[Frontiers in Bioscience 15, 478-536, January 1, 2010]

Leukocyte transmigration across the blood-brain barrier: perspectives on neuroAIDS

Toni Kay Roberts1, Clarisa Michelle Buckner1, Joan W. Berman1,2

1Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA, 2Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. The blood-brain barrier and leukocyte transmigration
3.1. The blood-brain barrier and interendothelial junction
3.2. Multi-step model of transmigration
3.2.1. Tethering and rolling
3.2.2. Activation and arrest
3.2.3. Locomotion
3.3. Paracellular diapedesis
3.3.1. JAM-A
3.3.2. JAM-B and JAM-C
3.3.3. PECAM-1
3.3.4. CD99
3.3.5. PVR and DNAM-1
3.3.6. PrPc
3.4. Junctions and Matrices
3.4.1. Gap junctions
3.4.2. Tight junctions
3.4.3. Adherens junctions
3.4.4. Extracellular matrix
3.5. Transcellular diapedesis
4. Models of leukocyte transmigration
5. HIV-1 dysregulation of leukocyte transmigration and of the blood-brain barrier
5.1. Viral infection
5.2. Viral proteins
5.3. CCL2
6. Therapeutic strategies
6.1. Challenges to treatment
6.2. Antiretroviral agents
6.3. Immunomodulatory and neuroprotective agents
6.4. Targeting leukocyte transmigration
7. Summary and perspective
8. Acknowledgements
9. References

1. ABSTRACT

Leukocyte trafficking serves a critical function in central nervous system (CNS) immune surveillance. However, in many disease states leukocyte entry into the CNS is increased, which can disrupt the blood-brain barrier (BBB) and propagate neuroinflammation. These pathologic processes result in BBB permeability, glial activation, and neuronal compromise, all of which contribute to CNS damage. The resulting neuronal injury and loss are characteristic of many neuroinflammatory conditions including Alzheimer disease, multiple sclerosis, HIV-1 encephalopathy, sepsis, ischemia and reperfusion, and CNS tumors. HIV-1 encephalopathy is unique among these processes in that viral activity exacerbates CNS immune dysregulation and promotes chronic neuroinflammation and neurodegeneration. Thus, a significant number of HIV-1-infected persons exhibit neurocognitive and/or motor impairment. This review discusses the mechanisms that regulate leukocyte recruitment into the CNS and how HIV-1 infection dysregulates this process and contributes to neuropathology. Experimental BBB models to study leukocyte transmigration and the potential of targeting this transmigration across the BBB as a therapeutic strategy are also discussed.

2. INTRODUCTION

Leukocyte transmigration across the BBB is a complex, well coordinated process. In non-pathological states, leukocytes conduct homeostatic CNS immune surveillance (1, 2). However in HIV-1 infection, monocyte diapedesis is an important mechanism for viral entry into the CNS (3). In fact, HIV-1 has been detected in the brain as early as fifteen days post-peripheral blood exposure (4). Once in the CNS, monocytes differentiate into perivascular macrophages and are also thought to replenish aging microglia populations (1, 2, 5-8). Infected CNS monocytes/macrophages and microglia release infectious virus, as well as viral proteins and inflammatory mediators, that activate parenchymal cells and are toxic to neurons (Table 1) (9, 10). Resident macrophages and microglia both become infected with HIV-1 and are able to support robust viral replication and assembly (3, 11-18). In contrast, astrocytes become infected at low levels and are able to synthesize viral products, but are believed to be unable to support substantial infectious virion production (12, 19-23). Collectively, resident immune cells and glia serve as CNS viral reservoirs (3). The virus, viral proteins, cytokines, and chemokines produced by infected cells activate additional resident macrophages, microglia, and astrocytes and cause these cells to become more permissive to viral replication, to release neurotoxic factors, to compound the release of

inflammatory mediators, and to recruit additional leukocytes into the CNS (9, 24-27).

Although not directly infected by HIV-1 (12), neurons are particularly sensitive to inflammation and are affected by viral proteins and inflammatory mediators (Table 2). Viral proteins and cellular factors released from activated glia and phagocytes are directly neurotoxic, while astrocyte activation and/or infection results in cellular dysfunction and the inability to regulate the CNS metabolic environment (28-31). Both viral proteins and inflammatory mediators promote BBB dysfunction including loss of barrier integrity and endothelial cell hypertrophy, and possibly apoptosis (Table 3) (32, 33). Blood-brain barrier dysfunction contributes to increased leukocyte transmigration, free virus entry, and loss of metabolic homeostasis in the CNS. Viral, inflammatory, and metabolic insults result in neuron dysfunction, myelin damage, and neuronal apoptosis (33-38). The ensuing neuroinflammation and metabolic encephalopathy promote a self-perpetuating cycle of leukocyte recruitment into the CNS, macrophage and glial activation, glial proliferation, and neuronal damage and death.

CNS immune activity continues throughout infection, resulting in the accumulation of HIV-1-mediated neurodegeneration over an individual's lifetime. Despite antiretroviral therapy (ART), neuroinflammation and low evel CNS viral infection persist, resulting in cognitive impairment in 40-50% or more of HIV-1-infected individuals (39-42). ART significantly prolongs the life of many infected individuals; therefore, neurocognitive and motor dysfunction have become major health concerns for individuals living with chronic HIV-1 disease. Neurological dysfunction may be further compounded by age (43-46), diabetes (47), hepatitis C viral infection (48-50), other neurodegenerative conditions such as Alzheimer disease (51-54), and by substance abuse (55-57).

Monocytes, and to a lesser extent CD4+ T cells, are the predominant vehicle by which HIV-1 enters the brain (58). Release of inflammatory mediators by glia and CNS phagocytes in response to viral infection, viral protein, or cellular activation initiates an inflammatory cascade that results in aberrant leukocyte transmigration into the CNS, BBB disruption, metabolic derangement of the extracellular CNS environment, glial dysfunction, and neuronal injury and loss. In fact, the number of recruited monocytes and degree of

monocyte/macrophage/microglia activation is a better prognostic indicator of neurocognitive decline and marker of CNS pathology than is peripheral or CSF (cerebrospinal fluid) viral load (11, 13, 59-61). As HIV-1-infected leukocyte entry into the CNS is an initiating event in HIV-1-mediated neuropathology, a significant focus of this review is on the mechanisms of leukocyte transmigration across the BBB and how HIV-1, its proteins, and excessive cytokines and chemokines dysregulate this process. Models for studying leukocyte transmigration and the potential targeting of leukocytes as a means of therapy are also discussed.

3. THE BLOOD-BRAIN BARRIER AND LEUKOCYTE TRANSMIGRATION

3.1. The blood-brain barrier and interendothelial junction

Neuroinflammation that results from transmigration of HIV-1-infected and activated leukocytes s the predominant pathologic process in neuroAIDS. To enter the CNS, leukocytes must cross the specialized microvasculature of the BBB. Non-fenestrated endothelial cells and their basement membrane form the major anatomical unit of the BBB (62) and are the initial barrier to influx of molecules and cells into the CNS (63). Interactions between endothelial integrins and dystroglycans with matrix proteins anchor the endothelium and contribute to barrier properties (64-68). Astrocytes extend their end-feet from the parenchyma toward the abluminal vascular face to abut endothelial cells. The basement membrane elaborated by astrocytes forms the glial limitans perivascularis and is an important second barrier to leukocyte ingress (63, 69-72). In CNS capillaries, these two membranes are fused. However in post-capillary venules, there is a perivascular space between the endothelial basement membrane and the glial limitans. Macrophages and microglia reside within this space and further regulate the entry of molecules and cells into the CNS by phagocytosis and the elaboration of soluble factors (69, 70, 73). Pericytes, which have both smooth muscle-like and phagocytic properties, are within the endothelial basement membrane and also influence the endothelium and its perivascular environment (74-78). Neurons directly innervate astrocytes and endothelial cells and provide additional control over BBB properties (79-84). Endothelial cells, pericytes, macrophages, astrocytes, and neurons all contribute to the unique phenotype of CNS vessels by releasing factors in a regulated manner that collectively control the dynamic properties of the BBB (71, 72, 76-95). These factors include: enzymes, cytokines, chemokines, glial and endothelial trophic factors, and neurotransmitters.

The BBB is both an anatomical and physiological barrier. Endothelial cells express intercellular adhesion proteins that form complexes in the interendothelial space (96-98). They also express efflux transporters that actively transport molecules out of endothelial cells (99-106), and membrane transporters and receptors that permit passage of only select molecules into endothelial cells (107-113). These transporters regulate the transcellular entry of ions and molecules into the CNS. Brain microvascular endothelial cells (BMVEC) have low pinocytic activity,

which further diminishes cellular uptake of substances (97). Collectively, these properties restrict the paracellular (between endothelial cells) and transcellular (through endothelial cells) movement of ions, molecules, microparticles such as viruses, and cells into the CNS.

The interendothelial adhesion proteins that maintain BBB integrity can generally be categorized as those that act homotypically and/or heterotypically between endothelial cells, those that form tight junctions, and those that establish adherens junction complexes. To cross the interendothelial space, a leukocyte must disrupt all of these interactions while still maintaining barrier properties. Then it must traverse the dense matrix of the basement membrane to conduct immune surveillance in the perivascular space. During injury or inflammation, leukocytes must additionally cross the glial limitans to enter the neuropil (6, 114-116). Transmigration is an exquisitely controlled process, and leukocytes are able to transmigrate constitutively across the BBB with selectivity and efficiency without barrier disruption. The major mechanisms that regulate leukocyte transmigration include: (1) chemokine and cytokine-induced affinity maturation and increased expression of intercellular adhesion proteins on both endothelial and leukocyte cell surfaces and (2) intracellular signaling-mediated tight junction and adherens junction disassembly and cytoskeletal rearrangement.

3.2. Multi-step model of transmigration

The recruitment of leukocytes into the CNS is a complex process that requires interaction between proteins expressed on the leukocyte and the vasculature (Table 4). The chemokine- and cytokine-regulated activation state of both the leukocyte and endothelium influences the ability of leukocytes to negotiate the BBB. Sequential expression of specific adhesion molecules, their affinity and avidity for binding ligands, and intracellular signaling that alter these interactions and the morphology of the leukocyte and endothelial cell all regulate transmigration. A multi-step model of leukocyte diapedesis across endothelial barriers includes: leukocyte tethering and rolling, activation and arrest, locomotion, diapedesis, and traverse across the basement membrane. Although specific stages have been defined, these events do not act independently and the coordination of these events is still not clear. Intracellular signaling initiated by early events influences later steps in transmigration.

3.2.1. Tethering and rolling

Leukocytes tumble and roll along endothelial margins as they travel through the blood. This loose association is mediated by low- and high-affinity binding between selectins and their glycosylated ligands, which all contain the sialyl-LewisX carbohydrate motif (117-119). P-selectin is stored in Weibel-Palade bodies of endothelial cells and can be rapidly mobilized to the apical surface upon cell activation (120, 121). Its primary ligand is P-selectin glycoprotein ligand-1 (PSGL-1) (122, 123), a surface glycoprotein on leukocytes, particularly myeloid cells (122, 124). E-selectin is apically expressed on cytokine-activated endothelium and recognizes many sialyl-LewisX containing glycoproteins, including PSGL-1 (119, 123, 125, 126). L-selectin is constitutively expressed on all leukocytes and its surface expression is regulated by metalloproteinase cleavage of the extracellular domain (127-129). L-selectin binds PSGL-1 on inflamed endothelium (124). Selectin-ligand interactions are characterized by long binding distances to initiate capture (130), high on/off rates to facilitate rolling (131), and sufficient mechanical strength to withstand shear stress (132). Cytokine and chemokine activation of leukocytes and endothelial cells up-regulates selectins and their ligands, increasing the ability of leukocytes to be tethered to the vasculature. In addition, selectin binding propagates intracellular signals that activate transcriptional regulators. In monocytes, for example, NF-kappa B activity promotes the synthesis and release of TNF-alpha and CCL1 which up-regulate adhesion molecules on the leukocyte and endothelium and enhance the affinity of these proteins for their ligands (133). Thus, engagement of selectins with their ligands on activated endothelium initiates events that increase the ability of endothelial cells to bind leukocytes.

Interactions between P-selectin on endothelial cells and leukocyte PSGL-1 are an initiating event in capturing leukocytes from the blood (122, 134). Oligomerization of P-selectin and PSGL-1 enhances this binding (135). E-selectin binding interactions stabilize leukocyte rolling and allow it to slow its tumbling over the vasculature (136). For leukocytes to adhere firmly to the endothelial surface while traveling at high flow rates, additional adhesion molecules must be expressed and activated on the leukocyte and endothelium. This is accomplished by both outward-in and inward-out signaling. Outward-in signaling is the response of leukocytes and endothelial cells to ligation of adhesion molecules by their cognate ligand. These binding events promote cytokine and chemokine expression, mobilization and de novo synthesis of additional adhesion molecules, and conformational changes in surface adhesion molecules that enhance their binding ability. The effect of cytokines and chemokines on the expression and activity of cell adhesion molecules is also important. Endothelial cells present chemokines to leukocytes by binding them to membrane-bound glycosaminoglycans on the extracellular surface (137) or by expressing chemokines that are transmembrane proteins (138). As the leukocyte is slowed by the tethering of selectins to PSGL-1, its chemokine receptors interact more efficiently with chemokines. Chemokine receptors are G-protein coupled and transduce intracellular signals. This inward-out signaling modulates the activation status of the leukocyte, induces leukocyte cytokine and chemokine expression, alters the cytoskeletal framework of the leukocyte, and facilitates cellular spreading and uropod formation. It can also promote the expression of additional surface adhesion molecules and alter their affinity for ligands. Thus, affinity (strength of a single bond) and avidity (total strength of all bonds between two cell adhesion molecules) alterations in cell adhesion molecules can be induced by their direct ligation (outward-in signaling) and by chemokine-induced activation (inward-out signaling).

Vascular cell adhesion molecule-1 (VCAM-1), a member of the immunoglobulin gene superfamily, is an important endothelial adhesion molecule that is apically expressed in response to cytokine activation (139, 140). The tethering and rolling of leukocytes over activated endothelium allows the leukocyte to be further slowed by interactions between VCAM-1 and its leukocyte ligand, very late antigen-4 (VLA-4) (141, 142). The VCAM-1/VLA-4 interaction promotes leukocyte arrest on the vasculature and can also occur without significant selectin tethering (143, 144). Leukocyte slowing over endothelium facilitates chemokine interaction with receptors on the leukocyte. Through inward-out signaling, chemokines increase the affinity of VLA-4 for VCAM-1 (145, 146). Affinity maturation involves unfolding of the extracellular domain of the integrin such that the globular head, with its ligand binding site, is extended beyond the membrane surface (147). Thus, VLA-4/VCAM-1 interactions promote a transition from leukocyte tethering and rolling to firm adherence to the endothelium.

Stable binding of VLA-4 to VCAM-1 results in outward-in signaling within the leukocyte that promotes cytoskeletal rearrangements and subsequent changes in leukocyte morphology. Paxillin is recruited to the cytoplasmic tail of VLA-4's alpha chain upon ligation by VCAM-1 (148). VLA-4/paxillin interactions destabilize lamellipodia and restrict lamellipodia formation to the anterior edge of the leukocyte (149, 150). This promotes directional leukocyte migration and contributes to leukocyte movement towards interendothelial junctions (149, 150). Disruption of VLA-4/paxillin binding reduces leukocyte recruitment to sites of inflammation in vivo (151). VLA-4/VCAM-1 interactions are not only important for adherence of leukocytes to inflamed endothelium, but also for the directional migration of leukocytes that facilitates diapedesis.

VLA-4 ligation of VCAM-1 also induces outward-in signaling in the endothelial cell. VCAM-1 engagement activates Rac1, a small GTPase that can induce reactive oxygen species and phosphorylation of p38 MAPK (mitogen-activated protein kinase) (152). Reactive oxygen species activate the kinase Pyk2, which promotes phosphorylation of beta-catenin and dissociation of beta-catenin from adherens junction complexes (153). This destabilizes the adherens junction, promotes gap formation between endothelial cells, and increases endothelial permeability (154). Activity of the oxidant-sensitive kinase p38 promotes actin stress fiber formation (155) and is associated with loss of adherens junction complexes and increases in endothelial permeability (156). Together, the VCAM-1-mediated activity of reactive oxygen species and p38 alter the integrity of endothelial barriers and promote leukocyte diapedesis (152, 154, 157, 158). Thus, the signaling events initiated in leukocytes and endothelial cells by VLA-4/VCAM-1 interactions functionally and morphologically alter the leukocyte and endothelium and promote successive stages in transmigration.

3.2.2. Activation and arrest

Although VLA-4/VCAM-1 interactions initiate leukocyte arrest, additional interactions are required to maintain leukocyte adherence to endothelial cells under shear stress. Intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2), which bind the beta2 integrin leukocyte function antigen-1 (LFA-1), contribute to this stage of transmigration (159-161). ICAM-1 and ICAM-2 are constitutively expressed on endothelial cells, with ICAM-1 being up-regulated by inflammatory cytokines (162). They both have high affinity for leukocyte LFA-1, which can be induced into high-affinity states by both outward-in and inward-out signaling. Early during tethering, E-selectin engagement induces an LFA-1 conformation of intermediate affinity for ICAM-1 (163). This enhances tethering and promotes adherence of leukocytes to the endothelium (164). Subsequent chemokine activation of leukocytes induces affinity maturation of LFA-1 into high binding states and causes lateral integrin clustering, both of which increase the binding avidity of LFA-1 for ICAM-1 (165-168). Binding of ICAM-1 to LFA-1 also induces outward-in signaling and LFA-1 affinity modulation (169, 170). Conversion of LFA-1 to a high affinity state involves interposition of the actin-binding protein talin-1 between the alpha and beta chains of LFA-1 (170-172). This stabilizes the extracellular spatial configuration of LFA-1 and creates a stronger binding interface for ICAM-1. The effect of LFA-1/ICAM-1 interactions is sustained adhesion between leukocytes and endothelial cells under flow conditions.

ICAM-2 also binds LFA-1 and contributes to leukocyte adherence and transmigration (173, 174). Because expression of ICAM-2 is not inducible, it is likely that it maintains leukocyte endothelial arrest, allowing the interaction of leukocytes with endothelial cells to increase cytokine- and chemokine-induced up-regulation of ICAM-1 and affinity maturation of LFA-1. ICAM-1 and ICAM-2 also bind Mac-1 (175-177), another beta2 integrin with similar activity and overlapping, but different leukocyte subset specificity than LFA-1. LFA-1 is expressed on virtually all lymphocytes (178, 179), while Mac-1 is expressed on only a small subset of T-cells (180). Mac-1 is expressed on monocytes/macrophages and eosinophils (179-181), while LFA-1 is not expressed on eosinophils and has less expression on monocytes/macrophages when compared to Mac-1 (179). The specific expression and relative abundance of integrins on leukocyte populations likely regulates the recruitment of the appropriate leukocyte to a particular vascular bed.

Binding of VLA-4 to VCAM-1 and LFA-1 to ICAM-1 induces clustering of these adhesion molecules in the leukocyte and endothelial membrane. As a result, a ring-like structure of cell adhesion molecules forms at the interface between the leukocyte and endothelial cell (182, 183). This structure on endothelial cells has been termed the transmigratory cup and is believed to be a docking structure for leukocytes (184, 185). Depending on the quantity and type of adhesion molecules present and their spatial distribution, specific leukocytes can then be guided in the transmigratory cup to either the interendothelial junction for paracellular transmigration or can be induced to pass transcellularly through the endothelial cell in involuting channels (discussed below) (185, 186). The specific proteins and activating conditions that direct leukocytes to migrate paracellularly or transcellularly are not well defined.

LFA-1/ICAM-1 interactions induce Src-mediated tyrosine phosphorylation of the actin binding protein cortactin (187-190). This links ICAM-1 to the endothelial cytoskeleton which maintains clustering of ICAM-1 molecules and enables cytoskeletal remodeling around the transmigrating leukocyte (189, 190). VCAM-1 also becomes concentrated in this ring-like structure (184). Interactions with the actin-binding proteins ezrin, moesin, alpha-actinin, and vinculin anchor VCAM-1 to the cytoskeleton and maintain the docking structure during endothelial cell morphology changes (184). Transmigratory cup formation and leukocyte diapedesis can be impeded by inhibition of Rho GTPase, a downstream mediator of ICAM-1 signaling (183, 191). Inflammatory stimulation of BMVEC further strengthens interactions between the leukocyte and transmigratory cup. Specifically, TNF-alpha and IFN-gamma promote increased endothelial expression and transmigratory cup localization of ALCAM (activated leukocyte cell adhesion molecule) (192), a member of the immunoglobulin gene superfamily (193, 194). Through binding to CD6 on leukocytes (194), ALCAM promotes leukocyte transmigration. Antibody blocking of either endothelial ALCAM or leukocyte CD6 results in significant reductions in leukocyte transmigration (192, 195). In particular, monocytes, CD4 T-cells, and B-cells are restricted from crossing the BBB, whereas CD8 T-cell transmigration is unaffected (192).

3.2.3. Locomotion

Leukocytes follow a haptotactic gradient of chemokines and adhesion molecules expressed on the surface of the endothelium to direct them to paracellular compartments (196-198), particularly tricellular corners (199, 200). This phase is termed locomotion (201). Five members of the immunoglobulin gene superfamily expressed on endothelial cells, ICAM-1, ICAM-2, JAM-A (junctional adhesion molecule-1), JAM-C, and PECAM-1 (platelet endothelial cell adhesion molecule-1), are important to this process. ICAM-1, ICAM-2, and JAM-A bind leukocyte LFA-1 (159-161); while ICAM-1, ICAM-2, and JAM-C interact with leukocyte Mac-1 (175-177). These are heterotypic protein interactions in that binding occurs between different proteins. Endothelial PECAM-1 binds identical PECAM-1 on the leukocyte in a homotypic manner. ICAM-1, ICAM-2, JAM-A, JAM-C, and PECAM-1 are highly expressed in regions where multiple endothelial cells are interposed. This arrangement is vital to directing leukocytes to points of easiest penetration. In studies where ICAM-1 and ICAM-2 are blocked from binding leukocyte LFA-1 and Mac-1, monocytes are found to pirouette on their uropod and are unable to home to interendothelial junctions (201). In mouse models deficient in Mac-1, leukocytes have inefficient homing to the paracellular junction (202).

3.3. Paracellular diapedesis

Once properly directed to the paracellular compartment, the leukocyte extends its pseudopod into the intercellular junction and moves between endothelial cells in an amoeboid-like fashion. However to reach the perivascular space, the leukocyte must penetrate the junctional complexes that maintain the integrity of the BBB. Leukocytes are able to disrupt these interactions transiently in a manner that maintains barrier properties. This is accomplished, in part, through competitive binding of adhesion molecules on the leukocyte with those on the endothelium. At the leading edge of leukocyte transmigration, adhesion complexes between apposed endothelial cells protrude into the paracellular compartment. Molecular partners expressed on the leukocyte compete for these binding interactions and form homotypic and heterotypic bonds with the endothelium. In a "zipper-like" manner, leukocytes are chaperoned through the interendothelial space without compromising barrier integrity.

Diapedesis through the endothelial paracellular space is complex. The phenotype of both the leukocyte and the vascular bed regulate leukocyte transmigration. Thus, descriptions of leukocyte diapedesis can at best generalize the process. Many proteins contribute to diapedesis including LFA-1, Mac-1, JAM-A, JAM-B, JAM-C, PECAM-1, CD99, PVR, DNAM-1, and PrPC. These adhesion molecules are differentially expressed on leukocyte subsets and under specific inflammatory conditions. For example, PECAM-1 is on monocytes and neutrophils, but is found on only a small subset of T-cells (197, 203, 204). CD99 is expressed at low density on neutrophils (200), while PrPC is ubiquitously expressed on monocytes and lymphocytes but is absent on mature granulocytes (205). IL-1beta is associated with PECAM-1-dependent leukocyte diapedesis (206, 207), while TNF-alpha and IFN-gamma reduce PECAM-1 expression, junctional localization, and contribution to transmigration (208-210).

3.3.1. JAM-A

JAM-A is a surface protein found on both leukocytes (211, 212) and endothelial cells (211-214) that participates in leukocyte transmigration and maintenance of barrier properties. The CNS vasculature expresses high levels of this adhesion molecule (215, 216). JAM-A localizes to the apical aspect of endothelial intercellular junctions (211-214, 216) in association with tight junction complexes (213, 214, 216) and therefore contributes to junctional stability and impermeability (214, 217). It forms homotypic interactions with JAM-A molecules on apposing endothelial cells (218). Specifically, JAM-A forms inverted U-shaped homodimers in cis that then bind in trans to similar homodimers on adjacent endothelial cells (219). The cytoplasmic tail of JAM-A contains a PDZ-binding domain (PSD-95/disc large/zonula occludens protein-1) that enables JAM-A to bind to the cytoplasmic proteins ZO-1 (zonula occludens-1) (220-222), AF-6 (ALL-1 gene fusion partner-6; afadin) (222), and PAR-3 (proteinase-activated receptor-3) (221, 223). ZO-1 acts as a scaffold that links JAM-A to the tight junction integral protein occludin (220) and to filamentous actin (224). AF-6 also associates with ZO-1 and interacts with the actin cytoskeleton through association with profilin (225). PAR-3 acts as a nucleating factor that links JAM-A to the cell polarity-regulating proteins PAR-6, atypical PKC (protein kinase C), and Cdc42 (223). The cytoplasmic tail of JAM-A also interacts with cingulin, which strengthens the interaction of JAM-A with the cytoskeleton (220). Thus, JAM-A can affect cell polarity, cytoskeletal remodeling, and tight junction- and cadherin-based adhesive properties. These interactions enable JAM-A to regulate the interendothelial space.

Under inflammatory conditions, particularly TNF-alpha and IFN-gamma stimulation, JAM-A is redistributed to the luminal surface where it participates in leukocyte homing to the paracellular space (226, 227). LFA-1 on leukocytes binds to endothelial JAM-A, facilitating the entry of leukocytes into the paracellular compartment (226, 228). Endothelial JAM-A partitions to the ring-like structure that surrounds the pseudopod of penetrating leukocytes at the junctional interface (182). As the leukocyte enters the paracellular space, LFA-1 disrupts homophilic JAM-A/JAM-A interactions (229). The bond between LFA-1 and JAM-A can withstand pulling forces better than JAM-A homophilic interactions (229). This allows the leukocyte to progress through the intercellular space. Antibody blocking of JAM-A disrupts leukocyte endothelial arrest and transmigration both in vitro and in vivo (213, 230, 231). Studies with JAM-A deficient endothelial cells support these findings and demonstrate accumulation of leukocytes above the paracellular compartment (232). Once through the apical aspect of the interendothelial junction, JAM-A/JAM-A interactions reform and reseal the endothelial barrier. Thus, JAM-A acts as a bidirectional zipper that can open the endothelial barrier in front of the transmigrating leukocyte and reform junctional complexes at the trailing edge of the leukocyte to reestablish the barrier.

3.3.2. JAM-B and JAM-C

JAM-B and JAM-C are also concentrated at apical endothelial intercellular junctions (216, 233, 234). JAM-B forms heterotypic bonds with both leukocyte JAM-C (235, 236) and VLA-4 (237). JAM-B/VLA-4 interactions require prior priming by binding of JAM-B with leukocyte JAM-C (237). JAM-B promotes leukocyte transmigration, as blocking JAM-B with antibody or soluble JAM-B disrupts diapedesis (238). Endothelial JAM-B also forms heterotypic bonds with endothelial JAM-C (239), and endothelial JAM-C binds homotypically with JAM-C on apposed cells (239). These interactions contribute to endothelial barrier properties. JAM-B/JAM-C and JAM-C/JAM-C interactions promote signaling through the PDZ domain-binding motif of JAM-C which influences stability of VE-cadherin (vascular endothelial cadherin; cadherin-5) complexes (240). Up-regulation of JAM-C on inflamed endothelium facilitates lateral spreading of VE-cadherin away from the adherens junction. This promotes transient adherens junction disassembly and causes directional motion of leukocytes toward the abluminal face of the vasculature. Experimentally-induced over-expression of JAM-C in endothelial cells causes increased barrier permeability and enhanced leukocyte transmigration (241, 242), while loss of JAM-C results in accumulation of leukocytes in the peripheral blood rather than in inflamed tissue (243). Antibody blocking of JAM-C interactions with JAM-B or JAM-C reduces leukocyte transmigration and recruitment to inflammatory sites (242, 244, 245). This has been attributed to increased reverse transmigration of the leukocyte (245). The implication is that engagement of JAM-C by homotypic and/or heterotypic interactions with apposing endothelial cells or transmigrating leukocytes promotes opening of the adherens junction through signaling to VE-cadherin. This promotes unidirectional movement of the leukocyte through the paracellular space. JAM-C also binds leukocyte Mac-1 (246, 247) which enables it to recruit leukocytes into the paracellular compartment and guide them through the initial stages of transmigration. Antibody to or soluble forms of JAM-C inhibit leukocyte extravasation both in vitro and in vivo (241, 248). Simultaneous blocking of JAM-C and PECAM-1 almost completely abolishes leukocyte transmigration (248), while a greater percentage of leukocytes accumulate at the luminal vascular surface when JAM-A is blocked than when PECAM-1 is blocked (231). This suggests that JAMs function at a stage of transmigration slightly upstream of PECAM-1.

3.3.3. PECAM-1

PECAM-1 is enriched at endothelial junctions (249, 250) and contributes to transmigration of monocytes, neutrophils, natural killer cells, and certain T-cell populations (197, 206, 251-257). In studies using PECAM-1-specific antibodies and peptides, leukocyte transmigration is blocked by 70-90%, regardless of whether endothelial cells or leukocytes are pre-treated with the blocking compound (251). In vivo blocking antibody studies demonstrate reduced neutrophil recruitment into inflamed tissue (252, 253, 258). Neutrophil recruitment to inflammatory sites is also significantly reduced in PECAM-1 knockout mice (254). The extracellular structure of PECAM-1 contains six immunoglobulin-like domains. Antibody blocking of the first two domains prevents monocyte diapedesis at an early step such that monocytes accumulate on the apical aspect of the endothelium (253, 255, 258). Blocking the sixth domain causes monocytes to accumulate in the interendothelial space and between endothelial cells and the basement membrane (206, 255). Domains 1 and 2 of PECAM-1 are sites of homotypic binding, while domain 6 interacts heterotypically with heparin sulfate in the extracellular matrix (259-261). Thus, PECAM-1 participates in multiple steps of leukocyte transmigration by engaging different adhesion molecules at distinct binding sites, and plays a central role in leukocyte transmigration, contributing to homing, diapedesis, and migration through the basal lamina.

PECAM-1 ligation activates leukocyte integrins. Antibody-mediated activation of leukocyte PECAM-1 enhances the ability of leukocytes to adhere to VCAM-1 through VLA-4 interactions and to fibronectin through VLA-4 and VLA-5 (203). Similarly, cross linking leukocyte PECAM-1 with antibody increases LFA-1-mediated binding to ICAM-1 (203, 256). When neutrophil PECAM-1 interacts with endothelial PECAM-1, the integrin alpha6beta1 (VLA-6) is up-regulated on the surface of the transmigrating neutrophil (262). Because the extracellular matrix protein laminin is the major ligand of VLA-6 (263), antibody blocking of VLA-6 or genetic knockdown of PECAM-1 results in an inability of neutrophils to migrate through the basement membrane and accumulate in sites of inflammation (262). This suggests that leukocyte PECAM-1 engagement of endothelial PECAM-1 results in intracellular signaling that increases the avidity of integrins for their ligands, enhancing leukocyte adhesion (203, 256, 264, 265) and transmigration (256, 262). It has not been established how PECAM-1 signaling mediates these events. Thus, PECAM-1's binding interactions guide leukocytes through the interendothelial space and basal lamina. Additionally, PECAM-1 acts as an activation signal, altering the phenotype of the leukocyte to enhance its ability to enter the interendothelial space and negotiate the basement membrane.

As the leukocyte interacts with endothelial PECAM-1 at the apical face and in the paracellular space, PECAM-1 is rapidly recycled from a reticulum of 50 nm vesicles beneath the endothelial surface to the leading edge of leukocyte transmigration (266). This subsurface membrane reticulum, referred to as the lateral border recycling compartment (LBRC), is contiguous with the lateral endothelial cell border and constitutively traffics to the surface with a half-life of approximately ten minutes (266). Nearly one-third of total cellular PECAM-1 exists in the LBRC (266). Thus, PECAM-1 can be rapidly mobilized to the cell surface and targeted to the site of leukocyte diapedesis (266, 267). This allows PECAM-1-rich membrane to surround the leukocyte and create a haptotactic gradient to guide transmigration between apposed endothelial cells. If homotypic PECAM-1 interactions between the leukocyte and endothelial cell are inhibited at the apical surface, both targeted recycling of PECAM-1 from the LBRC to the lateral cell surface and leukocyte transmigration are blocked (266). Src kinase mediates this signaling, as inhibition of Src activity specifically disrupts LBRC targeting and leukocyte transmigration (268). If kinesin motors are inhibited or microtubules are depolymerized, targeted LBRC recycling and leukocyte diapedesis, but not constitutive LBRC trafficking, is blocked (267). Thus, upon PECAM-1 ligation, Src-dependent intracellular signaling induces kinesins to redirect PECAM-1-rich membrane of the LBRC toward the lateral endothelial face to the site of leukocyte diapedesis. As a result, space is created between apposed endothelial cells to accommodate the transmigrating leukocyte. In addition, unligated PECAM-1 becomes available for homotypic interaction which may propagate continuous targeting of the LBRC to the leading edge of leukocyte transmigration.

3.3.4. CD99

CD99 is enriched at endothelial cell lateral borders and is involved in leukocyte transmigration through the paracellular compartment (269, 270). CD99 is structurally distinct from all other identified cell adhesion molecules (271). It also binds in a homotypic manner and helps to maintain barrier properties while simultaneously acting as a regulator of leukocyte transmigration (200, 269, 270, 272). CD99 does not appear to participate in leukocyte arrest, as antibodies against CD99 do not interfere with leukocyte adhesion to endothelium (200, 269, 270). However, CD99 does participate in leukocyte diapedesis. Antibodies to CD99 block 80-90% of leukocyte transmigration (200, 269), and blocking both PECAM-1 and CD99 almost completely abolishes leukocyte transmigration (200, 269). Antibody to CD99 causes leukocytes to accumulate specifically near tricellular corners within the paracellular space at a point distal to where they accumulate when PECAM-1 is blocked (200, 269). Thus, CD99 appears to function at a step successive to PECAM-1 in diapedesis. In neutrophils, CD99 is maintained in the LBRC and can be rapidly mobilized to the cell surface during diapedesis (200). Neutrophils adherent to the endothelium have higher surface expression of CD99 than unactivated peripheral neutrophils (200). In vivo studies confirm the role of CD99 in leukocyte recruitment into inflamed tissue (270, 272) and into the bone marrow (273).

Similar to PECAM-1, outward-in signaling through CD99 modulates integrin avidity. Ligation of CD99 induces VLA-4 affinity/avidity changes in resting memory CD4 T-cells (274). These changes promote arrest of T-cells under flow conditions on TNF-alpha-activated endothelium or on immobilized VCAM-1 (274). T-cell arrest is blocked by anti-VLA-4 or anti-VCAM-1 antibody, but not by anti-LFA-1 or anti-ICAM-1 antibody (274). This suggests that CD99 specifically signals to VLA-4 in these cells. After CD99 engagement, T-cells flatten and spread over VCAM-1-enriched surfaces and acquire a mobile phenotype (274). In B-cells, CD99 ligation induces LFA-1-dependent cell adhesion which can be disrupted by anti-LFA-1 or anti-ICAM-1 antibody (275). In these studies, CD99 engagement resulted in a twofold increase in cell surface expression of LFA-1 within 30 minutes. However, when a splice variant of CD99 with a truncated cytoplasmic domain was over-expressed, LFA-1 expression was down-regulated and cell adhesion was abrogated. Full length CD99 contains a PKC-alpha phosphorylation consensus site that has been linked to Erk and Jnk MAPK signaling during T-cell adhesion (276, 277). Thus, CD99 activation may modulate kinase activity to promote cytoskeletal alterations, integrin affinity changes, and/or mobilization of integrins to the cell surface. Loss of this phosphorylation site could negatively regulate leukocyte adhesion. The relative abundance of full length CD99 and its splice variant in various leukocytes may serve as an important regulator of leukocyte adhesive properties, enabling the rapid adhesion/de-adhesion that is required for cellular trafficking.

3.3.5. PVR and DNAM-1

The polio virus receptor (PVR) and nectin-2 are related members of the immunoglobulin gene superfamily that are expressed on endothelial cells and regulate junctional complexes and leukocyte diapedesis. Both PVR and nectin-2 localize to interendothelial junctions (278, 279) where they contribute to barrier integrity by binding to nectin-3 on apposed cells (278, 280, 281). Nectin-2 also establishes homotypic bonds between endothelial cells (279). The cytoplasmic domains of PVR and nectin-2 contain a PDZ-binding motif that facilitates binding to ZO-1 and AF-6 scaffolding proteins (282). Through these interactions, PVR and nectin-2 become linked to the actin cytoskeleton, to JAM-A, and to tight junction and adherens junction complexes (283-285). Consequently, PVR and nectin-2 contribute to regulation of cell adhesion and barrier integrity. The predominant binding partner for PVR and nectin-2 on leukocytes is DNAM-1 (DNA accessory molecule 1) (286), another immunoglobulin gene superfamily member (287). DNAM-1 is highly expressed on most leukocytes, with the exception of granulocytes, and participates in leukocyte adhesion (286, 287). On endothelial cells, DNAM-1 binds preferentially to PVR over nectin-2 (278). Antibody blocking of either DNAM-1 or PVR reduces leukocyte transmigration by 80% and causes leukocyte arrest above intercellular junctions (278). Leukocyte adherence to the endothelium is not affected by blocking antibodies, suggesting that DNAM-1/PVR interactions specifically participate in diapedesis. As described for PECAM-1, leukocyte pseudopods are found to be minimally protruding into the paracellular space. Thus, DNAM-1/PVR may act at a similar step in transmigration as PECAM-1.

