Assembling an orchestra: Fanconi anemia pathway of repair
Fenghua Yuan1, Limin Song1, Liangyue Qian1, Jennifer J. Hu1,2,
Yanbin Zhang1
1
Department of Biochemistry and Molecular Biology, 2Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
TABLE OF CONTENTS
- 1. Abstract
- 2. Introduction
- 3. Fanconi anemia core complex - Composer, conductor, and musician?
- 3.1. Components of the FA core complex are phosphorylated under genotoxic stress
- 3.2. FA core complex is a multi-subunit ubiquitin ligase
- 3.3. Is FANCM-FAAP24 the only core component that recognizes DNA?
- 3.4. Functions of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FAAP100
- 3.4.1. Functions in DNA repair
- 3.4.2. Functions in mitigating oxidative stress
- 4. ID complex - Conductor
- 4.1. ID complex is phosphorylated, monoubiquitinated, and deubiquitinated under genotoxic stress
- 4.2. ID complex recognizes branched structures
- 4.3. Functions of the ID complex
- 5. FANCD1, FANCN, and FANCJ - Musicians
- 6. Non-FA factors in ICL repair - Guest Musicians
- 6.1. Endonucleases
- 6.2. TLS polymerases
- 6.3. Mismatch repair factors
- 6.4. Other factors
- 7. A hypothetical model for FA proteins in ICL repair
- 8. Conclusion
- 9. Acknowledgments
10. References
1. ABSTRACT
Fanconi anemia (FA) is a recessive genetic disorder characterized by developmental defects, bone marrow failure, and cancer susceptibility. The complete set of FA genes has only been identified recently and seems to be uniquely conserved among vertebrates. Fanconi anemia proteins have been implicated in the repair of interstrand DNA crosslinks that block DNA replication and transcription. Although all thirteen FA complementation groups show similar clinical and cellular phenotypes, approximately 85% of patients presented defective FANCA, FANCC, or FANCG. The established DNA interacting components (FANCM, FANCI, FANCD2, and FANCJ) account only for ~5% of all FA patients, an observation that raises doubt concerning the roles of FA proteins in DNA repair. In recent years, rapid progress in the area of FA research has provided great insights into the critical roles of FA proteins in DNA repair. However, many FA proteins do not have identifiable domains to indicate how they contribute to biological processes, particularly DNA repair. Therefore, future biochemical studies are warranted to understand the biological functions of FA proteins and their implications in human diseases.
2. INTRODUCTION
Fanconi anemia (FA) is a severe chromosomal instability disorder characterized by developmental defects, aplastic anemia, chromosomal instability, and predisposition to leukemia and solid tumors (1-12). Another hallmark of FA, which is also a reliable cellular marker for clinical diagnosis, is its hypersensitivity to the synthetic DNA interstrand crosslinking compounds including mitomycin C (MMC), cisplatin, and diepoxybutane (DEB) (8, 13). Upon treatment with these DNA crosslinkers, FA cells display dramatically increased genomic aberrations, including chromosome breaks and radial chromosomes (8, 12), indicating that Fanconi anemia proteins are involved in repairing DNA interstrand crosslinks (ICLs). ICL covalently tethers both strands of the double helix and blocks essential DNA transactions including replication and transcription. It seems that DNA replication is the most important factor to elicit repair and also toxicity of ICLs (14-16). FA proteins are believed to function in stabilizing replication forks and assisting the replication machinery to deal with ICLs and other DNA lesions or structures that hinder the progression of replication forks (17-24).
It has also been well documented that FA proteins are directly involved in mitigating oxidative stress (25-32), and FA deficient cells display hypersensitivity to elevated oxidants (33-40). Increased susceptibility to oxidants is believed to contribute to the bone marrow failure associated with FA (32). Coincidently, oxidative stress is the most prominent endogenous source of ICLs, via generation of the lipid peroxidation products malondialdehyde, 4-hydroxynonenal, acrolein, and crotonaldehyde (35, 41-44).
Thirteen Fanconi anemia genes have been identified thus far (FANC-A, -B, -C, -D1/BRCA2, -D2, -E, -F, -G, -I, -J/BRIP1/BACH1, -L, -M, and -N/PALB2) (45-63). FA proteins were classified into three groups according to their roles in the monoubiquitination of FANCD2 and FANCI, a critical step in the ICL repair (5). Group I is composed of eight FA proteins, FANC-A, -B, -C, -E, -F, -G, -L, and -M. These proteins are components of the FA core complex. A major function of the core complex is to activate the group II proteins, FANCD2 and FANCI complex (ID complex), by monoubiquitination particularly when cells are under genotoxic stress (53, 54, 60, 64-66). Cells that are defective in any of group I proteins are deficient in monoubiquitination of the ID complex. It is worth mentioning that the activation of FANCD2 and FANCI also occurs spontaneously (likely in response to naturally occurring replication-stalling damage), or can be induced by DNA damaging agents or stresses other than DNA crosslinkers, such as ionizing radiation, ultraviolet radiation, aphidicolin, or hydroxyurea (20, 64, 67-69). Downstream of or parallel to the monoubiquitination of the ID complex are the group III proteins, FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2. These proteins are involved in the repair of double strand breaks produced during the 'unhooking' of ICLs (5, 7, 70), and constitute a FA-BRCA network to guard genomic integrity (5, 64). A collection of excellent reviews provides great insights into the mechanism how FA proteins are involved in the DNA damage response and repair (4, 5, 7, 9, 10, 12, 19, 43, 70-73). The focus of this review is to summarize some of the recent progress on FA protein studies and to provide our perspective on how FA proteins participate in the repair of ICLs.
ICL repair is highly complex and unique among all repair pathways, because multiple players from established DNA repair pathways have to work coordinately in order to remove a single interstrand crosslink lesion. In addition to FA proteins, other proteins involved in nucleotide excision repair (NER), translesion synthesis (TLS), mismatch repair (MMR), and homologous recombination (HR) also participate in ICL repair (5, 7, 16, 43, 74-83). In this review, we discuss the potential mechanisms how FA proteins collaborate with multiple DNA repair pathways and exert their functions in maintaining the stability of replication forks.
3. Fanconi anemia core complex - COMPOSER, CONDUCTOR, AND MUSICIAN?
Extensive interaction studies have shown that eight of the FA proteins form a multi-subunit nuclear core complex: FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM (5, 12). The FA core complex was successfully purified from HeLa cells through immunoprecipitation with a FANCA-specific antibody (65, 84). This protein-association technique was successfully used by Weidong Wang's group to identify three FA genes, FANCB, FANCL, and FANCM (46, 60, 65, 85). Two additional FANCA-associated proteins, namely FAAP24 and FAAP100, have also been identified to be components of the core complex although no FA patients with mutations in these genes have been identified thus far (86, 87). The 10 proteins in the FA core complex may exist in the form of subcomplexes, i.e. FANCM-FAAP24, FANCA-FANCG, FANCB-FANCL-FAAP100, and FANCC-FANCE-FANCF (5, 86, 88-91). HES1, a transcriptional repressor, is also reported to be associated with the FA core complex (92, 93). In addition to its critical function of monoubiquitinating the ID complex, FA core complex is also known to be directly involved in a wide spectrum of other functions as described below.
3.1. Components of the FA core complex are phosphorylated under genotoxic stress
The presence of any DNA damage that is bulky enough to impede the progression of replication forks is likely to be initially detected by the replication machinery. Upon stalling of the replicative DNA polymerase, the MCM (minichromosome maintenance) helicase in the replication machinery continues to unwind DNA ahead of the fork, resulting in exposure of single-stranded DNA (94). The single-stranded DNA is quickly coated by ssDNA binding protein RPA to prevent degradation by DNA nucleases. More importantly, this RPA-coated ssDNA serves as an anchor to independently recruit ATR-ATRIP, Rad17-RFC, the 9-1-1 complex, and claspin, leading to the activation of the ATR DNA damage response pathway, and resulting in an intra-S checkpoint (94-96). Since ICLs present an essentially unsurmountable barrier for DNA helicases, one might expect the checkpoint activation by ICLs to be limited due to lack of ssDNA exposure. However, ICL damage actually does activate the ATR damage response pathway, resulting in an S-phase checkpoint arrest (97). Intriguingly, this checkpoint activation requires the FA core complex and FANCD2 (97-100). Thus FA proteins appear to act as replication-coupled DNA damage sensors in this scenario (18, 20).
It is known that the activated ATR-CHK1 kinases phosphorylate many FA proteins, with implications for DNA repair (Figure 1). Phosphorylation of FANCA on serine 1449 by ATR kinase in response to DNA damage is known to be essential for the FA pathway (101). Although the FANCAS1449A mutant localizes normally to chromatin, it fails to correct a variety of FA-associated phenotypes including the FANCD2 monoubiquitination deficiency (101). FANCE is phosphorylated at theronine 346 and serine 374 by CHK1. The non-phosphorylated mutant of FANCET346A/S374A allows normal level of FANCD2 monoubiquitination and FANCD2 foci assembly, but fails to complement the hypersensitivity of FANCE-deficient cells to the synthetic crosslinking agent, mitomycin C (102). The phosphorylation of FANCE by CHK1 leads to its degradation and has been suggested to be a negative regulation mechanism of FA pathway (12). The putative phosphorylation of FANCM by ATR kinase increases its binding affinity for chromatin (60, 103, 104). Furthermore, hyperphosphorylation of FANCM by Plk1 kinase (polo-like kinase) is involved in the cell cycle dependent recruitment of the core complex to chromatin (103, 105). This phosphorylation provides an important layer of regulation that ensures the FA core complex is recruited to chromatin only during S phase, but not mitosis phase of the cell cycle.
In summary, the phosphorylation of the FA core complex is likely to affect stability of the core complex, ubiquitin ligase activity, chromatin association, and repair functions. It is worth noting that the WD40 repeats of FANCL may be involved in binding to the phosphorylated serine or threonine (106), therefore serving as a platform to bring together the phosphorylated subcomplexes FANCA-FANCG (phospho-FANCA), FANCE-FANCC-FANCF (phospho-FANCE), and FANCM-FAAP24 (phospho-FANCM) with FANCL-FANCB-FAAP100 in order to form the FA core complex in response to DNA damage. In line with this, the WD40 repeats of FANCL are reported to be required for assembly of the FA core complex (107).
3.2. FA core complex is a multi-subunit E3 ubiquitin ligase
A hallmark and convenient diagnostic marker of FA is the monoubiquitination of FANCD2 (108, 109). All 10 known subunits of the FA core complex are indispensable for the FANCD2 monoubiquitination (46, 64, 65, 86, 87). Very recently, FANCI, an interacting partner of FANCD2, was also found to be monoubiquitinated by the FA core complex (53, 54). It is now clear that FANCD2 monoubiquitination occurs via FANCL-mediated E3 ubiquitin ligase activity (65). FANCL modifies FANCD2 at lysine 561 by adding a single ubiquitin molecule with UBE2T acting as the E2 ubiquitin-conjugating enzyme (110). It is currently unknown how other components of the FA core complex facilitate or regulate the FANCL ubiquitin ligase in response to DNA damage. However, assembly of the FA core complex per se does not seem to trigger the FANCD2 monoubiquitination. Instead, the damage-induced recruitment of the FA core complex and the independent recruitment of UBE2T to chromatin play a critical role in regulating the FANCD2 monoubiquitination (111).
3.3. Is FANCM-FAAP24 the only core component that recognizes DNA?
Thus far, FANCM-FAAP24 is the only known DNA-binding component in the FA core complex (60, 86). FANCM contains a DEAH-box helicase domain and an endonuclease domain (60). In human FANCM, the endonuclease domain is thought to be degenerate since its ERCC4 endonuclease catalytic motif ERKxxxD has diverged to ERRxxxE (60, 75). To date, no DNA helicase or endonuclease activity has been detected in FANCM. Nevertheless, FANCM can remodel stalled replication forks through fork reversal and branch migration, thus stabilizing the stalled replication forks and providing temporal and spatial access for the damage to be repaired (22, 23). The ATP-dependent branch-point migration activity of FANCM does not seem to be required for the monoubiquitination of FANCD2 and FANCI, but is needed for its role in the ATR/Chk1 damage signaling and the repair of crosslinks through recombination (24, 100, 112). Using Xenopus egg extracts, Sobeck et al showed that the chromatin recruitment and the damage-induced phosphorylation of FANCM are mediated by both FANCD2 and the ATR/ATM pathways, indicating that FANCM may also act downstream of FANCD2 and have multiple roles in chromosomal replication (104).
