Neuroglialpharmacology: white matter pathophysiologies and psychiatric treatments
George Bartzokis1,2,3,4
1
Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, 2Laboratory of Neuroimaging, Department of Neurology, Division of Brain Mapping, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, 3The Brain Research Institute, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
4
Greater Los Angeles VA Healthcare System, West Los Angeles, CA, 90073
TABLE OF CONTENTS
- 1. Abstract
- 2. Introduction to Neuroglialpharmacology
- 2.1. Genetics of myelination
- 3. The Brain "Internet" Depends on the Speed and Synchrony Provided by Myelin
- 3.1. The myelin model of the human brain
- 3.2. Functional networks depend on synchrony and timing of oscillations
- 3.3. Intracortical myelin optimizes network oscillations and brain function
- 3.3.1. Measuring intracortical myelin (ICM) in vivo with MRI
- 3.4. Neurotransmitters can trigger oscillations and may also refine intracortical myelination
- 4. Distinctive Attributes of Oligodendrocytes and Their Myelin
- 4.1. High metabolic requirements
- 4.2. High cholesterol content and requirements
- 4.3. High iron content and requirements
- 4.4. Continued development and proliferation throughout the lifespan
- 4.5. Developmentally-determined heterogeneity and vulnerability continuum
- 4.6. Epigenetic modifications of oligodendrocytes throughout the lifespan
- 5. Essential Lipids: Omega 3 and 6 Fatty Acids (O3FA and O6FA) and their Metabolites
- 6. Psychiatric Epidemiology: Crossroads of Genes, Lipid Metabolism, and Nutrition
- 7. Myelotoxicity and Treatment Effects
- 8. Dysregulated Myelination in Schizophrenia (SZ) and Bipolar Disorder (BD)
- 9. Psychotropic Medications Influence Glia and Myelination: A Key Mechanism of Action?
- 9.1. Synaptic and non-synaptic neurotransmitter effects on glia
- 9.2. The cholinergic system and myelination
- 9.3. The dopaminergic system and myelination
- 10. Conclusions on Neuroglialpharmacology
- 11. Acknowledgement
- 12. References
1. ABSTRACT
Psychotropic treatments such as second generation or "atypical" antipsychotics are efficacious in a wide spectrum of psychiatric disorders ranging from schizophrenia to depression, bipolar disorder, and autism. These treatments are associated with peripheral metabolic derangements that are often also present in drug-naïve patients. Furthermore, altering lipid composition/levels (with omega 3 fatty acids) and ameliorating oxidative toxicities may treat/prevent disease. The above observations are reexamined from the perspective of a myelin-centered model of the human brain. The model proposes that the human brain's extensive myelination required higher metabolic resources that caused evolutionary adaptations resulting in our quadratic (inverted U) myelination trajectory that peaks in the sixth decade of life. It further proposes that optimal brain function depends on exquisite action potential synchronization that myelin makes possible and that myelin's exceptional vulnerability to subtle metabolic/oxidative abnormalities may promote both developmental and degenerative diseases. Available data are integrated herein to suggest that widely used psychotropic treatments have under-appreciated CNS metabolic and neurotransmitter effects on myelination, its plasticity, and repair that may substantially contribute to their mechanisms of action.
2. INTRODUCTION TO NEUROGLIALPHARMACOLOGY
The scientific and clinical emphasis on "neurons" reflected in our very nomenclature of "neuroscience" and "neuropharmacology" reinforces the widely held belief that the efficacy of pharmacologic treatment of psychiatric disorders is due exclusively or in large part to neuronal synaptic effects. The field has been focused on effects of medications on neurotransmitters (especially dopamine, norepinephrine, serotonin, acetylcholine, glutamate) as the principal way to develop treatments as well as conceptualize their mechanisms of action. This approach has nearly completely overshadowed alternative explanations for mechanisms of action such as non-neuronal effects of neurotransmitters on the brain's glial cells that, by and large, are the cells most prominently involved in brain metabolism and especially lipid metabolism (see section 4). The absence of this metabolic/glial perspective has also helped overshadow alternative ways to conceptualize the peripheral metabolic effects of psychotropics, which are currently almost entirely thought of as detrimental side effects. This narrow interpretation largely overlooks higher than normal rates of such metabolic abnormalities in first break patients that have yet to receive medications (1-4) (reviewed in 5) and the possibility that in the high-metabolism lipid-rich brain, these "side effects" may be beneficial and represent an under-appreciated aspect of their mechanism of action (6-8).