3.3.6. PrPc

PrPC (protease resistant protein- cellular isoform) also participates in leukocyte diapedesis across endothelial monolayers (288). PrPC is the normal cellular isoform of the human prion protein and is constitutively expressed in the CNS (289, 290), vasculature (288, 291), and on most leukocytes (205, 292-297). Many cellular and extracellular ligands involved in leukocyte transmigration interact with PrPC including heparan sulfate (298), laminin (299), selectins (300), and laminin receptor precursor (298, 301). In addition, PrPC binds homotypically to other PrPC molecules (288), providing for diverse physiological activity. PrPC interacts with multiple binding partners as a result of its differential glycosylation (302, 303) and a flexible anchoring to cells through glycosylphosphatidylinositol (292). On leukocytes, PrPC has been implicated in hematopoietic stem cell renewal (304), leukocyte differentiation and maturation (294, 296, 305), T cell activation and proliferation (292, 297, 306, 307), formation of immunological synapses (295, 307, 308), and regulation of phagocytic activity (309). In cerebral microvessels, PrPC is junctionally expressed and participates in leukocyte transmigration (288). Antibody blocking of PrPC on either leukocytes or endothelial cells reduces diapedesis by 60% (288). Therefore, PrPC appears to have a specific role in diapedesis, but not in arrest or traverse through the basement membrane of vascular beds, as adherence to activated endothelium and chemotaxis through endothelial cell-free fibronectin and collagen matrix are not disrupted (288). Concomitant blocking of PrPC and PECAM-1 does not result in additive reduction in transmigration, suggesting that these molecules function in similar stages of diapedesis (288).

3.4. Junctions and matrices

3.4.1. Gap junctions

An important mechanism for intercellular communication between adherent cells is through gap junctions. These are protein channels that form between two cells, with each cell contributing a hemichannel, or connexon, to the complex. Each connexon is composed of six connexin subunits, with different connexins able to form homomeric or heteromeric hemichannels (310). As a result, multiple gap junctions of varying composition and physiologic function may exist between cells (311, 312). Our laboratory demonstrated that connexin 43-containing gap junctions form between TNF-alpha- and IFN-gamma-activated primary human monocytes and endothelial cells in our BBB model (313). These interactions contribute to diapedesis, as gap junction inhibitors significantly reduced transmigration. Gap junction inhibitors also decreased the secretion of MMP-2 (matrix metalloproteinase-2) from monocytes, a protease that helps to dismantle tight junction complexes during diapedesis. These data suggest that intercellular communication, mediated by gap junctions between monocytes and endothelial cells, plays an important role in coordinating leukocyte diapedesis. Direct communication through gap junction channels may provide for rapid transduction of signals between cells without dilution in the extracellular space. Other groups have found gap junction formation between lymphocytes and the endothelium (314, 315) and a contribution of these channels to transmigration (316).

3.4.2. Tight junctions

As the leukocyte traverses the interendothelial space, it must transiently disrupt tight junctions and adherens junctions and distort the paracellular compartment physically to accommodate leukocyte transmigration. This is accomplished through signaling within endothelial cells. Tight junctions are composed of an intricate network of transmembrane and cytoplasmic proteins that are organized in caveolae and linked to the filamentous actin cytoskeleton. They provide polarity to endothelial cells and act as a major regulator of barrier permeability (317-319). The predominant membrane proteins associated with tight junctions in BMVEC are claudin-3 (320), claudin-5 (321, 322), and occludin (323, 324). Each has two extracellular loops that extend into the intercellular space (323, 325) where they interdigitate with the extracellular loops of homologous proteins on apposing endothelial cells (326, 327). Intracellular adaptor proteins zonula occludens (ZO-1 and ZO-2) link the cytoplasmic tails of claudins and occludin to the actin cytoskeleton (328-330). Additional scaffolding proteins including cingulin and AF-6 further strengthen the connection between tight junction proteins and actin through interactions with ZO-1 (331, 332). Tight junction complexes are transiently disrupted during leukocyte transmigration (317, 333). One mechanism involves ICAM-1-mediated cellular signaling. Upon leukocyte integrin engagement of endothelial ICAM-1, Rho is activated (334-337). This leads to activation of Rho kinase which causes the phosphorylation of the cytoplasmic tails of claudin-5 and occludin (338, 339). This phosphorylation results in the transient redistribution of these molecules intracellularly (340, 341). The extracellular domain of occludin is proteolytically degraded by MMPs in response to leukocyte transmigration, promoting endothelial gap formation and leukocyte diapedesis (333). Tight junction disassembly has two important effects that facilitate leukocyte transmigration. First, it physically disrupts the protein structures that impede leukocyte forward progress through the paracellular space. Second, by reorganizing the cytoskeleton, dismantling of tight junctions allows the endothelial cell to contract and physically accommodate the leukocyte in the junctional compartment.

3.4.3. Adherens junctions

The adherens junction anchors cells together and provides significant tensile strength to cellular borders. The principal protein that forms these junctions in endothelial cells is VE-cadherin (342, 343). In a calcium-dependent and homotypic manner, the extracellular domains of VE-cadherin dimerize, oligomerize, and interdigitate with VE-cadherin complexes on adjacent endothelial cells (344-349). The cytoplasmic tail of VE-cadherin is linked to the actin cytoskeleton through a complex intracellular arrangement of proteins. VE-cadherin binds three catenins: p120-catenin, beta-catenin, and gamma-catenin (350-352). Beta-catenin and gamma-catenin bind directly to alpha-catenin, which is linked to filamentous actin by alpha-actinin (353). To gain entry into the CNS parenchyma, the leukocyte must transiently disrupt the adherens junction complex (354, 355). ICAM-1 engagement by leukocyte integrins disrupts this complex by activating the kinases Src and Pyk2 (356). These kinases promote phosphorylation of both beta-catenin (153) and the VE-cadherin cytoplasmic tail at its p120- and beta-catenin binding domains (356). As a result, beta-catenin dissociates from VE-cadherin, transiently disrupts the adherens junction, promotes interendothelial gap formation, and facilitates paracellular transmigration of leukocytes (153, 356). LFA-1/ICAM-1 interactions also induce phosphorylation of focal adhesion kinase and the actin binding protein paxillin through activity of Rho GTPase (334, 335). These phosphorylation events promote endothelial cytoskeletal remodeling, stress fiber formation, and leukocyte diapedesis (334). As detailed earlier, VCAM-1 engagement has a similar effect, although signaling is mediated by reactive oxygen species and p38 MAPK activity (152, 158). Leukocyte adhesion to TNF-alpha-stimulated endothelium results in dissociation of vascular endothelial protein tyrosine phosphatase (VE-PTP) from VE-cadherin (357). VE-PTP is an endothelial-restricted phosphatase that interacts with the membrane-proximal extracellular domain of VE-cadherin and regulates its phosphorylation (358, 359). By dephosphorylating VE-cadherin's cytoplasmic tail, VE-PTP stabilizes VE-cadherin complexes at the adherens junction and maintains barrier integrity (358). Through yet defined intracellular signaling, leukocyte arrest on the apical aspect of endothelial cells induces VE-PTP/VE-cadherin dissociation, VE-cadherin tyrosine phosphorylation, and disruption of the adherens junction. This results in increased barrier permeability and leukocyte transmigration (357).

3.4.4. Extracellular matrix

After transmigrating through the paracellular space, the leukocyte must still cross the basal lamina which is composed of a dense meshwork of proteins and proteoglycans including collagen IV, laminins, fibronectin, and heparan sulfate glycosaminoglycans. Adhesion molecules expressed on the leukocyte surface escort the leukocyte through the basement membrane and to the perivascular space. Important interactions include: (1) leukocyte integrins with collagen IV (360-362), fibronectin (360, 362-364), laminins (262, 263, 361, 363), and heparan sulfate (365) and (2) PrPC with laminin (299, 366). Adhesion-dependent engagement of beta2 integrins induces expression of beta1 integrins on the leukocyte surface (360). This increases integrin interactions with basement membrane proteins and promotes leukocyte movement through the extracellular matrix (360). Heparan sulfate compounds (perlecan, agrin, and type XVIII collagen) are also important in maintaining a chemotactic gradient by binding chemokines (367, 368).

Upon entering the extracellular matrix, a leukocyte must traverse the dense protein network of the basement membrane. This is accomplished by several degradative enzymes including MMPs, heparanases, and sulfatases. MMPs are endoproteases that use zinc as a cofactor to hydrolyze peptide bonds. Many MMPs remodel the extracellular matrix including MMP-1 (collagenase) (369), MMP-2 (gelatinase) (370), MMP-9 (gelatinase) (371), and MMP-12 (elastase) (372). Heparanases are endoglycosidases which cleave oligosaccharides from heparan, disrupting binding interactions between constituents of the extracellular matrix (373). Sulfatases also contribute to remodeling of the basal lamina by hydrolyzing sulfate esters on glycosaminoglycans (374). In an activated state, leukocytes and endothelial cells express membrane-bound MMPs and heparanases or release soluble enzymes (375-379). Leukocyte engagement of matrix laminins further induces MMP expression by these cells and promotes leukocyte taxis (380). The release of several enzymes with varying specificities promotes degradation of the proteinaceous framework of the basement membrane. These proteolytic enzymes facilitate leukocyte entry into the CNS (381). However, basement membrane remodeling is a tightly controlled process and MMPs are quickly inhibited by decreased production and release and by the activity of tissue inhibitors of metalloproteinases (382). Endothelial cells, astrocytes, and pericytes all elaborate proteins that contribute to the basal lamina of the BBB. Despite MMP activity and leukocyte chemotaxis, the basement membrane is quickly reestablished such that barrier properties are not compromised.

As the leukocyte sequentially engages various adhesion molecules, not only is the leukocyte chaperoned across the interendothelial junction and through the extracellular matrix, but also cellular signals are initiated that result in opening of the tight junctions and adherens junctions and dismantling of the basement membrane at the leading edge of leukocyte migration. These interactions are complex, well coordinated, and exquisitely controlled. In non-pathologic states, leukocytes can quickly negotiate the paracellular compartment without compromise to barrier integrity. Under inflammatory conditions, transmigration is enhanced such that distinct leukocyte populations are directed into specific tissues. Multiple adhesion molecules are required for this process for at least three reasons. First, each molecule plays a role in a different step of leukocyte trafficking. Leukocyte capture and adhesion to the endothelium from a fluid stream, homing to paracellular junctions, diapedesis and disruption of junctional complexes, and traverse through the extracellular matrix are each distinct processes that require engagement and signaling through specific cellular receptors. Second, different inflammatory conditions favor the contribution of certain adhesion molecules to leukocyte transmigration over others. Third, adhesion molecules are differentially expressed on leukocyte subsets, and thus contribute to the transmigration of specific leukocyte populations. Collectively, the reliance of leukocyte transmigration on many cell adhesion molecules enables the precise regulation of which leukocyte is able to be recruited into specific tissues under distinct inflammatory states.

3.5. Transcellular diapedesis

In addition to paracellular transmigration of leukocytes between endothelial cells, transcellular movement of leukocytes through individual endothelial cells has been described for many classes of cells including monocytes, neutrophils, and T-cells (185, 186, 196, 383, 384). Not all leukocytes demonstrate the same preference for route of transmigration across the endothelium. Studies conflict; and this may be due differences in the vascular bed from which endothelial cultures are derived and whether endothelial cells are activated. Several studies demonstrate that monocytes and neutrophils transmigrate predominantly by the paracellular route (185, 385), while lymphocytes show an increased ability to travel transcellularly (385). However, other groups found polymorphonuclear cells (PMNs) to use transcellular diapedesis preferentially through activated human umbilical vein endothelial cells (186, 196), while T-cells exclusively transmigrate through the paracellular space (186). This may partially be a function of differential expression of cell adhesion molecules by leukocyte and endothelial cell subsets, and/or of chemokine specificity, and may depend on what signaling cascades are activated and suppressed in both cell types.

During adhesion, leukocytes induce the formation of docking structures in endothelial cells called transmigratory cups. These structures surround the leukocyte with projections rich in the adhesion proteins ICAM-1 and VCAM-1; cytoplasmic proteins ezrin, radixin and moesin; and cytoskeletal proteins vinculin, talin and alpha-actinin (184, 185). The transmigratory cup chaperones a cell either between the paracellular space or through the endothelial cell (185). Endothelial ICAM-1 plays an active role in determining whether leukocytes use the paracellular or transcellular route. Ligation of ICAM-1 triggers cytoplasmic signaling events that lead to ICAM-1 clustering and the translocation of apical ICAM-1 to caveolae and F-actin-rich regions, and to the eventual transport of ICAM-1 with caveolin-1 to the plasma membrane (384). This contributes to formation of channels through which leukocytes migrate (384). By knocking down caveolin in endothelial cells, it was demonstrated to be required for transcellular, but not paracellular transmigration (384). Use of a small peptide inhibitor of the cytoplasmic tail of ICAM-1 was also shown to preferentially reduce transcellular migration (186). These findings suggest a requirement of ICAM-1 localization to caveolae and specific signaling mediated by ICAM-1 for transcellular diapedesis. ICAM-1 surface density and distribution, as well as endothelial cell shape, also contribute to transcellular transmigration of leukocytes (186). Increased endothelial ICAM-1 favors transcellular diapedesis of PMNs, as does an elongated, rather than polygonal, shape to the endothelium. This may facilitate localization of leukocytes to areas away from cellular junctions.

Leukocytes also actively participate in transcellular diapedesis. Leukocytes extend a podosome rich in LFA-1 and talin-1 into the endothelium which is accommodated by ICAM-1-enriched endothelial invaginations, termed a podoprint (386). Leukocyte podosomes invade deeply into endothelial cells, nearing the basal membrane, and are termed invadopodia. Podosomes induce recruitment and fusion of endothelial vesicles to the plasma membrane of the podoprint, forming transcellular pores, or channels through which the leukocyte travels. Formation of these channels is dependent upon SNARE complex formation, but not involvement of caveolae or endosomes. Thus, formation of the transmigratory cup and podoprint are two distinct processes. Transcellular pore formation actively distorts the endothelial cell, displacing cytoplasm, actin, microtubules, and endoplasmic reticulum, but not the nucleus. It has been suggested that leukocytes actively extend podosomes into the endothelial cell as they laterally travel across the vascular bed, looking for sites of least resistance, either at the paracellular space or within an endothelial cell. If an area of the endothelial cell provides a low level of cytoplasmic and organelle-mediated resistance, then transcellular pores may form and facilitate transcellular migration (386).

Some studies suggest that the transcellular route, under certain conditions, may be particularly relevant in organs that have extremely tight endothelial junctions, such as the brain (387). There are no direct studies of the pathway virally-infected cells use to cross the BBB. In retroviral-associated diseases such as HIV-1-associated dementia (HAD) and human T-cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis, the penetration of virus into the CNS and subsequent BBB damage and dysfunction are mediated, in part, by either infected monocytes or lymphocytes that transmigrated across the BBB. It was recently demonstrated that co-culture of HTLV-1-infected lymphocytes induces an increase in their transendothelial transit (388), and infection of endothelial cells with HTLV-1 results in decreased barrier function due to an increase in BBB permeability and lymphocyte transmigration (389). Preliminary data from our laboratory suggest that freshly isolated and stimulated, uninfected monocytes and T-cells preferentially use the paracellular route. In contrast, HIV-1-infected cells cross transcellularly (Buckner, C.M., unpublished data). Thus, infection of leukocytes or endothelial cells with pathogens may also influence the route of transmigration.

4. MODELS OF LEUKOCYTE TRANSMIGRATION

As previously described, the BBB is a dynamic interface between the blood and the CNS. Several in vitro models are used to study BBB function in the context of disease and to screen drugs targeted to the CNS. Blood-brain barrier modeling is also fundamental to studying leukocyte transendothelial migration, which is enhanced in HIV-1 infection.

The first in vitro model of the BBB was established after successful isolation of rat brain microvessels (390). This type of model uses monocultures of brain endothelial cells grown on a porous membrane that divided a culture chamber into two compartments representing the blood and the brain (391-393). However, it was recognized that culture of brain endothelial cells alone leads to loss of phenotype of the enzyme gamma-glutamyl transpeptidase (gamma-GT). Communication between cells of the BBB is crucial for the formation and maintenance of a functional BBB (394, 395). Astrocytes regulate brain endothelial characteristics and function, as well as induce the formation of interendothelial tight junctions (394, 396, 397). A number of in vitro BBB models are thus composed of brain endothelial cells co-cultured with astrocytes. Some use cells from different species such as bovine, porcine, rat, mouse, and human, while others are syngeneic (32, 398-407). We developed and characterized a model of the human BBB in which human fetal astrocytes and human umbilical vein endothelial cells or BMVEC are cultured on opposite sides of a tissue culture insert. The inserts have 3.0 micron pores that allow astrocyte foot processes to penetrate the insert and establish contact with the endothelial cells. Endothelial cells in our co-culture system express the BBB-specific markers gamma-GT and GLUT-1 (glucose transporter-1) and form junctional complexes (401). We used this model to examine the mechanisms of both uninfected and HIV-1-infected monocyte and lymphocyte transmigration across the BBB in response to the chemokine CCL2 (402). We also examined the impact of HIV-1 proteins on barrier permeability. Current studies in our laboratory use this model to identify the phenotype of the monocyte crossing the BBB and the effects of drugs of abuse on the BBB in the context of neuroAIDS (Buckner, C.M., unpublished data; Calderon, T.M., unpublished data).

Models of the BBB also include BMVEC cultured with enriched media. Some models grow BMVEC with glia-conditioned media because soluble factors released by glia or glioma cells are believed to participate in the induction of the BBB phenotype (408-410). Removal of astrocytes from BMVEC cultures leads to an increase in permeability to sucrose and peroxidase (411). However, the increase in junctional permeability does not alter occludin, claudin-3, claudin-5, ZO-1, or ZO- 2 immunostaining (411). This emphasizes that disruption of tight junctions, as measured by fluorescent intensity and localization of paracellular markers, does not necessarily indicate functional loss of tight junctions. Other models culture BMVEC with cyclic adenosine monophosphate or glucocorticoids, such as hydrocortisone and dexamethasone, to enhance barrier properties (412-414). Most of these studies were performed in rodent models. We found human astrocyte-conditioned media does not enhance the BBB properties of our model; only human astrocytes in co-culture with endothelial cells result in barrier properties (401).

Immortalized brain endothelial cell lines have been generated to overcome difficulties with access to human tissue, low yield of cells, and concern about the quality of tissue obtained from autopsy or surgical specimens. Immortalized cell lines often allow for easy, reproducible in vitro BBB models. To evaluate drugs that gain entry to or are excluded from the brain, a humanized dynamic in vitro BBB model (hDIV-BBB) was developed (415). A human BMVEC cell line (HCMEC/D3) was grown in the lumen of hollow microporous fibers and exposed to a physiological pulsatile flow. This model demonstrated greater maintenance of in vitro BBB physiological permeability properties even in the absence of astrocytes (415). Other immortalized cell models are composed of cells from different species, syngeneic astrocytes, and/or cell lines (409, 416-419).

Few data exist on the effects of neurons and pericytes on in vitro BBB models. Co-culture of RBE4 cells, a rat brain endothelial cell line, with rat primary neurons decreases transmonolayer dopamine flux (420), while thin brain slices cultured over BMVEC monolayers on a permeable membrane result in similar resistance to dopamine permeability (421). Pericytes stabilize the brain capillary structure (422, 423) and have been implicated in the development, maintenance, and regulation of the BBB (395, 422). Similar to astrocytes, pericytes tighten the paracellular barrier in cultured brain endothelial cells (424, 425). A triple co-culture model consisting of rat brain endothelial cells and pericytes grown on the opposite sides of a porous membrane and cultured in the presence of astrocytes can also be used as a tool for research on BBB physiology and pathology (426, 427).

The major criterion for all BBB models is that they must display restrictive paracellular pathways and selective transcellular permeability. Most cell culture models of the BBB use primary or immortalized BMVEC. The endothelial cells are co-cultured with astrocytes, pericytes, both cell types, or cell products. Since the late 1970s, in vitro models of the BBB from different mammalian species have been developed, making their comparison difficult. It is important to have experimental tissue culture models to understand the pathophysiological behavior of the BBB. These models enable the study of trafficking of leukocytes, virus, other pathogens, or drugs into the CNS and the design of protective and therapeutic approaches to inhibit access across the BBB. The data generated from these in vitro systems, while highly valuable, must be carefully interpreted in the context of human disease.

5. HIV-1 DYSREGULATION OF LEUKOCYTE TRANSMIGRATION AND OF THE BLOOD-BRAIN BARRIER

5.1. Viral infection

HIV-1 infection results in not only immune dysfunction but also CNS metabolic derangement. Pathologic hallmarks of HIV-1 brain infection include abnormal accumulation of monocytes/macrophages in the perivascular space and parenchyma (17, 37, 428, 429) and increased permeability of the BBB (32, 33, 338, 339, 430). Thus during HIV-1 infection, the homeostatic mechanisms that control monocyte transmigration across the BBB are dysregulated. These changes are mediated by a complex interplay between the effects of HIV-1 infection, viral proteins, and abnormal cytokine and chemokine production on leukocytes and on the BBB.

When monocytes/macrophages become infected with HIV-1, they increase their production and release of CCL2 (431-433), the most potent chemoattractant for monocytes (434-436). CCL2 acts in an autocrine manner to enhance viral replication and release in the infected monocyte/macrophage (25). CCL2 released by infected monocytes, macrophages, microglia, and astrocytes also creates a chemotactic gradient, recruiting additional monocytes to sites of inflammation and promoting monocyte entry into the CNS. Additionally, our laboratory demonstrated that HIV-1 infection maintains monocyte expression of CCR2, the receptor for CCL2, on the cell surface (402). This allows the monocyte to be more responsive to CCL2. Combined, the effects of HIV-1 on the monocyte promote chemotaxis and viral virulence.

In a tissue culture model of the BBB, our laboratory demonstrated that HIV-1-infected monocytes have an increased capacity to transmigrate in response to the chemokine CCL2 as compared to uninfected cells (402). This appears to be CCL2-dependent, as HIV-1 infection alone does not significantly alter monocyte transmigration and other monocyte chemoattractants do not recruit infected monocytes to the same extent. In addition, HIV-1 and CCL2 synergize to selectively recruit monocytes across tissue culture models, as T-cells, while increased, do not demonstrate the same proportional increase in transmigration (402). Thus HIV-1, particularly R5-tropic strains, appears to promote a migratory phenotype in monocytes.

HIV-1-infected monocytes induce expression of cell adhesion molecules in BMVEC. Both E-selectin and VCAM-1 are up-regulated in BMVEC when co-cultured with HIV-1-infected monocytes (437). This occurs when infected monocytes are in direct contact with BMVEC and when monocytes are separated from BMVEC by a transwell filter that enables diffusion of soluble mediators between the two cell types. HIV-1 encephalitic (HIVE) brain tissue shows a correlation between increased TNF-alpha and IL-1beta levels and elevated E-selectin and VCAM-1 (437). Since BMVEC expression of E-selectin and VCAM-1 are known to be induced by TNF-alpha and IL-1beta (139, 438-441) and HIV-1-infected monocytes are known to be a source of these cytokines (9, 24, 442), these findings support a mechanism by which TNF-alpha and IL-1beta, released by HIV-1-infected monocytes, cause increased expression of E-selectin and VCAM-1 on BMVEC. Other studies found that cerebral microvessels associated with HIV-1 p24-positive perivascular monocyte infiltrates in HIVE brains have a similar increased expression of E-selectin and VCAM-1 (437). Furthermore, when BMVEC are isolated from HIVE tissue and cultured with uninfected monocytes, avid binding of the monocytes to the endothelium is observed as compared to weak binding of monocytes to uninflamed endothelium with diminished expression of E-selectin and VCAM-1. Antibody blocking of E-selectin and VCAM-1 abrogates the enhanced binding of monocytes to HIVE endothelium (437). This is consistent with studies in SIV (simian immunodeficiency virus) models of encephalitis where elevated levels of VCAM-1 are associated with efficient monocyte transmigration (443, 444). Taken together, these studies clearly support a role for HIV-1 in enhancing the migratory capacity of monocytes across the BBB.

HIV-1 infection also dysregulates leukocyte adhesion molecules. Monocyte LFA-1 and LFA-3 are both up-regulated upon infection with HIV-1 and this promotes increased adherence to BMVEC (445). The enhanced affinity of the infected monocyte for the endothelium can be disrupted by blocking either LFA-1 or its ligand, ICAM-1, with antibody. Our laboratory found that HIV-1-infected PBMCs (peripheral blood mononuclear cells) increase their expression of PECAM-1, CD99, JAM-A, and occludin when compared to uninfected cells (Eugenin, E. A., unpublished data). We also demonstrated that CCL2 treatment induces HIV-1-infected PBMCs to shed PECAM-1. We found sera levels of soluble PECAM-1 to be elevated in HIV-1-infected individuals and that sPECAM-1 accumulates in the CNS parenchyma and vasculature of individuals with HIVE (446). The increased expression of adhesion molecules on HIV-1-infected PBMCs may enhance their ability to transmigrate across the BBB, while shed PECAM-1 may compete for binding to membrane-bound PECAM-1 in the paracellular space, disrupting barrier integrity and facilitating leukocyte CNS entry.

Nitric oxide (447) and superoxide (448) are produced by HIV-1-infected phagocytes and have multiple effects that favor monocyte transmigration and BBB disruption. Uninfected monocytes produce little NO (447). However, the NO produced by HIV-1-infected monocytes can act in an autocrine and paracrine manner to induce hyperactivation of monocytes (449). Exposure to NO also enhances viral replication in macrophages (450). Activated monocytes produce high amounts of NO (447), are more permissive to viral replication (451), and up-regulate their expression of cell adhesion molecules (452). In addition, nitric oxide combines with superoxide to form peroxynitrite, which irreversibly nitrates tyrosine residues on proteins (453) and disrupts endothelial monolayer integrity (454, 455). Because PKC activity is required for tight junction assembly (456), it has been suggested that the disruption of endothelial barrier properties associated with peroxynitrite may be due to altered phosphorylation of tight junction proteins. Thus, the cycle of monocyte/macrophage infection with HIV-1, NO production, and monocyte/macrophage activation not only compounds the spread of virus among monocytes/macrophages and the release of NO into tissue, but also enhances the ability of monocytes to gain entry into the CNS across the BBB.

HIV-1-infected monocytes/macrophages and microglia also have increased expression and secretion of the proteolytic enzymes MMP-1 (457), MMP-2 (29, 457), MMP-3 (457), and MMP-9 (445, 457, 458). These enzymes contribute to extracellular matrix degradation. Co-culturing infected monocytes with endothelial cells causes monolayer disruption and increased permeability to albumin (445). Loss of monolayer integrity can be reversed with addition of the MMP inhibitors TIMP-1 and TIMP-2 (tissue inhibitor of metalloproteinase) (445). These in vitro studies are supported by the finding that perivascular and parenchymal phagocytes express high levels of MMPs in HIVE tissue (457) and that MMP CSF levels correlate with markers of BBB breakdown including elevated CSF/serum albumin ratios and mononuclear cell migration into the CNS (459, 460).

Similar to monocytes, HIV-1 infection of T-cells is associated with a migratory phenotype. CD8 T-cells isolated from CSF have increased expression of the adhesion molecules LFA-1 and VLA-4 and of the chemokine receptors CXCR3 and CCR5 as compared to peripherally isolated T-cells (461). This is in agreement with leukocyte infiltrates characteristic of other neuroinflammatory conditions including multiple sclerosis and meningitis (462). Increased LFA-1 expression in HIV-1-infected peripheral T-cells has been demonstrated by several groups (463-465). HIV-1 infection of CD4 T-cells is associated with increased surface expression of CCR5, while CXCR4 expression on CD8 T-cells is decreased in response to infection (466). This may not only favor infection with R5 tropic HIV-1 strains, but also affects the response of these T-cell populations to chemotactic stimulation. CCL3, CCL4, and CCL5 are all ligands for CCR5 (467) and are elevated in the CSF of HIV-1-infected individuals (468). This suggests that HIV-1 infection promotes the recruitment of T-cells into the CNS by increasing the expression of the chemokine receptors and adhesion molecules necessary to traverse the BBB. However in our model of the BBB, we do not detect increased transmigration of HIV-1-infected T-cells in response to CCL3 or CCL5 (402).

Transmigration of HIV-1-infected leukocytes across tissue culture models of the BBB in response to CCL2 is also associated with increased barrier permeability. Our laboratory demonstrated that occludin, claudin-1, and ZO-1 all exhibit decreased localization at tight junctions and diminished whole cell expression after 24 hours of CCL2-mediated diapedesis of infected PBMCs (402). In addition, after CCL2-mediated transmigration of HIV-1-infected PBMCs, endothelial cells and astrocytes from our tissue culture model had increased immunostaining for MMP-2 and MMP-9. These data suggest that HIV-1 infection of leukocytes disrupts the homeostatic mechanisms that regulate their transmigration across the BBB and the maintenance of barrier integrity.

5.2. Viral proteins

Viral proteins have important effects on leukocyte trafficking and barrier permeability (Table 3). Tat is a viral protein required for HIV-1 gene expression and replication that is found in high levels in the serum (469) and brain parenchyma (470-473) of individuals with HIVE and HIV-1-associated neurocognitive disorder (HAND). Tat is actively released from infected cells (474), is able to bind many cellular and extracellular proteins (474-476), can efficiently enter many cell types (477-479), affects cellular signaling (480-482), and regulates host gene expression (429, 482-491). Thus, tat promotes multiple pathological processes in the CNS (492-495). In endothelial cells, tat induces expression of E-selectin (472, 496, 497); while in endothelial cells, monocytes/macrophages, microglia, and astrocytes, ICAM-1 and/or VCAM-1 are increased in response to tat (429, 491, 496, 497). The tat-mediated up-regulation of cell adhesion molecules enhances the ability of leukocytes to adhere to the endothelium and to transmigrate into the brain parenchyma (429, 491, 496).

Tat itself is chemotactic (492, 498, 499), but also increases the production of CCL2 and other chemokines by endothelial cells (429, 481, 500), astrocytes (429, 501-505), and microglia (429, 482, 506, 507). The release of CCL2 recruits circulating leukocytes into the CNS, disrupts barrier integrity, and promotes metabolic dysfunction (481, 508). In addition, tat directly alters endothelial monolayer permeability and compounds the CCL2-mediated effects on barrier properties (480, 509). Tat treatment of BMVEC induces phosphorylation and activation of focal adhesion kinase which promotes reorganization of the cytoskeleton, cellular migration, and changes in barrier permeability (480). Ex vivo studies of BMVEC from tat-expressing transgenic mice confirm a tat-associated disruption of BBB integrity (480). Tat-injected mice have BBB disruption and excessive monocyte recruitment into the CNS (508). Tat also induces nitric oxide production by BMVEC (509) and astrocytes (510) through the activation of inducible nitric oxide synthase. Increased nitric oxide levels correlate with BMVEC apoptosis and barrier dysfunction (509). Furthermore, tat induces macrophage (511) and astrocyte (D'Aversa, T.G., unpublished data) production of MMP-2 and MMP-7, which is associated with degree of neuronal loss and severity of neurobehavioral impairment in mice (511). Collectively, the tat-mediated effects on CNS cell adhesion molecule expression, chemokine production, MMP production, and BBB permeability promote leukocyte and viral entry into the CNS and contribute to metabolic encephalopathy.

Gp120 is an HIV-1 glycoprotein expressed on the viral envelope that allows for receptor-mediated entry of HIV-1 into CD4 expressing cells (512-514). It is found in high levels in the serum (515) and brain parenchyma (516) of individuals with HIVE and HAND. In addition to being expressed on free virus, gp120 is shed into the cellular environment (517). The interaction of gp120 with endothelial cells, astrocytes, and microglia induces increased expression of ICAM-1 (518-522), while VCAM-1 is also up-regulated on BMVEC (521). This promotes leukocyte adherence to cerebral microvessels and entry into the CNS (520, 521). Additionally, gp120 alters endothelial properties and some studies have shown it to be directly cytotoxic to endothelial cells in culture (523). Expression of occludin, ZO-1, and ZO-2 is reduced by gp120. This compromises barrier integrity through the gp120-mediated activation of PKC and subsequent activation of myosin light chain kinase and cytoskeletal rearrangement (523). Gp120 also induces secretion of inflammatory mediators such as IL-1beta, TNF-alpha, and NO from glia and phagocytes which facilitate leukocyte chemotaxis and BBB disruption (524-526).

Nef is a nonstructural HIV-1 protein that is involved in viral budding and is also found in high levels in the brain parenchyma of individuals with HIVE and HAND (19, 21, 22, 527, 528). The expression of nef by astrocytes promotes their release of chemokines, particularly CXCL10 (528) and CCL2 (529). Nef is also directly chemotactic for monocytes (530-532) and, when in the presence of tat, promotes T-cell recruitment (533). In addition, nef induces the release of CCL3 and CCL4 from macrophages, thereby activating resting T-cells, enhancing their adhesion to endothelium, and promoting their chemotaxis (534, 535). The interaction of nef with monocytes/macrophages induces MMP-9 release and subsequent loss of endothelial barrier integrity (536). Several viral proteins that are associated with intact virus or are released into the extracellular space promote leukocyte adherence to brain microvascular beds and their subsequent entry into the brain parenchyma. By altering endothelial tight junction assembly and cytoskeletal arrangement, viral proteins also disrupt the BBB and facilitate the transmigration of leukocytes into the CNS.

5.3. CCL2

The presence of HIV-1 in the CNS promotes cytokine and chemokine dysregulation (537) that can have profound effects on the integrity of the BBB (341, 538, 539). Important sources of CCL2 include endothelial cells (429, 481, 540), and activated or infected astrocytes (429, 501-504, 541), microglia (429, 482, 506), and monocytes/macrophages (431). In cultures of mouseBMVEC, CCL2 alters monolayer permeability. Both occludin and ZO-1 whole cell protein expression, cell junction localization, and cytoskeletal association are decreased in response to CCL2 (539). ZO-2 and claudin-5 are also redistributed away from tight junctions in a CCL2-dependent manner (340, 538) which has been shown to be mediated by the activation of Rho kinase by the GTPase Rho A (340, 341). Rho kinase activity promotes phosphorylation of the cytoplasmic tail of occludin and claudin-5 and promotes disassembly of their protein complexes (338-340). Loss of tight junctions and cellular retraction, in response to CCL2, result in increased monolayer permeability as demonstrated by increased 14C-inulin flux and diminished transendothelial resistance (341, 538). In addition, immunostaining demonstrates formation of gaps between confluent cells, segmental tight junction staining, and loss of the cortical actin ring (341). The destabilization of tight junctions is associated with increased monocyte transmigration and can be prevented with Rho A or Rho kinase inhibitors (339, 542).

Mouse BMVEC also express high levels of MT1-MMP (membrane type 1-matrix metalloproteinase) in response to CCL2 (543). MT1-MMP activates soluble extracellular MMPs which cause proteolytic degradation of occludin and claudin-5. This results in tight junction disassembly and alteration in BBB permeability (544). Thus in concentrations found in HIV-1-infected individuals, CCL2 can have profound effects on the permeability of endothelial monolayers and presumably the BBB. As a consequence of tight junction disassembly and cytoskeletal contraction, transmigration of leukocytes may be expedited.

Our laboratory found significant CCL2-induced changes to the adherens junction in human BMVEC. We find that endothelial junctional integrity is transiently disrupted in response to CCL2. Human BMVEC retract in a Src-dependent manner and this is associated with focal adhesion kinase activation, VE-cadherin and beta-catenin phosphorylation, and disassembly of the adherens junction. PECAM-1 acts as a beta-catenin sink, sequestering beta-catenin from the adherens junction during disassembly. This, along with CCL2-mediated activation of Akt, reduces the proteosomal targeting of beta-catenin, facilitating a rapid reconstitution of the adherens junction (Roberts, T.K., manuscript in preparation).

We also find CCL2 modulates human BMVEC matrix adhesion, migration, and proliferation genes, several of which have not been demonstrated previously to be expressed by BMVEC. Using cDNA microarray analysis of untreated and CCL2-treated human BMVEC, we find CCL2 consistently causes differential changes in the expression of 32 genes on the cDNA array in three independent experiments (Table 5). These include genes coding for signaling molecules, transcription factors, and proteins involved in cell adhesion and migration. Among these genes, astrotactin and ADAM23 are of particular interest. Astrotactin is a neuron cell surface antigen that mediates neuron-astroglial contact (545). Targeted disruption of the astrotactin gene in neurons results in: decreased ability of granule cells to bind glia, decreased rate of cell migration, abnormal granule and Purkinje cell morphology, and poor balance and coordination (546). Astrotactin had not been found previously to be expressed by endothelial cells. We hypothesize that astrotactin may play a role in the interaction of astrocyte foot processes with BMVEC, thereby contributing to BBB integrity. ADAM23 belongs to the ADAM (a disintegrin and metalloprotease) protein family, is mainly expressed in the brain, is involved in cell-to-cell and cell-to-matrix adhesion, and has been reported to be dysregulated in many cancers (547-551). To date, there are few published studies investigating these two proteins. Ongoing studies in our laboratory will determine their role in BBB integrity, infiltration of HIV-1 infected cells into the CNS, and the subsequent pathology characteristic of neuroAIDS.

HIV-1-mediated increase of CNS CCL2 additionally contributes to activation and chemotaxis of cells. CCL2 is associated with increased recruitment of leukocytes into the human CNS (552), into the CNS of SIV-infected macaques (a primate model of human HIV disease processes) (553, 554), and across tissue culture models of the BBB (402, 555). As recruited leukocytes in the CNS are a major source of virus and inflammatory and neurotoxic substances, CCL2 production compounds the neuroinflammatory cascade associated with neuroAIDS. We demonstrated that CCL2 also induces activation and chemotaxis of microglia (506). Microglial nodules are a hallmark finding in the HIV-1-infected brain and form as a result of microglia aggregation in areas of viral infection or inflammation (17, 556). Furthermore, a specific polymorphism in the CCL2 gene increases the neuroinflammatory response to HIV-1 and is associated with a severe clinical phenotype (557). Individuals homozygous for the MCP-1 allele (2578G) are more resistant to HIV-1 infection. A 50% reduction in susceptibility has been reported in adults (557). However once infected, individuals with this genotype produce elevated levels of CCL2, have a more robust recruitment of leukocytes into the CNS, and have a 4.5 fold increased susceptibility for developing HAD (557). The 2578G promoter polymorphism confers efficient transcriptional activity and increases cellular CCL2 production (557). Consequently, serum and CSF levels of CCL2 rise, viral replication is enhanced, and there is increased monocytic infiltration into the CNS (557, 558). CSF CCL2 levels correspond with genotype: homozygous G/G is associated with the highest levels, heterozygous G/A has intermediate CCL2 expression, and A/A demonstrates low CCL2 levels in the CSF (558). Homozygous individuals experience a more progressive and accelerated disease course (557). All of these findings demonstrate that CCL2 induces significant dysregulation of the CNS cellular and metabolic environment.