FANCM appears to be responsible for recruitment of the FA core complex to chromatin (60, 75, 86-89, 103). The monoubiquitinated ID complex may also be recruited to chromatin through a FANCM-dependent mechanism (53, 61, 64, 113). However, unlike other factors in the core complex, FANCM is not required for the formation of the eight-subunit (but not the 10-subunit) core complex (103) and FANCM-/- cells are partially deficient in damage-induced FANCD2 monoubiquitination (112, 114). FANCM-/- knockout mice further support that FANCM may have a stimulatory but not essential role in monoubiquitinating FANCD2 (115). These observations suggest that FANCM may not be the only DNA binding component in the FA core complex and that the FA core complex may also be recruited to DNA through components other than FANCM.
Additionally, a direct interacting partner for FANCM-FAAP24 in the FA core complex has not been identified thus far, although FANCM-FAAP24 was originally identified through protein association in a FANCA-specific immunoprecipitation assay (19, 60, 84). FANCM-/- cells are sensitive to camptothecin, a topoisomerase inhibitor. Susceptibility to camptothecin is a unique feature identified only for FANCD1/BRCA2 and FANCN/PALB2, but not for components of the FA core complex (114). These data indicate that FANCM may function in both FA core complex dependent and independent pathways (114, 115), and that the FA core complex may alternatively be recruited to chromatin or damaged replication forks through other mechanisms, e.g., additional unknown DNA binding or damage recognition factors present in the FA core complex.
Very recently, the sole identified FANCM patient, EUFA867, was reported to have additional defects in the FANCA gene (biallelic mutations) (114), which raises concerns as to whether FANCM is an actual FA gene (8). Additionally, patient EUFA867 exhibited a much milder and therefore atypical clinical phenotype relative to other FA patients (114), supporting the notion that the FANCA deficiency may be attenuating the severity of FANCM deficiency. This phenomenon is also observed when FANCM was disrupted in a FANCC-deficient background (61). These data suggest that, in the absence of FANCM, the alternative processing of ICLs by FA core components is likely to produce more deleterious effect compared to processing that involves FANCM participation.
3.4. Functions of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, and FAAP100
This group of identified FA factors comprises newly evolved proteins in vertebrates and currently lacks identifiable domains and motifs to suggest what biological activities they may have (70). Intriguingly, mutations in FANCA, FANCC, and FANCG make up 85% of the FA patient population (8, 12). The best characterized functions of these proteins are to facilitate the monoubiquitination of FANCD2 by FANCL as described above, to directly mitigate oxidative stress, and/or to enable cells to repair DNA damage.
3.4.1. Functions in DNA repair
Although direct evidence in DNA transaction is lacking, this group of FA proteins play critical roles in DNA damage response and repair. The similar cellular phenotypes, including sensitivity to DNA damaging agents, increased spontaneous and damage-induced chromosomal aberrations, and reduced damage-induced base substitution mutagenesis, unequivocally establish the DNA repair functions of these FA proteins. These FA core components seem to be involved in all major steps of the ICL repair including ICL unhooking, bypass, and fork reestablishment through homologous recombination. The FA core complex may play more important roles in interacting with and repair of DNA damage than currently appreciated.
FANCA, FANCC, and FANCG knockout mice show similar phenotype in terms of sensitivity to DNA crosslinking agents and chromosomal instability (116-121). FANCA and FANCG were shown to be required for the DNA double strand break-induced ICL repair in human cells (78). Using nuclear protein extracts and complementation analysis, it was demonstrated that FANCA, B, C, F, and G are all required for efficient incisions at the sites of psoralen-mediated ICLs (122, 123). FANCA was also found to be involved in the psoralen ICL-induced mutagenesis in lymphoblasts, implicating its involvement in the mutagenic TLS of DNA damage (124). Furthermore, both FANCA and FANCG are necessary for efficient spontaneous and UV-induced base substitution mutagenesis in human fibroblasts (82). FANCA is required for recruiting RAD51 and BRCA2/FANCD1 into the MMC-induced nuclear foci, indicating its role in the homologous recombination repair of ICLs (125). In avian DT40 cells, FANCC was shown to function together with BRCA2/FANCD1 and RAD51 to repair double strand breaks (DSB) produced during replication in an epistatic manner (126). FANCG is associated with FANCD1/BRCA2 and XRCC3 (RAD51 paralog) during homologous recombination by direct interactions (127, 128). In FANCG-knockout CHO cells, defects in homologous recombination and non-homologous end joining were also observed (17). These data suggest direct involvement of the components of the FA core complex in DNA repair. Biochemical characterization of these FA core proteins and their interactions with DNA should greatly help us understand how they are involved in DNA metabolism.
3.4.2. Functions in mitigating oxidative stress
There is a large body of evidence supporting that FA cells are hypersensitive to oxidative stress and FA proteins are involved in mitigating the effect of such stress (25-36). Cytochrome P450 2E1 (CYP2E1), a drug metabolism enzyme involved in the production of ROS intermediates and frequently localized to nuclei (129), was shown to interact with and be down-regulated by FANCG (29). Through direct interaction, FANCG also increases the activity of mitochondrial peroxidase peroxiredoxin-3 (PRDX3), a mitochondrial antioxidant enzyme (130). Additionally, FANCA and FANCG are redox-sensitive proteins. In response to the oxidative stress, both FANCA and FANCG are multimerized through intermolecular disulfide linkage (31). FANCA forms a stable complex with FANCG and may help the nuclear localization of FANCG (88). Since both FANCG and FANCC can be localized to nucleus through interaction with the nuclear localization signal-containing FANCA and FANCE respectively (70, 91), we speculate that FANCG and FANCC may be involved in suppressing the oxidative stress in the nucleus. This putative function will be helpful to prevent the formation of oxidative DNA damage and link the oxidative stress hypothesis and the DNA repair hypothesis to the etiology of Fanconi anemia.
Furthermore, FANCC has been shown to interact with NADPH cytochrome P450 reductase and suppress its activity in triggering the production of reactive oxygen species (ROS) (30). FANCC also interacts with glutathione S-transferase P1-1 and significantly increases its antioxidant activity (131). Comparing with cells from other FA subtypes, FANCE-deficient cells show the highest degree of DNA oxidation after H2O2 treatment, indicating that FANCE may also be involved in the modulation of oxidative stress response (132).
4. ID COMPLEX - CONDUCTOR
FANCI is the most recently identified FA gene and the last assigned FA complementation group (53-55). It is a paralog of FANCD2 and its C-terminus interacts with FANCD2 to form a complex called the ID complex (21, 53). It has been noted that FANCI and FANCD2 are not always found together in the ID complex. In a reconstitution analysis in insect cells, only ~5% of FANCI was found to form a complex with FANCD2 (21). Both FANCI and FANCD2 are leucine rich proteins (21) and both proteins are monoubiquitinated by the FA core complex under genotoxic stress (53, 59, 64). This modification is considered to be essential for the FA pathway to exert its effects, especially in reestablishing replication forks through homologous recombination.
4.1. ID complex is phosphorylated, monoubiquitinated, and deubiquitinated under genotoxic stress
Under genotoxic stress, both FANCI and FANCD2 can act as substrates of ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases (53, 67, 133). The phosphorylation of FANCI may function as a molecular switch to turn on the FA pathway (134). The phosphorylation of FANCD2 is required for DNA damage-induced intra-S phase checkpoint and for cellular resistance to DNA crosslinking agents (133, 135). However, another study suggests that FANCD2 phosphorylation is dispensable for resistance to cisplatin and for FANCD2 monoubiquitination (134).
The monoubiquitination of FANCD2 plays a critical role in cellular resistance to DNA crosslinking agents and is required for FANCD2 to form damage-induced nuclear foci with BRCA1, FANCD1/BRCA2, RAD51, FANCJ/BRIP1, FANCN/PALB2, and gamma-H2AX on chromatin during S phase of the cell cycle (62, 64, 66, 136-141). Under genotoxic stress, FANCD2 is monoubiquitinated at lysine 561 and FANCI is monoubiquitinated at lysine 523 by the FA core complex (53, 59, 64, 142, 143). While there is no disagreement on the importance of the FANCD2 monoubiquitination, the importance of the FANCI monoubiquitination is in dispute (53, 134). The monoubiquitination of FANCI seems to rely on the FANCD2 monoubiquitination (53, 70). Nevertheless, the presence of FANCI increases monoubiquitination and also restricts it to the physiological lysine site on FANCD2 in an in vitro reconstituted system (142), although this ubiquitination site on FANCD2 does not seem to be critical based on the fact that FANCD2 K561R-ubiquitin fusion protein complements the defects of the FANCD2 knockout DT40 cells (144).
The deubiquitination of FANCD2 by USP1-UAF1 is an important mechanism to keep the FA pathway in check under unstressed conditions. Down regulation of USP1 by transcriptional repression and DNA damage-dependent autocleavage shifts the ubiquitination balance toward increased monoubiquitination of FANCD2 and FANCI and therefore triggers downstream repair events (12, 101, 145-148). However, in chicken DT40 cells, the monoubiquitination of FANCD2 has been shown to be independent of USP1 autocleavage and the deubiquitination of FANCD2 is required for DNA crosslink repair (149).
4.2. ID complex recognizes branched structures
Purified human FANCD2 has been reported to bind double-stranded DNA and Holliday junctions (150). However, in a very recent study, the unmodified FANCD2 was found to have higher affinity to single-stranded DNA over Holliday junction and dsDNA (151). Research from both Patrick Sung's group as well as our laboratory has recently described the DNA binding properties of FANCI (21, 143). We have found that FANCI is relatively promiscuous in terms of binding to various DNA structures, and that the FANCD2-complexed FANCI exhibits apparently greater affinity toward branched DNA structures in a gel shift assay under non-competitive condition (21). This observation was confirmed by in vivo association of FANCI nuclear foci with chromatin and PCNA foci (21). By employing a substrate competition assay, Patrick Sung's group established that FANCI per se recognizes branched structures (143). One explanation for the discrepancy in our respective findings is that the DNA binding assays in these two studies were performed under different reaction conditions. While it may be postulated that a competition assay is more definitive in terms of determining substrate preference, our results unambiguously demonstrate that FANCD2 enhances the selectivity of FANCI toward branched DNA structures through direct interaction in vitro.
Because the unmodified FANCI and ID complex recognize branched (fork) structures, it is proposed that the ID complex can be recruited to chromatin or stalled replication forks independently of the FA core complex and regardless of its ubiquitination status (21, 111). This hypothesis does not exclude the possibility that the FA core complex (FANCC, FANCE, and FANCG) may facilitate the recruitment of FANCD2 (ID complex) to sites of DNA damage or stalled replication forks (144, 152, 153). It is conceivable that phosphorylation and monoubiquitination of FANCI and FANCD2 may function to increase ID complex formation and/or its affinity to stalled replication forks (21, 113, 144). In a very recent study using the Xenopus egg extract and purified proteins, Knipscheer and colleagues showed that the ID complex binds to chromatin in a manner dependent on DNA replication, DNA damage, and FANCD2 monoubiquitination (154). Additionally, gamma-H2AX, a physiological marker of DSBs, interacts with FANCD2 and is able to facilitate recruitment of FANCD2 to broken DNA ends (136).
4.3. Functions of the ID complex
The branch recognition activity of the ID complex and its co-localization with PCNA in the absence of exogenous DNA damage support the function of FA proteins in stabilizing replication forks during unperturbed S phase and DNA replication (18, 20, 21, 53, 155). When the DNA replication machinery encounters single strand breaks or ICLs, DSBs are likely to be the result (5, 7, 12, 19, 156, 157). FA proteins (including the ID complex) may act to hold together broken DNA ends in the vicinity of the replication site in order to prevent collapse of the replication fork. Subsequent phosphorylation and monoubiquitination of the ID complex, a critical switch that signals initiation of the FA pathway, could then recruit homologous recombination factors, including FANCD1/BRCA2, FANCN/PALB1, FANCJ/BRIP1, BRCA1, and RAD51, to repair DSB and to reestablish the replication fork (66, 139, 140, 158).
The preferential binding activity of the ID complex toward branched structures allows its independent recruitment to chromatin and makes it possible for FANCD2 to act upstream of FANCM phosphorylation (104). FANCD2 has also been shown to be required for efficient XPF-induced incisions around psoralen-generated ICLs (123). However, two recent reports indicate that XPF-ERCC1 precedes FANCD2 foci formation and its recruitment to chromatin, and is required for homologous recombination-mediated DSB repair (159, 160).
