3), 236-241 (2002)
doi:10.1097/00024382-200209000-00006

93. Murakami K, P. Enkhbaatar, K. Shimoda, A. Mizutani, R. A. Cox, F. C. Schmalstieg, J. M. Jodoin, H. K. Hawkins, L. D. Traber, D. L. Traber: High-dose heparin fails to improve acute lung injury following smoke inhalation in sheep. Clin Sci (Lond) 104(4), 349-356 (2003)
doi:10.1042/CS20020258

94. Cox C. S. Jr, J. B. Zwischenberger, D. L. Traber, P. K. Minifee, N. Navaratnam, A. K. Haque, D. N. Herndon: Immediate positive pressure ventilation with positive end-expiratory pressure (PEEP) improves survival in ovine smoke inhalation injury. J Trauma 33(6), 821-827 (1992)
doi:10.1097/00005373-199212000-00005

95. Wang D, J. B. Zwischenberger, C. Savage, L. Miller, D. J. Deyo, S. Alpard, V. J. Cardenas Jr: High-frequency percussive ventilation with systemic heparin improves short-term survival in a LD100 sheep model of acute respiratory distress syndrome. J Burn Care Res 27(4), 463-471 (2006)

96. Sakurai H, R. Johnigan, Y. Kikuchi, M. Harada, L. D. Traber, D. L. Traber: Effect of reduced bronchial circulation on lung fluid flux after smoke inhalation in sheep. J Appl Physiol 84(3), 980-986 (1998)

97. Cox RA, P. Enkhabaatar, A. S. Burke, J. Katahira, K. Shimoda, A. Chandra, L. D. Traber, D. N. Herndon, H. K. Hawkins, D. L. Traber: Effects of a dual endothelin-1 receptor antagonist on airway obstruction and acute lung injury in sheep following smoke inhalation and burn injury. Clin Sci (Lond) 108(3), 265-272 (2005)
doi:10.1042/CS20040191

98. Niehaus GD, R. Kimura, L. D. Traber, D. N. Herndon, J. T. Flynn, D. L. Traber: Administration of a synthetic antiprotease reduces smoke-induced lung injury. J Appl Physiol 69, 694-699 (1990)

99. Maybauer MO, D. M. Maybauer, L. D. Traber, M. Westphal, P. Enkhbaatar, N. Morita, J. M. Jodoin, J. P. Heggers, D. N. Herndon, D. L. Traber: Gentamicin improves hemodynamics in ovine septic shock after smoke inhalation injury. Shock 24(3), 226-231 (2005)
doi:10.1097/01.shk.0000174021.95063.f4

100. Westphal M, S. Noshima, T. Isago, K. Fujioka, M. O. Maybauer, D. M. Maybauer, L. D. Traber, J. T. Flynn, B. B. Westphal-Varghese, D. L. Traber: Selective thromboxane A2 synthase inhibition by OKY-046 prevents cardiopulmonary dysfunction after ovine smoke inhalation injury. Anesthesiology 102(5), 954-961 (2005)
doi:10.1097/00000542-200505000-00014

101. Maybauer MO, D. M. Maybauer, J. F. Fraser, L. D. Traber, M. Westphal, P. Enkhbaatar, R. A. Cox, R. Huda, H. K. Hawkins, N. Morita, K. Murakami, A. Mizutani, D. N. Herndon, D. L. Traber: Recombinant human activated protein C improves pulmonary function in ovine acute lung injury resulting from smoke inhalation and sepsis. Crit Care Med 34(9), 2432-2438 (2006)
doi:10.1097/01.CCM.0000230384.61350.FA

102. Teke Z, M. Sacar, C. Yenisey, A. O. Atalay, T. Bicakci, E. Erdem: Activated protein C attenuates intestinal reperfusion-induced acute lung injury: an experimental study in a rat model. Am J Surg 195(6), 861-873 (2008)
doi:10.1016/j.amjsurg.2007.06.025

103. Thorning DR, M. L. Howard, L. D. Hudson, R. L. Schumacher: Pulmonary responses to smoke inhalation: morphologic changes in rabbits exposed to pine wood smoke. Hum Pathol 13(4), 355-364 (1982)
doi:10.1016/S0046-8177(82)80225-6

104. Marshall M: Ultrastructural findings on platelet deposition in initial atherogenesis. Wien Klin Wochenschr 98(7), 212-214 (1986)

105. Lewis CA, C. Ambrose, K. Banner, C. Battram, K. Butler, J. Giddings, J. Mok, J. Nasra, C. Winny, C. Poll: Animal models of cough: literature review and presentation of a novel cigarette smoke-enhanced cough model in the guinea-pig. Pulm Pharmacol Ther 20(4), 325-333 (2007)
doi:10.1016/j.pupt.2006.12.001

106. Walker HL, C. G. McLeod Jr, W. F. McManus: Experimental inhalation injury in the goat. J Trauma 21(11), 962-964 (1981)
doi:10.1097/00005373-198111000-00009

107. Herndon DN, T. Adams Jr, L. D. Traber, D. L. Traber: Inhalation injury and positive pressure ventilation in a sheep model. Circ Shock 12(2), 107-113 (1984)

108. Murakami K, L. J. Bjertnaes, F. C. Schmalstieg, R. McGuire, R. A. Cox, H. K. Hawkins, D. N. Herndon, L. D. Traber, D. L. Traber: A novel animal model of sepsis after acute lung injury in sheep. Crit Care Med 30(9), 2083-2090 (2002)
doi:10.1097/00003246-200209000-00022

109. Raymond TL, A. J. Delucia, L. R. Bryant: Failure of chronic cigarette smoke exposure to alter plasma lipoproteins of stumptailed macaques (Macaca arctoides). Atherosclerosis 41(1), 27-33 (1982)
doi:10.1016/0021-9150(82)90066-1

110. Cioffi WG, R. A. deLemos, J. J. Coalson, D. A. Gerstmann, B. A. Pruitt Jr: Decreased pulmonary damage in primates with inhalation injury treated with high-frequency ventilation. Ann Surg 218(3), 328-335 (1993)
doi:10.1097/00000658-199309000-00012

Key Words: Hemorrhagic Shock, Animal Models, Review

Send correspondence to: Shabbir Moochhala, Programme Director, Combat Casualty Care Programme, Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, Singapore 117510, Tel: 65-6485-7201, Fax: 65-6485-7226, E-mail:mshabbir@dso.org.sg