The complex mechanisms that mediate HIV-1's impact on leukocyte transmigration across the BBB are beginning to be understood. Viral infection, viral protein, cytokine, and chemokine effects on leukocytes, glia, and the BBB all synergize to promote leukocyte transmigrationand loss of barrier integrity. Once HIV-1-infected leukocytes gain entry into the brain, a self-perpetuating neuroinflammatory environment is established. The toxic and excitatory damage to neurons is compounded by continued inflammation and viral shedding. Our laboratory and others demonstrated that tat induces high levels of apoptosis in cultured human neurons (559). The resulting progressive neuronal damage results in neurocognitive impairment in a significant number of individuals. Therapeutics which disrupt the viral life cycle, neuroinflammation, and neuronal stress have been developed. Additional strategies potentially include targeting cell adhesion molecules and chemokines and their receptors with the specific goal of diminishing leukocyte recruitment into the CNS and reducing the viral, inflammatory, and neurotoxic burden.

6. THERAPEUTIC STRATEGIES

6.1. Challenges to treatment

Therapeutic treatment of the HIV-1-infected brain is complicated by many factors (Table 6). HIV-1 enters the CNS early during primary infection and induces chronic toxic and inflammatory damage to neurons,

supporting glia, and the BBB throughout the lifetime of an individual (4, 560-567). However, antiretroviral therapy regimens are generally indicated only after an individual's CD4 T-cell count has fallen below 350 cells/mm3 (568). Thus, clinically silent CNS damage may accumulate for many years before therapy is initiated. It remains unknown if there is a threshold of damage that must be reached before a clinical phenotype is recognized or how the duration of indolent, low level CNS damage affects disease outcome. In addition, it is not known if the implementation of uninterrupted ART or adjuvant therapies at CD4 T-cell levels above 350 cells/mm3 would have an effect on the incidence or progression of HAND.

An obstacle to targeting CNS viral reservoirs and inflammatory processes is the relatively low penetration of most therapeutics across the BBB (Table 7) (569). Several factors contribute to poor CNS bioavailability including: the impermeability of the BBB, the generally poor lipophilicity of most agents used to treat HIV-1 infection, efflux transporters on BBB endothelial cells, and sequestering of drug by competitive binding to protein. The BBB is an effective anatomic barrier to the paracellular diffusion of therapeutic agents into the CNS. Junctional roteins, tight junctions, and adherens junction complexes collectively retard the movement of large polar molecules between endothelial cells. Those molecules which are sufficiently lipophilic may be able to diffuse through the plasma membrane into capillary endothelial cells. However many of these agents, particularly antiretroviral drugs, are actively exported from endothelial cells by the P-glycoprotein drug efflux transporter or by probenecid-sensitive efflux transporters (100, 101, 103, 570-574). Those agents that do gain access to the CNS parenchyma are then susceptible to competitive binding by protein on the cell surface and in the extracellular matrix. Additional P-glycoprotein transporters are found on astrocytes, macrophages, and microglia, and in HIVE, are highly expressed (575, 576). Thus, drug distribution and establishment of an effective CNS concentration may be substantially reduced. The degree of vascularity and distance from vessels in certain anatomical regions additionally contribute to the heterogeneous distribution of pharmaceutics within the CNS. The resulting CNS subtherapeutic concentrations are thought to provide selective pressure for the development of drug-resistant viral strains.

An unpredictable challenge to HIV-1 therapy is the exacerbation of neuroinflammation that results from ART-mediated rebound of leukocyte populations. A consequence of re-establishing CD4 T-cell populations in some immunosuppressed individuals is development of a severe form of leukoencephalopathy called immune reconstitution inflammatory syndrome (IRIS) (577-582). This condition generally occurs after initiation of ART in individuals with CD4 levels below 200 cells/mm3 and is difficult to predict (578, 582). IRIS is thought to result from the robust immune activation that follows restoration of leukocyte populations and is associated with intense monocyte/macrophage and CD8 T-cell CNS infiltration (578-580). The predominant theory is that an exaggerated immune response occurs to latent pathogen antigens present in the CNS, particularly JC virus, varicella zoster, and herpesviruses (582, 583). This results in local demyelination and edema at multiple foci and presents as a leukoencephalopathy that can be rapidly progressive, acutely debilitating, and lethal. Thus, in some individuals, ART-associated immune reconstitution results in extreme immunopathological injury to the CNS.

6.2. Antiretroviral agents

Antiretroviral therapy is the cornerstone of HIV-1 treatment. Several classes of antiretrovirals exist including

agents that interfere with viral entry into the host cell, viral integration into the host genome, viral genome transcription, and viral assembly (Table 7). Combination ART has successfully reduced the incidence of frank dementia among HIV-1-infected individuals (584). Many regain substantial cognitive function, however a considerable amount of cognitive deficit frequently persists (585, 586). Some CSF markers of immune activation such as pleocytosis normalize with ART (560, 587, 588), although continued elevation of neopterin, CCL2, and sTNFR (soluble TNF-alpha receptor) suggests that baseline CNS immunoactivation continues during therapy (589-593). Viral strains resistant to antiretroviral treatment are rapidly emerging and are promoting resurgence in the incidence of HIV-1-associated leukoencephalopathy (594). The prevalence of lesser forms of neurocognitive impairment is expanding among HIV-1-infected individuals, suggesting that suppression of viral replication as a solitary treatment strategy for HIV-1-mediated neurocognitive impairment is insufficient. Thus, adjuvant therapies directed at reducing the effects of HIV-1-mediated pathological processes in the CNS rather than directly targeting viral replication, have been pursued. A few agents have been tested in clinical trials, however no therapy has been shown to alter disease outcome (595). These therapies might have greater success if implemented at the earliest signs of neuroinflammation or neurodegeneration as evidenced by CSF sampling and neuroimaging. Substantial research efforts are focused on identifying targets for adjuvant therapy, designing therapeutics, and testing them in animal models of HIV-1-mediated CNS disease. In general, these agents target one of two different HIV-1-mediated disease processes: neuroinflammation or neurotoxicity.

6.3. Immunomodulatory and neuroprotective agents

Several compounds targeted at reducing CNS immune activation and protecting neurons from toxic insults have been developed (Table 8). The rationale for using immunomodulatory agents as adjuvant therapy in neurocognitively impaired individuals is that reducing neuroinflammation should slow the entry of infected leukocytes into the brain, diminish alterations in BBB permeability, reduce production of neurotoxic mediators, maintain homeostatic functioning of astrocytes, and cumulatively, reduce neuronal injury and loss. The goal of using neuroprotective agents is to reduce the CNS neurotoxic burden and to provide opportunity for neuronal repair. The ultimate goal is that the use of immunomodulators and neuroprotective agents, as adjuvant therapy to antiretrovirals, will slow the progression of eurodegeneration that is seen with HIV-1 infection. Several compounds have undergone placebo-controlled phase-I and phase-II clinical trials in individuals diagnosed with HAND. None of these agents has yet to be of clinical benefit.

6.4. Targeting leukocyte transmigration

Currently, there are no directed therapies available to treat HAND. Reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors, fusion inhibitors, and CCR5 antagonists all target a specific stage in the lifecycle of HIV-1. As such, viral entry, replication, integration, assembly, and release can be reduced. Those agents with favorable BBB penetration can affect the viral load in the CNS. By reducing peripheral viral load, the percentage of HIV-1-infected monocytes transmigrating into the CNS can also be reduced and further attenuate CNS viral burden. Immunomodulators as adjuvant therapy to ART may also reduce neuroinflammation and neuronal injury. Attenuation of the CNS inflammatory cascade may reduce the toxic burden on neurons and glia and provide opportunity for recovery and repair. Neuroprotective agents may reduce the excitotoxic activity of neurons and glia and the general environment of oxidative stress that exists in the HIV-1-infected CNS. The leukocyte adhesion and

transmigration cascade is a potential additional therapeutic target in the treatment of HIV-1 and prevention and modulation of CNS damage. This therapeutic strategy may provide for selectivity. By targeting specific adhesion molecules, enzymes, and signaling cascades that are specific to leukocyte-BBB interactions, certain leukocytes may be excluded from the CNS, while permitting their trafficking into other tissues. Leukocyte adhesion and transmigration across the CNS involves many different processes and requires a diverse repertoire of participating adhesion molecules, cytokines, chemokines, enzymes, and intracellular signals. As a result, the potential exists for a vast number of therapeutic targets. Much research is still required to define the specific mediators of monocyte and T-lymphocyte entry into the CNS. However some studies have already provided support for pursing leukocyte transmigration biology as a viable therapy for HIV-1 infection and HAND.

Integrins are an attractive candidate for directed therapy, as they are involved in leukocyte adhesion and arrest on the vasculature, formation of the transmigratory cup, homing to and migration through paracellular compartments, transcellular diapedesis, and signaling to tight junction and adherens junction complexes.

Efalizumab and odulimomab are humanized monoclonal antibodies that target the alphaL integrin chain of LFA-1 (alphaLbeta2; CD11a/CD18) and interfere with LFA-1/ICAM-1 interactions. As a result, leukocyte migration is attenuated. Efalizumab has shown success in the treatment of human psoriasis (596-598), while odulimomab has been effectively used in the treatment of graft-vs.-host disease, transplant rejection, renal ischemia-reperfusion injury, and atopic dermatitis in animal models (599-601). Despite its therapeutic benefit, Efalizumab was voluntarily withdrawn from the U.S. market by Genentech between April and June of 2009 because of an increased risk for the development of progressive ultifocal leukoencephalopathy (PML) due to reactivation of latent JC virus in some individuals. Anti-CD18 monoclonal antibodies directed at the beta2 chain of LFA-1 have failed to show clinical effect. Neither rovelizumab nor erlizumab had therapeutic benefit in phase II clinical trials of ischemia-reperfusion injury after myocardial infarction or stroke, causing them to be excluded from further testing (602, 603). In phase II clinical trials with enlimomab, a monoclonal antibody directed at ICAM-1, a negative effect was found in stroke patients (604). These results underscore the complex role of cell adhesion molecules in leukocyte recruitment during different disease processes and the potential difficulties with using monoclonal antibodies as therapy (605).

Natalizumab is a monoclonal antibody directed against the alpha4 integrin chain/CD49d of VLA-4 (alpha4beta1). By binding VLA-4, natalizumab interferes with VLA-4/VCAM-1 interactions and reduces the TH1 inflammatory response which consists of interferon-gamma-secreting CD4 T-cells, CD8 effector T-cells, and activated monocytes/macrophages (606). Natalizumab has been successfully used in the treatment of active relapsing forms of multiple sclerosis (MS) (607-609) and Crohn's disease (610), but its use is also associated with the development of (PML) in some individuals (611-614). Thus in the context of MS, reducing the trafficking of destructive CD4 cells reduces the inflammatory burden in the CNS and destruction of the myelin sheath. However, impeding recruitment of CD8 cytotoxic lymphocytes may also impair cell-mediated immunity and control of virally-infected cells. Targeting integrins to reduce leukocyte trafficking into the CNS currently has both benefit and risk. It is hoped that future research will identify targets that can selectively impede entry of specific leukocyte subset populations into the CNS.

Chemokines control leukocyte trafficking by interacting with select receptors on specific leukocyte subsets. Thus, targeting specific chemokines and/or their receptors may disrupt leukocyte entry into the CNS. Monocytes characterized as CCR2hi/CX3CR1lo have been identified as an inflammatory subset population, making CCR2 an attractive target for adjuvant therapy (615). CCR2 antagonists showed initial promise in preclinical models of autoimmune disease and human trials are ongoing (616). Similarly, TH1 T-cells preferentially use CXCR3, CXCR6, and CCR5, while TH2 T-cells express high levels of CCR4 and CCR8 (617-621). Such differences in chemokine receptor usage may provide an opportunity to target specific T-cell populations during transmigration. The risk to these therapies is that of effective immunosuppression in an already immunocompromised host and the potential for accelerating opportunistic infection and tumor-related pathology. However, targeting specific leukocytes and/or specific vascular beds based on proteomic profiling remains an attractive area of research.

Mutant chemokines may be an additional strategy for therapeutically targeting inflammation. Several chemokine derivatives have been shown to be effective at reducing leukocyte recruitment both in vitro and in vivo. A variant of CCL5 termed 44AANA47-RANTES with abrogated glycosaminoglycan (GAG) binding properties (622) inhibits peritoneal recruitment of leukocytes in response to RANTES and thioglycollate (623, 624). In the MOG (myelin oligodendrocyte glycoprotein) EAE (experimental autoimmune encephalitis) murine model of MS, 44AANA47-RANTES treatment resulted in delayed disease onset, reduced disease score, and reduction in axonal loss and demyelination area (625). This chemokine derivative does not form the oligomeric structures that are associated with RANTES chemotactic activity (626), enhancement of HIV-1 infection (627), and CCR5-mediated cellular apoptosis (628). 44AANA47-RANTES was shown to dissociate RANTES oligomers into heterodimers, rendering the chemokine physiologically inactive (623). A CCL2 derivative called P8A-MCP-1 is an obligate monomer (629) which may be able to displace wild type CCL2 from endothelial GAGs (625). In vivo, P8A-MCP-1 reduces leukocyte recruitment in response to CCL2, prevents leukocyte adhesion to BMVEC, and attenuates disease symptoms in MOG-induced EAE (624, 630). This suggests that inhibiting chemokine binding to cellular or matrix GAGs may be a viable strategy for disrupting chemokine gradients and attenuating inflammation. Using either mutant chemokines with altered binding properties or small molecule inhibitors which displace chemokines from their GAG anchors or disrupt receptor binding may potentially reduce the chemotactic signals that drive leukocytes into the CNS. Specific targeting of CCL2, a chemokine that remains elevated in the CSF despite ART, may be of particular interest as adjuvant therapy in HIV-1 infection to treat and/or prevent neurological sequelae. However, the kinetics of blocking CCL2 may be critical to its efficacy in reducing neuroinflammation, as our laboratory showed that CCL2 inhibits tat-induced neuronal apoptosis when co-administered with tat (631).

Combinatorial therapy which targets several adhesion molecules and/or chemokine receptors on specific leukocyte populations and/or on specific vascular beds may selectively interfere with leukocyte transmigration into specific tissues. Agents designed to disrupt the formation of specific chemokine gradients at distinct anatomical sites may further provide selective inhibition of leukocyte entry into the CNS. A combinatorial approach to therapy that includes viral suppression, immunomodulation, neuroprotection, and selective interference of leukocyte transmigration may ultimately reduce the neurodegenerative pathology associated with HIV-1 infection.

7. SUMMARY AND PERSPECTIVE

Leukocyte transmigration into the CNS is a well coordinated, tightly regulated process. While much has been learned about the complex interplay of adhesion molecules, soluble factors, and junctional proteins on both the leukocyte and endothelium that regulate this process, a more complete understanding of these molecular mechanisms and the impact of HIV-1 infection on the process is necessary to develop more effective interventional strategies to limit the consequences of neuroinflammation and CNS HIV-1 infection.

The chronic HIV-1-mediated toxic and inflammatory insult on the CNS, combined with ART-associated toxicities, normal aging, and comorbid disease processes, are likely to substantially increase the prevalence of HIV-1-associated neurological impairment (632-634). Current ART treatments are ineffective at eliminating viral reservoirs and neuroinflammation. Thus, therapies targeted at reducing CNS inflammation, cellular activation, and neurodegeneration have the potential of reducing CNS manifestations and improving the quality of life of individuals living with HIV-1.

Currently, no specific guidelines exist for treating HIV-1-associated CNS complications. An important question that will need to be answered is when to administer adjuvant therapy. HIV-1-mediated CNS damage begins early in the disease process. However, ART regimens are generally prescribed after CD4 T-cell titers reach a certain low level. It is unknown whether adjuvant therapy will show prophylactic benefit and be recommended for prescription at time of HIV-1 diagnosis. It is also unknown whether therapeutic adjuvants will improve cognition and the quality of life for those already experiencing HAND. It is difficult to predict what toxicities might develop in response to long-term treatment with adjuvants and what drug interactions might emerge. A comprehensive approach to treating HIV-1 infection that targets each component of the disease process may provide untold benefit.

8. ACKNOWLEDGEMENT

Toni Kay Roberts and Clarisa Michelle Buckner contributed equally to this article. This work was supported by National Institute of Mental Health grants MH083497 and MH05679 to JWB, National Institute of Drug Abuse grant DA025567 to JWB, National Institute of Health Neuropathology Training grant NS07098 to CMB, UNCF/Merck Graduate Science Dissertation Fellowship to CMB, NIH Ruth L. Kirschstein National Research Service Award Individual Fellowship to TKR, AECOM MSTP Training Grant to TKR, and by NIH Centers for AIDS Research (CFAR AI051519) to all.

9. REFERENCES

1. I. Bechmann, J. Priller, A. Kovac, M. Bontert, T. Wehner, F. F. Klett, J. Bohsung, M. Stuschke, U. Dirnagl and R. Nitsch: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci, 14(10), 1651-8 (2001)
doi:10.1046/j.0953-816x.2001.01793.x
PMid:11860459

2. I. Bechmann, E. Kwidzinski, A. D. Kovac, E. Simburger, T. Horvath, U. Gimsa, U. Dirnagl, J. Priller and R. Nitsch: Turnover of rat brain perivascular cells. Exp Neurol, 168(2), 242-9 (2001)
doi:10.1006/exnr.2000.7618
PMid:11259112

3. S. Koenig, H. E. Gendelman, J. M. Orenstein, M. C. Dal Canto, G. H. Pezeshkpour, M. Yungbluth, F. Janotta, A. Aksamit, M. A. Martin and A. S. Fauci: Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science, 233(4768), 1089-93 (1986)
doi:10.1126/science.3016903
PMid:3016903

4. L. E. Davis, B. L. Hjelle, V. E. Miller, D. L. Palmer, A. L. Llewellyn, T. L. Merlin, S. A. Young, R. G. Mills, W. Wachsman and C. A. Wiley: Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology, 42(9), 1736-9 (1992)

5. W. F. Hickey and H. Kimura: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science, 239(4837), 290-2 (1988)
doi:10.1126/science.3276004
PMid:3276004

6. J. Priller, A. Flugel, T. Wehner, M. Boentert, C. A. Haas, M. Prinz, F. Fernandez-Klett, K. Prass, I. Bechmann, B. A. de Boer, M. Frotscher, G. W. Kreutzberg, D. A. Persons and U. Dirnagl: Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med, 7(12), 1356-61 (2001)
doi:10.1038/nm1201-1356
PMid:11726978

7. A. Mildner, H. Schmidt, M. Nitsche, D. Merkler, U. K. Hanisch, M. Mack, M. Heikenwalder, W. Bruck, J. Priller and M. Prinz: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci, 10(12), 1544-53 (2007)
doi:10.1038/nn2015
PMid:18026096

8. W. F. Hickey, K. Vass and H. Lassmann: Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol, 51(3), 246-56 (1992)
doi:10.1097/00005072-199205000-00002
PMid:1583531

9. P. Genis, M. Jett, E. W. Bernton, T. Boyle, H. A. Gelbard, K. Dzenko, R. W. Keane, L. Resnick, Y. Mizrachi, D. J. Volsky and et al.: Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med, 176(6), 1703-18 (1992)
doi:10.1084/jem.176.6.1703
PMid:1460427    PMCid:2119464

10. X. Luo, K. A. Carlson, V. Wojna, R. Mayo, T. M. Biskup, J. Stoner, J. Anderson, H. E. Gendelman and L. M. Melendez: Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. Neurology, 60(12), 1931-7 (2003)

11. B. J. Brew, M. Rosenblum, K. Cronin and R. W. Price: AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol, 38(4), 563-70 (1995)
doi:10.1002/ana.410380404
PMid:7574452

12. K. Takahashi, S. L. Wesselingh, D. E. Griffin, J. C. McArthur, R. T. Johnson and J. D. Glass: Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol, 39(6), 705-11 (1996)
doi:10.1002/ana.410390606
PMid:8651642

13. W. R. Tyor, J. D. Glass, J. W. Griffin, P. S. Becker, J. C. McArthur, L. Bezman and D. E. Griffin: Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol, 31(4), 349-60 (1992)
doi:10.1002/ana.410310402
PMid:1586135

14. C. A. Wiley, R. D. Schrier, J. A. Nelson, P. W. Lampert and M. B. Oldstone: Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A, 83(18), 7089-93 (1986)
doi:10.1073/pnas.83.18.7089

15. R. Vazeux, N. Brousse, A. Jarry, D. Henin, C. Marche, C. Vedrenne, J. Mikol, M. Wolff, C. Michon, W. Rozenbaum and et al.: AIDS subacute encephalitis. Identification of HIV-infected cells. Am J Pathol, 126(3), 403-10 (1987)

16. M. H. Stoler, T. A. Eskin, S. Benn, R. C. Angerer and L. M. Angerer: Human T-cell lymphotropic virus type III infection of the central nervous system. A preliminary in situ analysis. JAMA, 256(17), 2360-4 (1986)
doi:10.1001/jama.256.17.2360
PMid:3639953

17. D. H. Gabuzda, D. D. Ho, S. M. de la Monte, M. S. Hirsch, T. R. Rota and R. A. Sobel: Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol, 20(3), 289-95 (1986)
doi:10.1002/ana.410200304
PMid:3532930

18. K. Kure, W. D. Lyman, K. M. Weidenheim and D. W. Dickson: Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method. Am J Pathol, 136(5), 1085-92 (1990)

19. C. Tornatore, R. Chandra, J. R. Berger and E. O. Major: HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology, 44(3 Pt 1), 481-7 (1994)

20. K. Conant, C. Tornatore, W. Atwood, K. Meyers, R. Traub and E. O. Major: In vivo and in vitro infection of the astrocyte by HIV-1. Adv Neuroimmunol, 4(3), 287-9 (1994)
doi:10.1016/S0960-5428(06)80269-X
PMid:7874397

21. C. Tornatore, K. Meyers, W. Atwood, K. Conant and E. Major: Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol, 68(1), 93-102 (1994)

22. Y. Saito, L. R. Sharer, L. G. Epstein, J. Michaels, M. Mintz, M. Louder, K. Golding, T. A. Cvetkovich and B. M. Blumberg: Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology, 44(3 Pt 1), 474-81 (1994)

23. M. Neumann, B. K. Felber, A. Kleinschmidt, B. Froese, V. Erfle, G. N. Pavlakis and R. Brack-Werner: Restriction of human immunodeficiency virus type 1 production in a human astrocytoma cell line is associated with a cellular block in Rev function. J Virol, 69(4), 2159-67 (1995)

24. H. S. Nottet, M. Jett, C. R. Flanagan, Q. H. Zhai, Y. Persidsky, A. Rizzino, E. W. Bernton, P. Genis, T. Baldwin, J. Schwartz and et al.: A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol, 154(7), 3567-81 (1995)

25. E. Vicenzi, M. Alfano, S. Ghezzi, A. Gatti, F. Veglia, A. Lazzarin, S. Sozzani, A. Mantovani and G. Poli: Divergent regulation of HIV-1 replication in PBMC of infected individuals by CC chemokines: suppression by RANTES, MIP-1alpha, and MCP-3, and enhancement by MCP-1. J Leukoc Biol, 68(3), 405-12 (2000)

26. N. Janabi, M. Di Stefano, C. Wallon, C. Hery, F. Chiodi and M. Tardieu: Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: effect of IFNgamma, IL1beta, and TNFalpha on differentiation and chemokine production in glial cells. Glia, 23(4), 304-15 (1998)
doi:10.1002/(SICI)1098-1136(199808)23:4<304::AID-GLIA3>3.0.CO;2-2
PMid:9671961

doi:10.1002/(SICI)1098-1136(199808)23:4<304::AID-GLIA3>3.3.CO;2-2
PMid:9671961

27. S. T. Butera, B. D. Roberts and T. M. Folks: Regulation of HIV-1 expression by cytokine networks in a CD4+ model of chronic infection. J Immunol, 150(2), 625-34 (1993)

28. S. M. Fine, R. A. Angel, S. W. Perry, L. G. Epstein, J. D. Rothstein, S. Dewhurst and H. A. Gelbard: Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem, 271(26), 15303-6 (1996)
doi:10.1074/jbc.271.26.15303
PMid:8663435

29. K. Zhang, G. A. McQuibban, C. Silva, G. S. Butler, J. B. Johnston, J. Holden, I. Clark-Lewis, C. M. Overall and C. Power: HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci, 6(10), 1064-71 (2003)
doi:10.1038/nn1127
PMid:14502291

30. H. K. Patton, Z. H. Zhou, J. K. Bubien, E. N. Benveniste and D. J. Benos: gp120-induced alterations of human astrocyte function: Na(+)/H(+) exchange, K(+) conductance, and glutamate flux. Am J Physiol Cell Physiol, 279(3), C700-8 (2000)

31. Z. Wang, O. Pekarskaya, M. Bencheikh, W. Chao, H. A. Gelbard, A. Ghorpade, J. D. Rothstein and D. J. Volsky: Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology, 312(1), 60-73 (2003)
doi:10.1016/S0042-6822(03)00181-8
PMid:12890621

32. Y. Persidsky, M. Stins, D. Way, M. H. Witte, M. Weinand, K. S. Kim, P. Bock, H. E. Gendelman and M. Fiala: A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J Immunol, 158(7), 3499-510 (1997)

33. C. Power, P. A. Kong, T. O. Crawford, S. Wesselingh, J. D. Glass, J. C. McArthur and B. D. Trapp: Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol, 34(3), 339-50 (1993)
doi:10.1002/ana.410340307
PMid:7689819

34. E. Masliah, R. K. Heaton, T. D. Marcotte, R. J. Ellis, C. A. Wiley, M. Mallory, C. L. Achim, J. A. McCutchan, J. A. Nelson, J. H. Atkinson and I. Grant: Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol, 42(6), 963-72 (1997)

35. B. Giometto, S. F. An, M. Groves, T. Scaravilli, J. F. Geddes, R. Miller, B. Tavolato, A. A. Beckett and F. Scaravilli: Accumulation of beta-amyloid precursor protein in HIV encephalitis: relationship with neuropsychological abnormalities. Ann Neurol, 42(1), 34-40 (1997)
doi:10.1002/ana.410420108
PMid:9225683

36. M. Schmidbauer, M. Huemer, S. Cristina, G. R. Trabattoni and H. Budka: Morphological spectrum, distribution and clinical correlation of white matter lesions in AIDS brains. Neuropathol Appl Neurobiol, 18(5), 489-501 (1992)
doi:10.1111/j.1365-2990.1992.tb00816.x
PMid:1454139

37. B. A. Navia, E. S. Cho, C. K. Petito and R. W. Price: The AIDS dementia complex: II. Neuropathology. Ann Neurol, 19(6), 525-35 (1986)
doi:10.1002/ana.410190603
PMid:3014994

doi:10.1002/ana.410190602
PMid:3729308

38. F. Gray, M. C. Lescs, C. Keohane, F. Paraire, B. Marc, M. Durigon and R. Gherardi: Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol, 51(2), 177-85 (1992)

39. J. A. Munoz-Moreno, C. R. Fumaz, M. J. Ferrer, A. Prats, E. Negredo, M. Garolera, N. Perez-Alvarez, J. Molto, G. Gomez and B. Clotet: Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Res Hum Retroviruses, 24(10), 1301-7 (2008)
doi:10.1089/aid.2007.0310
PMid:18844464

40. R. K. Heaton, I. Grant, N. Butters, D. A. White, D. Kirson, J. H. Atkinson, J. A. McCutchan, M. J. Taylor, M. D. Kelly, R. J. Ellis and et al.: The HNRC 500--neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc, 1(3), 231-51 (1995)
doi:10.1017/S1355617700000230
PMid:9375218

41. I. Grant, J. H. Atkinson, J. R. Hesselink, C. J. Kennedy, D. D. Richman, S. A. Spector and J. A. McCutchan: Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med, 107(6), 828-36 (1987)

42. R. Ellis, D. Langford and E. Masliah: HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci, 8(1), 33-44 (2007)
doi:10.1038/nrn2040
PMid:17180161

43. L. Chang, P. L. Lee, C. T. Yiannoutsos, T. Ernst, C. M. Marra, T. Richards, D. Kolson, G. Schifitto, J. G. Jarvik, E. N. Miller, R. Lenkinski, G. Gonzalez and B. A. Navia: A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage, 23(4), 1336-47 (2004)
doi:10.1016/j.neuroimage.2004.07.067
PMid:15589098

44. W. H. Adler, P. V. Baskar, F. J. Chrest, B. Dorsey-Cooper, R. A. Winchurch and J. E. Nagel: HIV infection and aging: mechanisms to explain the accelerated rate of progression in the older patient. Mech Ageing Dev, 96(1-3), 137-55 (1997)
doi:10.1016/S0047-6374(97)01888-5
PMid:9223117

45. S. Ferro and I. E. Salit: HIV infection in patients over 55 years of age. J Acquir Immune Defic Syndr, 5(4), 348-53 (1992)

46. V. Valcour, M. R. Watters, A. E. Williams, N. Sacktor, A. McMurtray and C. Shikuma: Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol, 14(5), 362-7 (2008)
doi:10.1080/13550280802216494
PMid:18989814

47. V. G. Valcour, C. M. Shikuma, B. T. Shiramizu, A. E. Williams, M. R. Watters, P. W. Poff, J. S. Grove, O. A. Selnes and N. C. Sacktor: Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr, 38(1), 31-6 (2005)
doi:10.1097/00126334-200501010-00006

48. M. Cherner, S. Letendre, R. K. Heaton, J. Durelle, J. Marquie-Beck, B. Gragg and I. Grant: Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 1343-7 (2005)

49. S. L. Letendre, M. Cherner, R. J. Ellis, J. Marquie-Beck, B. Gragg, T. Marcotte, R. K. Heaton, J. A. McCutchan and I. Grant: The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: biological correlates of disease. AIDS, 19 Suppl 3, S72-8 (2005)
doi:10.1097/01.aids.0000192073.18691.ff
PMid:16251831

50. S. Letendre, A. D. Paulino, E. Rockenstein, A. Adame, L. Crews, M. Cherner, R. Heaton, R. Ellis, I. P. Everall, I. Grant and E. Masliah: Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis, 196(3), 361-70 (2007)
doi:10.1086/519285
PMid:17597450

51. M. M. Esiri, S. C. Biddolph and C. S. Morris: Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry, 65(1), 29-33 (1998)
doi:10.1136/jnnp.65.1.29

52. M. Nebuloni, A. Pellegrinelli, A. Ferri, S. Bonetto, R. Boldorini, L. Vago, M. P. Grassi and G. Costanzi: Beta amyloid precursor protein and patterns of HIV p24 immunohistochemistry in different brain areas of AIDS patients. AIDS, 15(5), 571-5 (2001)
doi:10.1097/00002030-200103300-00005
PMid:11316993

53. E. H. Corder, K. Robertson, L. Lannfelt, N. Bogdanovic, G. Eggertsen, J. Wilkins and C. Hall: HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med, 4(10), 1182-4 (1998)
doi:10.1038/2677
PMid:9771753

54. W. M. Wojtowicz, M. Farzan, J. L. Joyal, K. Carter, G. J. Babcock, D. I. Israel, J. Sodroski and T. Mirzabekov: Stimulation of enveloped virus infection by beta-amyloid fibrils. J Biol Chem, 277(38), 35019-24 (2002)
doi:10.1074/jbc.M203518200
PMid:12119288

55. A. Pfefferbaum, M. J. Rosenbloom, E. Adalsteinsson and E. V. Sullivan: Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain, 130(Pt 1), 48-64 (2007)

56. A. Nath, W. F. Maragos, M. J. Avison, F. A. Schmitt and J. R. Berger: Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol, 7(1), 66-71 (2001)
doi:10.1080/135502801300069737
PMid:11519485

57. A. K. Balla, H. W. Lischner, R. J. Pomerantz and O. Bagasra: Human studies on alcohol and susceptibility to HIV infection. Alcohol, 11(2), 99-103 (1994)
doi:10.1016/0741-8329(94)90050-7
PMid:8204208

58. S. Kramer-Hammerle, I. Rothenaigner, H. Wolff, J. E. Bell and R. Brack-Werner: Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res, 111(2), 194-213 (2005)
doi:10.1016/j.virusres.2005.04.009
PMid:15885841

59. H. Adle-Biassette, F. Chretien, L. Wingertsmann, C. Hery, T. Ereau, F. Scaravilli, M. Tardieu and F. Gray: Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol, 25(2), 123-33 (1999)
doi:10.1046/j.1365-2990.1999.00167.x
PMid:10216000

60. J. D. Glass, H. Fedor, S. L. Wesselingh and J. C. McArthur: Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol, 38(5), 755-62 (1995)
doi:10.1002/ana.410380510
PMid:7486867

61. R. T. Johnson, J. D. Glass, J. C. McArthur and B. W. Chesebro: Quantitation of human immunodeficiency virus in brains of demented and nondemented patients with acquired immunodeficiency syndrome. Ann Neurol, 39(3), 392-5 (1996)
doi:10.1002/ana.410390319
PMid:8602761

62. J. Fenstermacher, P. Gross, N. Sposito, V. Acuff, S. Pettersen and K. Gruber: Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci, 529, 21-30 (1988)
doi:10.1111/j.1749-6632.1988.tb51416.x
PMid:3395069

63. M. Sixt, B. Engelhardt, F. Pausch, R. Hallmann, O. Wendler and L. M. Sorokin: Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol, 153(5), 933-46 (2001)
doi:10.1083/jcb.153.5.933
PMid:11381080    PMCid:2174323

64. H. P. Haring, B. S. Akamine, R. Habermann, J. A. Koziol and G. J. Del Zoppo: Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol, 55(2), 236-45 (1996)
doi:10.1097/00005072-199602000-00012
PMid:8786382

65. P. L. McGeer, S. G. Zhu and S. Dedhar: Immunostaining of human brain capillaries by antibodies to very late antigens. J Neuroimmunol, 26(3), 213-8 (1990)
doi:10.1016/0165-5728(90)90003-6
PMid:1689743

66. M. Tian, C. Jacobson, S. H. Gee, K. P. Campbell, S. Carbonetto and M. Jucker: Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci, 8(12), 2739-47 (1996)
doi:10.1111/j.1460-9568.1996.tb01568.x
PMid:8996823

67. G. F. Hamann, Y. Okada, R. Fitridge and G. J. del Zoppo: Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke, 26(11), 2120-6 (1995)

68. M. Tagaya, H. P. Haring, I. Stuiver, S. Wagner, T. Abumiya, J. Lucero, P. Lee, B. R. Copeland, D. Seiffert and G. J. del Zoppo: Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab, 21(7), 835-46 (2001)
doi:10.1097/00004647-200107000-00009

69. E. H. Tran, K. Hoekstra, N. van Rooijen, C. D. Dijkstra and T. Owens: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol, 161(7), 3767-75 (1998)

70. M. Walther, A. Popratiloff, N. Lachnit, N. Hofmann, M. Streppel, O. Guntinas-Lichius, W. F. Neiss and D. N. Angelov: Exogenous antigen containing perivascular phagocytes induce a non-encephalitogenic extravasation of primed lymphocytes. J Neuroimmunol, 117(1-2), 30-42 (2001)
doi:10.1016/S0165-5728(01)00302-2
PMid:11431002

71. S. Agrawal, P. Anderson, M. Durbeej, N. van Rooijen, F. Ivars, G. Opdenakker and L. M. Sorokin: Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med, 203(4), 1007-19 (2006)
doi:10.1084/jem.20051342
PMid:16585265    PMCid:2118280

72. H. Toft-Hansen, R. Buist, X. J. Sun, A. Schellenberg, J. Peeling and T. Owens: Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol, 177(10), 7242-9 (2006)

73. C. L. Willis, C. J. Garwood and D. E. Ray: A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience, 150(2), 498-509 (2007)
doi:10.1016/j.neuroscience.2007.09.023
PMid:17945430

74. R. Balabanov, R. Washington, J. Wagnerova and P. Dore-Duffy: CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res, 52(2), 127-42 (1996)
doi:10.1006/mvre.1996.0049
PMid:8901442

75. R. Bandopadhyay, C. Orte, J. G. Lawrenson, A. R. Reid, S. De Silva and G. Allt: Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol, 30(1), 35-44 (2001)
doi:10.1023/A:1011965307612
PMid:11577244

76. J. Kunz, D. Krause, M. Kremer and R. Dermietzel: The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N. J Neurochem, 62(6), 2375-86 (1994)

77. M. Tagami, Y. Nara, A. Kubota, H. Fujino and Y. Yamori: Ultrastructural changes in cerebral pericytes and astrocytes of stroke-prone spontaneously hypertensive rats. Stroke, 21(7), 1064-71 (1990)

78. S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima and T. Terasaki: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem, 89(2), 503-13 (2004)
doi:10.1111/j.1471-4159.2004.02343.x
PMid:15056293

79. Z. Cohen, G. Molinatti and E. Hamel: Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab, 17(8), 894-904 (1997)
doi:10.1097/00004647-199708000-00008

80. E. Ben-Menachem, B. B. Johansson and T. H. Svensson: Increased vulnerability of the blood-brain barrier to acute hypertension following depletion of brain noradrenaline. J Neural Transm, 53(2-3), 159-67 (1982)
doi:10.1007/BF01243407
PMid:6804601

81. Z. Cohen, M. Ehret, M. Maitre and E. Hamel: Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels. Neuroscience, 66(3), 555-69 (1995)
doi:10.1016/0306-4522(94)00625-F
PMid:7644020