It is reasonable to assume that the monoubiquitination of FANCI and FANCD2 could act as a surrogate of PCNA monoubiquitination in the recruitment of UBD- (ubiquitin binding domain) containing TLS polymerases in order to bypass unhooked ICLs. This possibility is supported by a recent study in Xenopus egg extract by Johannes Walter's group (154). Through the antibody depletion of FANCD2, they established that the monoubiquitinated ID complex is essential for both incision and TLS bypass, and therefore the overall replication-coupled repair of a site-specific cisplatin ICL (154). However, it is worth mentioning that another study indicates that the monoubiquitination of FANCI and FANCD2 does not seem to affect TLS-induced mutagenesis in human cells (82).
5. FANCD1, FANCN, AND FANCJ - MUSICIANS
FANCD1, FANCN, and FANCJ are bona fide DSB repair factors. They act downstream of the monoubiquitination of the ID complex in order to mend broken DNA ends produced during replication-coupled ICL repair and to reestablish the replication fork (5, 7, 10, 12, 19). While haplodeficiency of these factors caused by single allelic mutation predisposes humans to breast and ovarian cancers, biallelic mutations cause Fanconi anemia (5, 161).
The connection between Fanconi anemia and DSB repair factors was first shown in an elegant study by Alan D'Andrea's group (48). They established that BRCA2, a factor that facilitates formation of RAD51-ssDNA nucleofilaments (162, 163), is not only mutated in FANCD1 patient (48), but also interacts with monoubiquitinated FANCD2 to form nuclear foci (139, 140). FANCD1 (BRCA2) appears to operate downstream of the FA core complex, but FANCD1/BRCA2 is more important for the repair of replication-blocking lesions relative to the FA core complex (118, 161, 164-168). Although the FANCD1/BRCA2D
27/D
27 deficient mice do not recapitulate the bone marrow failure characteristic of FA, their bone marrow cells display more severe spontaneous and crosslinker-induced chromosomal aberrations than the FANCA-/- mice (164, 169).
PALB2, an interacting partner of BRCA2, has been found to be associated with the Fanconi anemia complementation group N (62, 63, 170). FANCN is required for localization of FANCD1/BRCA2 to chromatin and BRCA2-mediated homologous recombination (141, 171, 172). Biallelic mutations in BRIP1 or BACH1, an interacting partner of BRCA1 and an ATP-dependent 5'-3' DNA helicase (137, 173, 174), are responsible for the Fanconi anemia complementation group J (FANCJ) (56, 58, 167). Although not mutated in FA patients, BRCA1 interacts with FANCA, directly binds to the branched DNA structures, and is required for the redistribution of BRCA2 and FANCJ to DNA damage sites (138, 175, 176). BRCA1 was also shown to be required for the FANCD2 nuclear foci formation (64). Using an elegant eChIP (episomal replication-based chromatin IP) system, Lei Li's group has shown that FANCD1/BRCA2, FANCJ/BACH1, and FANCN/PALB2 can be recruited to DNA ICL sites in a replication-dependent and FA core complex-independent manner, suggesting that the stalled replication forks serve as a sufficient signal to initiate homologous recombination-mediated repair (177).
In the absence of the top-tier musicians, second string players such as non-homologous end joining (NHEJ) take over and result in the observed FA phenotype of chromosome instability such as radial chromosomal structures (7, 12, 19, 124, 178).
6. NON-FA FACTORS IN ICL REPAIR - GUEST MUSICIANS
Although not mutated in the FA patients, many other factors are involved in the FA pathway of ICL repair because they resemble the FA phenotype in some aspects such as hypersensitivity to crosslinking agents, hematopoietic defects, and mutagenesis footprints, and/or through their interaction with FA proteins.
6.1. Endonucleases
XPF-ERCC1, a heterodimeric structure-specific endonuclease involved in nucleotide excision repair (NER), is distinct from other NER factors because its deficiency results in uniquely high sensitivity to crosslinking agents (15, 75, 179-183). These observations indicate that XPF-ERCC1 may also be involved in the repair of ICLs. Indeed, purified XPF-ERCC1 protein is able to introduce damage-specific dual incisions on both 5' and 3' sides of the defined psoralen-ICL DNA substrates. The dual incisions take place on the same strand and therefore unhook the ICL (184, 185). Components of the FA core complex and the ID complex are required for the incision (122, 123). More importantly, ERCC1 deficient mice exhibit certain phenotypes characteristic of FA but not other NER deficiencies, such as hematopoietic defects (186). XPF-ERCC1 also plays an important role in the localization of FANCD2 to chromatin (leading to FANCD2 foci formation) and subsequent homologous recombination-mediated repair (74, 78, 159, 160).
MUS81-EME1 is another member of the XPF/MUS81 family of DNA endonucleases (75). It cleaves 3' flap, replication fork, D-loop, and Holliday junction structures very efficiently (86, 187-191). MUS81-EME1 is likely involved in ICL unhooking (19, 157). However, an unprocessed stalled replication fork is most likely a 5' flap structure and therefore not an ideal substrate for MUS81-EME1. FANCM-FAAP24 remodels the structure of the stalled replication fork through fork regression and can make it into a substrate for MUS81-EME1 (19, 74).
Very recently, mammalian SLX4, a scaffold protein that mediates interactions between endonucleases XPF-ERCC1, MUS81-EME1, and SLX1, was found to be required for the ICL repair (192-195).
6.2. TLS polymerases
Translesion synthesis polymerases are a group of low fidelity DNA polymerases that specialize in bypassing DNA replication-blocking lesions, albeit at a price of elevated mutagenesis (196-198). TLS polymerases REV1 and Pol zeta (REV3-REV7) are required for ICL bypass during ICL repair (16, 78, 82, 83, 199-201). REV3 deficient mouse embryonic fibroblasts and chicken DT40 cells are extremely sensitive to DNA crosslinking agents (199, 202-204). In chicken DT40 cells, FANCC deficiency and Pol zeta deficiency are epistatic in their sensitivity to crosslinking agents indicating that FANCC and REV1- Pol zeta function in the same ICL repair pathway (83, 199). It also has been shown that the FA core complex is required for efficient REV1 foci formation (82). Pol zeta-depleted Xenopus egg nuclear extract has been demonstrated to be defective in replication-dependent ICL repair (16). In the context of replication-independent ICL repair, REV1-REV3 also plays a major role in bypassing ICL damage (200).
Additionally, DNA polymerase kappa (DINB1) has been shown to play a role in bypassing a N2-N2-guanine ICL in vitro and in intact cells (81). Pol eta (XPV) may also be involved in the ICL bypass because the XPV deficient cell line XP30RO is hypersensitive to psoralen-induced ICLs but not to psoralen monoadducts (205).
6.3. Mismatch repair factors
Mismatch repair factors MutS beta (MSH2/MSH3), MutL alpha (MLH1/PMS2), and EXO1 also play roles in ICL repair (77-80, 206-208). MutS beta recognizes psoralen ICLs and is required for a repair step prior to engagement of FA proteins in the in vitro processing of psoralen ICLs (79, 80, 208). The functional and physical interactions between ERCC1 and MSH2 suggest that MutSb
may also be involved in the incision of ICLs (209). Processing of ICLs by these mismatch repair proteins seems to result in the error-free ICL repair in human cells (208).
MutLa
interacts with the helicase domain of FANCJ/BRIP1 and this interaction is required for the repair of ICL because its disruption results in ICL sensitivity (207). Since MutLa
is an endonuclease that creates incisions on both sides of a mismatch (210, 211), it is likely that MutL alpha could be involved in the unhooking of ICLs. However, unlike MSH2, MutL alpha deficiency (MLH1 knockdown) results in resistance to psoralen ICLs, suggesting that MSH2 and MLH1 contribute differently to ICL repair (77). Indeed, MLH1 is known to play an important role in activating apoptosis through activation of caspase 3/7, a mechanism which requires DNA fragmentation for its initiation (77).
6.4. Other factors
Bloom (BLM) syndrome shares some phenotypic similarities with FA in terms of hypersensitivity to crosslinking agents, high frequency of chromosomal breaks and rearrangement, and high risk of cancer (84, 212, 213). BLM protein is found to be present in the same BRAFT complex with FA proteins, topoisomerase III alpha and RPA (84). The FA core complex is required for the ICL-induced BLM phosphorylation and assembly into nuclear foci (213). In response to crosslinking agents and replication stress, BLM and FANCD2 are found to colocalize and coimmunoprecipitate with each other (213). FA proteins also collaborate with BLM to prevent chromosome abnormalities during mitosis (214).
The MRN (MRE11-RAD50-NBS1) complex is the major regulator of DNA end processing, and is likely to be involved in the end resection of DSBs produced during ICL repair. In the absence of FANCC, the MRN complex fails to form nuclear foci in response to DNA crosslinking agents, suggesting that MRN may work downstream of the FA core complex (98). NBS1 has also been demonstrated to interact with FANCD2 in response to DNA damage (215), and this interaction is critical for the stability of FANCD2 protein (151).
7. A HYPOTHETICAL MODEL FOR FA PROTEINS IN ICL REPAIR
The primary physiological roles of FA proteins are widely considered to be repair of all forms of replication-stalling factors (bulky DNA lesions, secondary structures, strand breaks, ICLs, and etc) in order to prevent deleterious collapse of the replication fork, to restart replication after repair, and therefore to maintain the stability and integrity of DNA replication. Using the ultimate replication-blocking lesion, namely ICLs, as an example, we summarize what we have learned about the FA repair pathway as follows. We propose that the repair pathway involves four steps: (1) damage recognition, (2) ICL unhooking, (3) ICL bypass, and (4) fork reestablishment. Because FANCM and the ID complex recognize branched structures, they are likely to be involved in recognition of the ICL-stalled replication fork (Figure 1A). The stalled replication fork also activates the ATR-CHK1 kinases (damage response) which subsequently phosphorylate the FA core and ID complexes. The activated FA core complex monoubiquitinates the ID complex through its FANCL ubiquitin ligase activity and thereby initiates repair of the damaged replication fork.
The mechanism of the subsequent ICL unhooking step remains elusive. There are likely two processes which are able to unhook ICLs. One is by action of MUS81-EME1 and XPF-ERCC1 on the leading strand (Figure 1B). For MUS81-EME1 to be able to make incision, the stalled replication fork has to be remodeled by FANCM-FAAP24 through its branch point translocase activity (19), because MUS81-EME1 does not cut the 5' flap structure that is usually seen in a regular replication fork. The monoubiquitinated ID complex may recruit BRCA1-FANCJ helicase or other helicases to unwind the duplex locally in order to make the other side of the stalled replication fork suitable for the incision by the XPF-ERCC1 endonuclease (10, 19). In this scenario, the FA core complex and attendant helicases may mimic the action of transcription factor TFIIH in nucleotide excision repair. Accordingly, the entire FA core complex may be directly interacting with the damaged DNA (in addition to FANCM-FAAP24) by participating in the maintenance of the opened bubble DNA structure.
The unhooked ICL lesion is then bypassed by TLS polymerases such as REV1 and Pol zeta (Figure 1C). One caveat to keep in mind is that for ICL unhooking on the leading strand, the XPF-ERCC1 incision has to take place prior to TLS in order for an extendable 3' end to be available for DNA synthesis. Components of the FA core complex and FANCJ helicase may facilitate the subsequent bypass activity. The multi-point DNA binding activity of the monoubiquitinated ID complex (or FANCM-FAAP24) may then help to hold together the 'collapsed' end in the vicinity of the processed fork for subsequent repair. The ID complex may also recruit double strand break repair factors (such as BRCA1) to maintain integrity of the processed replication fork.
Replication fork reestablishment may be achieved through recruitment of the RAD51 recombinase (facilitated by FANCD1/BRCA2-FANCN/PALB2) to single-stranded 3' overhang followed by assembly of a nucleofilament for strand invasion (annealing with newly synthesized strand) (Figure 1D). Further end resection can be accomplished by the MRN complex (98, 151, 215) with the BRCA1-FANCJ helicase assisting in strand invasion by unwinding dsDNA. This process can take place in the presence of the unhooked ICL moiety and components of the FA core complex may participate in the process.