This report is not intended to refute the evidence that the vast majority of psychotropic medications affect synaptic neurotransmission nor their detrimental peripheral metabolic effects. Rather, its purpose is to promote scientific inquiry by encompassing a broader perspective on the mechanisms of the action of major classes of existing psychotropic medications that include metabolism and glial effects of neurotransmitters (reviewed in sections 5-7 and 9). It suggests that targeting metabolism, lipids, and neurotransmitter effects on myelination may provide novel and largely unexplored opportunities for treatment and prevention of neuropsychiatric disease across all life stages (6, 7, 9). Ultimately, the report will attempt to rebalance the overwhelming focus on neurons by fostering a greater appreciation for neuron-glial interactions and hopefully help usher in a wider conceptual framework embodied in the term "neuroglialpharmacology".
By necessity this report will also examine the often ignored, but ultimately inescapable, role of evolution. Evolution has shaped the human brain through the use of pre-existing genes and their protein products for multiple roles and functions (10). This multiplicity of roles results in the dazzling complexity and redundancy on which normal brain function is based. Evolution has disproportionately increased glial numbers 50-fold more than neuronal numbers that in humans make up only 10% of brain cells (reviewed in 9). All glial cells serve indispensable and interrelated functions that to a very rough approximation can be broken down into energy and lipid production (astrocytes and oligodendrocytes), debris removal and substrate recycling (e.g., lipids, iron, etc) functions (microglia and astrocytes), and maximizing efficiency of our brain "Internet" information transmission (see section 3.1.) and its use of energy and space (the myelin produced by oligodendrocytes) (reviewed in 9, 11). Myelin, a relatively recent evolutionary development of the first vertebrates (fish) (12), made the complex connectivity of the human brain possible. The vast metabolic requirements of myelin may have also helped alter our central and peripheral physiology (see section 4.1.). This wider evolutionary prospective serves to counterbalance the prevailing focus on neurons and their neurotransmitters, that are largely identical in all mammals, as the core pathology of the major neuropsychiatric diseases. After all, many neuropsychiatric diseases ranging from schizophrenia (SZ), bipolar disorder (BD), and Alzheimer's disease (AD) are basically distinctively human disorders (reviewed in 9, 13).
This report will attempt to created a "scaffold" that binds the various levels of research endeavors from molecular genetics through mechanism, cells, circuits, networks, clinical symptoms, and epidemiology in the context of their largely hidden evolutionary connections. It will focus on oligodendrocytes and the myelin they produce not because these structures are the basic unit of our CNS, the neurons, despite their meager proportions, form our brain circuits and are this basic unit. Rather, the case will be made herein that myelin is an indispensable component of brain neuronal circuitry and the exquisite timing of its action potentials on which optimal function depends (reviewed in sections 3.2-3.4 and 9). In short, in the cognitive and behavioral spheres, our extensive myelination may arguably be "what makes us human". Equally important however, myelin is the most difficult to produce, protect, and maintain component of brain circuitry. As the last evolved component of the CNS and our species' exceptional dependence on it, myelin may also represent our "weakest link" in the chain of interdependent cells and processes that blossom over many decades into our complex cognition and behavior (9).
2.1. Genetics of myelination
The genes involved in controlling brain myelination have only recently begun to be identified. The regulation of myelin thickness through neuregulin 1 (neuregulin) signaling to the ErbB receptor family (14, 15) (reviewed in 16) influences transmission speed and refractory time (reviewed in 17) and is therefore of specific interest to the synchrony neuronal network function depends on (see section 3). Myelination involves cleavage of neuregulin and its ErbB receptors by the alpha-, beta-, and gamma-secretase complexes (15, 18) (reviewed in 16, 19), the same enzymes involved in the production of beta amyloid, the hallmark of AD (9). The principal gene associated with late onset AD (apolipoprotein E4) as well as the genes associated with early onset or familial forms of this disease (such as gamma-secretase mutations), are significantly associated with myelin repair efficiency, age-related cognitive decline, and several degenerative disorders of old age (20-22) (reviewed in 9).