82. H. S. Sharma, Y. Olsson and P. K. Dey: Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res, 517(1-2), 215-23 (1990)
doi:10.1016/0006-8993(90)91029-G
PMid:2375992

83. E. Vaucher and E. Hamel: Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J Neurosci, 15(11), 7427-41 (1995)

84. E. Vaucher, X. K. Tong, N. Cholet, S. Lantin and E. Hamel: GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J Comp Neurol, 421(2), 161-71 (2000)
doi:10.1002/(SICI)1096-9861(20000529)421:2<161::AID-CNE3>3.3.CO;2-6
PMid:10813779

doi:10.1002/(SICI)1096-9861(20000529)421:2<161::AID-CNE3>3.0.CO;2-F
PMid:10813779

85. K. Wosik, R. Cayrol, A. Dodelet-Devillers, F. Berthelet, M. Bernard, R. Moumdjian, A. Bouthillier, T. L. Reudelhuber and A. Prat: Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci, 27(34), 9032-42 (2007)
doi:10.1523/JNEUROSCI.2088-07.2007
PMid:17715340

86. M. Ramsauer, D. Krause and R. Dermietzel: Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J, 16(10), 1274-6 (2002)

87. K. Sobue, N. Yamamoto, K. Yoneda, M. E. Hodgson, K. Yamashiro, N. Tsuruoka, T. Tsuda, H. Katsuya, Y. Miura, K. Asai and T. Kato: Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res, 35(2), 155-64 (1999)
doi:10.1016/S0168-0102(99)00079-6
PMid:10616919

88. Y. Igarashi, H. Utsumi, H. Chiba, Y. Yamada-Sasamori, H. Tobioka, Y. Kamimura, K. Furuuchi, Y. Kokai, T. Nakagawa, M. Mori and N. Sawada: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun, 261(1), 108-12 (1999
doi:10.1006/bbrc.1999.0992
PMid:10405331

89. J. Neuhaus, W. Risau and H. Wolburg: Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann N Y Acad Sci, 633, 578-80 (1991)
doi:10.1111/j.1749-6632.1991.tb15667.x
PMid:1789585

90. K. Maxwell, J. A. Berliner and P. A. Cancilla: Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res, 410(2), 309-14 (1987)
doi:10.1016/0006-8993(87)90329-5
PMid:2885071

91. R. C. Janzer and M. C. Raff: Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325(6101), 253-7 (1987)
doi:10.1038/325253a0
PMid:3543687

92. Y. Hayashi, M. Nomura, S. Yamagishi, S. Harada, J. Yamashita and H. Yamamoto: Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1), 13-26 (1997)
doi:10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.3.CO;2-E
PMid:8989564

doi:10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.0.CO;2-B
PMid:8989564

93. L. L. Rubin, K. Barbu, F. Bard, C. Cannon, D. E. Hall, H. Horner, M. Janatpour, C. Liaw, K. Manning, J. Morales and et al.: Differentiation of brain endothelial cells in cell culture. Ann N Y Acad Sci, 633, 420-5 (1991)
doi:10.1111/j.1749-6632.1991.tb15631.x
PMid:1665033

94. J. H. Tao-Cheng, Z. Nagy and M. W. Brightman: Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci, 7(10), 3293-9 (1987)

95. H. Kobayashi, M. S. Magnoni, S. Govoni, F. Izumi, A. Wada and M. Trabucchi: Neuronal control of brain microvessel function. Experientia, 41(4), 427-34 (1985)
doi:10.1007/BF01966140
PMid:2580734

96. T. S. Reese and M. J. Karnovsky: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol, 34(1), 207-17 (1967)
doi:10.1083/jcb.34.1.207
PMid:6033532    PMCid:2107213

97. R. Sedlakova, R. R. Shivers and R. F. Del Maestro: Ultrastructure of the blood-brain barrier in the rabbit. J Submicrosc Cytol Pathol, 31(1), 149-61 (1999)

98. C. Schulze and J. A. Firth: Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J Cell Sci, 104 (Pt 3), 773-82 (1993)

99. C. Chu, J. Y. Li, R. J. Boado and W. M. Pardridge: Blood-brain barrier genomics and cloning of a novel organic anion transporter. J Cereb Blood Flow Metab, 28(2), 291-301 (2008)
doi:10.1038/sj.jcbfm.9600538

100. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele and et al.: Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 77(4), 491-502 (1994)
doi:10.1016/0092-8674(94)90212-7
PMid:7910522

101. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed and J. R. Bertino: Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A, 86(2), 695-8 (1989)
doi:10.1073/pnas.86.2.695

102. A. Soontornmalai, M. L. Vlaming and J. M. Fritschy: Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood-brain barrier. Neuroscience, 138(1), 159-69 (2006)
doi:10.1016/j.neuroscience.2005.11.011
PMid:16361063

103. Y. Zhang, H. Han, W. F. Elmquist and D. W. Miller: Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res, 876(1-2), 148-53 (2000)
doi:10.1016/S0006-8993(00)02628-7
PMid:10973603

104. P. Breedveld, D. Pluim, G. Cipriani, P. Wielinga, O. van Tellingen, A. H. Schinkel and J. H. Schellens: The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res, 65(7), 2577-82 (2005)
doi:10.1158/0008-5472.CAN-04-2416
PMid:15805252

105. H. Kusuhara, H. Suzuki, M. Naito, T. Tsuruo and Y. Sugiyama: Characterization of efflux transport of organic anions in a mouse brain capillary endothelial cell line. J Pharmacol Exp Ther, 285(3), 1260-5 (1998)

106. W. A. Banks, A. J. Kastin and C. A. Ehrensing: Endogenous peptide Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) is transported from the brain to the blood by peptide transport system-1. J Neurosci Res, 35(6), 690-5 (1993)
doi:10.1002/jnr.490350611
PMid:8105102

107. J. B. Fishman, J. B. Rubin, J. V. Handrahan, J. R. Connor and R. E. Fine: Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res, 18(2), 299-304 (1987)
doi:10.1002/jnr.490180206
PMid:3694713

108. K. R. Duffy and W. M. Pardridge: Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res, 420(1), 32-8 (1987)
doi:10.1016/0006-8993(87)90236-8
PMid:3315116

109. K. R. Duffy, W. M. Pardridge and R. G. Rosenfeld: Human blood-brain barrier insulin-like growth factor receptor. Metabolism, 37(2), 136-40 (1988)
doi:10.1016/S0026-0495(98)90007-5
PMid:2963191

110. W. A. Banks, A. J. Kastin, W. Huang, J. B. Jaspan and L. M. Maness: Leptin enters the brain by a saturable system independent of insulin. Peptides, 17(2), 305-11 (1996)
doi:10.1016/0196-9781(96)00025-3
PMid:8801538

111. W. M. Pardridge, R. J. Boado and C. R. Farrell: Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem, 265(29), 18035-40 (1990)

112. R. J. Boado and W. M. Pardridge: The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochem Biophys Res Commun, 166(1), 174-9 (1990)
doi:10.1016/0006-291X(90)91927-K
PMid:2302200

113. W. M. Pardridge, J. Eisenberg and J. Yang: Human blood-brain barrier insulin receptor. J Neurochem, 44(6), 1771-8 (1985)
doi:10.1111/j.1471-4159.1985.tb07167.x
PMid:2859355

114. I. Bechmann, J. Goldmann, A. D. Kovac, E. Kwidzinski, E. Simburger, F. Naftolin, U. Dirnagl, R. Nitsch and J. Priller: Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J, 19(6), 647-9 (2005)

115. R. Ladeby, M. Wirenfeldt, D. Garcia-Ovejero, C. Fenger, L. Dissing-Olesen, I. Dalmau and B. Finsen: Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev, 48(2), 196-206 (2005)
doi:10.1016/j.brainresrev.2004.12.009
PMid:15850658

116. A. A. Babcock, W. A. Kuziel, S. Rivest and T. Owens: Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci, 23(21), 7922-30 (2003)

117. L. G. Ellies, M. Sperandio, G. H. Underhill, J. Yousif, M. Smith, J. J. Priatel, G. S. Kansas, K. Ley and J. D. Marth: Sialyltransferase specificity in selectin ligand formation. Blood, 100(10), 3618-25 (2002)
doi:10.1182/blood-2002-04-1007
PMid:12393657

118. P. Maly, A. Thall, B. Petryniak, C. E. Rogers, P. L. Smith, R. M. Marks, R. J. Kelly, K. M. Gersten, G. Cheng, T. L. Saunders, S. A. Camper, R. T. Camphausen, F. X. Sullivan, Y. Isogai, O. Hindsgaul, U. H. von Andrian and J. B. Lowe: The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell, 86(4), 643-53 (1996)
doi:10.1016/S0092-8674(00)80137-3
PMid:8752218

119. M. L. Phillips, E. Nudelman, F. C. Gaeta, M. Perez, A. K. Singhal, S. Hakomori and J. C. Paulson: ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science, 250(4984), 1130-2 (1990)
doi:10.1126/science.1701274
PMid:1701274

120. R. Bonfanti, B. C. Furie, B. Furie and D. D. Wagner: PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood, 73(5), 1109-12 (1989)

121. R. P. McEver, J. H. Beckstead, K. L. Moore, L. Marshall-Carlson and D. F. Bainton: GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest, 84(1), 92-9 (1989)
doi:10.1172/JCI114175
PMid:2472431    PMCid:303957

122. K. L. Moore, K. D. Patel, R. E. Bruehl, F. Li, D. A. Johnson, H. S. Lichenstein, R. D. Cummings, D. F. Bainton and R. P. McEver: P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol, 128(4), 661-71 (1995)
doi:10.1083/jcb.128.4.661
PMid:7532174    PMCid:2199883

123. D. Asa, L. Raycroft, L. Ma, P. A. Aeed, P. S. Kaytes, A. P. Elhammer and J. G. Geng: The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J Biol Chem, 270(19), 11662-70 (1995)
doi:10.1074/jbc.270.19.11662
PMid:7538120

124. Z. Laszik, P. J. Jansen, R. D. Cummings, T. F. Tedder, R. P. McEver and K. L. Moore: P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood, 88(8), 3010-21 (1996)

125. M. Tiemeyer, S. J. Swiedler, M. Ishihara, M. Moreland, H. Schweingruber, P. Hirtzer and B. K. Brandley: Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A, 88(4), 1138-42 (1991)
doi:10.1073/pnas.88.4.1138

126. J. B. Lowe, L. M. Stoolman, R. P. Nair, R. D. Larsen, T. L. Berhend and R. M. Marks: ELAM-1--dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell, 63(3), 475-84 (1990)
doi:10.1016/0092-8674(90)90444-J
PMid:1699667

127. G. M. Venturi, L. Tu, T. Kadono, A. I. Khan, Y. Fujimoto, P. Oshel, C. B. Bock, A. S. Miller, R. M. Albrecht, P. Kubes, D. A. Steeber and T. F. Tedder: Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity, 19(5), 713-24 (2003)
doi:10.1016/S1074-7613(03)00295-4
PMid:14614858

128. Y. Li, J. Brazzell, A. Herrera and B. Walcheck: ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding. Blood, 108(7), 2275-9 (2006)
doi:10.1182/blood-2006-02-005827
PMid:16735599    PMCid:1895557

129. M. Gomez-Gaviro, M. Dominguez-Luis, J. Canchado, J. Calafat, H. Janssen, E. Lara-Pezzi, A. Fourie, A. Tugores, A. Valenzuela-Fernandez, F. Mollinedo, F. Sanchez-Madrid and F. Diaz-Gonzalez: Expression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding. J Immunol, 178(12), 8053-63 (2007)

130. F. Li, H. P. Erickson, J. A. James, K. L. Moore, R. D. Cummings and R. P. McEver: Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J Biol Chem, 271(11), 6342-8 (1996)
doi:10.1074/jbc.271.11.6342
PMid:8626430

131. R. Alon, D. A. Hammer and T. A. Springer: Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature, 374(6522), 539-42 (1995)
doi:10.1038/374539a0
PMid:7535385

132. B. T. Marshall, M. Long, J. W. Piper, T. Yago, R. P. McEver and C. Zhu: Direct observation of catch bonds involving cell-adhesion molecules. Nature, 423(6936), 190-3 (2003)
doi:10.1038/nature01605
PMid:12736689

133. A. S. Weyrich, T. M. McIntyre, R. P. McEver, S. M. Prescott and G. A. Zimmerman: Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest, 95(5), 2297-303 (1995)
doi:10.1172/JCI117921
PMid:7537762    PMCid:295843

134. K. E. Norman, K. L. Moore, R. P. McEver and K. Ley: Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood, 86(12), 4417-21 (1995)

135. S. Ushiyama, T. M. Laue, K. L. Moore, H. P. Erickson and R. P. McEver: Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J Biol Chem, 268(20), 15229-37 (1993)

136. E. J. Kunkel and K. Ley: Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ Res, 79(6), 1196-204 (1996)

137. L. Wang, M. Fuster, P. Sriramarao and J. D. Esko: Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol, 6(9), 902-10 (2005)
doi:10.1038/ni1233
PMid:16056228

138. J. F. Bazan, K. B. Bacon, G. Hardiman, W. Wang, K. Soo, D. Rossi, D. R. Greaves, A. Zlotnik and T. J. Schall: A new class of membrane-bound chemokine with a CX3C motif. Nature, 385(6617), 640-4 (1997)
doi:10.1038/385640a0
PMid:9024663

139. L. Osborn, C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso and R. Lobb: Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59(6), 1203-11 (1989)
doi:10.1016/0092-8674(89)90775-7
PMid:2688898

140. N. Oppenheimer-Marks, L. S. Davis, D. T. Bogue, J. Ramberg and P. E. Lipsky: Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol, 147(9), 2913-21 (1991)

141. M. J. Elices, L. Osborn, Y. Takada, C. Crouse, S. Luhowskyj, M. E. Hemler and R. R. Lobb: VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60(4), 577-84 (1990)
doi:10.1016/0092-8674(90)90661-W
PMid:1689216

142. C. Berlin, R. F. Bargatze, J. J. Campbell, U. H. von Andrian, M. C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen and E. C. Butcher: alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell, 80(3), 413-22 (1995)
doi:10.1016/0092-8674(95)90491-3
PMid:7532110

143. S. M. Kerfoot and P. Kubes: Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol, 169(2), 1000-6 (2002)

144. P. Vajkoczy, M. Laschinger and B. Engelhardt: Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest, 108(4), 557-65 (2001)
doi:10.1172/JCI200112440
PMid:11518729    PMCid:209399

doi:10.1172/JCI12440
PMid:11518729    PMCid:209399

145. J. R. Chan, S. J. Hyduk and M. I. Cybulsky: Chemoattractants induce a rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med, 193(10), 1149-58 (2001)
doi:10.1084/jem.193.10.1149
PMid:11369786    PMCid:2193331

146. A. Chigaev, G. Zwartz, S. W. Graves, D. C. Dwyer, H. Tsuji, T. D. Foutz, B. S. Edwards, E. R. Prossnitz, R. S. Larson and L. A. Sklar: Alpha4beta1 integrin affinity changes govern cell adhesion. J Biol Chem, 278(40), 38174-82 (2003)
doi:10.1074/jbc.M210472200
PMid:12844491

147. M. A. Arnaout, B. Mahalingam and J. P. Xiong: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol, 21, 381-410 (2005)
doi:10.1146/annurev.cellbio.21.090704.151217
PMid:16212500

148. S. J. Hyduk, J. Oh, H. Xiao, M. Chen and M. I. Cybulsky: Paxillin selectively associates with constitutive and chemoattractant-induced high-affinity alpha4beta1 integrins: implications for integrin signaling. Blood, 104(9), 2818-24 (2004)
doi:10.1182/blood-2003-12-4402
PMid:15242880

149. N. Nishiya, W. B. Kiosses, J. Han and M. H. Ginsberg: An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol, 7(4), 343-52 (2005)
doi:10.1038/ncb1234
PMid:15793570

150. L. E. Goldfinger, J. Han, W. B. Kiosses, A. K. Howe and M. H. Ginsberg: Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration. J Cell Biol, 162(4), 731-41 (2003)
doi:10.1083/jcb.200304031
PMid:12913113    PMCid:2173787

151. C. C. Feral, D. M. Rose, J. Han, N. Fox, G. J. Silverman, K. Kaushansky and M. H. Ginsberg: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest, 116(3), 715-23 (2006)
doi:10.1172/JCI26091
PMid:16470243    PMCid:1361348

152. S. van Wetering, N. van den Berk, J. D. van Buul, F. P. Mul, I. Lommerse, R. Mous, J. P. ten Klooster, J. J. Zwaginga and P. L. Hordijk: VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol, 285(2), C343-52 (2003)

153. J. D. van Buul, E. C. Anthony, M. Fernandez-Borja, K. Burridge and P. L. Hordijk: Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating beta-catenin tyrosine phosphorylation. J Biol Chem, 280(22), 21129-36 (2005)
doi:10.1074/jbc.M500898200
PMid:15778498

154. J. D. van Buul, C. Voermans, V. van den Berg, E. C. Anthony, F. P. Mul, S. van Wetering, C. E. van der Schoot and P. L. Hordijk: Migration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin. J Immunol, 168(2), 588-96 (2002)

155. J. Huot, F. Houle, F. Marceau and J. Landry: Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res, 80(3), 383-92 (1997)

156. F. E. Nwariaku, J. Chang, X. Zhu, Z. Liu, S. L. Duffy, N. H. Halaihel, L. Terada and R. H. Turnage: The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability. Shock, 18(1), 82-5 (2002)
doi:10.1097/00024382-200207000-00015
PMid:12095140

157. H. E. Matheny, T. L. Deem and J. M. Cook-Mills: Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J Immunol, 164(12), 6550-9 (2000)

158. S. van Wetering, J. D. van Buul, S. Quik, F. P. Mul, E. C. Anthony, J. P. ten Klooster, J. G. Collard and P. L. Hordijk: Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci, 115(Pt 9), 1837-46 (2002)

159. S. D. Marlin and T. A. Springer: Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell, 51(5), 813-9 (1987)
doi:10.1016/0092-8674(87)90104-8
PMid:3315233

160. D. E. Staunton, S. D. Marlin, C. Stratowa, M. L. Dustin and T. A. Springer: Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell, 52(6), 925-33 (1988)
doi:10.1016/0092-8674(88)90434-5
PMid:3349522

161. D. E. Staunton, M. L. Dustin and T. A. Springer: Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature, 339(6219), 61-4 (1989)
doi:10.1038/339061a0
PMid:2497351

162. M. L. Dustin, R. Rothlein, A. K. Bhan, C. A. Dinarello and T. A. Springer: Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol, 137(1), 245-54 (1986)

163. B. C. Chesnutt, D. F. Smith, N. A. Raffler, M. L. Smith, E. J. White and K. Ley: Induction of LFA-1-dependent neutrophil rolling on ICAM-1 by engagement of E-selectin. Microcirculation, 13(2), 99-109 (2006)
doi:10.1080/10739680500466376
PMid:16459323

164. A. Salas, M. Shimaoka, U. Phan, M. Kim and T. A. Springer: Transition from rolling to firm adhesion can be mimicked by extension of integrin alphaLbeta2 in an intermediate affinity state. J Biol Chem, 281(16), 10876-82 (2006)
doi:10.1074/jbc.M512472200
PMid:16505487    PMCid:1599852

165. G. Constantin, M. Majeed, C. Giagulli, L. Piccio, J. Y. Kim, E. C. Butcher and C. Laudanna: Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity, 13(6), 759-69 (2000)
doi:10.1016/S1074-7613(00)00074-1
PMid:11163192

166. R. Shamri, V. Grabovsky, J. M. Gauguet, S. Feigelson, E. Manevich, W. Kolanus, M. K. Robinson, D. E. Staunton, U. H. von Andrian and R. Alon: Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol, 6(5), 497-506 (2005)
doi:10.1038/ni1194
PMid:15834409

167. D. D'Ambrosio, C. Albanesi, R. Lang, G. Girolomoni, F. Sinigaglia and C. Laudanna: Quantitative differences in chemokine receptor engagement generate diversity in integrin-dependent lymphocyte adhesion. J Immunol, 169(5), 2303-12 (2002)

168. C. Giagulli, E. Scarpini, L. Ottoboni, S. Narumiya, E. C. Butcher, G. Constantin and C. Laudanna: RhoA and zeta PKC control distinct modalities of LFA-1 activation by chemokines: critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity, 20(1), 25-35 (2004)
doi:10.1016/S1074-7613(03)00350-9
PMid:14738762

169. C. Giagulli, L. Ottoboni, E. Caveggion, B. Rossi, C. Lowell, G. Constantin, C. Laudanna and G. Berton: The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol, 177(1), 604-11 (2006)

170. M. Kim, C. V. Carman and T. A. Springer: Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science, 301(5640), 1720-5 (2003)
doi:10.1126/science.1084174
PMid:14500982

171. S. Tadokoro, S. J. Shattil, K. Eto, V. Tai, R. C. Liddington, J. M. de Pereda, M. H. Ginsberg and D. A. Calderwood: Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302(5642), 103-6 (2003)
doi:10.1126/science.1086652
PMid:14526080

172. K. L. Wegener, A. W. Partridge, J. Han, A. R. Pickford, R. C. Liddington, M. H. Ginsberg and I. D. Campbell: Structural basis of integrin activation by talin. Cell, 128(1), 171-82 (2007)
doi:10.1016/j.cell.2006.10.048
PMid:17218263

173. Y. Reiss, G. Hoch, U. Deutsch and B. Engelhardt: T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol, 28(10), 3086-99 (1998)
doi:10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.3.CO;2-Q
PMid:9808177

doi:10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.0.CO;2-Z
PMid:9808177

174. A. C. Issekutz, D. Rowter and T. A. Springer: Role of ICAM-1 and ICAM-2 and alternate CD11/CD18 ligands in neutrophil transendothelial migration. J Leukoc Biol, 65(1), 117-26 (1999)

175. M. S. Diamond, D. E. Staunton, A. R. de Fougerolles, S. A. Stacker, J. Garcia-Aguilar, M. L. Hibbs and T. A. Springer: ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol, 111(6 Pt 2), 3129-39 (1990)
doi:10.1083/jcb.111.6.3129
PMid:1980124    PMCid:2116396

176. R. Li, J. Xie, C. Kantor, V. Koistinen, D. C. Altieri, P. Nortamo and C. G. Gahmberg: A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c/CD18. J Cell Biol, 129(4), 1143-53 (1995)
doi:10.1083/jcb.129.4.1143
PMid:7744962    PMCid:2120492

177. J. Xie, R. Li, P. Kotovuori, C. Vermot-Desroches, J. Wijdenes, M. A. Arnaout, P. Nortamo and C. G. Gahmberg: Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J Immunol, 155(7), 3619-28 (1995)

178. K. Kurzinger, T. Reynolds, R. N. Germain, D. Davignon, E. Martz and T. A. Springer: A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J Immunol, 127(2), 596-602 (1981)

179. F. Sanchez-Madrid, J. A. Nagy, E. Robbins, P. Simon and T. A. Springer: A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med, 158(6), 1785-1803 (1983)
doi:10.1084/jem.158.6.1785
PMid:6196430    PMCid:2187169

180. K. A. Ault and T. A. Springer: Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells. J Immunol, 126(1), 359-64 (1981)

181. T. Springer, G. Galfre, D. S. Secher and C. Milstein: Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol, 9(4), 301-6 (1979)
doi:10.1002/eji.1830090410
PMid:89034

182. S. K. Shaw, S. Ma, M. B. Kim, R. M. Rao, C. U. Hartman, R. M. Froio, L. Yang, T. Jones, Y. Liu, A. Nusrat, C. A. Parkos and F. W. Luscinskas: Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. J Exp Med, 200(12), 1571-80 (2004)
doi:10.1084/jem.20040965
PMid:15611287    PMCid:2212000

183. J. D. van Buul, M. J. Allingham, T. Samson, J. Meller, E. Boulter, R. Garcia-Mata and K. Burridge: RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol, 178(7), 1279-93 (2007)
doi:10.1083/jcb.200612053
PMid:17875742    PMCid:2064659

184. O. Barreiro, M. Yanez-Mo, J. M. Serrador, M. C. Montoya, M. Vicente-Manzanares, R. Tejedor, H. Furthmayr and F. Sanchez-Madrid: Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol, 157(7), 1233-45 (2002)
doi:10.1083/jcb.200112126
PMid:12082081    PMCid:2173557

185. C. V. Carman and T. A. Springer: A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol, 167(2), 377-88 (2004)
doi:10.1083/jcb.200404129
PMid:15504916    PMCid:2172560

186. L. Yang, R. M. Froio, T. E. Sciuto, A. M. Dvorak, R. Alon and F. W. Luscinskas: ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood, 106(2), 584-92 (2005)
doi:10.1182/blood-2004-12-4942
PMid:15811956    PMCid:1635241

187. O. Durieu-Trautmann, N. Chaverot, S. Cazaubon, A. D. Strosberg and P. O. Couraud: Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem, 269(17), 12536-40 (1994)

188. R. W. Tilghman and R. L. Hoover: The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J, 16(10), 1257-9 (2002)

189. L. Yang, J. R. Kowalski, P. Yacono, M. Bajmoczi, S. K. Shaw, R. M. Froio, D. E. Golan, S. M. Thomas and F. W. Luscinskas: Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J Immunol, 177(9), 6440-9 (2006)

190. L. Yang, J. R. Kowalski, X. Zhan, S. M. Thomas and F. W. Luscinskas: Endothelial cell cortactin phosphorylation by Src contributes to polymorphonuclear leukocyte transmigration in vitro. Circ Res, 98(3), 394-402 (2006)
doi:10.1161/01.RES.0000201958.59020.1a
PMid:16385081

191. B. Wojciak-Stothard, L. Williams and A. J. Ridley: Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J Cell Biol, 145(6), 1293-307 (1999)
doi:10.1083/jcb.145.6.1293
PMid:10366600    PMCid:2133155

192. R. Cayrol, K. Wosik, J. L. Berard, A. Dodelet-Devillers, I. Ifergan, H. Kebir, A. S. Haqqani, K. Kreymborg, S. Krug, R. Moumdjian, A. Bouthillier, B. Becher, N. Arbour, S. David, D. Stanimirovic and A. Prat: Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol, 9(2), 137-45 (2008)
doi:10.1038/ni1551
PMid:18157132

193. O. Pourquie, C. Corbel, J. P. Le Caer, J. Rossier and N. M. Le Douarin: BEN, a surface glycoprotein of the immunoglobulin superfamily, is expressed in a variety of developing systems. Proc Natl Acad Sci U S A, 89(12), 5261-5 (1992)
doi:10.1073/pnas.89.12.5261

194. M. A. Bowen, D. D. Patel, X. Li, B. Modrell, A. R. Malacko, W. C. Wang, H. Marquardt, M. Neubauer, J. M. Pesando, U. Francke and et al.: Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med, 181(6), 2213-20 (1995)
doi:10.1084/jem.181.6.2213
PMid:7760007    PMCid:2192054

195. A. Masedunskas, J. A. King, F. Tan, R. Cochran, T. Stevens, D. Sviridov and S. F. Ofori-Acquah: Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett, 580(11), 2637-45 (2006)
doi:10.1016/j.febslet.2006.04.013
PMid:16650408

196. G. Cinamon, V. Shinder, R. Shamri and R. Alon: Chemoattractant signals and beta 2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration. J Immunol, 173(12), 7282-91 (2004)

197. M. R. Zocchi, E. Ferrero, B. E. Leone, P. Rovere, E. Bianchi, E. Toninelli and R. Pardi: CD31/PECAM-1-driven chemokine-independent transmigration of human T lymphocytes. Eur J Immunol, 26(4), 759-67 (1996)
doi:10.1002/eji.1830260406
PMid:8625965

198. G. J. Randolph and M. B. Furie: A soluble gradient of endogenous monocyte chemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J Immunol, 155(7), 3610-8 (1995)

199. A. R. Burns, D. C. Walker, E. S. Brown, L. T. Thurmon, R. A. Bowden, C. R. Keese, S. I. Simon, M. L. Entman and C. W. Smith: Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol, 159(6), 2893-903 (1997)

200. O. Lou, P. Alcaide, F. W. Luscinskas and W. A. Muller: CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol, 178(2), 1136-43 (2007)

201. A. R. Schenkel, Z. Mamdouh and W. A. Muller: Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol, 5(4), 393-400 (2004)
doi:10.1038/ni1051
PMid:15021878

202. M. Phillipson, B. Heit, P. Colarusso, L. Liu, C. M. Ballantyne and P. Kubes: Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med, 203(12), 2569-75 (2006)
doi:10.1084/jem.20060925
PMid:17116736    PMCid:2118150

203. Y. Tanaka, S. M. Albelda, K. J. Horgan, G. A. van Seventer, Y. Shimizu, W. Newman, J. Hallam, P. J. Newman, C. A. Buck and S. Shaw: CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med, 176(1), 245-53 (1992)
doi:10.1084/jem.176.1.245
PMid:1377224    PMCid:2119293

204. H. Stockinger, S. J. Gadd, R. Eher, O. Majdic, W. Schreiber, W. Kasinrerk, B. Strass, E. Schnabl and W. Knapp: Molecular characterization and functional analysis of the leukocyte surface protein CD31. J Immunol, 145(11), 3889-97 (1990)

205. J. Durig, A. Giese, W. Schulz-Schaeffer, C. Rosenthal, U. Schmucker, J. Bieschke, U. Duhrsen and H. A. Kretzschmar: Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol, 108(3), 488-95 (2000)
doi:10.1046/j.1365-2141.2000.01881.x
PMid:10759704

206. M. W. Wakelin, M. J. Sanz, A. Dewar, S. M. Albelda, S. W. Larkin, N. Boughton-Smith, T. J. Williams and S. Nourshargh: An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med, 184(1), 229-39 (1996)
doi:10.1084/jem.184.1.229
PMid:8691137    PMCid:2192663

207. R. D. Thompson, M. W. Wakelin, K. Y. Larbi, A. Dewar, G. Asimakopoulos, M. A. Horton, M. T. Nakada and S. Nourshargh: Divergent effects of platelet-endothelial cell adhesion molecule-1 and beta 3 integrin blockade on leukocyte transmigration in vivo. J Immunol, 165(1), 426-34 (2000)

208. L. H. Romer, N. V. McLean, H. C. Yan, M. Daise, J. Sun and H. M. DeLisser: IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J Immunol, 154(12), 6582-92 (1995)

209. Y. Rival, A. Del Maschio, M. J. Rabiet, E. Dejana and A. Duperray: Inhibition of platelet endothelial cell adhesion molecule-1 synthesis and leukocyte transmigration in endothelial cells by the combined action of TNF-alpha and IFN-gamma. J Immunol, 157(3), 1233-41 (1996)

210. R. J. Stewart, T. S. Kashour and P. A. Marsden: Vascular endothelial platelet endothelial adhesion molecule-1 (PECAM-1) expression is decreased by TNF-alpha and IFN-gamma. Evidence for cytokine-induced destabilization of messenger ribonucleic acid transcripts in bovine endothelial cells. J Immunol, 156(3), 1221-8 (1996)

211. L. A. Williams, I. Martin-Padura, E. Dejana, N. Hogg and D. L. Simmons: Identification and characterisation of human Junctional Adhesion Molecule (JAM). Mol Immunol, 36(17), 1175-88 (1999)
doi:10.1016/S0161-5890(99)00122-4
PMid:10698320

212. F. Malergue, F. Galland, F. Martin, P. Mansuelle, M. Aurrand-Lions and P. Naquet: A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol, 35(17), 1111-9 (1998)
doi:10.1016/S0161-5890(98)00102-3
PMid:10395200

213. I. Martin-Padura, S. Lostaglio, M. Schneemann, L. Williams, M. Romano, P. Fruscella, C. Panzeri, A. Stoppacciaro, L. Ruco, A. Villa, D. Simmons and E. Dejana: Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol, 142(1), 117-27 (1998)
doi:10.1083/jcb.142.1.117
PMid:9660867    PMCid:2133024

214. Y. Liu, A. Nusrat, F. J. Schnell, T. A. Reaves, S. Walsh, M. Pochet and C. A. Parkos: Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci, 113 (Pt 13), 2363-74 (2000)

215. M. Padden, S. Leech, B. Craig, J. Kirk, B. Brankin and S. McQuaid: Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology. Acta Neuropathol, 113(2), 177-86 (2007)
doi:10.1007/s00401-006-0145-x
PMid:17024496

216. M. Aurrand-Lions, C. Johnson-Leger, C. Wong, L. Du Pasquier and B. A. Imhof: Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood, 98(13), 3699-707 (2001)
doi:10.1182/blood.V98.13.3699
PMid:11739175

217. K. J. Mandell, I. C. McCall and C. A. Parkos: Involvement of the junctional adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial barrier function. J Biol Chem, 279(16), 16254-62 (2004)
doi:10.1074/jbc.M309483200
PMid:14749337

218. G. Bazzoni, O. M. Martinez-Estrada, F. Mueller, P. Nelboeck, G. Schmid, T. Bartfai, E. Dejana and M. Brockhaus: Homophilic interaction of junctional adhesion molecule. J Biol Chem, 275(40), 30970-6 (2000)
doi:10.1074/jbc.M003946200
PMid:10913139

219. D. Kostrewa, M. Brockhaus, A. D'Arcy, G. E. Dale, P. Nelboeck, G. Schmid, F. Mueller, G. Bazzoni, E. Dejana, T. Bartfai, F. K. Winkler and M. Hennig: X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J, 20(16), 4391-8 (2001)
doi:10.1093/emboj/20.16.4391
PMid:11500366    PMCid:125582

220. G. Bazzoni, O. M. Martinez-Estrada, F. Orsenigo, M. Cordenonsi, S. Citi and E. Dejana: Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem, 275(27), 20520-6 (2000)
doi:10.1074/jbc.M905251199
PMid:10877843

221. M. Itoh, H. Sasaki, M. Furuse, H. Ozaki, T. Kita and S. Tsukita: Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol, 154(3), 491-7 (2001)
doi:10.1083/jcb.200103047
PMid:11489913    PMCid:2196413

222. K. Ebnet, C. U. Schulz, M. K. Meyer Zu Brickwedde, G. G. Pendl and D. Vestweber: Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem, 275(36), 27979-88 (2000)

223. K. Ebnet, A. Suzuki, Y. Horikoshi, T. Hirose, M. K. Meyer Zu Brickwedde, S. Ohno and D. Vestweber: The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J, 20(14), 3738-48 (2001)
doi:10.1093/emboj/20.14.3738
PMid:11447115    PMCid:125258

224. A. S. Fanning, T. Y. Ma and J. M. Anderson: Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J, 16(13), 1835-7 (2002)

225. B. Boettner, E. E. Govek, J. Cross and L. Van Aelst: The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci U S A, 97(16), 9064-9 (2000)
doi:10.1073/pnas.97.16.9064

226. G. Ostermann, K. S. Weber, A. Zernecke, A. Schroder and C. Weber: JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol, 3(2), 151-8 (2002)
doi:10.1038/ni755
PMid:11812992

227. H. Ozaki, K. Ishii, H. Horiuchi, H. Arai, T. Kawamoto, K. Okawa, A. Iwamatsu and T. Kita: Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol, 163(2), 553-7 (1999)

228. L. Fraemohs, R. R. Koenen, G. Ostermann, B. Heinemann and C. Weber: The functional interaction of the beta 2 integrin lymphocyte function-associated antigen-1 with junctional adhesion molecule-A is mediated by the I domain. J Immunol, 173(10), 6259-64 (2004)

229. E. P. Wojcikiewicz, R. R. Koenen, L. Fraemohs, J. Minkiewicz, H. Azad, C. Weber and V. T. Moy: LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys J (2008)

230. A. Del Maschio, A. De Luigi, I. Martin-Padura, M. Brockhaus, T. Bartfai, P. Fruscella, L. Adorini, G. Martino, R. Furlan, M. G. De Simoni and E. Dejana: Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med, 190(9), 1351-6 (1999)
doi:10.1084/jem.190.9.1351
PMid:10544206    PMCid:2195675

231. A. Woodfin, C. A. Reichel, A. Khandoga, M. Corada, M. B. Voisin, C. Scheiermann, D. O. Haskard, E. Dejana, F. Krombach and S. Nourshargh: JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood, 110(6), 1848-56 (2007)
doi:10.1182/blood-2006-09-047431
PMid:17505016

232. A. Zernecke, E. A. Liehn, L. Fraemohs, P. von Hundelshausen, R. R. Koenen, M. Corada, E. Dejana and C. Weber: Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol, 26(2), e10-3 (2006)
doi:10.1161/01.ATV.0000197852.24529.4f

233. M. Aurrand-Lions, L. Duncan, C. Ballestrem and B. A. Imhof: JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem, 276(4), 2733-41 (2001)
doi:10.1074/jbc.M005458200
PMid:11053409

234. D. Palmeri, A. van Zante, C. C. Huang, S. Hemmerich and S. D. Rosen: Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem, 275(25), 19139-45 (2000)
doi:10.1074/jbc.M003189200
PMid:10779521

235. M. P. Arrate, J. M. Rodriguez, T. M. Tran, T. A. Brock and S. A. Cunningham: Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem, 276(49), 45826-32 (2001)
doi:10.1074/jbc.M105972200
PMid:11590146

236. T. W. Liang, H. H. Chiu, A. Gurney, A. Sidle, D. B. Tumas, P. Schow, J. Foster, T. Klassen, K. Dennis, R. A. DeMarco, T. Pham, G. Frantz and S. Fong: Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol, 168(4), 1618-26 (2002)

237. S. A. Cunningham, J. M. Rodriguez, M. P. Arrate, T. M. Tran and T. A. Brock: JAM2 interacts with alpha4beta1. Facilitation by JAM3. J Biol Chem, 277(31), 27589-92 (2002)
doi:10.1074/jbc.C200331200
PMid:12070135

238. C. A. Johnson-Leger, M. Aurrand-Lions, N. Beltraminelli, N. Fasel and B. A. Imhof: Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood, 100(7), 2479-86 (2002)
doi:10.1182/blood-2001-11-0098
PMid:12239159

239. C. Lamagna, P. Meda, G. Mandicourt, J. Brown, R. J. Gilbert, E. Y. Jones, F. Kiefer, P. Ruga, B. A. Imhof and M. Aurrand-Lions: Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junctional complexes and leukocyte adhesion. Mol Biol Cell, 16(10), 4992-5003 (2005)
doi:10.1091/mbc.E05-04-0310
PMid:16093349    PMCid:1237098