Alternatively, as observed in the Xenopus extract, ICL incision can take place on the lagging strand (Figure 1E) (16, 154). MUS81-EME1 functions as a 3' flap endonuclease and is unlikely to be involved in this first incision because of its substrate specificity (75, 187, 188, 216, 217). We speculate that an unidentified 5' flap endonuclease is involved in this lagging strand incision with FA proteins coordinating its function for precise incision.
In this second scenario, as illustrated by Johannes Walter's group, DNA synthesis on the leading strand provides a convenient primer end for lesion bypass and incision is not required for TLS to take place (Figure 1F) (16). XPF-ERCC1 could be the endonuclease for the second incision as it incises on both sides of a psoralen ICL (184). MutL alpha is another likely candidate to make such incision. The FA core complex and/or FANCJ could help to make the incision specific to the ICL.
Without much end resection (by MRN complex, for example), the resulting one-ended DSB with a 3' overhang could serve as a primer to reestablish the replication fork through strand invasion (i.e. annealing with the parental strand), a process catalyzed by RAD51 and FA proteins (Figure 1G).
The preferential Holliday junction binding activity of FANCI and the ID complex may help to recruit resolvases in order to allow DNA replication to restart following resolution of the resulting Holliday junction (Figure 1H). It is conceivable that the unhooked ICL moiety could then be removed by the full NER machinery after replication.
8. CONCLUSION
In summary, the FA pathway of DNA repair is the most complicated and least understood repair mechanism. In fact, a more accurate name to describe this repair mechanism could be the "Fanconi anemia network of DNA repair". Although many questions still remain answered, it is clear that Fanconi anemia is a bona fide DNA repair disorder. The biased distribution of the disease genes in FA patients (85% being FANCA, FANCC, or FANCG, and 5% being the DNA-interacting FANCM, FANCI, FANCD2, and FANCJ) indicate on one hand that FANCA, FANCC, and FANCG are involved in processes other than DNA repair in the FA etiology. On the other hand, FANCA, FANCC, and FANCG could be directly involved in critical DNA repair transactions.
One difficult but interesting issue is that many FA proteins do not have identifiable domains to indicate how they contribute to biological processes including DNA repair. Future research focusing on exploring the biochemical properties of FA proteins and mapping out the dynamic protein-DNA and protein-protein interaction network should be promising in terms of delineating how FA proteins participate in the DNA damage repair and the maintenance of genome integrity.
A greater elucidation of FA protein -mediated repair mechanisms will not only be useful for FA diagnosis and intervention, but also provide a meaningful basis towards understanding how to overcome drug resistance during cancer chemotherapy. It appears that ICLs represent the primary cytotoxic lesion induced by clinically important bi-functional chemotherapeutic agents, such as mitomycin C, cisplatin, psoralen, nitrogen mustards, and nitrosourea (43, 74, 218, 219). Cancer cells develop resistance to such agents by up-regulation of the FA pathway after initial treatment and therefore compromise subsequent therapeutic efficacy. Development of small inhibitory molecules against FA proteins may help potentiate toxicity of the drugs toward cancer, reduce dosage of treatment, and minimize drug-related side effects.
Small molecule inhibitors targeting FA proteins will have implication in cancer treatment through synthetic lethality which is an emerging therapeutic strategy to effectively treat cancers while sparing normal cells and tissue. Cancer cells that arise as a result of deficiencies in one DNA repair pathway may depend heavily on other repair pathways for survival. Inactivation of such secondary repair pathways prove to lethal for these cancer cells (12). For example, inhibition of an auxiliary base excision repair protein, PARP1, causes synthetic lethality in breast and ovarian cancer cells with BRCA1 and BRCA2 (homologous recombination repair) deficiency (220-222). Similarly, abrogation of the ATM pathway was found to cause synthetic lethality in tumors with FA deficiency, suggesting that ATM inhibitors might be the next generation drugs to be used for treatment of cancers that arise in FA patients (12, 223).
9. ACKNOWLEDGMENTS
We would like to thank Priyamvada Rai for helpful discussions and comments. This work was supported in part by the Florida Biomedical Research Program. The concept of 'composer', 'conductor', and 'musicians' was inspired by Dr. Raymond Monnat's Fanconi Anemia-101 lecture during the 21st Annual Fanconi Anemia Research Fund Scientific Symposium, Baltimore, MD, Oct. 1-4, 2009.
10. REFERENCES
1. B. P. Alter: Cancer in Fanconi anemia, 1927-2001. Cancer, 97(2), 425-40 (2003)
doi:10.1002/cncr.11046
2. M. D. Tischkowitz and S. V. Hodgson: Fanconi anaemia. J Med Genet, 40(1), 1-10 (2003)
doi:10.1136/jmg.40.1.1
3. C. G. Mathew: Fanconi anaemia genes and susceptibility to cancer. Oncogene, 25(43), 5875-84 (2006)
doi:10.1038/sj.onc.1209878
4. M. Levitus, H. Joenje and J. P. de Winter: The Fanconi anemia pathway of genomic maintenance. Cell Oncol, 28(1-2), 3-29 (2006)
5. W. Wang: Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet, 8(10), 735-48 (2007)
doi:10.1038/nrg2159
6. L. H. Thompson, J. M. Hinz, N. A. Yamada and N. J. Jones: How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ Mol Mutagen, 45(2-3), 128-42 (2005)
doi:10.1002/em.20109
7. L. J. Niedernhofer, A. S. Lalai and J. H. Hoeijmakers: Fanconi anemia (cross)linked to DNA repair. Cell, 123(7), 1191-8 (2005)
doi:10.1016/j.cell.2005.12.009
8. A. D. Auerbach: Fanconi anemia and its diagnosis. Mutat Res, 668(1-2), 4-10 (2009)
doi:10.1016/j.mrfmmm.2009.01.013
9. A. D. D'Andrea and M. Grompe: The Fanconi anaemia/BRCA pathway. Nat Rev Cancer, 3(1), 23-34 (2003)
doi:10.1038/nrc970
10. K. J. Patel and H. Joenje: Fanconi anemia and DNA replication repair. DNA Repair (Amst), 6(7), 885-90 (2007)
doi:10.1016/j.dnarep.2007.02.002
11. H. Joenje and K. J. Patel: The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet, 2(6), 446-57 (2001)
doi:10.1038/35076590
12. G. L. Moldovan and A. D. D'Andrea: How the Fanconi Anemia Pathway Guards the Genome. Annu Rev Genet, 43, 223-49 (2009) doi:10.1146/annurev-genet-102108-134222
doi:10.1038/257501a0
14. Y. M. Akkari, R. L. Bateman, C. A. Reifsteck, S. B. Olson and M. Grompe: DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol, 20(21), 8283-9 (2000)
doi:10.1128/MCB.20.21.8283-8289.2000
15. I. U. De Silva, P. J. McHugh, P. H. Clingen and J. A. Hartley: Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol, 20(21), 7980-90 (2000)
doi:10.1128/MCB.20.21.7980-7990.2000
16. M. Raschle, P. Knipsheer, M. Enoiu, T. Angelov, J. Sun, J. D. Griffith, T. E. Ellenberger, O. D. Scharer and J. C. Walter: Mechanism of replication-coupled DNA interstrand crosslink repair. Cell, 134(6), 969-80 (2008)
doi:10.1016/j.cell.2008.08.030
17. J. M. Hinz, P. B. Nham, S. S. Urbin, I. M. Jones and L. H. Thompson: Disparate contributions of the Fanconi anemia pathway and homologous recombination in preventing spontaneous mutagenesis. Nucleic Acids Res, 35(11), 3733-40 (2007)
doi:10.1093/nar/gkm315
18. A. Sobeck, S. Stone, V. Costanzo, B. de Graaf, T. Reuter, J. de Winter, M. Wallisch, Y. Akkari, S. Olson, W. Wang, H. Joenje, J. L. Christian, P. J. Lupardus, K. A. Cimprich, J. Gautier and M. E. Hoatlin: Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol Cell Biol, 26(2), 425-37 (2006)
doi:10.1128/MCB.26.2.425-437.2006
19. L. H. Thompson and J. M. Hinz: Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: Mechanistic insights. Mutat Res, 668(1-2), 54-72 (2009)
doi:10.1016/j.mrfmmm.2009.02.003
20. L. C. Wang, S. Stone, M. E. Hoatlin and J. Gautier: Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst), 7(12), 1973-81 (2008)
doi:10.1016/j.dnarep.2008.08.005
21. F. Yuan, J. El Hokayem, W. Zhou and Y. Zhang: FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J Biol Chem, 284(36), 24443-24452 (2009)
doi:10.1074/jbc.M109.016006
22. K. Gari, C. Decaillet, M. Delannoy, L. Wu and A. Constantinou: Remodeling of DNA replication structures by the branch point translocase FANCM. Proc Natl Acad Sci U S A, 105(42), 16107-12 (2008)
doi:10.1073/pnas.0804777105
23. K. Gari, C. Decaillet, A. Z. Stasiak, A. Stasiak and A. Constantinou: The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol Cell, 29(1), 141-8 (2008)
doi:10.1016/j.molcel.2007.11.032
24. Y. Xue, Y. Li, R. Guo, C. Ling and W. Wang: FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum Mol Genet, 17(11), 1641-52 (2008)
doi:10.1093/hmg/ddn054
25. H. Joenje, F. Arwert, A. W. Eriksson, H. de Koning and A. B. Oostra: Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature, 290(5802), 142-3 (1981)
doi:10.1038/290142a0
26. M. R. Saadatzadeh, K. Bijangi-Vishehsaraei, P. Hong, H. Bergmann and L. S. Haneline: Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem, 279(16), 16805-12 (2004)
doi:10.1074/jbc.M313721200
27. D. Schindler and H. Hoehn: Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am J Hum Genet, 43(4), 429-35 (1988)
28. O. Cohen-Haguenauer, B. Peault, C. Bauche, M. T. Daniel, I. Casal, V. Levy, J. Dausset, M. Boiron, C. Auclair, E. Gluckman and M. Marty: In vivo repopulation ability of genetically corrected bone marrow cells from Fanconi anemia patients. Proc Natl Acad Sci U S A, 103(7), 2340-5 (2006)
doi:10.1073/pnas.0510613103
29. M. Futaki, T. Igarashi, S. Watanabe, S. Kajigaya, A. Tatsuguchi, J. Wang and J. M. Liu: The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. Carcinogenesis, 23(1), 67-72 (2002)
doi:10.1093/carcin/23.1.67
30. F. A. Kruyt, T. Hoshino, J. M. Liu, P. Joseph, A. K. Jaiswal and H. Youssoufian: Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood, 92(9), 3050-6 (1998)
31. S. J. Park, S. L. Ciccone, B. D. Beck, B. Hwang, B. Freie, D. W. Clapp and S. H. Lee: Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem, 279(29), 30053-9 (2004)
doi:10.1074/jbc.M403527200
32. S. Hadjur, K. Ung, L. Wadsworth, J. Dimmick, E. Rajcan-Separovic, R. W. Scott, M. Buchwald and F. R. Jirik: Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood, 98(4), 1003-11 (2001)
doi:10.1182/blood.V98.4.1003