240. V. V. Orlova, M. Economopoulou, F. Lupu, S. Santoso and T. Chavakis: Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med, 203(12), 2703-14 (2006)
doi:10.1084/jem.20051730
PMid:17116731    PMCid:2118160

241. M. Aurrand-Lions, C. Lamagna, J. P. Dangerfield, S. Wang, P. Herrera, S. Nourshargh and B. A. Imhof: Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol, 174(10), 6406-15 (2005)

242. A. Vonlaufen, M. Aurrand-Lions, C. M. Pastor, C. Lamagna, A. Hadengue, B. A. Imhof and J. L. Frossard: The role of junctional adhesion molecule C (JAM-C) in acute pancreatitis. J Pathol, 209(4), 540-8 (2006)
doi:10.1002/path.2007
PMid:16767690

243. B. A. Imhof, C. Zimmerli, G. Gliki, D. Ducrest-Gay, P. Juillard, P. Hammel, R. Adams and M. Aurrand-Lions: Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice. J Pathol, 212(2), 198-208 (2007)
doi:10.1002/path.2163
PMid:17455169

244. R. J. Ludwig, T. M. Zollner, S. Santoso, K. Hardt, J. Gille, H. Baatz, P. S. Johann, J. Pfeffer, H. H. Radeke, M. P. Schon, R. Kaufmann, W. H. Boehncke and M. Podda: Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation. J Invest Dermatol, 125(5), 969-76 (2005)
doi:10.1111/j.0022-202X.2005.23912.x
PMid:16297198

245. P. F. Bradfield, C. Scheiermann, S. Nourshargh, C. Ody, F. W. Luscinskas, G. E. Rainger, G. B. Nash, M. Miljkovic-Licina, M. Aurrand-Lions and B. A. Imhof: JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood, 110(7), 2545-55 (2007)
doi:10.1182/blood-2007-03-078733
PMid:17625065    PMCid:1988941

246. S. Santoso, U. J. Sachs, H. Kroll, M. Linder, A. Ruf, K. T. Preissner and T. Chavakis: The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med, 196(5), 679-91 (2002)
doi:10.1084/jem.20020267
PMid:12208882    PMCid:2194005

247. K. Zen, B. A. Babbin, Y. Liu, J. B. Whelan, A. Nusrat and C. A. Parkos: JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol Biol Cell, 15(8), 3926-37 (2004)
doi:10.1091/mbc.E04-04-0317
PMid:15194813    PMCid:491847

248. T. Chavakis, T. Keiper, R. Matz-Westphal, K. Hersemeyer, U. J. Sachs, P. P. Nawroth, K. T. Preissner and S. Santoso: The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem, 279(53), 55602-8 (2004)
doi:10.1074/jbc.M404676200
PMid:15485832

249. W. A. Muller, C. M. Ratti, S. L. McDonnell and Z. A. Cohn: A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med, 170(2), 399-414 (1989)
doi:10.1084/jem.170.2.399
PMid:2666561    PMCid:2189408

250. P. J. Newman, M. C. Berndt, J. Gorski, G. C. White, 2nd, S. Lyman, C. Paddock and W. A. Muller: PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science, 247(4947), 1219-22 (1990)
doi:10.1126/science.1690453
PMid:1690453

251. W. A. Muller, S. A. Weigl, X. Deng and D. M. Phillips: PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med, 178(2), 449-60 (1993)
doi:10.1084/jem.178.2.449
PMid:8340753    PMCid:2191108

252. A. A. Vaporciyan, H. M. DeLisser, H. C. Yan, Mendiguren, II, S. R. Thom, M. L. Jones, P. A. Ward and S. M. Albelda: Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science, 262(5139), 1580-2 (1993)

253. F. Liao, J. Ali, T. Greene and W. A. Muller: Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med, 185(7), 1349-57 (1997)
doi:10.1084/jem.185.7.1349
PMid:9104821    PMCid:2196259

254. A. R. Schenkel, T. W. Chew and W. A. Muller: Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J Immunol, 173(10), 6403-8 (2004)

255. F. Liao, H. K. Huynh, A. Eiroa, T. Greene, E. Polizzi and W. A. Muller: Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med, 182(5), 1337-43 (1995)
doi:10.1084/jem.182.5.1337
PMid:7595204    PMCid:2192210

256. M. E. Berman, Y. Xie and W. A. Muller: Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J Immunol, 156(4), 1515-24 (1996)

257. M. Christofidou-Solomidou, M. T. Nakada, J. Williams, W. A. Muller and H. M. DeLisser: Neutrophil platelet endothelial cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte extravasation. J Immunol, 158(10), 4872-8 (1997)

258. S. Bogen, J. Pak, M. Garifallou, X. Deng and W. A. Muller: Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J Exp Med, 179(3), 1059-64 (1994)
doi:10.1084/jem.179.3.1059
PMid:8113674    PMCid:2191427

259. N. S. Gandhi, D. R. Coombe and R. L. Mancera: Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 1. Molecular modeling studies. Biochemistry, 47(17), 4851-62 (2008)
doi:10.1021/bi702455e
PMid:18393439

260. J. Sun, J. Williams, H. C. Yan, K. M. Amin, S. M. Albelda and H. M. DeLisser: Platelet endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression. J Biol Chem, 271(31), 18561-70 (1996)
doi:10.1074/jbc.271.31.18561
PMid:8702505

261. Q. H. Sun, H. M. DeLisser, M. M. Zukowski, C. Paddock, S. M. Albelda and P. J. Newman: Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem, 271(19), 11090-8 (1996)
doi:10.1074/jbc.271.19.11090
PMid:8626652

262. J. Dangerfield, K. Y. Larbi, M. T. Huang, A. Dewar and S. Nourshargh: PECAM-1 (CD31) homophilic interaction up-regulates alpha6beta1 on transmigrated neutrophils in vivo and plays a functional role in the ability of alpha6 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med, 196(9), 1201-11 (2002)
doi:10.1084/jem.20020324
PMid:12417630    PMCid:2194111

263. A. Sonnenberg, P. W. Modderman and F. Hogervorst: Laminin receptor on platelets is the integrin VLA-6. Nature, 336(6198), 487-9 (1988)
doi:10.1038/336487a0
PMid:2973567

264. L. Piali, S. M. Albelda, H. S. Baldwin, P. Hammel, R. H. Gisler and B. A. Imhof: Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates beta 2 integrins on lymphokine-activated killer cells. Eur J Immunol, 23(10), 2464-71 (1993)
doi:10.1002/eji.1830231013
PMid:8405046

265. M. E. Berman and W. A. Muller: Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CD11b/CD18). J Immunol, 154(1), 299-307 (1995)

266. Z. Mamdouh, X. Chen, L. M. Pierini, F. R. Maxfield and W. A. Muller: Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature, 421(6924), 748-53 (2003)
doi:10.1038/nature01300
PMid:12610627

267. Z. Mamdouh, G. E. Kreitzer and W. A. Muller: Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. J Exp Med, 205(4), 951-66 (2008)
doi:10.1084/jem.20072328
PMid:18378793    PMCid:2292231

268. B. Dasgupta and W. A. Muller: Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration. Eur J Immunol, 38(12), 3499-3507 (2008)
doi:10.1002/eji.200838605
PMid:18991269

269. A. R. Schenkel, Z. Mamdouh, X. Chen, R. M. Liebman and W. A. Muller: CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol, 3(2), 143-50 (2002)
doi:10.1038/ni749
PMid:11812991

270. G. Bixel, S. Kloep, S. Butz, B. Petri, B. Engelhardt and D. Vestweber: Mouse CD99 participates in T-cell recruitment into inflamed skin. Blood, 104(10), 3205-13 (2004)
doi:10.1182/blood-2004-03-1184
PMid:15280198

271. C. Gelin, F. Aubrit, A. Phalipon, B. Raynal, S. Cole, M. Kaczorek and A. Bernard: The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J, 8(11), 3253-9 (1989)

272. E. M. Dufour, A. Deroche, Y. Bae and W. A. Muller: CD99 is essential for leukocyte diapedesis in vivo. Cell Commun Adhes, 15(4), 351-63 (2008)
doi:10.1080/15419060802442191

273. A. M. Imbert, G. Belaaloui, F. Bardin, C. Tonnelle, M. Lopez and C. Chabannon: CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration. Blood, 108(8), 2578-86 (2006)
doi:10.1182/blood-2005-12-010827
PMid:16825498

274. G. Bernard, V. Raimondi, I. Alberti, M. Pourtein, J. Widjenes, M. Ticchioni and A. Bernard: CD99 (E2) up-regulates alpha4beta1-dependent T cell adhesion to inflamed vascular endothelium under flow conditions. Eur J Immunol, 30(10), 3061-5 (2000)
doi:10.1002/1521-4141(200010)30:10<3061::AID-IMMU3061>3.0.CO;2-M
PMid:11069091

275. J. H. Hahn, M. K. Kim, E. Y. Choi, S. H. Kim, H. W. Sohn, D. I. Ham, D. H. Chung, T. J. Kim, W. J. Lee, C. K. Park, H. J. Ree and S. H. Park: CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol, 159(5), 2250-8 (1997)

276. I. Alberti, G. Bernard, A. K. Rouquette-Jazdanian, C. Pelassy, M. Pourtein, C. Aussel and A. Bernard: CD99 isoforms expression dictates T cell functional outcomes. FASEB J, 16(14), 1946-8 (2002)

277. M. J. Hahn, S. S. Yoon, H. W. Sohn, H. G. Song, S. H. Park and T. J. Kim: Differential activation of MAP kinase family members triggered by CD99 engagement. FEBS Lett, 470(3), 350-4 (2000)
doi:10.1016/S0014-5793(00)01330-2
PMid:10745095

278. N. Reymond, A. M. Imbert, E. Devilard, S. Fabre, C. Chabannon, L. Xerri, C. Farnarier, C. Cantoni, C. Bottino, A. Moretta, P. Dubreuil and M. Lopez: DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med, 199(10), 1331-41 (2004)
doi:10.1084/jem.20032206
PMid:15136589    PMCid:2211807

279. M. Lopez, M. Aoubala, F. Jordier, D. Isnardon, S. Gomez and P. Dubreuil: The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood, 92(12), 4602-11 (1998)

280. S. Mueller and E. Wimmer: Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to alpha(v)beta3 integrin-containing membrane microdomains. J Biol Chem, 278(33), 31251-60 (2003)
doi:10.1074/jbc.M304166200
PMid:12759359

281. K. Satoh-Horikawa, H. Nakanishi, K. Takahashi, M. Miyahara, M. Nishimura, K. Tachibana, A. Mizoguchi and Y. Takai: Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem, 275(14), 10291-9 (2000)
doi:10.1074/jbc.275.14.10291
PMid:10744716

282. K. Takahashi, H. Nakanishi, M. Miyahara, K. Mandai, K. Satoh, A. Satoh, H. Nishioka, J. Aoki, A. Nomoto, A. Mizoguchi and Y. Takai: Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol, 145(3), 539-49 (1999)
doi:10.1083/jcb.145.3.539
PMid:10225955    PMCid:2185068

283. S. Yokoyama, K. Tachibana, H. Nakanishi, Y. Yamamoto, K. Irie, K. Mandai, A. Nagafuchi, M. Monden and Y. Takai: alpha-catenin-independent recruitment of ZO-1 to nectin-based cell-cell adhesion sites through afadin. Mol Biol Cell, 12(6), 1595-609 (2001)

284. A. Fukuhara, K. Irie, A. Yamada, T. Katata, T. Honda, K. Shimizu, H. Nakanishi and Y. Takai: Role of nectin in organization of tight junctions in epithelial cells. Genes Cells, 7(10), 1059-72 (2002)
doi:10.1046/j.1365-2443.2002.00578.x
PMid:12354099

285. A. Fukuhara, K. Irie, H. Nakanishi, K. Takekuni, T. Kawakatsu, W. Ikeda, A. Yamada, T. Katata, T. Honda, T. Sato, K. Shimizu, H. Ozaki, H. Horiuchi, T. Kita and Y. Takai: Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene, 21(50), 7642-55 (2002)
doi:10.1038/sj.onc.1205875
PMid:12400007

286. C. Bottino, R. Castriconi, D. Pende, P. Rivera, M. Nanni, B. Carnemolla, C. Cantoni, J. Grassi, S. Marcenaro, N. Reymond, M. Vitale, L. Moretta, M. Lopez and A. Moretta: Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med, 198(4), 557-67 (2003)
doi:10.1084/jem.20030788
PMid:12913096    PMCid:2194180

287. A. Shibuya, D. Campbell, C. Hannum, H. Yssel, K. Franz-Bacon, T. McClanahan, T. Kitamura, J. Nicholl, G. R. Sutherland, L. L. Lanier and J. H. Phillips: DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity, 4(6), 573-81 (1996)
doi:10.1016/S1074-7613(00)70060-4
PMid:8673704

288. P. Viegas, N. Chaverot, H. Enslen, N. Perriere, P. O. Couraud and S. Cazaubon: Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes. J Cell Sci, 119(Pt 22), 4634-43 (2006)
doi:10.1242/jcs.03222
PMid:17062642

289. M. Moser, R. J. Colello, U. Pott and B. Oesch: Developmental expression of the prion protein gene in glial cells. Neuron, 14(3), 509-17 (1995)
doi:10.1016/0896-6273(95)90307-0
PMid:7695897

290. H. A. Kretzschmar, S. B. Prusiner, L. E. Stowring and S. J. DeArmond: Scrapie prion proteins are synthesized in neurons. Am J Pathol, 122(1), 1-5 (1986)

291. M. A. Deli, S. Sakaguchi, R. Nakaoke, C. S. Abraham, H. Takahata, J. Kopacek, K. Shigematsu, S. Katamine and M. Niwa: PrP fragment 106-126 is toxic to cerebral endothelial cells expressing PrP(C). Neuroreport, 11(17), 3931-6 (2000)
doi:10.1097/00001756-200011270-00064

292. N. R. Cashman, R. Loertscher, J. Nalbantoglu, I. Shaw, R. J. Kascsak, D. C. Bolton and P. E. Bendheim: Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell, 61(1), 185-92 (1990)
doi:10.1016/0092-8674(90)90225-4
PMid:1969332

293. P. A. McBride, P. Eikelenboom, G. Kraal, H. Fraser and M. E. Bruce: PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol, 168(4), 413-8 (1992)
doi:10.1002/path.1711680412
PMid:1362440

294. V. C. Dodelet and N. R. Cashman: Prion protein expression in human leukocyte differentiation. Blood, 91(5), 1556-61 (1998)

295. J. Burthem, B. Urban, A. Pain and D. J. Roberts: The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood, 98(13), 3733-8 (2001)
doi:10.1182/blood.V98.13.3733
PMid:11739179

296. G. Martinez del Hoyo, M. Lopez-Bravo, P. Metharom, C. Ardavin and P. Aucouturier: Prion protein expression by mouse dendritic cells is restricted to the nonplasmacytoid subsets and correlates with the maturation state. J Immunol, 177(9), 6137-42 (2006)

297. R. Li, D. Liu, G. Zanusso, T. Liu, J. D. Fayen, J. H. Huang, R. B. Petersen, P. Gambetti and M. S. Sy: The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol, 207(1), 49-58 (2001)
doi:10.1006/cimm.2000.1751
PMid:11161453

298. C. Hundt, J. M. Peyrin, S. Haik, S. Gauczynski, C. Leucht, R. Rieger, M. L. Riley, J. P. Deslys, D. Dormont, C. I. Lasmezas and S. Weiss: Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J, 20(21), 5876-86 (2001)
doi:10.1093/emboj/20.21.5876
PMid:11689428    PMCid:125289

299. E. Graner, A. F. Mercadante, S. M. Zanata, O. V. Forlenza, A. L. Cabral, S. S. Veiga, M. A. Juliano, R. Roesler, R. Walz, A. Minetti, I. Izquierdo, V. R. Martins and R. R. Brentani: Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res, 76(1), 85-92 (2000)
doi:10.1016/S0169-328X(99)00334-4
PMid:10719218

300. C. Li, P. Wong, T. Pan, F. Xiao, S. Yin, B. Chang, S. C. Kang, J. Ironside and M. S. Sy: Normal cellular prion protein is a ligand of selectins: binding requires Le(X) but is inhibited by sLe(X). Biochem J, 406(2), 333-41 (2007)
doi:10.1042/BJ20061857
PMid:17497959    PMCid:1948967

301. R. Rieger, F. Edenhofer, C. I. Lasmezas and S. Weiss: The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med, 3(12), 1383-8 (1997)
doi:10.1038/nm1297-1383
PMid:9396609

302. P. M. Rudd, T. Endo, C. Colominas, D. Groth, S. F. Wheeler, D. J. Harvey, M. R. Wormald, H. Serban, S. B. Prusiner, A. Kobata and R. A. Dwek: Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A, 96(23), 13044-9 (1999)
doi:10.1073/pnas.96.23.13044

303. M. Ermonval, S. Mouillet-Richard, P. Codogno, O. Kellermann and J. Botti: Evolving views in prion glycosylation: functional and pathological implications. Biochimie, 85(1-2), 33-45 (2003)
doi:10.1016/S0300-9084(03)00040-3
PMid:12765773

304. C. C. Zhang, A. D. Steele, S. Lindquist and H. F. Lodish: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci U S A, 103(7), 2184-9 (2006)
doi:10.1073/pnas.0510577103

305. A. Kubosaki, S. Yusa, Y. Nasu, T. Nishimura, Y. Nakamura, K. Saeki, Y. Matsumoto, S. Itohara and T. Onodera: Distribution of cellular isoform of prion protein in T lymphocytes and bone marrow, analyzed by wild-type and prion protein gene-deficient mice. Biochem Biophys Res Commun, 282(1), 103-7 (2001)
doi:10.1006/bbrc.2001.4538
PMid:11263978

306. J. Bainbridge and K. B. Walker: The normal cellular form of prion protein modulates T cell responses. Immunol Lett, 96(1), 147-50 (2005)
doi:10.1016/j.imlet.2004.08.006
PMid:15585317

307. C. Ballerini, P. Gourdain, V. Bachy, N. Blanchard, E. Levavasseur, S. Gregoire, P. Fontes, P. Aucouturier, C. Hivroz and C. Carnaud: Functional implication of cellular prion protein in antigen-driven interactions between T cells and dendritic cells. J Immunol, 176(12), 7254-62 (2006)

308. C. A. Stuermer, M. F. Langhorst, M. F. Wiechers, D. F. Legler, S. H. Von Hanwehr, A. H. Guse and H. Plattner: PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J, 18(14), 1731-3 (2004)

309. C. J. de Almeida, L. B. Chiarini, J. P. da Silva, E. S. PM, M. A. Martins and R. Linden: The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol, 77(2), 238-46 (2005)

310. M. V. Bennett, L. C. Barrio, T. A. Bargiello, D. C. Spray, E. Hertzberg and J. C. Saez: Gap junctions: new tools, new answers, new questions. Neuron, 6(3), 305-20 (1991)
doi:10.1016/0896-6273(91)90241-Q
PMid:1848077

311. D. A. Goodenough, J. A. Goliger and D. L. Paul: Connexins, connexons, and intercellular communication. Annu Rev Biochem, 65, 475-502 (1996)
doi:10.1146/annurev.bi.65.070196.002355
PMid:8811187

312. J. C. Saez, V. M. Berthoud, A. P. Moreno and D. C. Spray: Gap junctions. Multiplicity of controls in differentiated and undifferentiated cells and possible functional implications. Adv Second Messenger Phosphoprotein Res, 27, 163-98 (1993)

313. E. A. Eugenin, M. C. Branes, J. W. Berman and J. C. Saez: TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol, 170(3), 1320-8 (2003)

314. E. C. Guinan, B. R. Smith, P. F. Davies and J. S. Pober: Cytoplasmic transfer between endothelium and lymphocytes: quantitation by flow cytometry. Am J Pathol, 132(3), 406-9 (1988)

315. C. S. Raine, B. Cannella, A. M. Duijvestijn and A. H. Cross: Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest, 63(4), 476-89 (1990)

316. E. Oviedo-Orta, R. J. Errington and W. H. Evans: Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol Int, 26(3), 253-63 (2002)
doi:10.1006/cbir.2001.0840
PMid:11991653

317. S. J. Bolton, D. C. Anthony and V. H. Perry: Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience, 86(4), 1245-57 (1998)
doi:10.1016/S0306-4522(98)00058-X
PMid:9697130

318. K. M. McCarthy, I. B. Skare, M. C. Stankewich, M. Furuse, S. Tsukita, R. A. Rogers, R. D. Lynch and E. E. Schneeberger: Occludin is a functional component of the tight junction. J Cell Sci, 109 (Pt 9), 2287-98 (1996)

319. V. Wong and B. M. Gumbiner: A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol, 136(2), 399-409 (1997)
doi:10.1083/jcb.136.2.399
PMid:9015310    PMCid:2134825

320. H. Wolburg, K. Wolburg-Buchholz, J. Kraus, G. Rascher-Eggstein, S. Liebner, S. Hamm, F. Duffner, E. H. Grote, W. Risau and B. Engelhardt: Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol, 105(6), 586-92 (2003)

321. T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki, N. Hashimoto, M. Furuse and S. Tsukita: Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 161(3), 653-60 (2003)
doi:10.1083/jcb.200302070
PMid:12743111    PMCid:2172943

322. K. Morita, H. Sasaki, M. Furuse and S. Tsukita: Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol, 147(1), 185-94 (1999)
doi:10.1083/jcb.147.1.185
PMid:10508865    PMCid:2164984

323. M. Furuse, T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura and S. Tsukita: Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 123(6 Pt 2), 1777-88 (1993)
doi:10.1083/jcb.123.6.1777
PMid:8276896    PMCid:2290891

324. M. C. Papadopoulos, S. Saadoun, C. J. Woodrow, D. C. Davies, P. Costa-Martins, R. F. Moss, S. Krishna and B. A. Bell: Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol, 27(5), 384-95 (2001)
doi:10.1046/j.0305-1846.2001.00341.x
PMid:11679090

325. M. Furuse, K. Fujita, T. Hiiragi, K. Fujimoto and S. Tsukita: Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 141(7), 1539-50 (1998)
doi:10.1083/jcb.141.7.1539
PMid:9647647    PMCid:2132999

326. F. Lacaz-Vieira, M. M. Jaeger, P. Farshori and B. Kachar: Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J Membr Biol, 168(3), 289-97 (1999)
doi:10.1007/s002329900518
PMid:10191363

327. M. Furuse, H. Sasaki and S. Tsukita: Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol, 147(4), 891-903 (1999)
doi:10.1083/jcb.147.4.891
PMid:10562289    PMCid:2156154

328. M. Furuse, M. Itoh, T. Hirase, A. Nagafuchi, S. Yonemura and S. Tsukita: Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 127(6 Pt 1), 1617-26 (1994)
doi:10.1083/jcb.127.6.1617
PMid:7798316    PMCid:2120300

329. A. S. Fanning, B. J. Jameson, L. A. Jesaitis and J. M. Anderson: The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem, 273(45), 29745-53 (1998)
doi:10.1074/jbc.273.45.29745
PMid:9792688

330. M. Itoh, M. Furuse, K. Morita, K. Kubota, M. Saitou and S. Tsukita: Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol, 147(6), 1351-63 (1999)
doi:10.1083/jcb.147.6.1351
PMid:10601346    PMCid:2168087

331. S. Citi, H. Sabanay, J. Kendrick-Jones and B. Geiger: Cingulin: characterization and localization. J Cell Sci, 93 (Pt 1), 107-22 (1989)

332. T. Yamamoto, N. Harada, Y. Kawano, S. Taya and K. Kaibuchi: In vivo interaction of AF-6 with activated Ras and ZO-1. Biochem Biophys Res Commun, 259(1), 103-7 (1999)
doi:10.1006/bbrc.1999.0731
PMid:10334923

333. A. Reijerkerk, G. Kooij, S. M. van der Pol, S. Khazen, C. D. Dijkstra and H. E. de Vries: Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J, 20(14), 2550-2 (2006)
doi:10.1096/fj.06-6099fje
PMid:17065217

334. P. Adamson, S. Etienne, P. O. Couraud, V. Calder and J. Greenwood: Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol, 162(5), 2964-73 (1999)

335. S. Etienne, P. Adamson, J. Greenwood, A. D. Strosberg, S. Cazaubon and P. O. Couraud: ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J Immunol, 161(10), 5755-61 (1998)

336. E. Sans, E. Delachanal and A. Duperray: Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol, 166(1), 544-51 (2001)

337. P. W. Thompson, A. M. Randi and A. J. Ridley: Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J Immunol, 169(2), 1007-13 (2002)

338. M. Yamamoto, S. H. Ramirez, S. Sato, T. Kiyota, R. L. Cerny, K. Kaibuchi, Y. Persidsky and T. Ikezu: Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol, 172(2), 521-33 (2008)
doi:10.2353/ajpath.2008.070076
PMid:18187566    PMCid:2312373

339. Y. Persidsky, D. Heilman, J. Haorah, M. Zelivyanskaya, R. Persidsky, G. A. Weber, H. Shimokawa, K. Kaibuchi and T. Ikezu: Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood, 107(12), 4770-80 (2006)
doi:10.1182/blood-2005-11-4721
PMid:16478881    PMCid:1895810

340. S. M. Stamatovic, O. B. Dimitrijevic, R. F. Keep and A. V. Andjelkovic: Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem, 281(13), 8379-88 (2006)
doi:10.1074/jbc.M513122200
PMid:16439355

341. S. M. Stamatovic, R. F. Keep, S. L. Kunkel and A. V. Andjelkovic: Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. J Cell Sci, 116(Pt 22), 4615-28 (2003)
doi:10.1242/jcs.00755
PMid:14576355

342. M. G. Lampugnani, M. Resnati, M. Raiteri, R. Pigott, A. Pisacane, G. Houen, L. P. Ruco and E. Dejana: A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol, 118(6), 1511-22 (1992)
doi:10.1083/jcb.118.6.1511
PMid:1522121    PMCid:2289607

343. S. Suzuki, K. Sano and H. Tanihara: Diversity of the cadherin family: evidence for eight new cadherins in nervous tissue. Cell Regul, 2(4), 261-70 (1991)

344. F. Breviario, L. Caveda, M. Corada, I. Martin-Padura, P. Navarro, J. Golay, M. Introna, D. Gulino, M. G. Lampugnani and E. Dejana: Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol, 15(8), 1229-39 (1995)

345. P. Legrand, S. Bibert, M. Jaquinod, C. Ebel, E. Hewat, F. Vincent, C. Vanbelle, E. Concord, T. Vernet and D. Gulino: Self-assembly of the vascular endothelial cadherin ectodomain in a Ca2+-dependent hexameric structure. J Biol Chem, 276(5), 3581-8 (2001)
doi:10.1074/jbc.M002667200
PMid:11069895

346. S. Bibert, M. Jaquinod, E. Concord, C. Ebel, E. Hewat, C. Vanbelle, P. Legrand, M. Weidenhaupt, T. Vernet and D. Gulino-Debrac: Synergy between extracellular modules of vascular endothelial cadherin promotes homotypic hexameric interactions. J Biol Chem, 277(15), 12790-801 (2002)
doi:10.1074/jbc.M111597200
PMid:11821414

347. B. Zhu, S. Chappuis-Flament, E. Wong, I. E. Jensen, B. M. Gumbiner and D. Leckband: Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys J, 84(6), 4033-42 (2003)
doi:10.1016/S0006-3495(03)75129-7
PMid:12770907    PMCid:1302983

348. E. A. Hewat, C. Durmort, L. Jacquamet, E. Concord and D. Gulino-Debrac: Architecture of the VE-cadherin hexamer. J Mol Biol, 365(3), 744-51 (2007)
doi:10.1016/j.jmb.2006.10.052
PMid:17095015

349. S. Bibert, H. Ayari, D. Riveline, E. Concord, B. Hermant, T. Vernet and D. Gulino-Debrac: Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin. J Biochem, 143(6), 821-32 (2008)
doi:10.1093/jb/mvn035

350. M. G. Lampugnani, M. Corada, L. Caveda, F. Breviario, O. Ayalon, B. Geiger and E. Dejana: The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol, 129(1), 203-17 (1995)
doi:10.1083/jcb.129.1.203
PMid:7698986    PMCid:2120375

351. M. G. Lampugnani, M. Corada, P. Andriopoulou, S. Esser, W. Risau and E. Dejana: Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci, 110 (Pt 17), 2065-77 (1997)

352. S. Iyer, D. M. Ferreri, N. C. DeCocco, F. L. Minnear and P. A. Vincent: VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol, 286(6), L1143-53 (2004)
doi:10.1152/ajplung.00305.2003
PMid:14672921

353. K. A. Knudsen, A. P. Soler, K. R. Johnson and M. J. Wheelock: Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol, 130(1), 67-77 (1995)
doi:10.1083/jcb.130.1.67
PMid:7790378    PMCid:2120515

354. S. K. Shaw, P. S. Bamba, B. N. Perkins and F. W. Luscinskas: Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J Immunol, 167(4), 2323-30 (2001)

355. J. R. Allport, W. A. Muller and F. W. Luscinskas: Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol, 148(1), 203-16 (2000)
doi:10.1083/jcb.148.1.203
PMid:10629229    PMCid:2156206

356. M. J. Allingham, J. D. van Buul and K. Burridge: ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol, 179(6), 4053-64 (2007)

357. A. F. Nottebaum, G. Cagna, M. Winderlich, A. C. Gamp, R. Linnepe, C. Polaschegg, K. Filippova, R. Lyck, B. Engelhardt, O. Kamenyeva, M. G. Bixel, S. Butz and D. Vestweber: VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med, 205(12), 2929-45 (2008)
doi:10.1084/jem.20080406
PMid:19015309

358. R. Nawroth, G. Poell, A. Ranft, S. Kloep, U. Samulowitz, G. Fachinger, M. Golding, D. T. Shima, U. Deutsch and D. Vestweber: VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J, 21(18), 4885-95 (2002)
doi:10.1093/emboj/cdf497
PMid:12234928    PMCid:126293

359. G. Fachinger, U. Deutsch and W. Risau: Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene, 18(43), 5948-53 (1999)
doi:10.1038/sj.onc.1202992
PMid:10557082

360. J. Werr, E. E. Eriksson, P. Hedqvist and L. Lindbom: Engagement of beta2 integrins induces surface expression of beta1 integrin receptors in human neutrophils. J Leukoc Biol, 68(4), 553-60 (2000)

361. M. J. Ignatius, T. H. Large, M. Houde, J. W. Tawil, A. Barton, F. Esch, S. Carbonetto and L. F. Reichardt: Molecular cloning of the rat integrin alpha 1-subunit: a receptor for laminin and collagen. J Cell Biol, 111(2), 709-20 (1990)
doi:10.1083/jcb.111.2.709
PMid:2380249    PMCid:2116196

362. Y. Takada, E. A. Wayner, W. G. Carter and M. E. Hemler: Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem, 37(4), 385-93 (1988)
doi:10.1002/jcb.240370406
PMid:2458366

363. Y. Shimizu, G. A. van Seventer, K. J. Horgan and S. Shaw: Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol, 145(1), 59-67 (1990)

364. W. S. Argraves, S. Suzuki, H. Arai, K. Thompson, M. D. Pierschbacher and E. Ruoslahti: Amino acid sequence of the human fibronectin receptor. J Cell Biol, 105(3), 1183-90 (1987)
doi:10.1083/jcb.105.3.1183
PMid:2958481    PMCid:2114793

365. D. R. Coombe, S. M. Watt and C. R. Parish: Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate. Blood, 84(3), 739-52 (1994)

366. E. Graner, A. F. Mercadante, S. M. Zanata, V. R. Martins, D. G. Jay and R. R. Brentani: Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett, 482(3), 257-60 (2000)
doi:10.1016/S0014-5793(00)02070-6
PMid:11024471

367. S. Ali, S. J. Fritchley, B. T. Chaffey and J. A. Kirby: Contribution of the putative heparan sulfate-binding motif BBXB of RANTES to transendothelial migration. Glycobiology, 12(9), 535-43 (2002)
doi:10.1093/glycob/cwf069
PMid:12213786

368. D. Gilat, R. Hershkoviz, Y. A. Mekori, I. Vlodavsky and O. Lider: Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1 beta. J Immunol, 153(11), 4899-906 (1994)

369. J. M. Whitelock, A. D. Murdoch, R. V. Iozzo and P. A. Underwood: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem, 271(17), 10079-86 (1996)
doi:10.1074/jbc.271.17.10079
PMid:8626565

370. Y. Okada, T. Morodomi, J. J. Enghild, K. Suzuki, A. Yasui, I. Nakanishi, G. Salvesen and H. Nagase: Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem, 194(3), 721-30 (1990)
doi:10.1111/j.1432-1033.1990.tb19462.x
PMid:2269296

371. Y. Okada, Y. Gonoji, K. Naka, K. Tomita, I. Nakanishi, K. Iwata, K. Yamashita and T. Hayakawa: Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem, 267(30), 21712-9 (1992)

372. J. Y. Fu, A. Lyga, H. Shi, M. L. Blue, B. Dixon and D. Chen: Cloning, expression, purification, and characterization of rat MMP-12. Protein Expr Purif, 21(2), 268-74 (2001)
doi:10.1006/prep.2000.1376
PMid:11237688

373. Y. Naparstek, I. R. Cohen, Z. Fuks and I. Vlodavsky: Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature, 310(5974), 241-4 (1984)
doi:10.1038/310241a0
PMid:6205275

374. M. R. Bartlett, P. A. Underwood and C. R. Parish: Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Immunol Cell Biol, 73(2), 113-24 (1995)
doi:10.1038/icb.1995.19
PMid:7797231

375. G. Cepinskas, M. Sandig and P. R. Kvietys: PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front. J Cell Sci, 112 (Pt 12), 1937-45 (1999)

376. S. Wang, J. P. Dangerfield, R. E. Young and S. Nourshargh: PECAM-1, alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci, 118(Pt 9), 2067-76 (2005)
doi:10.1242/jcs.02340
PMid:15840647

377. E. Edovitsky, I. Lerner, E. Zcharia, T. Peretz, I. Vlodavsky and M. Elkin: Role of endothelial heparanase in delayed-type hypersensitivity. Blood, 107(9), 3609-16 (2006)
doi:10.1182/blood-2005-08-3301
PMid:16384929    PMCid:1444937

378. N. Sasaki, N. Higashi, T. Taka, M. Nakajima and T. Irimura: Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J Immunol, 172(6), 3830-5 (2004)

379. I. Vlodavsky, A. Eldor, A. Haimovitz-Friedman, Y. Matzner, R. Ishai-Michaeli, O. Lider, Y. Naparstek, I. R. Cohen and Z. Fuks: Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis, 12(2), 112-27 (1992)

380. T. L. Adair-Kirk, J. J. Atkinson, T. J. Broekelmann, M. Doi, K. Tryggvason, J. H. Miner, R. P. Mecham and R. M. Senior: A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J Immunol, 171(1), 398-406 (2003)

381. D. Leppert, E. Waubant, R. Galardy, N. W. Bunnett and S. L. Hauser: T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol, 154(9), 4379-89 (1995)

382. D. E. Gomez, D. F. Alonso, H. Yoshiji and U. P. Thorgeirsson: Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 74(2), 111-22 (1997)

383. V. T. Marchesi and J. L. Gowans: The Migration of Lymphocytes through the Endothelium of Venules in Lymph Nodes: An Electron Microscope Study. Proc R Soc Lond B Biol Sci, 159, 283-90 (1964)
doi:10.1098/rspb.1964.0002

384. J. Millan, L. Hewlett, M. Glyn, D. Toomre, P. Clark and A. J. Ridley: Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol, 8(2), 113-23 (2006)
doi:10.1038/ncb1356
PMid:16429128

385. M. Nieminen, T. Henttinen, M. Merinen, F. Marttila-Ichihara, J. E. Eriksson and S. Jalkanen: Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol, 8(2), 156-62 (2006)
doi:10.1038/ncb1355
PMid:16429129

386. C. V. Carman, P. T. Sage, T. E. Sciuto, M. A. de la Fuente, R. S. Geha, H. D. Ochs, H. F. Dvorak, A. M. Dvorak and T. A. Springer: Transcellular diapedesis is initiated by invasive podosomes. Immunity, 26(6), 784-97 (2007)
doi:10.1016/j.immuni.2007.04.015
PMid:17570692    PMCid:2094044

387. B. Engelhardt and H. Wolburg: Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol, 34(11), 2955-63 (2004)
doi:10.1002/eji.200425327
PMid:15376193

388. P. V. Afonso, S. Ozden, M. C. Prevost, C. Schmitt, D. Seilhean, B. Weksler, P. O. Couraud, A. Gessain, I. A. Romero and P. E. Ceccaldi: Human blood-brain barrier disruption by retroviral-infected lymphocytes: role of myosin light chain kinase in endothelial tight-junction disorganization. J Immunol, 179(4), 2576-83 (2007)

389. P. V. Afonso, S. Ozden, M. C. Cumont, D. Seilhean, L. Cartier, P. Rezaie, S. Mason, S. Lambert, M. Huerre, A. Gessain, P. O. Couraud, C. Pique, P. E. Ceccaldi and I. A. Romero: Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog, 4(11), e1000205 (2008)
doi:10.1371/journal.ppat.1000205
PMid:19008946    PMCid:2575404

390. F. Joo and I. Karnushina: A procedure for the isolation of capillaries from rat brain. Cytobios, 8(29), 41-8 (1973)

391. N. J. Abbott, C. C. Hughes, P. A. Revest and J. Greenwood: Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J Cell Sci, 103 (Pt 1), 23-37 (1992)

392. P. D. Bowman, S. R. Ennis, K. E. Rarey, A. L. Betz and G. W. Goldstein: Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol, 14(4), 396-402 (1983)
doi:10.1002/ana.410140403
PMid:6638956

393. M. J. Rutten, R. L. Hoover and M. J. Karnovsky: Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res, 425(2), 301-10 (1987)
doi:10.1016/0006-8993(87)90513-0
PMid:3427432