33. G. Pagano, P. Degan, M. d'Ischia, F. J. Kelly, B. Nobili, F. V. Pallardo, H. Youssoufian and A. Zatterale: Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol, 75(2), 93-100 (2005)
doi:10.1111/j.1600-0609.2005.00507.x
34. G. Pagano and H. Youssoufian: Fanconi anaemia proteins: major roles in cell protection against oxidative damage. Bioessays, 25(6), 589-95 (2003)
doi:10.1002/bies.10283
35. Q. Pang and P. R. Andreassen: Fanconi anemia proteins and endogenous stresses. Mutation Research, 668, 42-53 (2009)
doi:10.1016/j.mrfmmm.2009.03.013
36. S. I. Ahmad, F. Hanaoka and S. H. Kirk: Molecular biology of Fanconi anaemia--an old problem, a new insight. Bioessays, 24(5), 439-48 (2002)
doi:10.1002/bies.10082
37. R. Rani, J. Li and Q. Pang: Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice. Cancer Res, 68(23), 9693-702 (2008)
doi:10.1158/0008-5472.CAN-08-1790
38. D. P. Sejas, R. Rani, Y. Qiu, X. Zhang, S. R. Fagerlie, H. Nakano, D. A. Williams and Q. Pang: Inflammatory reactive oxygen species-mediated hemopoietic suppression in Fancc-deficient mice. J Immunol, 178(8), 5277-87 (2007)
39. X. Zhang, J. Li, D. P. Sejas and Q. Pang: Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood, 106(1), 75-85 (2005)
doi:10.1182/blood-2004-08-3033
40. X. Zhang, D. P. Sejas, Y. Qiu, D. A. Williams and Q. Pang: Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. J Cell Sci, 120(Pt 9), 1572-83 (2007)
doi:10.1242/jcs.003152
41. J. Grillari, H. Katinger and R. Voglauer: Contributions of DNA interstrand cross-links to aging of cells and organisms. Nucleic Acids Res, 35(22), 7566-76 (2007)
doi:10.1093/nar/gkm1065
42. L. J. Niedernhofer, J. S. Daniels, C. A. Rouzer, R. E. Greene and L. J. Marnett: Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem, 278(33), 31426-33 (2003)
doi:10.1074/jbc.M212549200
43. M. L. Dronkert and R. Kanaar: Repair of DNA interstrand cross-links. Mutat Res, 486(4), 217-47 (2001)
44. M. P. Stone, Y. J. Cho, H. Huang, H. Y. Kim, I. D. Kozekov, A. Kozekova, H. Wang, I. G. Minko, R. S. Lloyd, T. M. Harris and C. J. Rizzo: Interstrand DNA cross-links induced by alpha,beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res, 41(7), 793-804 (2008)
doi:10.1021/ar700246x
45. J. R. Lo Ten Foe, M. A. Rooimans, L. Bosnoyan-Collins, N. Alon, M. Wijker, L. Parker, J. Lightfoot, M. Carreau, D. F. Callen, A. Savoia, N. C. Cheng, C. G. van Berkel, M. H. Strunk, J. J. Gille, G. Pals, F. A. Kruyt, J. C. Pronk, F. Arwert, M. Buchwald and H. Joenje: Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet, 14(3), 320-3 (1996)
doi:10.1038/ng1196-320
46. A. R. Meetei, M. Levitus, Y. Xue, A. L. Medhurst, M. Zwaan, C. Ling, M. A. Rooimans, P. Bier, M. Hoatlin, G. Pals, J. P. de Winter, W. Wang and H. Joenje: X-linked inheritance of Fanconi anemia complementation group B. Nat Genet, 36(11), 1219-24 (2004)
doi:10.1038/ng1458
47. C. A. Strathdee, H. Gavish, W. R. Shannon and M. Buchwald: Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature, 356(6372), 763-7 (1992)
doi:10.1038/356763a0
48. N. G. Howlett, T. Taniguchi, S. Olson, B. Cox, Q. Waisfisz, C. De Die-Smulders, N. Persky, M. Grompe, H. Joenje, G. Pals, H. Ikeda, E. A. Fox and A. D. D'Andrea: Biallelic inactivation of BRCA2 in Fanconi anemia. Science, 297(5581), 606-9 (2002)
doi:10.1126/science.1073834
49. C. Timmers, T. Taniguchi, J. Hejna, C. Reifsteck, L. Lucas, D. Bruun, M. Thayer, B. Cox, S. Olson, A. D. D'Andrea, R. Moses and M. Grompe: Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell, 7(2), 241-8 (2001)
doi:10.1016/S1097-2765(01)00172-1
50. J. P. de Winter, F. Leveille, C. G. van Berkel, M. A. Rooimans, L. van Der Weel, J. Steltenpool, I. Demuth, N. V. Morgan, N. Alon, L. Bosnoyan-Collins, J. Lightfoot, P. A. Leegwater, Q. Waisfisz, K. Komatsu, F. Arwert, J. C. Pronk, C. G. Mathew, M. Digweed, M. Buchwald and H. Joenje: Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am J Hum Genet, 67(5), 1306-8 (2000)
doi:10.1086/321200
51. J. P. de Winter, M. A. Rooimans, L. van Der Weel, C. G. van Berkel, N. Alon, L. Bosnoyan-Collins, J. de Groot, Y. Zhi, Q. Waisfisz, J. C. Pronk, F. Arwert, C. G. Mathew, R. J. Scheper, M. E. Hoatlin, M. Buchwald and H. Joenje: The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat Genet, 24(1), 15-6 (2000)
doi:10.1038/71626
52. J. P. de Winter, Q. Waisfisz, M. A. Rooimans, C. G. van Berkel, L. Bosnoyan-Collins, N. Alon, M. Carreau, O. Bender, I. Demuth, D. Schindler, J. C. Pronk, F. Arwert, H. Hoehn, M. Digweed, M. Buchwald and H. Joenje: The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet, 20(3), 281-3 (1998)
doi:10.1038/3093
53. A. Smogorzewska, S. Matsuoka, P. Vinciguerra, E. R. McDonald, 3rd, K. E. Hurov, J. Luo, B. A. Ballif, S. P. Gygi, K. Hofmann, A. D. D'Andrea and S. J. Elledge: Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell, 129, 289-301 (2007)
doi:10.1016/j.cell.2007.03.009
54. A. E. Sims, E. Spiteri, R. J. Sims, 3rd, A. G. Arita, F. P. Lach, T. Landers, M. Wurm, M. Freund, K. Neveling, H. Hanenberg, A. D. Auerbach and T. T. Huang: FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol, 14(6), 564-7 (2007)
doi:10.1038/nsmb1252
55. J. C. Dorsman, M. Levitus, D. Rockx, M. A. Rooimans, A. B. Oostra, A. Haitjema, S. T. Bakker, J. Steltenpool, D. Schuler, S. Mohan, D. Schindler, F. Arwert, G. Pals, C. G. Mathew, Q. Waisfisz, J. P. de Winter and H. Joenje: Identification of the Fanconi anemia complementation group I gene, FANCI. Cell Oncol, 29(3), 211-8 (2007)
56. M. Levitus, Q. Waisfisz, B. C. Godthelp, Y. de Vries, S. Hussain, W. W. Wiegant, E. Elghalbzouri-Maghrani, J. Steltenpool, M. A. Rooimans, G. Pals, F. Arwert, C. G. Mathew, M. Z. Zdzienicka, K. Hiom, J. P. De Winter and H. Joenje: The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet, 37(9), 934-5 (2005)
doi:10.1038/ng1625
57. O. Levran, C. Attwooll, R. T. Henry, K. L. Milton, K. Neveling, P. Rio, S. D. Batish, R. Kalb, E. Velleuer, S. Barral, J. Ott, J. Petrini, D. Schindler, H. Hanenberg and A. D. Auerbach: The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet, 37(9), 931-3 (2005)
doi:10.1038/ng1624
58. R. Litman, M. Peng, Z. Jin, F. Zhang, J. Zhang, S. Powell, P. R. Andreassen and S. B. Cantor: BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell, 8(3), 255-65 (2005)
doi:10.1016/j.ccr.2005.08.004
59. A. R. Meetei, Z. Yan and W. Wang: FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle, 3(2), 179-81 (2004)
60. A. R. Meetei, A. L. Medhurst, C. Ling, Y. Xue, T. R. Singh, P. Bier, J. Steltenpool, S. Stone, I. Dokal, C. G. Mathew, M. Hoatlin, H. Joenje, J. P. de Winter and W. Wang: A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet, 37(9), 958-63 (2005)
doi:10.1038/ng1626
61. G. Mosedale, W. Niedzwiedz, A. Alpi, F. Perrina, J. B. Pereira-Leal, M. Johnson, F. Langevin, P. Pace and K. J. Patel: The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol, 12(9), 763-71 (2005)
doi:10.1038/nsmb981
62. S. Reid, D. Schindler, H. Hanenberg, K. Barker, S. Hanks, R. Kalb, K. Neveling, P. Kelly, S. Seal, M. Freund, M. Wurm, S. D. Batish, F. P. Lach, S. Yetgin, H. Neitzel, H. Ariffin, M. Tischkowitz, C. G. Mathew, A. D. Auerbach and N. Rahman: Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet, 39(2), 162-4 (2007)
doi:10.1038/ng1947
63. B. Xia, J. C. Dorsman, N. Ameziane, Y. de Vries, M. A. Rooimans, Q. Sheng, G. Pals, A. Errami, E. Gluckman, J. Llera, W. Wang, D. M. Livingston, H. Joenje and J. P. de Winter: Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet, 39(2), 159-61 (2007)
doi:10.1038/ng1942
64. I. Garcia-Higuera, T. Taniguchi, S. Ganesan, M. S. Meyn, C. Timmers, J. Hejna, M. Grompe and A. D. D'Andrea: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell, 7(2), 249-62 (2001)
doi:10.1016/S1097-2765(01)00173-3
65. A. R. Meetei, J. P. de Winter, A. L. Medhurst, M. Wallisch, Q. Waisfisz, H. J. van de Vrugt, A. B. Oostra, Z. Yan, C. Ling, C. E. Bishop, M. E. Hoatlin, H. Joenje and W. Wang: A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet, 35(2), 165-70 (2003)
doi:10.1038/ng1241
66. T. Taniguchi, I. Garcia-Higuera, P. R. Andreassen, R. C. Gregory, M. Grompe and A. D. D'Andrea: S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 100(7), 2414-20 (2002)
doi:10.1182/blood-2002-01-0278
67. P. R. Andreassen, A. D. D'Andrea and T. Taniguchi: ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev, 18(16), 1958-63 (2004)
doi:10.1101/gad.1196104
68. J. Dunn, M. Potter, A. Rees and T. M. Runger: Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light. Cancer Res, 66(23), 11140-7 (2006)
doi:10.1158/0008-5472.CAN-06-0563
69. N. G. Howlett, T. Taniguchi, S. G. Durkin, A. D. D'Andrea and T. W. Glover: The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet, 14(5), 693-701 (2005)
doi:10.1093/hmg/ddi065
70. J. P. de Winter and H. Joenje: The genetic and molecular basis of Fanconi anemia. Mutat Res, 668(1-2), 11-9 (2009)
doi:10.1016/j.mrfmmm.2008.11.004
71. A. F. Alpi and K. J. Patel: Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair (Amst), 8(4), 430-5 (2009)
doi:10.1016/j.dnarep.2009.01.019
72. A. M. Ali, T. R. Singh and A. R. Meetei: FANCM-FAAP24 and FANCJ: FA proteins that metabolize DNA. Mutat Res, 668(1-2), 20-6 (2009)
doi:10.1016/j.mrfmmm.2009.04.002
73. P. R. Andreassen and K. Ren: Fanconi anemia proteins, DNA interstrand crosslink repair pathways, and cancer therapy. Curr Cancer Drug Targets, 9(1), 101-17 (2009)
doi:10.2174/156800909787314011
74. D. T. Bergstralh and J. Sekelsky: Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet, 24(2), 70-6 (2008)
doi:10.1016/j.tig.2007.11.003
75. A. Ciccia, N. McDonald and S. C. West: Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem, 77, 259-87 (2008)
doi:10.1146/annurev.biochem.77.070306.102408
76. K. D. Mirchandani and A. D. D'Andrea: The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res, 312(14), 2647-53 (2006)
doi:10.1016/j.yexcr.2006.06.014
77. Q. Wu and K. M. Vasquez: Human MLH1 protein participates in genomic damage checkpoint signaling in response to DNA interstrand crosslinks, while MSH2 functions in DNA repair. PLoS Genet, 4(9), e1000189 (2008)
doi:10.1371/journal.pgen.1000189
78. N. Zhang, X. Liu, L. Li and R. Legerski: Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair (Amst), 6(11), 1670-8 (2007)
doi:10.1016/j.dnarep.2007.06.002
79. N. Zhang, X. Lu, X. Zhang, C. A. Peterson and R. J. Legerski: hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro. Mol Cell Biol, 22(7), 2388-97 (2002)
doi:10.1128/MCB.22.7.2388-2397.2002