394. N. J. Abbott, L. Ronnback and E. Hansson: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7(1), 41-53 (2006)
doi:10.1038/nrn1824
PMid:16371949

395. B. V. Zlokovic: The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57(2), 178-201 (2008)
doi:10.1016/j.neuron.2008.01.003
PMid:18215617

396. N. J. Abbott: Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol, 25(1), 5-23 (2005)
doi:10.1007/s10571-004-1374-y
PMid:15962506

397. R. F. Haseloff, I. E. Blasig, H. C. Bauer and H. Bauer: In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol, 25(1), 25-39 (2005)
doi:10.1007/s10571-004-1375-x
PMid:15962507

398. M. P. Dehouck, S. Meresse, P. Delorme, J. C. Fruchart and R. Cecchelli: An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem, 54(5), 1798-801 (1990)
doi:10.1111/j.1471-4159.1990.tb01236.x
PMid:2182777

399. I. Megard, A. Garrigues, S. Orlowski, S. Jorajuria, P. Clayette, E. Ezan and A. Mabondzo: A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation. Brain Res, 927(2), 153-67 (2002)
doi:10.1016/S0006-8993(01)03337-6
PMid:11821009

400. N. Didier, W. A. Banks, C. Creminon, N. Dereuddre-Bosquet and A. Mabondzo: HIV-1-induced production of endothelin-1 in an in vitro model of the human blood-brain barrier. Neuroreport, 13(9), 1179-83 (2002)
doi:10.1097/00001756-200207020-00022
PMid:12151765

401. E. A. Eugenin and J. W. Berman: Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood-brain barrier. Methods, 29(4), 351-61 (2003)
doi:10.1016/S1046-2023(02)00359-6
PMid:12725802

402. E. A. Eugenin, K. Osiecki, L. Lopez, H. Goldstein, T. M. Calderon and J. W. Berman: CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci, 26(4), 1098-106 (2006)
doi:10.1523/JNEUROSCI.3863-05.2006
PMid:16436595

403. M. Fiala, D. J. Looney, M. Stins, D. D. Way, L. Zhang, X. Gan, F. Chiappelli, E. S. Schweitzer, P. Shapshak, M. Weinand, M. C. Graves, M. Witte and K. S. Kim: TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Mol Med, 3(8), 553-64 (1997)

404. M. A. Deli, C. S. Abraham, Y. Kataoka and M. Niwa: Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol, 25(1), 59-127 (2005)
doi:10.1007/s10571-004-1377-8
PMid:15962509

405. R. Cecchelli, V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck and L. Fenart: Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov, 6(8), 650-61 (2007)
doi:10.1038/nrd2368
PMid:17667956

406. P. J. Gaillard, L. H. Voorwinden, J. L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, A. G. de Boer and D. D. Breimer: Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci, 12(3), 215-22 (2001)
doi:10.1016/S0928-0987(00)00123-8
PMid:11113640

407. Y. Persidsky and H. E. Gendelman: Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol, 62(1), 100-6 (1997)

408. V. Siddharthan, Y. V. Kim, S. Liu and K. S. Kim: Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res, 1147, 39-50 (2007)
doi:10.1016/j.brainres.2007.02.029
PMid:17368578

409. R. Kannan, R. Chakrabarti, D. Tang, K. J. Kim and N. Kaplowitz: GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res, 852(2), 374-82 (2000)
doi:10.1016/S0006-8993(99)02184-8
PMid:10678765

410. A. Prat, K. Biernacki, K. Wosik and J. P. Antel: Glial cell influence on the human blood-brain barrier. Glia, 36(2), 145-55 (2001)
doi:10.1002/glia.1104
PMid:11596123

411. S. Hamm, B. Dehouck, J. Kraus, K. Wolburg-Buchholz, H. Wolburg, W. Risau, R. Cecchelli, B. Engelhardt and M. P. Dehouck: Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res, 315(2), 157-66 (2004)
doi:10.1007/s00441-003-0825-y
PMid:14615934

412. A. R. Calabria, C. Weidenfeller, A. R. Jones, H. E. de Vries and E. V. Shusta: Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem, 97(4), 922-33 (2006)
doi:10.1111/j.1471-4159.2006.03793.x
PMid:16573646

413. D. Hoheisel, T. Nitz, H. Franke, J. Wegener, A. Hakvoort, T. Tilling and H. J. Galla: Hydrocortisone reinforces the blood-brain properties in a serum free cell culture system. Biochem Biophys Res Commun, 247(2), 312-5 (1998)
doi:10.1006/bbrc.1997.8051
PMid:9514852

414. P. A. Grabb and M. R. Gilbert: Neoplastic and pharmacological influence on the permeability of an in vitro blood-brain barrier. J Neurosurg, 82(6), 1053-8 (1995)

415. L. Cucullo, P. O. Couraud, B. Weksler, I. A. Romero, M. Hossain, E. Rapp and D. Janigro: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab, 28(2), 312-28 (2008)
doi:10.1038/sj.jcbfm.9600525

416. G. Zysk, B. K. Schneider-Wald, J. H. Hwang, L. Bejo, K. S. Kim, T. J. Mitchell, R. Hakenbeck and H. P. Heinz: Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun, 69(2), 845-52 (2001)
doi:10.1128/IAI.69.2.845-852.2001
PMid:11159977    PMCid:97961

417. K. H. Tan, M. S. Dobbie, R. A. Felix, M. A. Barrand and R. D. Hurst: A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport, 12(7), 1329-34 (2001)
doi:10.1097/00001756-200105250-00008
PMid:11388405

418. R. J. Rist, I. A. Romero, M. W. Chan, P. O. Couraud, F. Roux and N. J. Abbott: F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res, 768(1-2), 10-8 (1997)
doi:10.1016/S0006-8993(97)00586-6
PMid:9369295

419. K. Mertsch, I. Blasig and T. Grune: 4-Hydroxynonenal impairs the permeability of an in vitro rat blood-brain barrier. Neurosci Lett, 314(3), 135-8 (2001)
doi:10.1016/S0304-3940(01)02299-6
PMid:11704302

420. A. Cestelli, C. Catania, S. D'Agostino, I. Di Liegro, L. Licata, G. Schiera, G. L. Pitarresi, G. Savettieri, V. De Caro, G. Giandalia and L. I. Giannola: Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds. J Control Release, 76(1-2), 139-47 (2001)
doi:10.1016/S0168-3659(01)00431-X
PMid:11532320

421. S. Duport, F. Robert, D. Muller, G. Grau, L. Parisi and L. Stoppini: An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci U S A, 95(4), 1840-5 (1998)
doi:10.1073/pnas.95.4.1840

422. C. H. Lai and K. H. Kuo: The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev, 50(2), 258-65 (2005)

423. M. Hellstrom, H. Gerhardt, M. Kalen, X. Li, U. Eriksson, H. Wolburg and C. Betsholtz: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol, 153(3), 543-53 (2001)
doi:10.1083/jcb.153.3.543
PMid:11331305    PMCid:2190573

424. K. Hayashi, S. Nakao, R. Nakaoke, S. Nakagawa, N. Kitagawa and M. Niwa: Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept, 123(1-3), 77-83 (2004)
doi:10.1016/j.regpep.2004.05.023
PMid:15518896

425. S. Dohgu, F. Takata, A. Yamauchi, S. Nakagawa, T. Egawa, M. Naito, T. Tsuruo, Y. Sawada, M. Niwa and Y. Kataoka: Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res, 1038(2), 208-15 (2005)
doi:10.1016/j.brainres.2005.01.027
PMid:15757636

426. S. Nakagawa, M. A. Deli, S. Nakao, M. Honda, K. Hayashi, R. Nakaoke, Y. Kataoka and M. Niwa: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol, 27(6), 687-94 (2007)
doi:10.1007/s10571-007-9195-4
PMid:17823866

427. S. Nakagawa, M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka and M. Niwa: A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int, 54(3-4), 253-63 (2009)
doi:10.1016/j.neuint.2008.12.002
PMid:19111869

428. H. Budka, G. Costanzi, S. Cristina, A. Lechi, C. Parravicini, R. Trabattoni and L. Vago: Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol, 75(2), 185-98 (1987)

429. H. Pu, J. Tian, G. Flora, Y. W. Lee, A. Nath, B. Hennig and M. Toborek: HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci, 24(1), 224-37 (2003)
doi:10.1016/S1044-7431(03)00171-4
PMid:14550782

430. C. K. Petito and K. S. Cash: Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann Neurol, 32(5), 658-66 (1992)
doi:10.1002/ana.410320509
PMid:1449246

431. M. Mengozzi, C. De Filippi, P. Transidico, P. Biswas, M. Cota, S. Ghezzi, E. Vicenzi, A. Mantovani, S. Sozzani and G. Poli: Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Blood, 93(6), 1851-7 (1999)

432. L. A. Boven, J. Middel, E. C. Breij, D. Schotte, J. Verhoef, C. Soderland and H. S. Nottet: Interactions between HIV-infected monocyte-derived macrophages and human brain microvascular endothelial cells result in increased expression of CC chemokines. J Neurovirol, 6(5), 382-9 (2000)
doi:10.3109/13550280009018302
PMid:11031691

433. M. A. Wetzel, A. D. Steele, E. E. Henderson and T. J. Rogers: The effect of X4 and R5 HIV-1 on C, C-C, and C-X-C chemokines during the early stages of infection in human PBMCs. Virology, 292(1), 6-15 (2002)
doi:10.1006/viro.2001.1249
PMid:11878903

434. M. D. Bell, D. D. Taub and V. H. Perry: Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience, 74(1), 283-92 (1996)
doi:10.1016/0306-4522(96)00083-8
PMid:8843093

435. B. Lu, B. J. Rutledge, L. Gu, J. Fiorillo, N. W. Lukacs, S. L. Kunkel, R. North, C. Gerard and B. J. Rollins: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med, 187(4), 601-8 (1998)
doi:10.1084/jem.187.4.601
PMid:9463410    PMCid:2212142

436. M. Uguccioni, M. D'Apuzzo, M. Loetscher, B. Dewald and M. Baggiolini: Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol, 25(1), 64-8 (1995)
doi:10.1002/eji.1830250113
PMid:7531149

437. H. S. Nottet, Y. Persidsky, V. G. Sasseville, A. N. Nukuna, P. Bock, Q. H. Zhai, L. R. Sharer, R. D. McComb, S. Swindells, C. Soderland and H. E. Gendelman: Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol, 156(3), 1284-95 (1996)

438. M. P. Bevilacqua, S. Stengelin, M. A. Gimbrone, Jr. and B. Seed: Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science, 243(4895), 1160-5 (1989)
doi:10.1126/science.2466335
PMid:2466335

439. T. Carlos, N. Kovach, B. Schwartz, M. Rosa, B. Newman, E. Wayner, C. Benjamin, L. Osborn, R. Lobb and J. Harlan: Human monocytes bind to two cytokine-induced adhesive ligands on cultured human endothelial cells: endothelial-leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1. Blood, 77(10), 2266-71 (1991)

440. B. C. Hakkert, T. W. Kuijpers, J. F. Leeuwenberg, J. A. van Mourik and D. Roos: Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood, 78(10), 2721-6 (1991)

441. C. Hession, L. Osborn, D. Goff, G. Chi-Rosso, C. Vassallo, M. Pasek, C. Pittack, R. Tizard, S. Goelz, K. McCarthy and et al.: Endothelial leukocyte adhesion molecule 1: direct expression cloning and functional interactions. Proc Natl Acad Sci U S A, 87(5), 1673-7 (1990)
doi:10.1073/pnas.87.5.1673

442.W. R. Tyor, J. D. Glass, N. Baumrind, J. C. McArthur, J. W. Griffin, P. S. Becker and D. E. Griffin: Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy. Neurology, 43(5), 1002-9 (1993)

443. V. G. Sasseville, W. Newman, S. J. Brodie, P. Hesterberg, D. Pauley and D. J. Ringler: Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions. Am J Pathol, 144(1), 27-40 (1994)

444. V. G. Sasseville, W. A. Newman, A. A. Lackner, M. O. Smith, N. C. Lausen, D. Beall and D. J. Ringler: Elevated vascular cell adhesion molecule-1 in AIDS encephalitis induced by simian immunodeficiency virus. Am J Pathol, 141(5), 1021-30 (1992)

445. S. Dhawan, B. S. Weeks, C. Soderland, H. W. Schnaper, L. A. Toro, S. P. Asthana, I. K. Hewlett, W. G. Stetler-Stevenson, S. S. Yamada, K. M. Yamada and et al.: HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. J Immunol, 154(1), 422-32 (1995)

446. E. A. Eugenin, R. Gamss, C. Buckner, D. Buono, R. S. Klein, E. E. Schoenbaum, T. M. Calderon and J. W. Berman: Shedding of PECAM-1 during HIV infection: a potential role for soluble PECAM-1 in the pathogenesis of NeuroAIDS. J Leukoc Biol, 79(3), 444-52 (2006)
doi:10.1189/jlb.0405215

447. M. I. Bukrinsky, H. S. Nottet, H. Schmidtmayerova, L. Dubrovsky, C. R. Flanagan, M. E. Mullins, S. A. Lipton and H. E. Gendelman: Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med, 181(2), 735-45 (1995)
doi:10.1084/jem.181.2.735
PMid:7530762    PMCid:2191885

448. L. A. Boven, L. Gomes, C. Hery, F. Gray, J. Verhoef, P. Portegies, M. Tardieu and H. S. Nottet: Increased peroxynitrite activity in AIDS dementia complex: implications for the neuropathogenesis of HIV-1 infection. J Immunol, 162(7), 4319-27 (1999)

449. M. Bukrinsky, H. Schmidtmayerova, G. Zybarth, L. Dubrovsky, B. Sherry and G. Enikolopov: A critical role of nitric oxide in human immunodeficiency virus type 1-induced hyperresponsiveness of cultured monocytes. Mol Med, 2(4), 460-8 (1996)

450. D. Blond, H. Raoul, R. Le Grand and D. Dormont: Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J Virol, 74(19), 8904-12 (2000)
doi:10.1128/JVI.74.19.8904-8912.2000
PMid:10982333    PMCid:102085

451. G. E. Griffin, K. Leung, T. M. Folks, S. Kunkel and G. J. Nabel: Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature, 339(6219), 70-3 (1989)
doi:10.1038/339070a0
PMid:2654643

452. F. Liote, B. Boval-Boizard, D. Weill, D. Kuntz and J. L. Wautier: Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. Clin Exp Immunol, 106(1), 13-9 (1996)
doi:10.1046/j.1365-2249.1996.d01-820.x

453. A. Gow, D. Duran, S. R. Thom and H. Ischiropoulos: Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys, 333(1), 42-8 (1996)
doi:10.1006/abbi.1996.0362
PMid:8806752

454. S. Imaizumi, T. Kondo, M. A. Deli, G. Gobbel, F. Joo, C. J. Epstein, T. Yoshimoto and P. H. Chan: The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem Int, 29(2), 205-11 (1996)
doi:10.1016/0197-0186(95)00120-4
PMid:8837050

455. G. T. Gobbel, T. Y. Chan and P. H. Chan: Nitric oxide- and superoxide-mediated toxicity in cerebral endothelial cells. J Pharmacol Exp Ther, 282(3), 1600-7 (1997)

456. R. O. Stuart and S. K. Nigam: Regulated assembly of tight junctions by protein kinase C. Proc Natl Acad Sci U S A, 92(13), 6072-6 (1995)
doi:10.1073/pnas.92.13.6072

457. A. Ghorpade, R. Persidskaia, R. Suryadevara, M. Che, X. J. Liu, Y. Persidsky and H. E. Gendelman: Mononuclear phagocyte differentiation, activation, and viral infection regulate matrix metalloproteinase expression: implications for human immunodeficiency virus type 1-associated dementia. J Virol, 75(14), 6572-83 (2001)
doi:10.1128/JVI.75.14.6572-6583.2001
PMid:11413325    PMCid:114381

458. C. Chapel, V. Camara, P. Clayette, S. Salvat, A. Mabondzo, V. Leblond, D. Marce, C. Lafuma and D. Dormont: Modulations of 92kDa gelatinase B and its inhibitors are associated with HIV-1 infection in human macrophage cultures. Biochem Biophys Res Commun, 204(3), 1272-8 (1994)
doi:10.1006/bbrc.1994.2600
PMid:7980605

459. G. M. Liuzzi, C. M. Mastroianni, M. P. Santacroce, M. Fanelli, C. D'Agostino, V. Vullo and P. Riccio: Increased activity of matrix metalloproteinases in the cerebrospinal fluid of patients with HIV-associated neurological diseases. J Neurovirol, 6(2), 156-63 (2000)
doi:10.3109/13550280009013159
PMid:10822329

460. K. Conant, J. C. McArthur, D. E. Griffin, L. Sjulson, L. M. Wahl and D. N. Irani: Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol, 46(3), 391-8 (1999)
doi:10.1002/1531-8249(199909)46:3<391::AID-ANA15>3.0.CO;2-0
PMid:10482270

461. B. L. Shacklett, C. A. Cox, D. T. Wilkens, R. Karl Karlsson, A. Nilsson, D. F. Nixon and R. W. Price: Increased adhesion molecule and chemokine receptor expression on CD8+ T cells trafficking to cerebrospinal fluid in HIV-1 infection. J Infect Dis, 189(12), 2202-12 (2004)
doi:10.1086/421244
PMid:15181567

462. A. Svenningsson, G. K. Hansson, O. Andersen, R. Andersson, M. Patarroyo and S. Stemme: Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann Neurol, 34(2), 155-61 (1993)
doi:10.1002/ana.410340210
PMid:8338339

463. S. W. Park, W. Royal, 3rd, R. D. Semba, G. W. Wiegand and D. E. Griffin: Expression of adhesion molecules and CD28 on T lymphocytes during human immunodeficiency virus infection. Clin Diagn Lab Immunol, 5(4), 583-7 (1998)

464. T. T. Ng, C. Guntermann, K. E. Nye, J. M. Parkin, J. Anderson, J. E. Norman and W. J. Morrow: Adhesion co-receptor expression and intracellular signalling in HIV disease: implications for immunotherapy. AIDS, 9(4), 337-43 (1995)
doi:10.1097/00002030-199509040-00004
PMid:7540845

465. C. Vermot Desroches and D. Rigal: Leukocyte function-associated antigen-1 expression on peripheral blood mononuclear cell subsets in HIV-1 seropositive patients. Clin Immunol Immunopathol, 56(2), 159-68 (1990)
doi:10.1016/0090-1229(90)90138-G
PMid:2143125

466. J. K. Nicholson, S. W. Browning, R. L. Hengel, E. Lew, L. E. Gallagher, D. Rimland and J. S. McDougal: CCR5 and CXCR4 expression on memory and naive T cells in HIV-1 infection and response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr, 27(2), 105-15 (2001)

467. L. Wu, G. LaRosa, N. Kassam, C. J. Gordon, H. Heath, N. Ruffing, H. Chen, J. Humblias, M. Samson, M. Parmentier, J. P. Moore and C. R. Mackay: Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J Exp Med, 186(8), 1373-81 (1997)
doi:10.1084/jem.186.8.1373
PMid:9334377    PMCid:2199098

468. S. L. Letendre, E. R. Lanier and J. A. McCutchan: Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J Infect Dis, 180(2), 310-9 (1999)
doi:10.1086/314866
PMid:10395844

469. M. O. Westendorp, R. Frank, C. Ochsenbauer, K. Stricker, J. Dhein, H. Walczak, K. M. Debatin and P. H. Krammer: Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature, 375(6531), 497-500 (1995)
doi:10.1038/375497a0
PMid:7539892

470. C. A. Wiley, M. Baldwin and C. L. Achim: Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS, 10(8), 843-7 (1996)
doi:10.1097/00002030-199607000-00007

471. S. L. Wesselingh, C. Power, J. D. Glass, W. R. Tyor, J. C. McArthur, J. M. Farber, J. W. Griffin and D. E. Griffin: Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol, 33(6), 576-82 (1993)
doi:10.1002/ana.410330604
PMid:8498837

472. F. M. Hofman, M. M. Dohadwala, A. D. Wright, D. R. Hinton and S. M. Walker: Exogenous tat protein activates central nervous system-derived endothelial cells. J Neuroimmunol, 54(1-2), 19-28 (1994)
doi:10.1016/0165-5728(94)90226-7
PMid:7523444

473. L. Hudson, J. Liu, A. Nath, M. Jones, R. Raghavan, O. Narayan, D. Male and I. Everall: Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol, 6(2), 145-55 (2000)
doi:10.3109/13550280009013158
PMid:10822328

474. H. C. Chang, F. Samaniego, B. C. Nair, L. Buonaguro and B. Ensoli: HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS, 11(12), 1421-31 (1997)
doi:10.1097/00002030-199712000-00006
PMid:9342064

475. B. E. Vogel, S. J. Lee, A. Hildebrand, W. Craig, M. D. Pierschbacher, F. Wong-Staal and E. Ruoslahti: A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol, 121(2), 461-8 (1993)
doi:10.1083/jcb.121.2.461
PMid:7682219    PMCid:2200091

476. D. A. Brake, C. Debouck and G. Biesecker: Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol, 111(3), 1275-81 (1990)
doi:10.1083/jcb.111.3.1275
PMid:2202737    PMCid:2116274

477. Y. Liu, M. Jones, C. M. Hingtgen, G. Bu, N. Laribee, R. E. Tanzi, R. D. Moir, A. Nath and J. J. He: Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med, 6(12), 1380-7 (2000)
doi:10.1038/82199
PMid:11100124

478. A. D. Frankel and C. O. Pabo: Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189-93 (1988)
doi:10.1016/0092-8674(88)90263-2
PMid:2849510

479. M. Ma and A. Nath: Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol, 71(3), 2495-9 (1997)

480. H. K. Avraham, S. Jiang, T. H. Lee, O. Prakash and S. Avraham: HIV-1 Tat-mediated effects on focal adhesion assembly and permeability in brain microvascular endothelial cells. J Immunol, 173(10), 6228-33 (2004)

481. I. W. Park, J. F. Wang and J. E. Groopman: HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood, 97(2), 352-8 (2001)
doi:10.1182/blood.V97.2.352
PMid:11154208

482. T. G. D'Aversa, K. O. Yu and J. W. Berman: Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J Neurovirol, 10(2), 86-97 (2004)
doi:10.1080/13550280490279807
PMid:15204927

483. Kruman, II, A. Nath, W. F. Maragos, S. L. Chan, M. Jones, V. M. Rangnekar, R. J. Jakel and M. P. Mattson: Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am J Pathol, 155(1), 39-46 (1999)

484. J. P. Taylor, C. Cupp, A. Diaz, M. Chowdhury, K. Khalili, S. A. Jimenez and S. Amini: Activation of expression of genes coding for extracellular matrix proteins in Tat-producing glioblastoma cells. Proc Natl Acad Sci U S A, 89(20), 9617-21 (1992)
doi:10.1073/pnas.89.20.9617

485. B. E. Sawaya, P. Thatikunta, L. Denisova, J. Brady, K. Khalili and S. Amini: Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. J Neuroimmunol, 87(1-2), 33-42 (1998)
doi:10.1016/S0165-5728(98)00044-7
PMid:9670843

486. C. Cupp, J. P. Taylor, K. Khalili and S. Amini: Evidence for stimulation of the transforming growth factor beta 1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene, 8(8), 2231-6 (1993)

487. G. Zauli, B. R. Davis, M. C. Re, G. Visani, G. Furlini and M. La Placa: tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood, 80(12), 3036-43 (1992)

488. P. Chen, M. Mayne, C. Power and A. Nath: The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem, 272(36), 22385-8 (1997)
doi:10.1074/jbc.272.36.22385
PMid:9278385

489. E. Izmailova, F. M. Bertley, Q. Huang, N. Makori, C. J. Miller, R. A. Young and A. Aldovini: HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med, 9(2), 191-7 (2003)
doi:10.1038/nm822
PMid:12539042

490. K. Conant, M. Ma, A. Nath and E. O. Major: Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J Virol, 70(3), 1384-9 (1996)

491. S. E. Woodman, E. N. Benveniste, A. Nath and J. W. Berman: Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes. J Neurovirol, 5(6), 678-84 (1999)
doi:10.3109/13550289909021296
PMid:10602408

492. M. Jones, K. Olafson, M. R. Del Bigio, J. Peeling and A. Nath: Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol, 57(6), 563-70 (1998)
doi:10.1097/00005072-199806000-00004
PMid:9630236

493. J. Rappaport, J. Joseph, S. Croul, G. Alexander, L. Del Valle, S. Amini and K. Khalili: Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol, 65(4), 458-65 (1999)

494. B. O. Kim, Y. Liu, Y. Ruan, Z. C. Xu, L. Schantz and J. J. He: Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol, 162(5), 1693-707 (2003)

495. V. Philippon, C. Vellutini, D. Gambarelli, G. Harkiss, G. Arbuthnott, D. Metzger, R. Roubin and P. Filippi: The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology, 205(2), 519-29 (1994)
doi:10.1006/viro.1994.1673
PMid:7526541

496. R. G. Chirivi, G. Taraboletti, M. R. Bani, L. Barra, G. Piccinini, M. Giacca, F. Bussolino and R. Giavazzi: Human immunodeficiency virus-1 (HIV-1)-Tat protein promotes migration of acquired immunodeficiency syndrome-related lymphoma cells and enhances their adhesion to endothelial cells. Blood, 94(5), 1747-54 (1999)

497. S. Dhawan, R. K. Puri, A. Kumar, H. Duplan, J. M. Masson and B. B. Aggarwal: Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood, 90(4), 1535-44 (1997)

498. A. Albini, R. Benelli, D. Giunciuglio, T. Cai, G. Mariani, S. Ferrini and D. M. Noonan: Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem, 273(26), 15895-900 (1998)
doi:10.1074/jbc.273.26.15895
PMid:9632634

499. R. M. Lafrenie, L. M. Wahl, J. S. Epstein, I. K. Hewlett, K. M. Yamada and S. Dhawan: HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol, 157(3), 974-7 (1996)

500. M. Toborek, Y. W. Lee, H. Pu, A. Malecki, G. Flora, R. Garrido, B. Hennig, H. C. Bauer and A. Nath: HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem, 84(1), 169-79 (2003)
doi:10.1046/j.1471-4159.2003.01543.x
PMid:12485413

501. K. Conant, A. Garzino-Demo, A. Nath, J. C. McArthur, W. Halliday, C. Power, R. C. Gallo and E. O. Major: Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A, 95(6), 3117-21 (1998)
doi:10.1073/pnas.95.6.3117

502. N. El-Hage, G. Wu, J. Wang, J. Ambati, P. E. Knapp, J. L. Reed, A. J. Bruce-Keller and K. F. Hauser: HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia, 53(2), 132-46 (2006)
doi:10.1002/glia.20262
PMid:16206161

503. S. P. Lim and A. Garzino-Demo: The human immunodeficiency virus type 1 Tat protein up-regulates the promoter activity of the beta-chemokine monocyte chemoattractant protein 1 in the human astrocytoma cell line U-87 MG: role of SP-1, AP-1, and NF-kappaB consensus sites. J Virol, 74(4), 1632-40 (2000)
doi:10.1128/JVI.74.4.1632-1640.2000
PMid:10644332    PMCid:111637

504. W. S. Sheng, S. Hu, J. R. Lokensgard and P. K. Peterson: U50,488 inhibits HIV-1 Tat-induced monocyte chemoattractant protein-1 (CCL2) production by human astrocytes. Biochem Pharmacol, 65(1), 9-14 (2003)
doi:10.1016/S0006-2952(02)01480-6
PMid:12473373

505. O. Kutsch, J. Oh, A. Nath and E. N. Benveniste: Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol, 74(19), 9214-21 (2000)
doi:10.1128/JVI.74.19.9214-9221.2000
PMid:10982368    PMCid:102120

506. E. A. Eugenin, G. Dyer, T. M. Calderon and J. W. Berman: HIV-1 tat protein induces a migratory phenotype in human fetal microglia by a CCL2 (MCP-1)-dependent mechanism: possible role in NeuroAIDS. Glia, 49(4), 501-10 (2005)
doi:10.1002/glia.20137
PMid:15578658

507. C. M. McManus, K. Weidenheim, S. E. Woodman, J. Nunez, J. Hesselgesser, A. Nath and J. W. Berman: Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, Tat, and chemokine autoregulation. Am J Pathol, 156(4), 1441-53 (2000)

508. M. Arese, C. Ferrandi, L. Primo, G. Camussi and F. Bussolino: HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J Immunol, 166(2), 1380-8 (2001)

509. T. A. Kim, H. K. Avraham, Y. H. Koh, S. Jiang, I. W. Park and S. Avraham: HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol, 170(5), 2629-37 (2003)

510. X. Liu, M. Jana, S. Dasgupta, S. Koka, J. He, C. Wood and K. Pahan: Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J Biol Chem, 277(42), 39312-9 (2002)
doi:10.1074/jbc.M205107200
PMid:12167619    PMCid:2041896

511. J. B. Johnston, K. Zhang, C. Silva, D. R. Shalinsky, K. Conant, W. Ni, D. Corbett, V. W. Yong and C. Power: HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol, 49(2), 230-41 (2001)
doi:10.1002/1531-8249(20010201)49:2<230::AID-ANA43>3.0.CO;2-O
PMid:11220743

512. J. Sodroski, W. C. Goh, C. Rosen, K. Campbell and W. A. Haseltine: Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature, 322(6078), 470-4 (1986)
doi:10.1038/322470a0
PMid:3016552

513. L. K. Clayton, R. E. Hussey, R. Steinbrich, H. Ramachandran, Y. Husain and E. L. Reinherz: Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature, 335(6188), 363-6 (1988)
doi:10.1038/335363a0
PMid:2843773

514. J. D. Lifson, M. B. Feinberg, G. R. Reyes, L. Rabin, B. Banapour, S. Chakrabarti, B. Moss, F. Wong-Staal, K. S. Steimer and E. G. Engleman: Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature, 323(6090), 725-8 (1986)
doi:10.1038/323725a0
PMid:3095663

515. S. K. Oh, W. W. Cruikshank, J. Raina, G. C. Blanchard, W. H. Adler, J. Walker and H. Kornfeld: Identification of HIV-1 envelope glycoprotein in the serum of AIDS and ARC patients. J Acquir Immune Defic Syndr, 5(3), 251-6 (1992)
doi:10.1097/00126334-199203000-00005

516. M. V. Jones, J. E. Bell and A. Nath: Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS, 14(17), 2709-13 (2000)
doi:10.1097/00002030-200012010-00010
PMid:11125889

517. J. A. McKeating, A. McKnight and J. P. Moore: Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. J Virol, 65(2), 852-60 (1991)

518. P. Shrikant, D. J. Benos, L. P. Tang and E. N. Benveniste: HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells. Involvement of Janus kinase/signal transducer and activator of transcription and protein kinase C signaling pathways. J Immunol, 156(3), 1307-14 (1996)

519. M. F. Stins, D. Pearce, F. Di Cello, A. Erdreich-Epstein, C. A. Pardo and K. Sik Kim: Induction of intercellular adhesion molecule-1 on human brain endothelial cells by HIV-1 gp120: role of CD4 and chemokine coreceptors. Lab Invest, 83(12), 1787-98 (2003)
doi:10.1097/01.LAB.0000107008.13321.C8
PMid:14691297

520. Z. Ren, Q. Yao and C. Chen: HIV-1 envelope glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells. Lab Invest, 82(3), 245-55 (2002)

521. M. F. Stins, Y. Shen, S. H. Huang, F. Gilles, V. K. Kalra and K. S. Kim: Gp120 activates children's brain endothelial cells via CD4. J Neurovirol, 7(2), 125-34 (2001)
doi:10.1080/13550280152058780
PMid:11517385

522. T. G. D'Aversa, E. A. Eugenin and J. W. Berman: NeuroAIDS: contributions of the human immunodeficiency virus-1 proteins Tat and gp120 as well as CD40 to microglial activation. J Neurosci Res, 81(3), 436-46 (2005)
doi:10.1002/jnr.20486
PMid:15954144

523. M. B. Huang and V. C. Bond: Involvement of protein kinase C in HIV-1 gp120-induced apoptosis in primary endothelium. J Acquir Immune Defic Syndr, 25(5), 375-89 (2000)
doi:10.1097/00126334-200012150-00001

doi:10.1097/00042560-200012150-00001
PMid:11141237

524. J. E. Merrill, Y. Koyanagi, J. Zack, L. Thomas, F. Martin and I. S. Chen: Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol, 66(4), 2217-25 (1992)

525. P. Koka, K. He, J. A. Zack, S. Kitchen, W. Peacock, I. Fried, T. Tran, S. S. Yashar and J. E. Merrill: Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain. J Exp Med, 182(4), 941-51 (1995)
doi:10.1084/jem.182.4.941
PMid:7561697    PMCid:2192278

526. S. E. Ilyin and C. R. Plata-Salaman: HIV-1 envelope glycoprotein 120 regulates brain IL-1beta system and TNF-alpha mRNAs in vivo. Brain Res Bull, 44(1), 67-73 (1997)
doi:10.1016/S0361-9230(97)00091-9
PMid:9288832

527. A. Ranki, M. Nyberg, V. Ovod, M. Haltia, I. Elovaara, R. Raininko, H. Haapasalo and K. Krohn: Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS, 9(9), 1001-8 (1995)
doi:10.1097/00002030-199509000-00004
PMid:8527071

528. G. van Marle, S. Henry, T. Todoruk, A. Sullivan, C. Silva, S. B. Rourke, J. Holden, J. C. McArthur, M. J. Gill and C. Power: Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology, 329(2), 302-18 (2004)

529. M. H. Lehmann, S. Masanetz, S. Kramer and V. Erfle: HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci, 119(Pt 21), 4520-30 (2006)
doi:10.1242/jcs.03231
PMid:17046994

530. E. Mordelet, K. Kissa, A. Cressant, F. Gray, S. Ozden, C. Vidal, P. Charneau and S. Granon: Histopathological and cognitive defects induced by Nef in the brain. FASEB J, 18(15), 1851-61 (2004)
doi:10.1096/fj.04-2308com
PMid:15576488

531. U. Koedel, B. Kohleisen, B. Sporer, F. Lahrtz, V. Ovod, A. Fontana, V. Erfle and H. W. Pfister: HIV type 1 Nef protein is a viral factor for leukocyte recruitment into the central nervous system. J Immunol, 163(3), 1237-45 (1999)

532. M. H. Lehmann, S. Walter, L. Ylisastigui, F. Striebel, V. Ovod, M. Geyer, J. C. Gluckman and V. Erfle: Extracellular HIV-1 Nef increases migration of monocytes. Exp Cell Res, 312(18), 3659-68 (2006)
doi:10.1016/j.yexcr.2006.08.008
PMid:16978607

533. D. C. Shutt and D. R. Soll: HIV-induced T-cell syncytia release a two component T-helper cell chemoattractant composed of Nef and Tat. J Cell Sci, 112 (Pt 22), 3931-41 (1999)

534. E. Olivetta, Z. Percario, G. Fiorucci, G. Mattia, I. Schiavoni, C. Dennis, J. Jager, M. Harris, G. Romeo, E. Affabris and M. Federico: HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol, 170(4), 1716-27 (2003)

535. S. Swingler, A. Mann, J. Jacque, B. Brichacek, V. G. Sasseville, K. Williams, A. A. Lackner, E. N. Janoff, R. Wang, D. Fisher and M. Stevenson: HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med, 5(9), 997-103 (1999)
doi:10.1038/12433
PMid:10470075

536. B. Sporer, U. Koedel, R. Paul, B. Kohleisen, V. Erfle, A. Fontana and H. W. Pfister: Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol, 102(2), 125-30 (2000)
doi:10.1016/S0165-5728(99)00170-8
PMid:10636480

537. V. J. Sanders, C. A. Pittman, M. G. White, G. Wang, C. A. Wiley and C. L. Achim: Chemokines and receptors in HIV encephalitis. AIDS, 12(9), 1021-6 (1998)
doi:10.1097/00002030-199809000-00008
PMid:9662198

538. S. M. Stamatovic, P. Shakui, R. F. Keep, B. B. Moore, S. L. Kunkel, N. Van Rooijen and A. V. Andjelkovic: Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab, 25(5), 593-606 (2005)
doi:10.1038/sj.jcbfm.9600055

539. L. Song and J. S. Pachter: Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res, 67(1), 78-89 (2004)
doi:10.1016/j.mvr.2003.07.001
PMid:14709405

540. K. A. Harkness, J. D. Sussman, G. A. Davies-Jones, J. Greenwood and M. N. Woodroofe: Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. J Neuroimmunol, 142(1-2), 1-9 (2003)
doi:10.1016/S0165-5728(03)00251-0
PMid:14512159

541. Z. Wang, G. Trillo-Pazos, S. Y. Kim, M. Canki, S. Morgello, L. R. Sharer, H. A. Gelbard, Z. Z. Su, D. C. Kang, A. I. Brooks, P. B. Fisher and D. J. Volsky: Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neurovirol, 10 Suppl 1, 25-32 (2004)
doi:10.1080/13550280490270851
PMid:14982736

doi:10.1080/753312749
PMid:14982736

542. H. Saito, Y. Minamiya, S. Saito and J. Ogawa: Endothelial Rho and Rho kinase regulate neutrophil migration via endothelial myosin light chain phosphorylation. J Leukoc Biol, 72(4), 829-36 (2002)

543. B. G. Galvez, L. Genis, S. Matias-Roman, S. A. Oblander, K. Tryggvason, S. S. Apte and A. G. Arroyo: Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem, 280(2), 1292-8 (2005)
doi:10.1074/jbc.M408673200
PMid:15516694

544. Y. Yang, E. Y. Estrada, J. F. Thompson, W. Liu and G. A. Rosenberg: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab, 27(4), 697-709 (2007)

545. J. C. Edmondson, R. K. Liem, J. E. Kuster and M. E. Hatten: Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J Cell Biol, 106(2), 505-17 (1988)
doi:10.1083/jcb.106.2.505
PMid:3276720    PMCid:2114977

546. N. C. Adams, T. Tomoda, M. Cooper, G. Dietz and M. E. Hatten: Mice that lack astrotactin have slowed neuronal migration. Development, 129(4), 965-72 (2002)

547. J. S. Choi, K. H. Kim, Y. K. Jeon, S. H. Kim, S. G. Jang, J. L. Ku and J. G. Park: Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int J Cancer, 124(6), 1258-62 (2009)
doi:10.1002/ijc.24023