80. J. Zhao, A. Jain, R. R. Iyer, P. L. Modrich and K. M. Vasquez: Mismatch repair and nucleotide excision repair proteins cooperate in the recognition of DNA interstrand crosslinks. Nucleic Acids Res, 37(13), 4420-9 (2009) doi:10.1093/nar/gkp399
81. I. G. Minko, M. B. Harbut, I. D. Kozekov, A. Kozekova, P. M. Jakobs, S. B. Olson, R. E. Moses, T. M. Harris, C. J. Rizzo and R. S. Lloyd: Role for DNA polymerase kappa in the processing of N2-N2-guanine interstrand cross-links. J Biol Chem, 283(25), 17075-82 (2008)
doi:10.1074/jbc.M801238200
82. K. D. Mirchandani, R. M. McCaffrey and A. D. D'Andrea: The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair (Amst), 7(6), 902-11 (2008)
doi:10.1016/j.dnarep.2008.03.001
83. W. Niedzwiedz, G. Mosedale, M. Johnson, C. Y. Ong, P. Pace and K. J. Patel: The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell, 15(4), 607-20 (2004)
doi:10.1016/j.molcel.2004.08.009
84. A. R. Meetei, S. Sechi, M. Wallisch, D. Yang, M. K. Young, H. Joenje, M. E. Hoatlin and W. Wang: A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol, 23(10), 3417-26 (2003)
doi:10.1128/MCB.23.10.3417-3426.2003
85. R. Guo, D. Xu and W. Wang: Identification and analysis of new proteins involved in the DNA damage response network of Fanconi anemia and Bloom syndrome. Methods, 48(1), 72-9 (2009)
doi:10.1016/j.ymeth.2009.02.011
86. A. Ciccia, C. Ling, R. Coulthard, Z. Yan, Y. Xue, A. R. Meetei, H. Laghmani el, H. Joenje, N. McDonald, J. P. de Winter, W. Wang and S. C. West: Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell, 25(3), 331-43 (2007)
doi:10.1016/j.molcel.2007.01.003
87. C. Ling, M. Ishiai, A. M. Ali, A. L. Medhurst, K. Neveling, R. Kalb, Z. Yan, Y. Xue, A. B. Oostra, A. D. Auerbach, M. E. Hoatlin, D. Schindler, H. Joenje, J. P. de Winter, M. Takata, A. R. Meetei and W. Wang: FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. Embo J, 26(8), 2104-2114 (2007)
doi:10.1038/sj.emboj.7601666
88. I. Garcia-Higuera, Y. Kuang, J. Denham and A. D. D'Andrea: The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood, 96(9), 3224-30 (2000)
89. A. L. Medhurst, H. Laghmani el, J. Steltenpool, M. Ferrer, C. Fontaine, J. de Groot, M. A. Rooimans, R. J. Scheper, A. R. Meetei, W. Wang, H. Joenje and J. P. de Winter: Evidence for subcomplexes in the Fanconi anemia pathway. Blood, 108(6), 2072-80 (2006)
doi:10.1182/blood-2005-11-008151
90. S. M. Gordon and M. Buchwald: Fanconi anemia protein complex: mapping protein interactions in the yeast 2- and 3-hybrid systems. Blood, 102(1), 136-41 (2003)
doi:10.1182/blood-2002-11-3517
91. T. Taniguchi and A. D. D'Andrea: The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood, 100(7), 2457-62 (2002)
doi:10.1182/blood-2002-03-0860
92. C. S. Tremblay, F. F. Huang, O. Habi, C. C. Huard, C. Godin, G. Levesque and M. Carreau: HES1 is a novel interactor of the Fanconi anemia core complex. Blood, 112(5), 2062-70 (2008)
doi:10.1182/blood-2008-04-152710
93. C. S. Tremblay, C. C. Huard, F. F. Huang, O. Habi, V. Bourdages, G. Levesque and M. Carreau: The fanconi anemia core complex acts as a transcriptional co-regulator in hairy enhancer of split 1 signaling. J Biol Chem, 284(20), 13384-95 (2009)
doi:10.1074/jbc.M807921200
94. J. W. Harper and S. J. Elledge: The DNA damage response: ten years after. Mol Cell, 28(5), 739-45 (2007)
doi:10.1016/j.molcel.2007.11.015
95. A. Sancar, L. A. Lindsey-Boltz, K. Unsal-Kacmaz and S. Linn: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73, 39-85 (2004)
doi:10.1146/annurev.biochem.73.011303.073723
96. T. S. Byun, M. Pacek, M. C. Yee, J. C. Walter and K. A. Cimprich: Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev, 19(9), 1040-52 (2005)
doi:10.1101/gad.1301205
97. P. Pichierri and F. Rosselli: The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. Embo J, 23(5), 1178-87 (2004)
doi:10.1038/sj.emboj.7600113
98. P. Pichierri, D. Averbeck and F. Rosselli: DNA cross-link-dependent RAD50/MRE11/NBS1 subnuclear assembly requires the Fanconi anemia C protein. Hum Mol Genet, 11(21), 2531-46 (2002)
doi:10.1093/hmg/11.21.2531
99. P. Pichierri and F. Rosselli: Fanconi anemia proteins and the s phase checkpoint. Cell Cycle, 3(6), 698-700 (2004)
100. S. J. Collis, A. Ciccia, A. J. Deans, Z. Horejsi, J. S. Martin, S. L. Maslen, J. M. Skehel, S. J. Elledge, S. C. West and S. J. Boulton: FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell, 32(3), 313-24 (2008)
doi:10.1016/j.molcel.2008.10.014
101. N. B. Collins, J. B. Wilson, T. Bush, A. Thomashevski, K. J. Roberts, N. J. Jones and G. M. Kupfer: ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood, 113(10), 2181-90 (2009)
doi:10.1182/blood-2008-05-154294
102. X. Wang, R. D. Kennedy, K. Ray, P. Stuckert, T. Ellenberger and A. D. D'Andrea: Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol, 27(8), 3098-108 (2007)
doi:10.1128/MCB.02357-06
103. J. M. Kim, Y. Kee, A. Gurtan and A. D. D'Andrea: Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood, 111(10), 5215-22 (2008)
doi:10.1182/blood-2007-09-113092
104. A. Sobeck, S. Stone, I. Landais, B. de Graaf and M. E. Hoatlin: The fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways. J Biol Chem, 284(38), 25560-8 (2009) doi:10.1074/jbc.M109.007690
105. Y. Kee, J. M. Kim and A. D. D'Andrea: Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev, 23(5), 555-60 (2009)
doi:10.1101/gad.1761309
106. M. B. Yaffe and A. E. Elia: Phosphoserine/threonine-binding domains. Curr Opin Cell Biol, 13(2), 131-8 (2001)
doi:10.1016/S0955-0674(00)00189-7
107. A. M. Gurtan, P. Stuckert and A. D. D'Andrea: The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly. J Biol Chem, 281(16), 10896-905 (2006)
doi:10.1074/jbc.M511411200
108. A. Shimamura, R. Montes de Oca, J. L. Svenson, N. Haining, L. A. Moreau, D. G. Nathan and A. D. D'Andrea: A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood, 100(13), 4649-54 (2002)
doi:10.1182/blood-2002-05-1399
109. J. Soulier, T. Leblanc, J. Larghero, H. Dastot, A. Shimamura, P. Guardiola, H. Esperou, C. Ferry, C. Jubert, J. P. Feugeas, A. Henri, A. Toubert, G. Socie, A. Baruchel, F. Sigaux, A. D. D'Andrea and E. Gluckman: Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood, 105(3), 1329-36 (2005)
doi:10.1182/blood-2004-05-1852
110. Y. J. Machida, Y. Machida, Y. Chen, A. M. Gurtan, G. M. Kupfer, A. D. D'Andrea and A. Dutta: UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell, 23(4), 589-96 (2006)
doi:10.1016/j.molcel.2006.06.024
111. A. Alpi, F. Langevin, G. Mosedale, Y. J. Machida, A. Dutta and K. J. Patel: UBE2T, the FA core complex and FANCD2 are recruited independently to chromatin: A basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol, 27(24), 8421-30 (2007) doi:10.1128/MCB.00504-07
112. I. V. Rosado, W. Niedzwiedz, A. F. Alpi and K. J. Patel: The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Res, 37(13), 4360-70 (2009)
doi:10.1093/nar/gkp365
113. R. Montes de Oca, P. R. Andreassen, S. P. Margossian, R. C. Gregory, T. Taniguchi, X. Wang, S. Houghtaling, M. Grompe and A. D. D'Andrea: Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood, 105(3), 1003-9 (2005)
doi:10.1182/blood-2003-11-3997
114. T. R. Singh, S. T. Bakker, S. Agarwal, M. Jansen, E. Grassman, B. C. Godthelp, A. M. Ali, C. H. Du, M. A. Rooimans, Q. Fan, K. Wahengbam, J. Steltenpool, P. R. Andreassen, D. A. Williams, H. Joenje, J. P. de Winter and A. R. Meetei: Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood, 114(1), 174-80 (2009)
115. S. T. Bakker, H. J. van de Vrugt, M. A. Rooimans, A. B. Oostra, J. Steltenpool, E. Delzenne-Goette, A. van der Wal, M. van der Valk, H. Joenje, H. Te Riele and J. P. de Winter: Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Hum Mol Genet, 18(18), 3484-95 (2009) doi:10.1093/hmg/ddp297
116. N. C. Cheng, H. J. van de Vrugt, M. A. van der Valk, A. B. Oostra, P. Krimpenfort, Y. de Vries, H. Joenje, A. Berns and F. Arwert: Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum Mol Genet, 9(12), 1805-11 (2000)
doi:10.1093/hmg/9.12.1805
117. J. C. Wong, N. Alon, C. McKerlie, J. R. Huang, M. S. Meyn and M. Buchwald: Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum Mol Genet, 12(16), 2063-76 (2003)
doi:10.1093/hmg/ddg219
118. M. A. Whitney, G. Royle, M. J. Low, M. A. Kelly, M. K. Axthelm, C. Reifsteck, S. Olson, R. E. Braun, M. C. Heinrich, R. K. Rathbun, G. C. Bagby and M. Grompe: Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood, 88(1), 49-58 (1996)
119. M. Chen, D. J. Tomkins, W. Auerbach, C. McKerlie, H. Youssoufian, L. Liu, O. Gan, M. Carreau, A. Auerbach, T. Groves, C. J. Guidos, M. H. Freedman, J. Cross, D. H. Percy, J. E. Dick, A. L. Joyner and M. Buchwald: Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet, 12(4), 448-51 (1996)
doi:10.1038/ng0496-448
120. M. Koomen, N. C. Cheng, H. J. van de Vrugt, B. C. Godthelp, M. A. van der Valk, A. B. Oostra, M. Z. Zdzienicka, H. Joenje and F. Arwert: Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum Mol Genet, 11(3), 273-81 (2002)
doi:10.1093/hmg/11.3.273
121. Y. Yang, Y. Kuang, R. Montes De Oca, T. Hays, L. Moreau, N. Lu, B. Seed and A. D. D'Andrea: Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood, 98(12), 3435-40 (2001)
doi:10.1182/blood.V98.12.3435
122. K. R. Kumaresan and M. W. Lambert: Fanconi anemia, complementation group A, cells are defective in ability to produce incisions at sites of psoralen interstrand cross-links. Carcinogenesis, 21(4), 741-51 (2000)
doi:10.1093/carcin/21.4.741
123. K. R. Kumaresan, D. M. Sridharan, L. W. McMahon and M. W. Lambert: Deficiency in incisions produced by XPF at the site of a DNA interstrand cross-link in Fanconi anemia cells. Biochemistry, 46(50), 14359-68 (2007)
doi:10.1021/bi7015958
124. D. Papadopoulo, B. Porfirio and E. Moustacchi: Mutagenic response of Fanconi's anemia cells from a defined complementation group after treatment with photoactivated bifunctional psoralens. Cancer Res, 50(11), 3289-94 (1990)
125. Y. G. Yang, Z. Herceg, K. Nakanishi, I. Demuth, C. Piccoli, J. Michelon, G. Hildebrand, M. Jasin, M. Digweed and Z. Q. Wang: The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis, 26(10), 1731-40 (2005)
doi:10.1093/carcin/bgi134
126. H. Kitao, K. Yamamoto, N. Matsushita, M. Ohzeki, M. Ishiai and M. Takata: Functional interplay between BRCA2/FancD1 and FancC in DNA repair. J Biol Chem, 281(30), 21312-20 (2006)
doi:10.1074/jbc.M603290200
127. S. Hussain, J. B. Wilson, E. Blom, L. H. Thompson, P. Sung, S. M. Gordon, G. M. Kupfer, H. Joenje, C. G. Mathew and N. J. Jones: Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair (Amst), 5(5), 629-40 (2006)
doi:10.1016/j.dnarep.2006.02.007