548. C. Ghilardi, G. Chiorino, R. Dossi, Z. Nagy, R. Giavazzi and M. Bani: Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genomics, 9, 201 (2008)
doi:10.1186/1471-2164-9-201
PMid:18447899    PMCid:2410137

549. H. Takada, I. Imoto, H. Tsuda, Y. Nakanishi, T. Ichikura, H. Mochizuki, S. Mitsufuji, F. Hosoda, S. Hirohashi, M. Ohki and J. Inazawa: ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation. Oncogene, 24(54), 8051-60 (2005)
doi:10.1038/sj.onc.1208952
PMid:16103878

550. F. F. Costa, C. Colin, S. M. Shinjo, S. M. Zanata, S. K. Marie, M. C. Sogayar and A. A. Camargo: ADAM23 methylation and expression analysis in brain tumors. Neurosci Lett, 380(3), 260-4 (2005)
doi:10.1016/j.neulet.2005.01.050
PMid:15862898

551. A. P. Goldsmith, S. J. Gossage and C. ffrench-Constant: ADAM23 is a cell-surface glycoprotein expressed by central nervous system neurons. J Neurosci Res, 78(5), 647-58 (2004)
doi:10.1002/jnr.20320
PMid:15505805

552. P. Cinque, L. Vago, M. Mengozzi, V. Torri, D. Ceresa, E. Vicenzi, P. Transidico, A. Vagani, S. Sozzani, A. Mantovani, A. Lazzarin and G. Poli: Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS, 12(11), 1327-32 (1998)
doi:10.1097/00002030-199811000-00014
PMid:9708412

553. M. C. Zink, G. D. Coleman, J. L. Mankowski, R. J. Adams, P. M. Tarwater, K. Fox and J. E. Clements: Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis, 184(8), 1015-21 (2001)
doi:10.1086/323478
PMid:11574916

554. M. C. Zink, K. Suryanarayana, J. L. Mankowski, A. Shen, M. Piatak, Jr., J. P. Spelman, D. L. Carter, R. J. Adams, J. D. Lifson and J. E. Clements: High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol, 73(12), 10480-8 (1999)

555. J. M. Weiss, S. A. Downie, W. D. Lyman and J. W. Berman: Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol, 161(12), 6896-903 (1998)

556. C. K. Petito, E. S. Cho, W. Lemann, B. A. Navia and R. W. Price: Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol, 45(6), 635-46 (1986)
doi:10.1097/00005072-198611000-00003
PMid:3021914

557. E. Gonzalez, B. H. Rovin, L. Sen, G. Cooke, R. Dhanda, S. Mummidi, H. Kulkarni, M. J. Bamshad, V. Telles, S. A. Anderson, E. A. Walter, K. T. Stephan, M. Deucher, A. Mangano, R. Bologna, S. S. Ahuja, M. J. Dolan and S. K. Ahuja: HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A, 99(21), 13795-800 (2002)
doi:10.1073/pnas.202357499

558. S. Letendre, J. Marquie-Beck, K. K. Singh, S. de Almeida, J. Zimmerman, S. A. Spector, I. Grant and R. Ellis: The monocyte chemotactic protein-1 -2578G allele is associated with elevated MCP-1 concentrations in cerebrospinal fluid. J Neuroimmunol, 157(1-2), 193-6 (2004)
doi:10.1016/j.jneuroim.2004.08.028
PMid:15579297

559. E. A. Eugenin, J. E. King, A. Nath, T. M. Calderon, R. S. Zukin, M. V. Bennett and J. W. Berman: HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A, 104(9), 3438-43 (2007)
doi:10.1073/pnas.0611699104

560. S. S. Spudich, A. C. Nilsson, N. D. Lollo, T. J. Liegler, C. J. Petropoulos, S. G. Deeks, E. E. Paxinos and R. W. Price: Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis, 5, 98 (2005)
doi:10.1186/1471-2334-5-98
PMid:16266436    PMCid:1299327

561. S. F. An, M. Groves, F. Gray and F. Scaravilli: Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol, 58(11), 1156-62 (1999)
doi:10.1097/00005072-199911000-00005
PMid:10560658

562. L. Resnick, J. R. Berger, P. Shapshak and W. W. Tourtellotte: Early penetration of the blood-brain-barrier by HIV. Neurology, 38(1), 9-14 (1988)

563. J. C. McArthur, B. A. Cohen, H. Farzedegan, D. R. Cornblath, O. A. Selnes, D. Ostrow, R. T. Johnson, J. Phair and B. F. Polk: Cerebrospinal fluid abnormalities in homosexual men with and without neuropsychiatric findings. Ann Neurol, 23 Suppl, S34-7 (1988)
doi:10.1002/ana.410230712
PMid:3348599

564. J. Goudsmit, E. C. Wolters, M. Bakker, L. Smit, J. Van der Noordaa, E. A. Hische, J. A. Tutuarima and H. J. Van der Helm: Intrathecal synthesis of antibodies to HTLV-III in patients without AIDS or AIDS related complex. Br Med J (Clin Res Ed), 292(6530), 1231-4 (1986)

565. K. Ritola, C. D. Pilcher, S. A. Fiscus, N. G. Hoffman, J. A. Nelson, K. M. Kitrinos, C. B. Hicks, J. J. Eron, Jr. and R. Swanstrom: Multiple V1/V2 env variants are frequently present during primary infection with human immunodeficiency virus type 1. J Virol, 78(20), 11208-18 (2004)
doi:10.1128/JVI.78.20.11208-11218.2004
PMid:15452240    PMCid:521858

566. D. D. Ho, T. R. Rota, R. T. Schooley, J. C. Kaplan, J. D. Allan, J. E. Groopman, L. Resnick, D. Felsenstein, C. A. Andrews and M. S. Hirsch: Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med, 313(24), 1493-7 (1985)

567. J. Goudsmit, F. de Wolf, D. A. Paul, L. G. Epstein, J. M. Lange, W. J. Krone, H. Speelman, E. C. Wolters, J. Van der Noordaa, J. M. Oleske and et al.: Expression of human immunodeficiency virus antigen (HIV-Ag) in serum and cerebrospinal fluid during acute and chronic infection. Lancet, 2(8500), 177-80 (1986)
doi:10.1016/S0140-6736(86)92485-2

568. Panel on Antriretroviral Guidelines for Adults and Adolescents: Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Dept of Health and Human Services, 1-139 (2008)

569. S. Letendre, J. Marquie-Beck, E. Capparelli, B. Best, D. Clifford, A. C. Collier, B. B. Gelman, J. C. McArthur, J. A. McCutchan, S. Morgello, D. Simpson, I. Grant and R. J. Ellis: Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol, 65(1), 65-70 (2008)
doi:10.1001/archneurol.2007.31
PMid:18195140

570. I. Sugawara, H. Hamada, T. Tsuruo and S. Mori: Specialized localization of P-glycoprotein recognized by MRK 16 monoclonal antibody in endothelial cells of the brain and the spinal cord. Jpn J Cancer Res, 81(8), 727-30 (1990)

571. M. Kawahara, A. Sakata, T. Miyashita, I. Tamai and A. Tsuji: Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci, 88(12), 1281-7 (1999)
doi:10.1021/js9901763
PMid:10585223

572. R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. Wood, D. M. Roden and G. R. Wilkinson: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest, 101(2), 289-94 (1998)
doi:10.1172/JCI1269
PMid:9435299    PMCid:508566

573. C. G. Lee, M. M. Gottesman, C. O. Cardarelli, M. Ramachandra, K. T. Jeang, S. V. Ambudkar, I. Pastan and S. Dey: HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry, 37(11), 3594-601 (1998)
doi:10.1021/bi972709x
PMid:9530286

574. E. F. Choo, B. Leake, C. Wandel, H. Imamura, A. J. Wood, G. R. Wilkinson and R. B. Kim: Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos, 28(6), 655-60 (2000)

575. D. Langford, A. Grigorian, R. Hurford, A. Adame, R. J. Ellis, L. Hansen and E. Masliah: Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol, 63(10), 1038-47 (2004)

576. S. Kaczorowski, M. Ochocka, M. Kaczorowska, R. Aleksandrowicz, M. Matysiakl and M. Karwacki: Is P-glycoprotein a sufficient marker for multidrug resistance in vivo? Immunohistochemical staining for P-glycoprotein in children and adult leukemia: correlation with clinical outcome. Leuk Lymphoma, 20(1-2), 143-52 (1995)
doi:10.3109/10428199509054766
PMid:8750636

577. F. Gray, F. Chretien, A. V. Vallat-Decouvelaere and F. Scaravilli: The changing pattern of HIV neuropathology in the HAART era. J Neuropathol Exp Neurol, 62(5), 429-40 (2003)

578. T. D. Langford, S. L. Letendre, T. D. Marcotte, R. J. Ellis, J. A. McCutchan, I. Grant, M. E. Mallory, L. A. Hansen, S. Archibald, T. Jernigan and E. Masliah: Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS, 16(7), 1019-29 (2002)
doi:10.1097/00002030-200205030-00008
PMid:11953468

579. A. Venkataramana, C. A. Pardo, J. C. McArthur, D. A. Kerr, D. N. Irani, J. W. Griffin, P. Burger, D. S. Reich, P. A. Calabresi and A. Nath: Immune reconstitution inflammatory syndrome in the CNS of HIV-infected patients. Neurology, 67(3), 383-8 (2006)
doi:10.1212/01.wnl.0000227922.22293.93
PMid:16894096

580. F. Gray, C. Bazille, H. Adle-Biassette, J. Mikol, A. Moulignier and F. Scaravilli: Central nervous system immune reconstitution disease in acquired immunodeficiency syndrome patients receiving highly active antiretroviral treatment. J Neurovirol, 11 Suppl 3, 16-22 (2005)
doi:10.1080/13550280500511741
PMid:16540449

581. P. Cinque, S. Bossolasco, A. M. Brambilla, A. Boschini, C. Mussini, C. Pierotti, A. Campi, S. Casari, D. Bertelli, M. Mena and A. Lazzarin: The effect of highly active antiretroviral therapy-induced immune reconstitution on development and outcome of progressive multifocal leukoencephalopathy: study of 43 cases with review of the literature. J Neurovirol, 9 Suppl 1, 73-80 (2003)
doi:10.1080/713831417
PMid:12709876

582. M. A. French, N. Lenzo, M. John, S. A. Mallal, E. J. McKinnon, I. R. James, P. Price, J. P. Flexman and M. L. Tay-Kearney: Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med, 1(2), 107-15 (2000)
doi:10.1046/j.1468-1293.2000.00012.x
PMid:11737333

583. D. M. Murdoch, W. D. Venter, A. Van Rie and C. Feldman: Immune reconstitution inflammatory syndrome (IRIS): review of common infectious manifestations and treatment options. AIDS Res Ther, 4, 9 (2007)
doi:10.1186/1742-6405-4-9
PMid:17488505    PMCid:1871602

584. A. d'Arminio Monforte, P. Cinque, A. Mocroft, F. D. Goebel, F. Antunes, C. Katlama, U. S. Justesen, S. Vella, O. Kirk and J. Lundgren: Changing incidence of central nervous system diseases in the EuroSIDA cohort. Ann Neurol, 55(3), 320-8 (2004)
doi:10.1002/ana.10827
PMid:14991809

585. V. Tozzi, P. Balestra, S. Galgani, P. Narciso, F. Ferri, G. Sebastiani, C. D'Amato, C. Affricano, F. Pigorini, F. M. Pau, A. De Felici and A. Benedetto: Positive and sustained effects of highly active antiretroviral therapy on HIV-1-associated neurocognitive impairment. AIDS, 13(14), 1889-97 (1999)
doi:10.1097/00002030-199910010-00011
PMid:10513647

586. H. J. von Giesen, H. Hefter, H. Jablonowski and G. Arendt: HAART is neuroprophylactic in HIV-1 infection. J Acquir Immune Defic Syndr, 23(5), 380-5 (2000)

587. I. Elovaara, E. Poutiainen, J. Lahdevirta, L. Hokkanen, R. Raininko, S. Mattinen, A. Virta, J. Suni and A. Ranki: Zidovudine reduces intrathecal immunoactivation in patients with early human immunodeficiency virus type 1 infection. Arch Neurol, 51(9), 943-50 (1994)

588. M. A. Polis, D. L. Suzman, C. P. Yoder, J. M. Shen, J. M. Mican, R. L. Dewar, J. A. Metcalf, J. Falloon, R. T. Davey, Jr., J. A. Kovacs, M. B. Feinberg, H. Masur and S. C. Piscitelli: Suppression of cerebrospinal fluid HIV burden in antiretroviral naive patients on a potent four-drug antiretroviral regimen. AIDS, 17(8), 1167-72 (2003)
doi:10.1097/00002030-200305230-00008
PMid:12819518

589. R. H. Enting, N. A. Foudraine, J. M. Lange, S. Jurriaans, T. van der Poll, G. J. Weverling and P. Portegies: Cerebrospinal fluid beta2-microglobulin, monocyte chemotactic protein-1, and soluble tumour necrosis factor alpha receptors before and after treatment with lamivudine plus zidovudine or stavudine. J Neuroimmunol, 102(2), 216-21 (2000)
doi:10.1016/S0165-5728(99)00219-2
PMid:10636491

590. E. H. Gisolf, R. M. van Praag, S. Jurriaans, P. Portegies, J. Goudsmit, S. A. Danner, J. M. Lange and J. M. Prins: Increasing cerebrospinal fluid chemokine concentrations despite undetectable cerebrospinal fluid HIV RNA in HIV-1-infected patients receiving antiretroviral therapy. J Acquir Immune Defic Syndr, 25(5), 426-33 (2000)
doi:10.1097/00126334-200012150-00007

doi:10.1097/00042560-200012150-00007
PMid:11141242

591. S. Abdulle, L. Hagberg, B. Svennerholm, D. Fuchs and M. Gisslen: Continuing intrathecal immunoactivation despite two years of effective antiretroviral therapy against HIV-1 infection. AIDS, 16(16), 2145-9 (2002)
doi:10.1097/00002030-200211080-00006
PMid:12409735

592. A. Eden, R. W. Price, S. Spudich, D. Fuchs, L. Hagberg and M. Gisslen: Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis, 196(12), 1779-83 (2007)
doi:10.1086/523648
PMid:18190258

593. A. Yilmaz, R. W. Price, S. Spudich, D. Fuchs, L. Hagberg and M. Gisslen: Persistent intrathecal immune activation in HIV-1-infected individuals on antiretroviral therapy. J Acquir Immune Defic Syndr, 47(2), 168-73 (2008)
doi:10.1097/QAI.0b013e31815ace97

594. J. K. Neuenburg, H. R. Brodt, B. G. Herndier, M. Bickel, P. Bacchetti, R. W. Price, R. M. Grant and W. Schlote: HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr, 31(2), 171-7 (2002)

595. O. A. Uthman and J. O. Abdulmalik: Adjunctive therapies for AIDS dementia complex. Cochrane Database Syst Rev(3), CD006496 (2008)

596. L. Puig, E. Roe, X. Garcia-Navarro, F. Corella and A. Alomar: Efalizumab treatment of psoriasis vulgaris: a cohort study in outpatient clinical practice. Clin Exp Dermatol (2008)

597. L. Dubertret, W. Sterry, J. D. Bos, S. Chimenti, S. Shumack, C. G. Larsen, N. H. Shear and K. A. Papp: Clinical experience acquired with the efalizumab (Raptiva) (CLEAR) trial in patients with moderate-to-severe plaque psoriasis: results from a phase III international randomized, placebo-controlled trial. Br J Dermatol, 155(1), 170-81 (2006)
doi:10.1111/j.1365-2133.2006.07344.x
PMid:16792770

598. C. L. Leonardi, K. A. Papp, K. B. Gordon, A. Menter, S. R. Feldman, I. Caro, P. A. Walicke, P. G. Compton and A. B. Gottlieb: Extended efalizumab therapy improves chronic plaque psoriasis: results from a randomized phase III trial. J Am Acad Dermatol, 52(3 Pt 1), 425-33 (2005)
doi:10.1016/j.jaad.2004.09.029
PMid:15761420

599. R. S. Poston, R. C. Robbins, B. Chan, P. Simms, L. Presta, P. Jardieu and R. E. Morris: Effects of humanized monoclonal antibody to rhesus CD11a in rhesus monkey cardiac allograft recipients. Transplantation, 69(10), 2005-13 (2000)
doi:10.1097/00007890-200005270-00006
PMid:10852588

600. T. Ohmura, A. Konomi, Y. Satoh, T. Hayashi, I. Tsunenari, T. Kadota, M. J. Panzenbeck and H. Satoh: Suppression of atopic-like dermatitis by treatment with antibody to lymphocyte function-associated antigen-1 in NC/Nga mouse. Eur J Pharmacol, 504(1-2), 113-7 (2004)
doi:10.1016/j.ejphar.2004.09.035
PMid:15507227

601. M. Da Silva, P. Petruzzo, S. Virieux, J. Tiollier, L. Badet and X. Martin: A primate model of renal ischemia-reperfusion injury for preclinical evaluation of the antileukocyte function associated antigen 1 monoclonal antibody odulimonab. J Urol, 166(5), 1915-9 (2001)
doi:10.1016/S0022-5347(05)65720-5
PMid:11586260

doi:10.1097/00005392-200111000-00083
PMid:11586260

602. D. P. Faxon, R. J. Gibbons, N. A. Chronos, P. A. Gurbel and F. Sheehan: The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol, 40(7), 1199-204 (2002)
doi:10.1016/S0735-1097(02)02136-8
PMid:12383565

603. R. Jones: Rovelizumab (ICOS Corp). IDrugs, 3(4), 442-6 (2000)

604. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 57(8), 1428-34 (2001)

605. K. Furuya, H. Takeda, S. Azhar, R. M. McCarron, Y. Chen, C. A. Ruetzler, K. M. Wolcott, T. J. DeGraba, R. Rothlein, T. E. Hugli, G. J. del Zoppo and J. M. Hallenbeck: Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke, 32(11), 2665-74 (2001)
doi:10.1161/hs3211.098535
PMid:11692032

606. G. P. Rice, H. P. Hartung and P. A. Calabresi: Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology, 64(8), 1336-42 (2005)

607. D. H. Miller, O. A. Khan, W. A. Sheremata, L. D. Blumhardt, G. P. Rice, M. A. Libonati, A. J. Willmer-Hulme, C. M. Dalton, K. A. Miszkiel and P. W. O'Connor: A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med, 348(1), 15-23 (2003)
doi:10.1056/NEJMoa020696
PMid:12510038

608. C. H. Polman, P. W. O'Connor, E. Havrdova, M. Hutchinson, L. Kappos, D. H. Miller, J. T. Phillips, F. D. Lublin, G. Giovannoni, A. Wajgt, M. Toal, F. Lynn, M. A. Panzara and A. W. Sandrock: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med, 354(9), 899-910 (2006)
doi:10.1056/NEJMoa044397
PMid:16510744

609. R. A. Rudick, W. H. Stuart, P. A. Calabresi, C. Confavreux, S. L. Galetta, E. W. Radue, F. D. Lublin, B. Weinstock-Guttman, D. R. Wynn, F. Lynn, M. A. Panzara and A. W. Sandrock: Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med, 354(9), 911-23 (2006)
doi:10.1056/NEJMoa044396
PMid:16510745

610. S. Ghosh, E. Goldin, F. H. Gordon, H. A. Malchow, J. Rask-Madsen, P. Rutgeerts, P. Vyhnalek, Z. Zadorova, T. Palmer and S. Donoghue: Natalizumab for active Crohn's disease. N Engl J Med, 348(1), 24-32 (2003)
doi:10.1056/NEJMoa020732
PMid:12510039

611. B. K. Kleinschmidt-DeMasters and K. L. Tyler: Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med, 353(4), 369-74 (2005)
doi:10.1056/NEJMoa051782
PMid:15947079

612. A. Langer-Gould, S. W. Atlas, A. J. Green, A. W. Bollen and D. Pelletier: Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med, 353(4), 375-81 (2005)
doi:10.1056/NEJMoa051847
PMid:15947078

613. G. Van Assche, M. Van Ranst, R. Sciot, B. Dubois, S. Vermeire, M. Noman, J. Verbeeck, K. Geboes, W. Robberecht and P. Rutgeerts: Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med, 353(4), 362-8 (2005)
doi:10.1056/NEJMoa051586
PMid:15947080

614. T. A. Yousry, E. O. Major, C. Ryschkewitsch, G. Fahle, S. Fischer, J. Hou, B. Curfman, K. Miszkiel, N. Mueller-Lenke, E. Sanchez, F. Barkhof, E. W. Radue, H. R. Jager and D. B. Clifford: Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med, 354(9), 924-33 (2006)
doi:10.1056/NEJMoa054693
PMid:16510746    PMCid:1934511

615. F. Geissmann, S. Jung and D. R. Littman: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71-82 (2003)
doi:10.1016/S1074-7613(03)00174-2
PMid:12871640

616. A. Kalinowska and J. Losy: Investigational C-C chemokine receptor 2 antagonists for the treatment of autoimmune diseases. Expert Opin Investig Drugs, 17(9), 1267-79 (2008)
doi:10.1517/13543784.17.9.1267
PMid:18694362

617. J. H. Xie, N. Nomura, M. Lu, S. L. Chen, G. E. Koch, Y. Weng, R. Rosa, J. Di Salvo, J. Mudgett, L. B. Peterson, L. S. Wicker and J. A. DeMartino: Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol, 73(6), 771-80 (2003)
doi:10.1189/jlb.1102573
PMid:12773510

618. G. Aust, M. Kamprad, P. Lamesch and E. Schmucking: CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves' disease (GD). Eur J Endocrinol, 152(4), 635-43 (2005)
doi:10.1530/eje.1.01892
PMid:15817921

619. J. van Loosdregt, M. F. van Oosterhout, A. H. Bruggink, D. F. van Wichen, J. van Kuik, E. de Koning, C. C. Baan, N. de Jonge, F. H. Gmelig-Meyling and R. A. de Weger: The chemokine and chemokine receptor profile of infiltrating cells in the wall of arteries with cardiac allograft vasculopathy is indicative of a memory T-helper 1 response. Circulation, 114(15), 1599-607 (2006)
doi:10.1161/CIRCULATIONAHA.105.597526
PMid:17015796

620. L. Trinh, F. Brignole-Baudouin, M. Raphael, S. Dupont-Monod, N. Cassoux, P. Lehoang and C. Baudouin: Th1 and Th2 responses on the ocular surface in uveitis identified by CCR4 and CCR5 conjunctival expression. Am J Ophthalmol, 144(4), 580-5 (2007)
doi:10.1016/j.ajo.2007.06.013
PMid:17686449

621. D. Soler, T. R. Chapman, L. R. Poisson, L. Wang, J. Cote-Sierra, M. Ryan, A. McDonald, S. Badola, E. Fedyk, A. J. Coyle, M. R. Hodge and R. Kolbeck: CCR8 expression identifies CD4 memory T cells enriched for FOXP3+ regulatory and Th2 effector lymphocytes. J Immunol, 177(10), 6940-51 (2006)

622. A. E. Proudfoot, S. Fritchley, F. Borlat, J. P. Shaw, F. Vilbois, C. Zwahlen, A. Trkola, D. Marchant, P. R. Clapham and T. N. Wells: The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem, 276(14), 10620-6 (2001)
doi:10.1074/jbc.M010867200
PMid:11116158

623. Z. Johnson, M. H. Kosco-Vilbois, S. Herren, R. Cirillo, V. Muzio, P. Zaratin, M. Carbonatto, M. Mack, A. Smailbegovic, M. Rose, R. Lever, C. Page, T. N. Wells and A. E. Proudfoot: Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol, 173(9), 5776-85 (2004)

624. A. E. Proudfoot, T. M. Handel, Z. Johnson, E. K. Lau, P. LiWang, I. Clark-Lewis, F. Borlat, T. N. Wells and M. H. Kosco-Vilbois: Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A, 100(4), 1885-90 (2003)
doi:10.1073/pnas.0334864100

625. A. E. Proudfoot, A. L. de Souza and V. Muzio: The use of chemokine antagonists in EAE models. J Neuroimmunol, 198(1-2), 27-30 (2008)
doi:10.1016/j.jneuroim.2008.04.007
PMid:18550179

626. T. Baltus, K. S. Weber, Z. Johnson, A. E. Proudfoot and C. Weber: Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood, 102(6), 1985-8 (2003)
doi:10.1182/blood-2003-04-1175
PMid:12763925

627. A. Trkola, C. Gordon, J. Matthews, E. Maxwell, T. Ketas, L. Czaplewski, A. E. Proudfoot and J. P. Moore: The CC-chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosaminoglycans and also activates a signal transduction pathway that enhances viral infectivity. J Virol, 73(8), 6370-9 (1999)

628. T. T. Murooka, M. M. Wong, R. Rahbar, B. Majchrzak-Kita, A. E. Proudfoot and E. N. Fish: CCL5-CCR5-mediated apoptosis in T cells: Requirement for glycosaminoglycan binding and CCL5 aggregation. J Biol Chem, 281(35), 25184-94 (2006)
doi:10.1074/jbc.M603912200
PMid:16807236

629. C. D. Paavola, S. Hemmerich, D. Grunberger, I. Polsky, A. Bloom, R. Freedman, M. Mulkins, S. Bhakta, D. McCarley, L. Wiesent, B. Wong, K. Jarnagin and T. M. Handel: Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem, 273(50), 33157-65 (1998)
doi:10.1074/jbc.273.50.33157
PMid:9837883

630. T. M. Handel, Z. Johnson, D. H. Rodrigues, A. C. Dos Santos, R. Cirillo, V. Muzio, S. Riva, M. Mack, M. Deruaz, F. Borlat, P. A. Vitte, T. N. Wells, M. M. Teixeira and A. E. Proudfoot: An engineered monomer of CCL2 has anti-inflammatory properties emphasizing the importance of oligomerization for chemokine activity in vivo. J Leukoc Biol, 84(4), 1101-8 (2008)
doi:10.1189/jlb.0108061
PMid:18662971

631. E. A. Eugenin, T. G. D'Aversa, L. Lopez, T. M. Calderon and J. W. Berman: MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem, 85(5), 1299-311 (2003)
doi:10.1046/j.1471-4159.2003.01775.x
PMid:12753088

632. J. C. McArthur, N. Haughey, S. Gartner, K. Conant, C. Pardo, A. Nath and N. Sacktor: Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol, 9(2), 205-21 (2003)
doi:10.1080/713831484
PMid:12707851

633. N. Sacktor, M. P. McDermott, K. Marder, G. Schifitto, O. A. Selnes, J. C. McArthur, Y. Stern, S. Albert, D. Palumbo, K. Kieburtz, J. A. De Marcaida, B. Cohen and L. Epstein: HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol, 8(2), 136-42 (2002)

634. V. Tozzi, P. Balestra, P. Lorenzini, R. Bellagamba, S. Galgani, A. Corpolongo, C. Vlassi, D. Larussa, M. Zaccarelli, P. Noto, U. Visco-Comandini, M. Giulianelli, G. Ippolito, A. Antinori and P. Narciso: Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: results from an urban observational cohort. J Neurovirol, 11(3), 265-73 (2005)
doi:10.1080/13550280590952790
PMid:16036806

635. L. M. Grimaldi, G. V. Martino, D. M. Franciotta, R. Brustia, A. Castagna, R. Pristera and A. Lazzarin: Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol, 29(1), 21-5 (1991)
doi:10.1002/ana.410290106
PMid:1996875

636. C. L. Achim, M. P. Heyes and C. A. Wiley: Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest, 91(6), 2769-75 (1993)
doi:10.1172/JCI116518
PMid:8514884    PMCid:443343

637. D. M. Franciotta, G. L. Melzi d'Eril, G. Bono, R. Brustia, G. Ruberto and I. Pagani: Tumor necrosis factor alpha levels in serum and cerebrospinal fluid of patients with AIDS. Funct Neurol, 7(1), 35-8 (1992)

638. J. D. Glass, S. L. Wesselingh, O. A. Selnes and J. C. McArthur: Clinical-neuropathologic correlation in HIV-associated dementia. Neurology, 43(11), 2230-7 (1993)

639. J. S. Pober, M. A. Gimbrone, Jr., L. A. Lapierre, D. L. Mendrick, W. Fiers, R. Rothlein and T. A. Springer: Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol, 137(6), 1893-6 (1986)

640. M. L. Dustin and T. A. Springer: Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol, 107(1), 321-31 (1988)
doi:10.1083/jcb.107.1.321
PMid:3134364    PMCid:2115164

641. A. A. Hurwitz, W. D. Lyman, M. P. Guida, T. M. Calderon and J. W. Berman: Tumor necrosis factor alpha induces adhesion molecule expression on human fetal astrocytes. J Exp Med, 176(6), 1631-6 (1992)
doi:10.1084/jem.176.6.1631
PMid:1281214    PMCid:2119454

642. C. S. Abraham, M. A. Deli, F. Joo, P. Megyeri and G. Torpier: Intracarotid tumor necrosis factor-alpha administration increases the blood-brain barrier permeability in cerebral cortex of the newborn pig: quantitative aspects of double-labelling studies and confocal laser scanning analysis. Neurosci Lett, 208(2), 85-8 (1996)
doi:10.1016/0304-3940(96)12546-5
PMid:8859896

643. S. Wang, S. S. Leonard, V. Castranova, V. Vallyathan and X. Shi: The role of superoxide radical in TNF-alpha induced NF-kappaB activation. Ann Clin Lab Sci, 29(3), 192-9 (1999)

644. S. G. Wilt, E. Milward, J. M. Zhou, K. Nagasato, H. Patton, R. Rusten, D. E. Griffin, M. O'Connor and M. Dubois-Dalcq: In vitro evidence for a dual role of tumor necrosis factor-alpha in human immunodeficiency virus type 1 encephalopathy. Ann Neurol, 37(3), 381-94 (1995)
doi:10.1002/ana.410370315
PMid:7695238

645. D. S. Robbins, Y. Shirazi, B. E. Drysdale, A. Lieberman, H. S. Shin and M. L. Shin: Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J Immunol, 139(8), 2593-7 (1987)

646. K. W. Selmaj and C. S. Raine: Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol, 23(4), 339-46 (1988)
doi:10.1002/ana.410230405
PMid:3132891

647. K. Selmaj and C. S. Raine: Tumor necrosis factor mediates myelin damage in organotypic cultures of nervous tissue. Ann N Y Acad Sci, 540, 568-70 (1988)
doi:10.1111/j.1749-6632.1988.tb27175.x
PMid:2462832

648. A. K. Talley, S. Dewhurst, S. W. Perry, S. C. Dollard, S. Gummuluru, S. M. Fine, D. New, L. G. Epstein, H. E. Gendelman and H. A. Gelbard: Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Mol Cell Biol, 15(5), 2359-66 (1995)

649. M. A. Sama, D. M. Mathis, J. L. Furman, H. M. Abdul, I. A. Artiushin, S. D. Kraner and C. M. Norris: Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem, 283(32), 21953-64 (2008)
doi:10.1074/jbc.M800148200
PMid:18541537

650. J. R. Bethea, I. Y. Chung, S. M. Sparacio, G. Y. Gillespie and E. N. Benveniste: Interleukin-1 beta induction of tumor necrosis factor-alpha gene expression in human astroglioma cells. J Neuroimmunol, 36(2-3), 179-91 (1992)
doi:10.1016/0165-5728(92)90049-Q
PMid:1732280

651. S. C. Lee, D. W. Dickson, W. Liu and C. F. Brosnan: Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol, 46(1-2), 19-24 (1993)
doi:10.1016/0165-5728(93)90229-R
PMid:7689587

652. D. E. Griffin, J. C. McArthur and D. R. Cornblath: Neopterin and interferon-gamma in serum and cerebrospinal fluid of patients with HIV-associated neurologic disease. Neurology, 41(1), 69-74 (1991)

653. K. M. Boje and P. K. Arora: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res, 587(2), 250-6 (1992)
doi:10.1016/0006-8993(92)91004-X
PMid:1381982

654. G. Karupiah, Q. W. Xie, R. M. Buller, C. Nathan, C. Duarte and J. D. MacMicking: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science, 261(5127), 1445-8 (1993)
doi:10.1126/science.7690156
PMid:7690156

655. S. M. Wahl, J. B. Allen, N. McCartney-Francis, M. C. Morganti-Kossmann, T. Kossmann, L. Ellingsworth, U. E. Mai, S. E. Mergenhagen and J. M. Orenstein: Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med, 173(4), 981-91 (1991)
doi:10.1084/jem.173.4.981
PMid:2007861    PMCid:2190818

656. S. M. Wahl, D. A. Hunt, L. M. Wakefield, N. McCartney-Francis, L. M. Wahl, A. B. Roberts and M. B. Sporn: Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A, 84(16), 5788-92 (1987)
doi:10.1073/pnas.84.16.5788

657. M. C. Morganti-Kossmann, T. Kossmann, M. E. Brandes, S. E. Mergenhagen and S. M. Wahl: Autocrine and paracrine regulation of astrocyte function by transforming growth factor-beta. J Neuroimmunol, 39(1-2), 163-73 (1992)
doi:10.1016/0165-5728(92)90185-N
PMid:1320057

658. C. C. Chao, S. Hu, M. Tsang, J. Weatherbee, T. W. Molitor, W. R. Anderson and P. K. Peterson: Effects of transforming growth factor-beta on murine astrocyte glutamine synthetase activity. Implications in neuronal injury. J Clin Invest, 90(5), 1786-93 (1992)
doi:10.1172/JCI116053
PMid:1358919    PMCid:443237

659. W. Kelder, J. C. McArthur, T. Nance-Sproson, D. McClernon and D. E. Griffin: Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol, 44(5), 831-5 (1998)
doi:10.1002/ana.410440521
PMid:9818943

660. M. W. Carr, S. J. Roth, E. Luther, S. S. Rose and T. A. Springer: Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A, 91(9), 3652-6 (1994)
doi:10.1073/pnas.91.9.3652

661. H. Schmidtmayerova, H. S. Nottet, G. Nuovo, T. Raabe, C. R. Flanagan, L. Dubrovsky, H. E. Gendelman, A. Cerami, M. Bukrinsky and B. Sherry: Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci U S A, 93(2), 700-4 (1996)
doi:10.1073/pnas.93.2.700

662. S. D. Wolpe, G. Davatelis, B. Sherry, B. Beutler, D. G. Hesse, H. T. Nguyen, L. L. Moldawer, C. F. Nathan, S. F. Lowry and A. Cerami: Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med, 167(2), 570-81 (1988)
doi:10.1084/jem.167.2.570
PMid:3279154    PMCid:2188834

663. T. J. Schall, K. Bacon, R. D. Camp, J. W. Kaspari and D. V. Goeddel: Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med, 177(6), 1821-6 (1993)
doi:10.1084/jem.177.6.1821
PMid:7684437    PMCid:2191042

664. J. M. Wang, B. Sherry, M. J. Fivash, D. J. Kelvin and J. J. Oppenheim: Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. J Immunol, 150(7), 3022-9 (1993)

665. T. J. Fahey, 3rd, K. J. Tracey, P. Tekamp-Olson, L. S. Cousens, W. G. Jones, G. T. Shires, A. Cerami and B. Sherry: Macrophage inflammatory protein 1 modulates macrophage function. J Immunol, 148(9), 2764-9 (1992)

666. T. J. Schall, K. Bacon, K. J. Toy and D. V. Goeddel: Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature, 347(6294), 669-71 (1990)
doi:10.1038/347669a0
PMid:1699135

667. Y. Sui, R. Potula, N. Dhillon, D. Pinson, S. Li, A. Nath, C. Anderson, J. Turchan, D. Kolson, O. Narayan and S. Buch: Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol, 164(5), 1557-66 (2004)

668. S. A. Kolb, B. Sporer, F. Lahrtz, U. Koedel, H. W. Pfister and A. Fontana: Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol, 93(1-2), 172-81 (1999)
doi:10.1016/S0165-5728(98)00223-9
PMid:10378881

669. P. Cinque, A. Bestetti, R. Marenzi, S. Sala, M. Gisslen, L. Hagberg and R. W. Price: Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection. J Neuroimmunol, 168(1-2), 154-63 (2005)
doi:10.1016/j.jneuroim.2005.07.002
PMid:16091292

670. V. Gangur, F. E. Simons and K. T. Hayglass: Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses. FASEB J, 12(9), 705-13 (1998)

671. B. R. Lane, S. R. King, P. J. Bock, R. M. Strieter, M. J. Coffey and D. M. Markovitz: The C-X-C chemokine IP-10 stimulates HIV-1 replication. Virology, 307(1), 122-34 (2003)
doi:10.1016/S0042-6822(02)00045-4
PMid:12667820

672. C. F. Pereira, J. Middel, G. Jansen, J. Verhoef and H. S. Nottet: Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol, 115(1-2), 168-75 (2001)
doi:10.1016/S0165-5728(01)00262-4
PMid:11282167

673. D. Erichsen, A. L. Lopez, H. Peng, D. Niemann, C. Williams, M. Bauer, S. Morgello, R. L. Cotter, L. A. Ryan, A. Ghorpade, H. E. Gendelman and J. Zheng: Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J Neuroimmunol, 138(1-2), 144-55 (2003)
doi:10.1016/S0165-5728(03)00117-6
PMid:12742664

674. N. Tong, S. W. Perry, Q. Zhang, H. J. James, H. Guo, A. Brooks, H. Bal, S. A. Kinnear, S. Fine, L. G. Epstein, D. Dairaghi, T. J. Schall, H. E. Gendelman, S. Dewhurst, L. R. Sharer and H. A. Gelbard: Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol, 164(3), 1333-9 (2000)

675. B. Sporer, S. Kastenbauer, U. Koedel, G. Arendt and H. W. Pfister: Increased intrathecal release of soluble fractalkine in HIV-infected patients. AIDS Res Hum Retroviruses, 19(2), 111-6 (2003)
doi:10.1089/088922203762688612
PMid:12639246

676. J. K. Harrison, Y. Jiang, S. Chen, Y. Xia, D. Maciejewski, R. K. McNamara, W. J. Streit, M. N. Salafranca, S. Adhikari, D. A. Thompson, P. Botti, K. B. Bacon and L. Feng: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A, 95(18), 10896-901 (1998)
doi:10.1073/pnas.95.18.10896

677. D. Vergote, G. S. Butler, M. Ooms, J. H. Cox, C. Silva, M. D. Hollenberg, J. H. Jhamandas, C. M. Overall and C. Power: Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci U S A, 103(50), 19182-7 (2006)
doi:10.1073/pnas.0604678103

678. K. L. Black and J. T. Hoff: Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann Neurol, 18(3), 349-51 (1985)
doi:10.1002/ana.410180313
PMid:2996417

679. D. C. Adamson, B. Wildemann, M. Sasaki, J. D. Glass, J. C. McArthur, V. I. Christov, T. M. Dawson and V. L. Dawson: Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science, 274(5294), 1917-21 (1996)
doi:10.1126/science.274.5294.1917
PMid:8943206

680. D. C. Adamson, J. C. McArthur, T. M. Dawson and V. L. Dawson: Rate and severity of HIV-associated dementia (HAD): correlations with Gp41 and iNOS. Mol Med, 5(2), 98-109 (1999)

681. G. Giovannoni, R. F. Miller, S. J. Heales, J. M. Land, M. J. Harrison and E. J. Thompson: Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central nervous system complications of HIV-1 infection: a correlation with blood-brain-barrier dysfunction. J Neurol Sci, 156(1), 53-8 (1998)
doi:10.1016/S0022-510X(98)00021-5
PMid:9559987

682. V. Mollace, D. Salvemini, D. P. Riley, C. Muscoli, M. Iannone, T. Granato, L. Masuelli, A. Modesti, D. Rotiroti, R. Nistico, A. Bertoli, C. F. Perno and S. Aquaro: The contribution of oxidative stress in apoptosis of human-cultured astroglial cells induced by supernatants of HIV-1-infected macrophages. J Leukoc Biol, 71(1), 65-72 (2002)

683. J. Turchan-Cholewo, V. M. Dimayuga, S. Gupta, R. M. Gorospe, J. N. Keller and A. J. Bruce-Keller: NADPH oxidase drives cytokine and neurotoxin release from microglia and macrophages in response to HIV-Tat. Antioxid Redox Signal, 11(2), 193-204 (2009)
doi:10.1089/ars.2008.2097

684. C. Muscoli, D. Salvemini, D. Paolino, M. Iannone, E. Palma, A. Cufari, D. Rotiroti, C. F. Perno, S. Aquaro and V. Mollace: Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages. BMC Neurosci, 3, 13 (2002)
doi:10.1186/1471-2202-3-13
PMid:12234380    PMCid:129984

685. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall and B. A. Freeman: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A, 87(4), 1620-4 (1990)
doi:10.1073/pnas.87.4.1620

686. C. Elbim, S. Pillet, M. H. Prevost, A. Preira, P. M. Girard, N. Rogine, H. Matusani, J. Hakim, N. Israel and M. A. Gougerot-Pocidalo: Redox and activation status of monocytes from human immunodeficiency virus-infected patients: relationship with viral load. J Virol, 73(6), 4561-6 (1999)

687. A. Nath, N. J. Haughey, M. Jones, C. Anderson, J. E. Bell and J. D. Geiger: Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol, 47(2), 186-94 (2000)
doi:10.1002/1531-8249(200002)47:2<186::AID-ANA8>3.3.CO;2-V
PMid:10665489

doi:10.1002/1531-8249(200002)47:2<186::AID-ANA8>3.0.CO;2-3
PMid:10665489

688. J. Cheng, A. Nath, B. Knudsen, S. Hochman, J. D. Geiger, M. Ma and D. S. Magnuson: Neuronal excitatory properties of human immunodeficiency virus type 1 Tat protein. Neuroscience, 82(1), 97-106 (1998)
doi:10.1016/S0306-4522(97)00174-7

689. P. J. Strijbos, M. R. Zamani, N. J. Rothwell, G. Arbuthnott and G. Harkiss: Neurotoxic mechanisms of transactivating protein Tat of Maedi-Visna virus. Neurosci Lett, 197(3), 215-8 (1995)
doi:10.1016/0304-3940(95)11940-X
PMid:8552302

690. B. Shi, J. Raina, A. Lorenzo, J. Busciglio and D. Gabuzda: Neuronal apoptosis induced by HIV-1 Tat protein and TNF-alpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. J Neurovirol, 4(3), 281-90 (1998)

691. R. Bonavia, A. Bajetto, S. Barbero, A. Albini, D. M. Noonan and G. Schettini: HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun, 288(2), 301-8 (2001)
doi:10.1006/bbrc.2001.5743
PMid:11606043

692. D. S. Magnuson, B. E. Knudsen, J. D. Geiger, R. M. Brownstone and A. Nath: Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol, 37(3), 373-80 (1995)
doi:10.1002/ana.410370314
PMid:7695237

693. D. R. New, S. B. Maggirwar, L. G. Epstein, S. Dewhurst and H. A. Gelbard: HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. J Biol Chem, 273(28), 17852-8 (1998)
doi:10.1074/jbc.273.28.17852
PMid:9651389

694. Z. G. Jiang, C. Piggee, M. P. Heyes, C. Murphy, B. Quearry, M. Bauer, J. Zheng, H. E. Gendelman and S. P. Markey: Glutamate is a mediator of neurotoxicity in secretions of activated HIV-1-infected macrophages. J Neuroimmunol, 117(1-2), 97-107 (2001)
doi:10.1016/S0165-5728(01)00315-0
PMid:11431009

695. C. Ferrarese, R. Riva, A. Dolara, A. De Micheli and L. Frattola: Elevated glutamate in the cerebrospinal fluid of patients with HIV dementia. JAMA, 277(8), 630 (1997)
doi:10.1001/jama.277.8.630
PMid:9039879

696. C. Ferrarese, A. Aliprandi, L. Tremolizzo, L. Stanzani, A. De Micheli, A. Dolara and L. Frattola: Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology, 57(4), 671-5 (2001)

697. M. P. Heyes, D. Rubinow, C. Lane and S. P. Markey: Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann Neurol, 26(2), 275-7 (1989)
doi:10.1002/ana.410260215
PMid:2528321

698. S. J. Kerr, P. J. Armati, L. A. Pemberton, G. Smythe, B. Tattam and B. J. Brew: Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages. Neurology, 49(6), 1671-81 (1997)

699. M. P. Heyes, B. J. Brew, A. Martin, R. W. Price, A. M. Salazar, J. J. Sidtis, J. A. Yergey, M. M. Mouradian, A. E. Sadler, J. Keilp and et al.: Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol, 29(2), 202-9 (1991)
doi:10.1002/ana.410290215
PMid:1826418

700. S. J. Kerr, P. J. Armati, G. J. Guillemin and B. J. Brew: Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS, 12(4), 355-63 (1998)
doi:10.1097/00002030-199804000-00003
PMid:9520164

701. H. A. Gelbard, H. S. Nottet, S. Swindells, M. Jett, K. A. Dzenko, P. Genis, R. White, L. Wang, Y. B. Choi, D. Zhang and et al.: Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol, 68(7), 4628-35 (1994)

702. F. Ogden, M. A. DeCoster and N. G. Bazan: Recombinant plasma-type platelet-activating factor acetylhydrolase attenuates NMDA-induced hippocampal neuronal apoptosis. J Neurosci Res, 53(6), 677-84 (1998)
doi:10.1002/(SICI)1097-4547(19980915)53:6<677::AID-JNR6>3.0.CO;2-2
PMid:9753196

703. Y. Xu and Y. X. Tao: Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity. Neuroreport, 15(2), 263-6 (2004)
doi:10.1097/00001756-200402090-00010
PMid:15076749

704. D. E. Griffin, S. L. Wesselingh and J. C. McArthur: Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann Neurol, 35(5), 592-7 (1994)
doi:10.1002/ana.410350513
PMid:7910004

705. M. T. Corasaniti, M. C. Strongoli, S. Piccirilli, R. Nistico, A. Costa, A. Bilotta, P. Turano, A. Finazzi-Agro and G. Bagetta: Apoptosis induced by gp120 in the neocortex of rat involves enhanced expression of cyclooxygenase type 2 and is prevented by NMDA receptor antagonists and by the 21-aminosteroid U-74389G. Biochem Biophys Res Commun, 274(3), 664-9 (2000)
doi:10.1006/bbrc.2000.3160
PMid:10924334

706. S. Vesce, P. Bezzi, D. Rossi, J. Meldolesi and A. Volterra: HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Lett, 411(1), 107-9 (1997)
doi:10.1016/S0014-5793(97)00674-1
PMid:9247152

707. A. L. Vignoli, I. Martini, K. G. Haglid, L. Silvestroni, G. Augusti-Tocco and S. Biagioni: Neuronal glycolytic pathway impairment induced by HIV envelope glycoprotein gp120. Mol Cell Biochem, 215(1-2), 73-80 (2000)
doi:10.1023/A:1026590916661
PMid:11204458

708. H. Peng, N. Erdmann, N. Whitney, H. Dou, S. Gorantla, H. E. Gendelman, A. Ghorpade and J. Zheng: HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia, 54(6), 619-29 (2006)
doi:10.1002/glia.20409
PMid:16944452    PMCid:1919406

709. A. L. Meditz, R. Schlichtemeier, J. M. Folkvord, M. Givens, K. C. Lesh, M. G. Ray, M. D. McCarter and E. Connick: SDF-1alpha is a potent inducer of HIV-1-Specific CD8+ T-cell chemotaxis, but migration of CD8+ T cells is impaired at high viral loads. AIDS Res Hum Retroviruses, 24(7), 977-85 (2008)
doi:10.1089/aid.2007.0259
PMid:18671480

710. J. Hesselgesser, D. Taub, P. Baskar, M. Greenberg, J. Hoxie, D. L. Kolson and R. Horuk: Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol, 8(10), 595-8 (1998)
doi:10.1016/S0960-9822(98)70230-1
PMid:9601645

711. D. C. Adamson, K. L. Kopnisky, T. M. Dawson and V. L. Dawson: Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity. J Neurosci, 19(1), 64-71 (1999)

712. K. Hori, P. R. Burd, K. Furuke, J. Kutza, K. A. Weih and K. A. Clouse: Human immunodeficiency virus-1-infected macrophages induce inducible nitric oxide synthase and nitric oxide (NO) production in astrocytes: astrocytic NO as a possible mediator of neural damage in acquired immunodeficiency syndrome. Blood, 93(6), 1843-50 (1999)

713. J. J. Kort: Impairment of excitatory amino acid transport in astroglial cells infected with the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses, 14(15), 1329-39 (1998)
doi:10.1089/aid.1998.14.1329
PMid:9788674

714. J. H. Sung, S. A. Shin, H. K. Park, R. C. Montelaro and Y. H. Chong: Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells. J Neurovirol, 7(5), 454-65 (2001)
doi:10.1080/135502801753170318
PMid:11582518

715. O. Zegarra-Moran, A. Rasola, M. Rugolo, A. M. Porcelli, B. Rossi and L. J. Galietta: HIV-1 nef expression inhibits the activity of a Ca2+-dependent K+ channel involved in the control of the resting potential in CEM lymphocytes. J Immunol, 162(9), 5359-66 (1999)

716. G. Trillo-Pazos, E. McFarlane-Abdulla, I. C. Campbell, G. J. Pilkington and I. P. Everall: Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res, 864(2), 315-26 (2000)
doi:10.1016/S0006-8993(00)02213-7
PMid:10802040

717. J. He, C. M. deCastro, G. R. Vandenbark, J. Busciglio and D. Gabuzda: Astrocyte apoptosis induced by HIV-1 transactivation of the c-kit protooncogene. Proc Natl Acad Sci U S A, 94(8), 3954-9 (1997)
doi:10.1073/pnas.94.8.3954

718. J. J. Kort and T. O. Jalonen: The nef protein of the human immunodeficiency virus type 1 (HIV-1) inhibits a large-conductance potassium channel in human glial cells. Neurosci Lett, 251(1), 1-4 (1998)
doi:10.1016/S0304-3940(98)00495-9
PMid:9714450

719. P. Rieckmann, K. Nunke, M. Burchhardt, M. Albrecht, J. Wiltfang, M. Ulrich and K. Felgenhauer: Soluble intercellular adhesion molecule-1 in cerebrospinal fluid: an indicator for the inflammatory impairment of the blood-cerebrospinal fluid barrier. J Neuroimmunol, 47(2), 133-40 (1993)
doi:10.1016/0165-5728(93)90023-R
PMid:8103775

720. F. Heidenreich, G. Arendt, S. Jander, H. Jablonowski and G. Stoll: Serum and cerebrospinal fluid levels of soluble intercellular adhesion molecule 1 (sICAM-1) in patients with HIV-1 associated neurological diseases. J Neuroimmunol, 52(2), 117-26 (1994)
doi:10.1016/0165-5728(94)90105-8
PMid:7913474

721. C. M. Mastroianni, M. Lichtner, F. Mengoni, C. D'Agostino, G. d'Ettorre, G. Forcina, P. Santopadre, A. P. Massetti and V. Vullo: Changes in circulating levels of soluble cell adhesion molecules following highly active antiretroviral treatment of HIV-1-infected patients. Clin Immunol, 95(3), 212-7 (2000)
doi:10.1006/clim.2000.4865
PMid:10866128

722. L. Gattegno, M. Bentata-Peyssare, S. Gronowski, K. Chaouche and F. Ferriere: Elevated concentrations of circulating intercellular adhesion molecule 1 (ICAM-1) and of vascular cell adhesion molecule 1 (VCAM-1) in HIV-1 infection. Cell Adhes Commun, 3(3), 179-85 (1995)
doi:10.3109/15419069509081285

723. E. Papasavvas, L. Azzoni, M. Pistilli, A. Hancock, G. Reynolds, C. Gallo, J. Ondercin, J. R. Kostman, K. Mounzer, J. Shull and L. J. Montaner: Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy. AIDS, 22(10), 1153-61 (2008)
doi:10.1097/QAD.0b013e328303be2a
PMid:18525261

724. Z. Sui, L. F. Sniderhan, G. Schifitto, R. P. Phipps, H. A. Gelbard, S. Dewhurst and S. B. Maggirwar: Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol, 178(5), 3226-36 (2007)

725. N. V. Sipsas, P. P. Sfikakis, A. Kontos and T. Kordossis: Levels of soluble CD40 ligand (CD154) in serum are increased in human immunodeficiency virus type 1-infected patients and correlate with CD4(+) T-cell counts. Clin Diagn Lab Immunol, 9(3), 558-61 (2002)
doi:10.1128/CDLI.9.3.558-561.2002
PMid:11986259    PMCid:120000

726. P. Gallo, K. Frei, C. Rordorf, J. Lazdins, B. Tavolato and A. Fontana: Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. J Neuroimmunol, 23(2), 109-16 (1989)
doi:10.1016/0165-5728(89)90029-5
PMid:2656753

727. M. Ciardi, M. K. Sharief, M. A. Noori, E. J. Thompson, A. Salotti, F. Rossi, V. Vullo, S. Catania, F. Sorice and A. Cirelli: Intrathecal synthesis of interleukin-2 and soluble IL-2 receptor in asymptomatic HIV-1 seropositive individuals. Correlation with local production of specific IgM and IgG antibodies. J Neurol Sci, 115(1), 117-22 (1993)
doi:10.1016/0022-510X(93)90076-B
PMid:8468587

728. T. Fischer-Smith, S. Croul, A. E. Sverstiuk, C. Capini, D. L'Heureux, E. G. Regulier, M. W. Richardson, S. Amini, S. Morgello, K. Khalili and J. Rappaport: CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol, 7(6), 528-41 (2001)
doi:10.1080/135502801753248114
PMid:11704885

729. L. A. Ryan, J. Zheng, M. Brester, D. Bohac, F. Hahn, J. Anderson, W. Ratanasuwan, H. E. Gendelman and S. Swindells: Plasma levels of soluble CD14 and tumor necrosis factor-alpha type II receptor correlate with cognitive dysfunction during human immunodeficiency virus type 1 infection. J Infect Dis, 184(6), 699-706 (2001)
doi:10.1086/323036
PMid:11517430

730. E. Lien, P. Aukrust, A. Sundan, F. Muller, S. S. Froland and T. Espevik: Elevated levels of serum-soluble CD14 in human immunodeficiency virus type 1 (HIV-1) infection: correlation to disease progression and clinical events. Blood, 92(6), 2084-92 (1998)

731. W. A. Nockher, L. Bergmann and J. E. Scherberich: Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol, 98(3), 369-74 (1994)

732. P. Annunziata, C. Cioni, S. Toneatto and E. Paccagnini: HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS, 12(18), 2377-85 (1998)
doi:10.1097/00002030-199818000-00006
PMid:9875575

733. S. D. Douglas, W. Z. Ho, D. R. Gettes, A. Cnaan, H. Zhao, J. Leserman, J. M. Petitto, R. N. Golden and D. L. Evans: Elevated substance P levels in HIV-infected men. AIDS, 15(15), 2043-5 (2001)
doi:10.1097/00002030-200110190-00019
PMid:11600835

734. S. Aquaro, S. Panti, M. C. Caroleo, E. Balestra, A. Cenci, F. Forbici, G. Ippolito, A. Mastino, R. Testi, V. Mollace, R. Calio and C. F. Perno: Primary macrophages infected by human immunodeficiency virus trigger CD95-mediated apoptosis of uninfected astrocytes. J Leukoc Biol, 68(3), 429-35 (2000)

735. F. Sabri, A. De Milito, R. Pirskanen, I. Elovaara, L. Hagberg, P. Cinque, R. Price and F. Chiodi: Elevated levels of soluble Fas and Fas ligand in cerebrospinal fluid of patients with AIDS dementia complex. J Neuroimmunol, 114(1-2), 197-206 (2001)
doi:10.1016/S0165-5728(00)00424-0
PMid:11240032

736. S. C. Piller, P. Jans, P. W. Gage and D. A. Jans: Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A, 95(8), 4595-600 (1998)
doi:10.1073/pnas.95.8.4595

737. S. C. Piller, G. D. Ewart, A. Premkumar, G. B. Cox and P. W. Gage: Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid bilayers. Proc Natl Acad Sci U S A, 93(1), 111-5 (1996)
doi:10.1073/pnas.93.1.111

738. G. J. Jones, N. L. Barsby, E. A. Cohen, J. Holden, K. Harris, P. Dickie, J. Jhamandas and C. Power: HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci, 27(14), 3703-11 (2007)
doi:10.1523/JNEUROSCI.5522-06.2007
PMid:17409234

739. C. A. Patel, M. Mukhtar and R. J. Pomerantz: Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol, 74(20), 9717-26 (2000)
doi:10.1128/JVI.74.20.9717-9726.2000
PMid:11000244    PMCid:112404

740. M. B. Huang, O. Weeks, L. J. Zhao, M. Saltarelli and V. C. Bond: Effects of extracellular human immunodeficiency virus type 1 vpr protein in primary rat cortical cell cultures. J Neurovirol, 6(3), 202-20 (2000)
doi:10.3109/13550280009015823
PMid:10878710

741. S. C. Piller, G. D. Ewart, D. A. Jans, P. W. Gage and G. B. Cox: The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol, 73(5), 4230-8 (1999)

742. K. Mabrouk, J. Van Rietschoten, E. Vives, H. Darbon, H. Rochat and J. M. Sabatier: Lethal neurotoxicity in mice of the basic domains of HIV and SIV Rev proteins. Study of these regions by circular dichroism. FEBS Lett, 289(1), 13-7 (1991)
doi:10.1016/0014-5793(91)80898-D
PMid:1894002

743. G. A. Rosenberg, E. Y. Estrada, J. E. Dencoff and W. G. Stetler-Stevenson: Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res, 703(1-2), 151-5 (1995)
doi:10.1016/0006-8993(95)01089-0
PMid:8719627

744. J. Haorah, K. Schall, S. H. Ramirez and Y. Persidsky: Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse. Glia, 56(1), 78-88 (2008)
doi:10.1002/glia.20596
PMid:17943953

745. C. Lohmann, M. Krischke, J. Wegener and H. J. Galla: Tyrosine phosphatase inhibition induces loss of blood-brain barrier integrity by matrix metalloproteinase-dependent and -independent pathways. Brain Res, 995(2), 184-96 (2004)
doi:10.1016/j.brainres.2003.10.002
PMid:14672808

746. M. B. Lawrence, G. S. Kansas, E. J. Kunkel and K. Ley: Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E). J Cell Biol, 136(3), 717-27 (1997)
doi:10.1083/jcb.136.3.717
PMid:9024700    PMCid:2134292

747. E. E. Eriksson, X. Xie, J. Werr, P. Thoren and L. Lindbom: Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med, 194(2), 205-18 (2001)
doi:10.1084/jem.194.2.205
PMid:11457895    PMCid:2193449

748. T. Yago, V. I. Zarnitsyna, A. G. Klopocki, R. P. McEver and C. Zhu: Transport governs flow-enhanced cell tethering through L-selectin at threshold shear. Biophys J, 92(1), 330-42 (2007)
doi:10.1529/biophysj.106.090969
PMid:17028146    PMCid:1697837

749. J. E. Sligh, Jr., C. M. Ballantyne, S. S. Rich, H. K. Hawkins, C. W. Smith, A. Bradley and A. L. Beaudet: Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci U S A, 90(18), 8529-33 (1993)
doi:10.1073/pnas.90.18.8529

750. M. T. Huang, K. Y. Larbi, C. Scheiermann, A. Woodfin, N. Gerwin, D. O. Haskard and S. Nourshargh: ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood, 107(12), 4721-7 (2006)
doi:10.1182/blood-2005-11-4683
PMid:16469869

751. F. Giuliani, W. Hader and V. W. Yong: Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J Leukoc Biol, 78(1), 135-43 (2005)
doi:10.1189/jlb.0804477
PMid:15817702

752. K. Suk: Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci Lett, 366(2), 167-71 (2004)
doi:10.1016/j.neulet.2004.05.038
PMid:15276240

753. M. Nikodemova, J. J. Watters, S. J. Jackson, S. K. Yang and I. D. Duncan: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem, 282(20), 15208-16 (2007)
doi:10.1074/jbc.M611907200
PMid:17395590

754. S. Lin, Y. Zhang, R. Dodel, M. R. Farlow, S. M. Paul and Y. Du: Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett, 315(1-2), 61-4 (2001)
doi:10.1016/S0304-3940(01)02324-2
PMid:11711215

755. M. C. Zink, J. Uhrlaub, J. DeWitt, T. Voelker, B. Bullock, J. Mankowski, P. Tarwater, J. Clements and S. Barber: Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA, 293(16), 2003-11 (2005)
doi:10.1001/jama.293.16.2003
PMid:15855434

756. Q. Si, M. Cosenza, M. O. Kim, M. L. Zhao, M. Brownlee, H. Goldstein and S. Lee: A novel action of minocycline: inhibition of human immunodeficiency virus type 1 infection in microglia. J Neurovirol, 10(5), 284-92 (2004)
doi:10.1080/13550280490499533
PMid:15385251

757. C. B. Pert, J. M. Hill, M. R. Ruff, R. M. Berman, W. G. Robey, L. O. Arthur, F. W. Ruscetti and W. L. Farrar: Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity. Proc Natl Acad Sci U S A, 83(23), 9254-8 (1986)
doi:10.1073/pnas.83.23.9254

758. M. R. Ruff, P. L. Hallberg, J. M. Hill and C. B. Pert: Peptide T(4-8) is core HIV envelope sequence required for CD4 receptor attachment. Lancet, 2(8561), 751 (1987)
doi:10.1016/S0140-6736(87)91120-2

759. T. E. Ramsdale, P. R. Andrews and E. C. Nice: Verification of the interaction between peptide T and CD4 using surface plasmon resonance. FEBS Lett, 333(3), 217-22 (1993)
doi:10.1016/0014-5793(93)80657-G
PMid:8224182

760. M. T. Polianova, F. W. Ruscetti, C. B. Pert and M. R. Ruff: Chemokine receptor-5 (CCR5) is a receptor for the HIV entry inhibitor peptide T (DAPTA). Antiviral Res, 67(2), 83-92 (2005)
doi:10.1016/j.antiviral.2005.03.007
PMid:16002156

761. M. Pollicita, M. R. Ruff, C. B. Pert, M. T. Polianova, D. Schols, A. Ranazzi, C. F. Perno and S. Aquaro: Profound anti-HIV-1 activity of DAPTA in monocytes/macrophages and inhibition of CCR5-mediated apoptosis in neuronal cells. Antivir Chem Chemother, 18(5), 285-95 (2007)

762. D. J. Phipps and D. K. MacFadden: Inhibition of tumour necrosis factor-alpha explains inhibition of HIV replication by peptide T. AIDS, 10(8), 919-20 (1996)
doi:10.1097/00002030-199607000-00016
PMid:8828750

763. J. Buzy, D. E. Brenneman, C. B. Pert, A. Martin, A. Salazar and M. R. Ruff: Potent gp120-like neurotoxic activity in the cerebrospinal fluid of HIV-infected individuals is blocked by peptide T. Brain Res, 598(1-2), 10-8 (1992)
doi:10.1016/0006-8993(92)90161-2
PMid:1486472

764. P. N. Heseltine, K. Goodkin, J. H. Atkinson, B. Vitiello, J. Rochon, R. K. Heaton, E. M. Eaton, F. L. Wilkie, E. Sobel, S. J. Brown, D. Feaster, L. Schneider, W. L. Goldschmidts and E. S. Stover: Randomized double-blind placebo-controlled trial of peptide T for HIV-associated cognitive impairment. Arch Neurol, 55(1), 41-51 (1998)
doi:10.1001/archneur.55.1.41
PMid:9443710

765. M. T. Polianova, F. W. Ruscetti, C. B. Pert, R. E. Tractenberg, G. Leoung, S. Strang and M. R. Ruff: Antiviral and immunological benefits in HIV patients receiving intranasal peptide T (DAPTA). Peptides, 24(7), 1093-8 (2003)
doi:10.1016/S0196-9781(03)00176-1
PMid:14499289

766. H. S. Chen, J. W. Pellegrini, S. K. Aggarwal, S. Z. Lei, S. Warach, F. E. Jensen and S. A. Lipton: Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci, 12(11), 4427-36 (1992)

767. C. P. Holden, N. J. Haughey, A. Nath and J. D. Geiger: Role of Na+/H+ exchangers, excitatory amino acid receptors and voltage-operated Ca2+ channels in human immunodeficiency virus type 1 gp120-mediated increases in intracellular Ca2+ in human neurons and astrocytes. Neuroscience, 91(4), 1369-78 (1999)
doi:10.1016/S0306-4522(98)00714-3
PMid:10391443

768. W. E. Muller, H. C. Schroder, H. Ushijima, J. Dapper and J. Bormann: gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine. Eur J Pharmacol, 226(3), 209-14 (1992)
doi:10.1016/0922-4106(92)90063-2

769. S. A. Lipton: Memantine prevents HIV coat protein-induced neuronal injury in vitro. Neurology, 42(7), 1403-5 (1992)

770. S. M. Toggas, E. Masliah and L. Mucke: Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res, 706(2), 303-7 (1996)
doi:10.1016/0006-8993(95)01197-8
PMid:8822372

771. B. Reisberg, R. Doody, A. Stoffler, F. Schmitt, S. Ferris and H. J. Mobius: Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med, 348(14), 1333-41 (2003)
doi:10.1056/NEJMoa013128
PMid:12672860

772. P. N. Tariot, M. R. Farlow, G. T. Grossberg, S. M. Graham, S. McDonald and I. Gergel: Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA, 291(3), 317-24 (2004)
doi:10.1001/jama.291.3.317
PMid:14734594

773. G. Schifitto, B. A. Navia, C. T. Yiannoutsos, C. M. Marra, L. Chang, T. Ernst, J. G. Jarvik, E. N. Miller, E. J. Singer, R. J. Ellis, D. L. Kolson, D. Simpson, A. Nath, J. Berger, S. L. Shriver, L. L. Millar, D. Colquhoun, R. Lenkinski, R. G. Gonzalez and S. A. Lipton: Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS, 21(14), 1877-86 (2007)
doi:10.1097/QAD.0b013e32813384e8
PMid:17721095

774. S. Kazda and R. Towart: Nimodipine: a new calcium antagonistic drug with a preferential cerebrovascular action. Acta Neurochir (Wien), 63(1-4), 259-65 (1982)
doi:10.1007/BF01728880
PMid:7102417

775. E. B. Dreyer, P. K. Kaiser, J. T. Offermann and S. A. Lipton: HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science, 248(4953), 364-7 (1990)
doi:10.1126/science.2326646
PMid:2326646

776. B. A. Navia, U. Dafni, D. Simpson, T. Tucker, E. Singer, J. C. McArthur, C. Yiannoutsos, L. Zaborski and S. A. Lipton: A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology, 51(1), 221-8 (1998)

777. P. Riederer, M. B. Youdim, W. Birkmayer and K. Jellinger: Monoamine oxidase activity during (--)-deprenil therapy: human brain post-mortem studies. Adv Biochem Psychopharmacol, 19, 377-82 (1978)

778. Y. Matsui and Y. Kumagae: Monoamine oxidase inhibitors prevent striatal neuronal necrosis induced by transient forebrain ischemia. Neurosci Lett, 126(2), 175-8 (1991)
doi:10.1016/0304-3940(91)90547-7
PMid:1922929

779. M. C. Carrillo, K. Kitani, S. Kanai, Y. Sato, K. Miyasaka and G. O. Ivy: (-)deprenyl increases activities of superoxide dismutase and catalase in certain brain regions in old male mice. Life Sci, 54(14), 975-81 (1994)
doi:10.1016/0024-3205(94)00499-4
PMid:8139387

780. M. C. Carrillo, G. O. Ivy, N. W. Milgram, E. Head, P. Wu and K. Kitani: (-)Deprenyl increases activities of superoxide dismutase (SOD) in striatum of dog brain. Life Sci, 54(20), 1483-9 (1994)
doi:10.1016/0024-3205(94)90015-9
PMid:8190023

781. W. G. Tatton, K. Ansari, W. Ju, P. T. Salo and P. H. Yu: Selegiline induces "trophic-like" rescue of dying neurons without MAO inhibition. Adv Exp Med Biol, 363, 15-6 (1995)

782. I. Semkova, P. Wolz, M. Schilling and J. Krieglstein: Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol, 315(1), 19-30 (1996)
doi:10.1016/S0014-2999(96)00593-6
PMid:8960860

783. O. Kontkanen and E. Castren: Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res, 829(1-2), 190-2 (1999)
doi:10.1016/S0006-8993(99)01363-3
PMid:10350547

784. K. S. Ansari, P. H. Yu, T. P. Kruck and W. G. Tatton: Rescue of axotomized immature rat facial motoneurons by R(-)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci, 13(9), 4042-53 (1993)

785. Effect of deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group. N Engl J Med, 321(20), 1364-71 (1989)

786. M. Sano, C. Ernesto, R. G. Thomas, M. R. Klauber, K. Schafer, M. Grundman, P. Woodbury, J. Growdon, C. W. Cotman, E. Pfeiffer, L. S. Schneider and L. J. Thal: A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N Engl J Med, 336(17), 1216-22 (1997)
doi:10.1056/NEJM199704243361704
PMid:9110909

787. G. Schifitto, J. Zhang, S. R. Evans, N. Sacktor, D. Simpson, L. L. Millar, V. L. Hung, E. N. Miller, E. Smith, R. J. Ellis, V. Valcour, E. Singer, C. M. Marra, D. Kolson, J. Weihe, R. Remmel, D. Katzenstein and D. B. Clifford: A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology, 69(13), 1314-21 (2007)
doi:10.1212/01.wnl.0000268487.78753.0f
PMid:17652642

788. A. C. Hall, A. Brennan, R. G. Goold, K. Cleverley, F. R. Lucas, P. R. Gordon-Weeks and P. C. Salinas: Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci, 20(2), 257-70 (2002)
doi:10.1006/mcne.2002.1117
PMid:12093158

789. K. Orford, C. Crockett, J. P. Jensen, A. M. Weissman and S. W. Byers: Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem, 272(40), 24735-8 (1997)
doi:10.1074/jbc.272.40.24735
PMid:9312064

790. H. Dou, K. Birusingh, J. Faraci, S. Gorantla, L. Y. Poluektova, S. B. Maggirwar, S. Dewhurst, H. A. Gelbard and H. E. Gendelman: Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci, 23(27), 9162-70 (2003)

791. S. B. Maggirwar, N. Tong, S. Ramirez, H. A. Gelbard and S. Dewhurst: HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem, 73(2), 578-86 (1999)
doi:10.1046/j.1471-4159.1999.0730578.x
PMid:10428053

792. N. Tong, J. F. Sanchez, S. B. Maggirwar, S. H. Ramirez, H. Guo, S. Dewhurst and H. A. Gelbard: Activation of glycogen synthase kinase 3 beta (GSK-3beta) by platelet activating factor mediates migration and cell death in cerebellar granule neurons. Eur J Neurosci, 13(10), 1913-22 (2001)
doi:10.1046/j.0953-816x.2001.01572.x
PMid:11403684

793. Z. Sui, L. F. Sniderhan, S. Fan, K. Kazmierczak, E. Reisinger, A. D. Kovacs, M. J. Potash, S. Dewhurst, H. A. Gelbard and S. B. Maggirwar: Human immunodeficiency virus-encoded Tat activates glycogen synthase kinase-3beta to antagonize nuclear factor-kappaB survival pathway in neurons. Eur J Neurosci, 23(10), 2623-34 (2006)
doi:10.1111/j.1460-9568.2006.04813.x
PMid:16817865

794. I. P. Everall, C. Bell, M. Mallory, D. Langford, A. Adame, E. Rockestein and E. Masliah: Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci, 21(3), 493-501 (2002)
doi:10.1006/mcne.2002.1196
PMid:12498789

795. H. Dou, B. Ellison, J. Bradley, A. Kasiyanov, L. Y. Poluektova, H. Xiong, S. Maggirwar, S. Dewhurst, H. A. Gelbard and H. E. Gendelman: Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci, 25(37), 8375-85 (2005)
doi:10.1523/JNEUROSCI.2164-05.2005
PMid:16162919

796. G. Schifitto, D. R. Peterson, J. Zhong, H. Ni, K. Cruttenden, M. Gaugh, H. E. Gendelman, M. Boska and H. Gelbard: Valproic acid adjunctive therapy for HIV-associated cognitive impairment: a first report. Neurology, 66(6), 919-21 (2006)
doi:10.1212/01.wnl.0000204294.28189.03
PMid:16510768

797. L. A. Cysique, P. Maruff and B. J. Brew: Valproic acid is associated with cognitive decline in HIV-infected individuals: a clinical observational study. BMC Neurol, 6, 42 (2006)
doi:10.1186/1471-2377-6-42
PMid:17150108    PMCid:1702364

798. S. L. Letendre, S. P. Woods, R. J. Ellis, J. H. Atkinson, E. Masliah, G. van den Brande, J. Durelle, I. Grant and I. Everall: Lithium improves HIV-associated neurocognitive impairment. AIDS, 20(14), 1885-8 (2006)
doi:10.1097/01.aids.0000244208.49123.1b
PMid:16954730

Abbreviations: CNS: central nervous system; BBB: blood brain barrier; HIV: human immunodeficiency virus-1; ART: antiretroviral therapy; BMVEC: brain microvascular endothelial cells; CSF: cerebrospinal fluid; PSGL-1; P-selectin glycoprotein ligand 1; NF-kappa B: nuclear factor kappa B; TNF-alpha: tumor necrosis factor alpha; CCL1: chemokine (C-C motif) ligand 1; VCAM: vascular cell adhesion molecule; VLA: very late antigen; MAPK: mitogen activated protein kinase; ICAM: intercellular adhesion molecule; LFA: leukocyte function antigen; ALCAM: activated leukocyte cell adhesion molecule; JAM: junctional adhesion molecule; PECAM: platelet endothelial cell adhesion molecule; LBRC: lateral border recycling compartment; PVR: polio virus receptor; DNAM: DNA accessory molecule; PrPc: protease resistant protein-cellular isoform; MMP: matrix metalloproteinase; ZO: zonula occludens; VE-cadherin: vascular endothelial cadherin; VE-PTP: vascular endothelial protein tyrosine phosphatase; PMN: polymorphonuclear cells; HTLV: human T cell leukemia virus; gamma-GT: gamma-glutamyl transpeptidase; GLUT: glucose transporter; CCL2: chemokine (C-C motif) ligand 2; CCR2: chemokine (C-C motif) receptor 2; HIVE: HIV-1 encephalitis; SIV: simian immunodeficiency virus; PBMC: peripheral blood mononuclear cell; NO: nitric oxide; PKC: protein kinase C; TIMP: tissue inhibitor of metalloproteinase; CXCR3: chemokine (C-X-C motif) receptor 3; CCR5: chemokine (C-C motif) receptor 5; CXCR6: chemokine (C-X-C motif) receptor 6; CXCR4: chemokine (C-X-C) receptor 4; CCR8: chemokine (C-C motif) receptor 8; CCL4: chemokine (C-C) ligand 4; CCL5: chemokine (C-C) ligand 5; HAND: HIV-1- associated neurocognitive disorder; MTI-MMP: membrane type 1-matrix metalloproteinase; ADAM: a disintegrin and metalloprotease; MCP-1: monocyte chemoattractant protein 1; HAD: HIV-1-associated dementia; IRIS: immune reconstitution inflammatory syndrome; GAG: glycosaminoglycan; MOG: myelin oligodendrocyte glycoprotein; EAE: experimental autoimmune encephalitis; IL-1beta: interleukin-1beta; AF-6: ALL-1 gene fusion partner-6; PAR3: proteinase-activated receptor 3; PDZ: PSD-95/disc large/zonula occludens protein-1; sTNFR: soluble tumor necrosis factor alpha receptor; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; Pyk2: proline-rich tyrosine kinase 2

Key Words: Blood-Brain Barrier, Transmigration, Paracellular Migration, Transcellular Migration, Diapedesis, Adhesion Molecules, Monocytes, Leukocytes, CCL2, HIV-1, NeuroAIDS, Therapeutics, Review

Send correspondence to: Joan W. Berman, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Department of Pathology, Bronx, NY 10461, Tel: 718-430-3194, Fax: 718-430-8541, E-mail:berman@aecom.yu.edu