128. S. Hussain, E. Witt, P. A. Huber, A. L. Medhurst, A. Ashworth and C. G. Mathew: Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet, 12(19), 2503-10 (2003)
doi:10.1093/hmg/ddg266
129. M. Seliskar and D. Rozman: Mammalian cytochromes P450--importance of tissue specificity. Biochim Biophys Acta, 1770(3), 458-66 (2007)
130. S. S. Mukhopadhyay, K. S. Leung, M. J. Hicks, P. J. Hastings, H. Youssoufian and S. E. Plon: Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol, 175(2), 225-35 (2006)
doi:10.1083/jcb.200607061
131. R. C. Cumming, J. Lightfoot, K. Beard, H. Youssoufian, P. J. O'Brien and M. Buchwald: Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med, 7(7), 814-20 (2001)
doi:10.1038/89937
132. A. Zunino, P. Degan, T. Vigo and A. Abbondandolo: Hydrogen peroxide: effects on DNA, chromosomes, cell cycle and apoptosis induction in Fanconi's anemia cell lines. Mutagenesis, 16(3), 283-8 (2001)
doi:10.1093/mutage/16.3.283
133. T. Taniguchi, I. Garcia-Higuera, B. Xu, P. R. Andreassen, R. C. Gregory, S. T. Kim, W. S. Lane, M. B. Kastan and A. D. D'Andrea: Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell, 109(4), 459-72 (2002)
doi:10.1016/S0092-8674(02)00747-X
134. M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge and M. Takata: FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol, 15(11), 1138-46 (2008)
doi:10.1038/nsmb.1504
135. G. P. Ho, S. Margossian, T. Taniguchi and A. D. D'Andrea: Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol, 26(18), 7005-15 (2006)
doi:10.1128/MCB.02018-05
136. M. Bogliolo, A. Lyakhovich, E. Callen, M. Castella, E. Cappelli, M. J. Ramirez, A. Creus, R. Marcos, R. Kalb, K. Neveling, D. Schindler and J. Surralles: Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. Embo J, 26(5), 1340-51 (2007)
doi:10.1038/sj.emboj.7601574
137. S. B. Cantor, D. W. Bell, S. Ganesan, E. M. Kass, R. Drapkin, S. Grossman, D. C. Wahrer, D. C. Sgroi, W. S. Lane, D. A. Haber and D. M. Livingston: BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell, 105(1), 149-60 (2001)
doi:10.1016/S0092-8674(01)00304-X
138. A. Folias, M. Matkovic, D. Bruun, S. Reid, J. Hejna, M. Grompe, A. D'Andrea and R. Moses: BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum Mol Genet, 11(21), 2591-7 (2002)
doi:10.1093/hmg/11.21.2591
139. S. Hussain, J. B. Wilson, A. L. Medhurst, J. Hejna, E. Witt, S. Ananth, A. Davies, J. Y. Masson, R. Moses, S. C. West, J. P. de Winter, A. Ashworth, N. J. Jones and C. G. Mathew: Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet, 13(12), 1241-8 (2004)
doi:10.1093/hmg/ddh135
140. X. Wang, P. R. Andreassen and A. D. D'Andrea: Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol, 24(13), 5850-62 (2004)
doi:10.1128/MCB.24.13.5850-5862.2004
141. B. Xia, Q. Sheng, K. Nakanishi, A. Ohashi, J. Wu, N. Christ, X. Liu, M. Jasin, F. J. Couch and D. M. Livingston: Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell, 22(6), 719-29 (2006)
doi:10.1016/j.molcel.2006.05.022
142. A. F. Alpi, P. E. Pace, M. M. Babu and K. J. Patel: Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell, 32(6), 767-77 (2008)
doi:10.1016/j.molcel.2008.12.003
143. S. Longerich, J. San Filippo, D. Liu and P. Sung: Fanci binds branched DNA and is mono-ubiquitinated by UBE2T-FANCL. J Biol Chem, 284(35), 23182-6 (2009) doi:10.1074/jbc.C109.038075
144. N. Matsushita, H. Kitao, M. Ishiai, N. Nagashima, S. Hirano, K. Okawa, T. Ohta, D. S. Yu, P. J. McHugh, I. D. Hickson, A. R. Venkitaraman, H. Kurumizaka and M. Takata: A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol Cell, 19(6), 841-7 (2005)
doi:10.1016/j.molcel.2005.08.018
145. M. A. Cohn and A. D. D'Andrea: Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Mol Cell, 32(3), 306-12 (2008)
doi:10.1016/j.molcel.2008.10.009
146. M. A. Cohn, Y. Kee, W. Haas, S. P. Gygi and A. D. D'Andrea: UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem, 284(8), 5343-51 (2009)
doi:10.1074/jbc.M808430200
147. M. A. Cohn, P. Kowal, K. Yang, W. Haas, T. T. Huang, S. P. Gygi and A. D. D'Andrea: A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell, 28(5), 786-97 (2007)
doi:10.1016/j.molcel.2007.09.031
148. S. M. Nijman, T. T. Huang, A. M. Dirac, T. R. Brummelkamp, R. M. Kerkhoven, A. D. D'Andrea and R. Bernards: The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell, 17(3), 331-9 (2005)
doi:10.1016/j.molcel.2005.01.008
149. V. H. Oestergaard, F. Langevin, H. J. Kuiken, P. Pace, W. Niedzwiedz, L. J. Simpson, M. Ohzeki, M. Takata, J. E. Sale and K. J. Patel: Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell, 28(5), 798-809 (2007)
doi:10.1016/j.molcel.2007.09.020
150. W. H. Park, S. Margossian, A. A. Horwitz, A. M. Simons, A. D. D'Andrea and J. D. Parvin: Direct DNA binding activity of the Fanconi anemia D2 protein. J Biol Chem, 280(25), 23593-8 (2005)
doi:10.1074/jbc.M503730200
151. C. Roques, Y. Coulombe, M. Delannoy, J. Vignard, S. Grossi, I. Brodeur, A. Rodrigue, J. Gautier, A. Z. Stasiak, A. Stasiak, A. Constantinou and J. Y. Masson: MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. Embo J, 28(16), 2400-13 (2009)
doi:10.1038/emboj.2009.193
152. S. M. Gordon, N. Alon and M. Buchwald: FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem, 280(43), 36118-25 (2005)
doi:10.1074/jbc.M507758200
153. P. Pace, M. Johnson, W. M. Tan, G. Mosedale, C. Sng, M. Hoatlin, J. de Winter, H. Joenje, F. Gergely and K. J. Patel: FANCE: the link between Fanconi anaemia complex assembly and activity. Embo J, 21(13), 3414-23 (2002)
doi:10.1093/emboj/cdf355
154. P. Knipscheer, M. Raschle, A. Smogorzewska, M. Enoiu, T. V. Ho, O. D. Scharer, S. J. Elledge and J. C. Walter: The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair. Science (2009) doi:10.1126/science.1182372 doi:10.1126/science.1182372
155. J. Mi and G. M. Kupfer: The Fanconi anemia core complex associates with chromatin during S phase. Blood, 105(2), 759-66 (2005)
doi:10.1182/blood-2004-01-0001
156. P. J. McKinnon and K. W. Caldecott: DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet, 8, 37-55 (2007)
doi:10.1146/annurev.genom.7.080505.115648
157. K. Hanada, M. Budzowska, M. Modesti, A. Maas, C. Wyman, J. Essers and R. Kanaar: The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. Embo J, 25(20), 4921-32 (2006)
doi:10.1038/sj.emboj.7601344
158. J. B. Wilson, K. Yamamoto, A. S. Marriott, S. Hussain, P. Sung, M. E. Hoatlin, C. G. Mathew, M. Takata, L. H. Thompson, G. M. Kupfer and N. J. Jones: FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene, 27(26), 3641-52 (2008)
doi:10.1038/sj.onc.1211034
159. N. Bhagwat, A. L. Olsen, A. T. Wang, K. Hanada, P. Stuckert, R. Kanaar, A. D'Andrea, L. J. Niedernhofer and P. J. McHugh: XPF-ERCC1 participates in the Fanconi anemia pathway of crosslink repair. Mol Cell Biol, 29(24), 6427-37 (2009) doi:10.1128/MCB.00086-09
160. K. M. McCabe, A. Hemphill, Y. Akkari, P. M. Jakobs, D. Pauw, S. B. Olson, R. E. Moses and M. Grompe: ERCC1 is required for FANCD2 focus formation. Mol Genet Metab, 95(1-2), 66-73 (2008) doi:10.1016/j.ymgme.2008.06.009
161. K. Parmar, A. D'Andrea and L. J. Niedernhofer: Mouse models of Fanconi anemia. Mutat Res, 668(1-2), 133-40 (2009)
doi:10.1016/j.mrfmmm.2009.03.015
162. H. Yang, P. D. Jeffrey, J. Miller, E. Kinnucan, Y. Sun, N. H. Thoma, N. Zheng, P. L. Chen, W. H. Lee and N. P. Pavletich: BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science, 297(5588), 1837-48 (2002)
doi:10.1126/science.297.5588.1837
163. J. San Filippo, P. Chi, M. G. Sehorn, J. Etchin, L. Krejci and P. Sung: Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem, 281(17), 11649-57 (2006)
doi:10.1074/jbc.M601249200
164. S. Navarro, N. W. Meza, O. Quintana-Bustamante, J. A. Casado, A. Jacome, K. McAllister, S. Puerto, J. Surralles, J. C. Segovia and J. A. Bueren: Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1. Mol Ther, 14(4), 525-35 (2006)
doi:10.1016/j.ymthe.2006.05.018
165. P. Rio, J. C. Segovia, H. Hanenberg, J. A. Casado, J. Martinez, K. Gottsche, N. C. Cheng, H. J. Van de Vrugt, F. Arwert, H. Joenje and J. A. Bueren: In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice. Blood, 100(6), 2032-9 (2002)
166. B. C. Godthelp, F. Artwert, H. Joenje and M. Z. Zdzienicka: Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D1. Oncogene, 21(32), 5002-5 (2002)
doi:10.1038/sj.onc.1205656
167. B. C. Godthelp, W. W. Wiegant, Q. Waisfisz, A. L. Medhurst, F. Arwert, H. Joenje and M. Z. Zdzienicka: Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2. Mutat Res, 594(1-2), 39-48 (2006)
doi:10.1016/j.mrfmmm.2005.07.008
168. M. Tarsounas, D. Davies and S. C. West: BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene, 22(8), 1115-23 (2003)
doi:10.1038/sj.onc.1206263
169. B. S. Atanassov, J. C. Barrett and B. J. Davis: Homozygous germ line mutation in exon 27 of murine Brca2 disrupts the Fancd2-Brca2 pathway in the homologous recombination-mediated DNA interstrand cross-links' repair but does not affect meiosis. Genes Chromosomes Cancer, 44(4), 429-37 (2005)
doi:10.1002/gcc.20255
170. N. Rahman, S. Seal, D. Thompson, P. Kelly, A. Renwick, A. Elliott, S. Reid, K. Spanova, R. Barfoot, T. Chagtai, H. Jayatilake, L. McGuffog, S. Hanks, D. G. Evans, D. Eccles, D. F. Easton and M. R. Stratton: PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet, 39(2), 165-7 (2007)
doi:10.1038/ng1959
171. S. M. Sy, M. S. Huen and J. Chen: PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A, 106(17), 7155-60 (2009)
doi:10.1073/pnas.0811159106
172. S. M. Sy, M. S. Huen, Y. Zhu and J. Chen: PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem, 284(27), 18302-10 (2009)
doi:10.1074/jbc.M109.016717
173. S. Cantor, R. Drapkin, F. Zhang, Y. Lin, J. Han, S. Pamidi and D. M. Livingston: The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci U S A, 101(8), 2357-62 (2004)
doi:10.1073/pnas.0308717101
174. R. Gupta, S. Sharma, J. A. Sommers, Z. Jin, S. B. Cantor and R. M. Brosh, Jr.: Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem, 280(27), 25450-60 (2005)
doi:10.1074/jbc.M501995200
175. R. A. Greenberg, B. Sobhian, S. Pathania, S. B. Cantor, Y. Nakatani and D. M. Livingston: Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev, 20(1), 34-46 (2006)
doi:10.1101/gad.1381306
176. T. T. Paull, D. Cortez, B. Bowers, S. J. Elledge and M. Gellert: Direct DNA binding by Brca1. Proc Natl Acad Sci U S A, 98(11), 6086-91 (2001)
doi:10.1073/pnas.111125998
177. X. Shen, H. Do, Y. Li, W. H. Chung, M. Tomasz, J. P. de Winter, B. Xia, S. J. Elledge, W. Wang and L. Li: Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol Cell, 35(5), 716-23 (2009)
doi:10.1016/j.molcel.2009.06.034
178. M. Escarceller, M. Buchwald, B. K. Singleton, P. A. Jeggo, S. P. Jackson, E. Moustacchi and D. Papadopoulo: Fanconi anemia C gene product plays a role in the fidelity of blunt DNA end-joining. J Mol Biol, 279(2), 375-85 (1998)
doi:10.1006/jmbi.1998.1784
179. L. J. Niedernhofer, G. A. Garinis, A. Raams, A. S. Lalai, A. R. Robinson, E. Appeldoorn, H. Odijk, R. Oostendorp, A. Ahmad, W. van Leeuwen, A. F. Theil, W. Vermeulen, G. T. van der Horst, P. Meinecke, W. J. Kleijer, J. Vijg, N. G. Jaspers and J. H. Hoeijmakers: A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444(7122), 1038-43 (2006)
doi:10.1038/nature05456
180. C. A. Hoy, L. H. Thompson, C. L. Mooney and E. P. Salazar: Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res, 45(4), 1737-43 (1985)
181. L. H. Thompson, J. S. Rubin, J. E. Cleaver, G. F. Whitmore and K. Brookman: A screening method for isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet, 6(3), 391-405 (1980)
doi:10.1007/BF01542791
182. P. H. Clingen, I. U. De Silva, P. J. McHugh, F. J. Ghadessy, M. J. Tilby, D. E. Thurston and J. A. Hartley: The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo(2,1-c)(1,4)benzodiazepine dimer SJG-136. Nucleic Acids Res, 33(10), 3283-91 (2005)
doi:10.1093/nar/gki639
183. B. S. Andersson, T. Sadeghi, M. J. Siciliano, R. Legerski and D. Murray: Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol, 38(5), 406-16 (1996)
doi:10.1007/s002800050504
184. L. A. Fisher, M. Bessho and T. Bessho: Processing of a psoralen DNA interstrand cross-link by XPF-ERCC1 complex in vitro. J Biol Chem, 283(3), 1275-81 (2008)
doi:10.1074/jbc.M708072200
185. I. Kuraoka, W. R. Kobertz, R. R. Ariza, M. Biggerstaff, J. M. Essigmann and R. D. Wood: Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem, 275(34), 26632-6 (2000)
doi:10.1074/jbc.C000337200
186. J. M. Prasher, A. S. Lalai, C. Heijmans-Antonissen, R. E. Ploemacher, J. H. Hoeijmakers, I. P. Touw and L. J. Niedernhofer: Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. Embo J, 24(4), 861-71 (2005)
doi:10.1038/sj.emboj.7600542
187. S. A. Bastin-Shanower, W. M. Fricke, J. R. Mullen and S. J. Brill: The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol, 23(10), 3487-96 (2003)
doi:10.1128/MCB.23.10.3487-3496.2003
188. A. Ciccia, A. Constantinou and S. C. West: Identification and characterization of the human mus81-eme1 endonuclease. J Biol Chem, 278(27), 25172-8 (2003)
doi:10.1074/jbc.M302882200
189. P. H. Gaillard, E. Noguchi, P. Shanahan and P. Russell: The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol Cell, 12(3), 747-59 (2003)
doi:10.1016/S1097-2765(03)00342-3
190. F. Osman, J. Dixon, C. L. Doe and M. C. Whitby: Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell, 12(3), 761-74 (2003)
doi:10.1016/S1097-2765(03)00343-5
191. L. J. Gaskell, F. Osman, R. J. Gilbert and M. C. Whitby: Mus81 cleavage of Holliday junctions: a failsafe for processing meiotic recombination intermediates? Embo J, 26(7), 1891-901 (2007)
doi:10.1038/sj.emboj.7601645
192. S. Fekairi, S. Scaglione, C. Chahwan, E. R. Taylor, A. Tissier, S. Coulon, M. Q. Dong, C. Ruse, J. R. Yates, 3rd, P. Russell, R. P. Fuchs, C. H. McGowan and P. H. Gaillard: Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell, 138(1), 78-89 (2009)
doi:10.1016/j.cell.2009.06.029
193. I. M. Munoz, K. Hain, A. C. Declais, M. Gardiner, G. W. Toh, L. Sanchez-Pulido, J. M. Heuckmann, R. Toth, T. Macartney, B. Eppink, R. Kanaar, C. P. Ponting, D. M. Lilley and J. Rouse: Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell, 35(1), 116-27 (2009)
doi:10.1016/j.molcel.2009.06.020
194. J. M. Svendsen, A. Smogorzewska, M. E. Sowa, B. C. O'Connell, S. P. Gygi, S. J. Elledge and J. W. Harper: Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell, 138(1), 63-77 (2009)
doi:10.1016/j.cell.2009.06.030
195. S. L. Andersen, D. T. Bergstralh, K. P. Kohl, J. R. LaRocque, C. B. Moore and J. Sekelsky: Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol Cell, 35(1), 128-35 (2009)
doi:10.1016/j.molcel.2009.06.019
196. E. C. Friedberg, R. Wagner and M. Radman: Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science, 296(5573), 1627-30 (2002)
doi:10.1126/science.1070236
197. M. F. Goodman: Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem, 71, 17-50 (2002)
doi:10.1146/annurev.biochem.71.083101.124707
198. S. Prakash, R. E. Johnson and L. Prakash: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem, 74, 317-53 (2005)
doi:10.1146/annurev.biochem.74.082803.133250
199. K. Nojima, H. Hochegger, A. Saberi, T. Fukushima, K. Kikuchi, M. Yoshimura, B. J. Orelli, D. K. Bishop, S. Hirano, M. Ohzeki, M. Ishiai, K. Yamamoto, M. Takata, H. Arakawa, J. M. Buerstedde, M. Yamazoe, T. Kawamoto, K. Araki, J. A. Takahashi, N. Hashimoto, S. Takeda and E. Sonoda: Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res, 65(24), 11704-11 (2005)
doi:10.1158/0008-5472.CAN-05-1214
200. X. Shen, S. Jun, L. E. O'Neal, E. Sonoda, M. Bemark, J. E. Sale and L. Li: REV3 and REV1 play major roles in recombination-independent repair of DNA interstrand cross-links mediated by monoubiquitinated proliferating cell nuclear antigen (PCNA). J Biol Chem, 281(20), 13869-72 (2006)
doi:10.1074/jbc.C600071200
201. S. Sarkar, A. A. Davies, H. D. Ulrich and P. J. McHugh: DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. Embo J, 25(6), 1285-94 (2006)
doi:10.1038/sj.emboj.7600993
202. L. Zander and M. Bemark: Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst), 3(7), 743-52 (2004)
doi:10.1016/j.dnarep.2004.03.031
203. T. Okada, E. Sonoda, M. Yoshimura, Y. Kawano, H. Saya, M. Kohzaki and S. Takeda: Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol, 25(14), 6103-11 (2005)
doi:10.1128/MCB.25.14.6103-6111.2005
204. E. Sonoda, T. Okada, G. Y. Zhao, S. Tateishi, K. Araki, M. Yamaizumi, T. Yagi, N. S. Verkaik, D. C. van Gent, M. Takata and S. Takeda: Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. Embo J, 22(12), 3188-97 (2003)
doi:10.1093/emboj/cdg308
205. S. Mogi, C. E. Butcher and D. H. Oh: DNA polymerase eta reduces the gamma-H2AX response to psoralen interstrand crosslinks in human cells. Exp Cell Res, 314(4), 887-95 (2008)
doi:10.1016/j.yexcr.2007.10.031
206. L. J. Barber, T. A. Ward, J. A. Hartley and P. J. McHugh: DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol, 25(6), 2297-309 (2005)
doi:10.1128/MCB.25.6.2297-2309.2005
207. M. Peng, R. Litman, J. Xie, S. Sharma, R. M. Brosh, Jr. and S. B. Cantor: The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. Embo J, 26(13), 3238-49 (2007)
doi:10.1038/sj.emboj.7601754
208. Q. Wu, L. A. Christensen, R. J. Legerski and K. M. Vasquez: Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells. EMBO Rep, 6(6), 551-7 (2005)
doi:10.1038/sj.embor.7400418
209. L. Lan, T. Hayashi, R. M. Rabeya, S. Nakajima, S. Kanno, M. Takao, T. Matsunaga, M. Yoshino, M. Ichikawa, H. Riele, S. Tsuchiya, K. Tanaka and A. Yasui: Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. DNA Repair (Amst), 3(2), 135-43 (2004)
doi:10.1016/j.dnarep.2003.10.005
210. F. A. Kadyrov, L. Dzantiev, N. Constantin and P. Modrich: Endonucleolytic function of MutLalpha in human mismatch repair. Cell, 126(2), 297-308 (2006)
doi:10.1016/j.cell.2006.05.039
211. P. Modrich: Mechanisms in eukaryotic mismatch repair. J Biol Chem, 281(41), 30305-9 (2006)
doi:10.1074/jbc.R600022200
212. N. A. Ellis, D. J. Lennon, M. Proytcheva, B. Alhadeff, E. E. Henderson and J. German: Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am J Hum Genet, 57(5), 1019-27 (1995)
213. P. Pichierri, A. Franchitto and F. Rosselli: BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. Embo J, 23(15), 3154-63 (2004)
doi:10.1038/sj.emboj.7600277
214. V. Naim and F. Rosselli: The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol, 11(6), 761-8 (2009)
doi:10.1038/ncb1883
215. K. Nakanishi, T. Taniguchi, V. Ranganathan, H. V. New, L. A. Moreau, M. Stotsky, C. G. Mathew, M. B. Kastan, D. T. Weaver and A. D. D'Andrea: Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol, 4(12), 913-20 (2002)
doi:10.1038/ncb879
216. M. N. Boddy, P. H. Gaillard, W. H. McDonald, P. Shanahan, J. R. Yates, 3rd and P. Russell: Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell, 107(4), 537-48 (2001)
doi:10.1016/S0092-8674(01)00536-0
217. W. M. Fricke, S. A. Bastin-Shanower and S. J. Brill: Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease. DNA Repair (Amst), 4(2), 243-51 (2005)
doi:10.1016/j.dnarep.2004.10.001
218. P. J. McHugh, V. J. Spanswick and J. A. Hartley: Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol, 2(8), 483-90 (2001)
doi:10.1016/S1470-2045(01)00454-5
219. X. Wang, C. A. Peterson, H. Zheng, R. S. Nairn, R. J. Legerski and L. Li: Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol, 21(3), 713-20 (2001)
doi:10.1128/MCB.21.3.713-720.2001
220. H. E. Bryant, N. Schultz, H. D. Thomas, K. M. Parker, D. Flower, E. Lopez, S. Kyle, M. Meuth, N. J. Curtin and T. Helleday: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434(7035), 913-7 (2005)
doi:10.1038/nature03443
221. H. Farmer, N. McCabe, C. J. Lord, A. N. Tutt, D. A. Johnson, T. B. Richardson, M. Santarosa, K. J. Dillon, I. Hickson, C. Knights, N. M. Martin, S. P. Jackson, G. C. Smith and A. Ashworth: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917-21 (2005)
doi:10.1038/nature03445
222. C. J. Lord, S. McDonald, S. Swift, N. C. Turner and A. Ashworth: A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst), 7(12), 2010-9 (2008)
doi:10.1016/j.dnarep.2008.08.014
223. R. D. Kennedy, C. C. Chen, P. Stuckert, E. M. Archila, M. A. De la Vega, L. A. Moreau, A. Shimamura and A. D. D'Andrea: Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest, 117(5), 1440-9 (2007)
doi:10.1172/JCI31245
Abbreviations: FA: Fanconi anemia; ICL: interstrand crosslink; MMC: mitomycin C; DEB: diepoxybutane; ID: FANCI-FANCD2; ATR: ataxia telangiectasia and Rad3-related; MRN: MRE11-RAD50-NBS1; TLS: translesion synthesis; NER: nucleotide excision repair; MMR: mismatch repair; HR: homologous recombination; ROS: reactive oxygen species
Key Words: DNA Repair, Replication, Interstrand Crosslink, Fanconi Anemia, ICL Incision, Translesion Synthesis, Homologous Recombination, Cancer, Review
Send correspondence to: Yanbin Zhang, Gautier Bldg/Rm 310, University of Miami School of Medicine, 1011 NW 15th Street, Miami, FL 33136, Tel: 305-243-9237, Fax: 305-243-3955, E-mail: yzhang4@med.miami.edu