Several substrates of alpha-, beta-, and gamma-secretases are also directly involved in myelination, could contribute to the myelination deficits observed in SZ and BD (see section 8), and have been identified as possible susceptibility genes for these disorders (23, 24) (reviewed in 25, 26). These substrates include neuregulin (27, 28) and its ErbB family of receptors (29, 30) as well as nardilysin (a modulator of neuregulin cleavage (31, 32)) and disrupted in schizophrenia 1 (DISC1) (33, 34). Furthermore, myelin gene variants have also been associated with risk of developing psychotic symptoms in individuals with AD (35, 36).
In the case of AD, these genetic defects as well as the epidemiologic, clinical, and treatment data have been considered from the perspective of influencing the myelination and/or myelin repair process in a prior report (9). Herein we will primarily consider the best-studied major psychiatric diseases (SZ and BD) from the same perspective (7, 13). As a prelude to examining these complex relationships a review of the distinctive functions oligodendrocytes and their myelin fulfill will follow next.
3. THE BRAIN "INTERNET" DEPENDS ON THE SPEED AND SYNCHRONY PROVIDED BY MYELIN
3.1. The myelin model of the human brain
The human brain is distinguished, even among primates (38), in its extensive and pervasive myelination process that supports its high-capacity information processing (11) (Figure 1). The lifelong trajectory of brain myelination has a quadratic-like (inverted "U") shape with increasing myelin content that peaks in middle-age and subsequently breaks down and declines in older age (39) (Figure 2). The "connectivity" provided by myelination increases speed over 100-fold and, by also decreasing refractory time 34-fold, myelination increases the number of action potentials that can be transmitted per unit time (in Internet terminology this would represent expanded "bandwidth") (7, 13). Myelination thus increases the processing capacity of our brain's "Internet" approximately 3,000 fold and is indispensable for developing our exceptionally elaborate higher cognitive functions. These cognitive functions are especially dependent on later-myelinating oligodendrocytes. These cells myelinate axons all the way to their neuron bodies located in gray matter structures such as the cortex (Figure 2). This extensive myelination process can thus "upgrade" networks of neuronal circuits with immediate response capacity that are essentially "on line" to process information quickly, precisely, and continually (7). Finally, continued myelination allows networks to remain "plastic" (e.g., adapt) (40, 41) in order to optimally synchronize action potentials across the many neuronal networks connecting disparate brain regions and thus optimize function during learning (42, 43) (next two sections).
The model reframes the human lifespan in terms of seamless quadratic-like (inverted U) myelination trajectories of the many spatially distributed neural networks that underlie cognition and behavior (Figure 2). This perspective redefines human brain "development" as roughly the first six decades of life (Figure 2). It proposes that dysregulations occurring during the increasingly complex stages of the myelination process contribute to several early-life neuropsychiatric disorders defined by overlapping (comorbid) cognitive and behavioral symptom clusters (reviewed in 6, 7). The model helps to "cut" across current symptom-based classifications of neuropsychiatric diseases and helps explain why the entire cadre of symptoms that define the classic psychiatric disorders embodied in the DSM (psychosis, depression, obsessions, compulsions, poor impulse control, etc.) can reappear in the dementias of old age (9). This perspective suggests that both developmental deficits in myelination of neural networks (contributing to early-life psychiatric disorders), as well as degenerative breakdown and loss of myelin of the same networks occurring in the dementias of old age, can result in similar behavioral and cognitive symptoms despite entirely different etiologies (9, 11, 13).
As Figure 2 demonstrates, different cortical regions myelinate at different rates and ages. Oligodendrocytes are increasingly more complex the later in life they differentiate (see section 4.6). The structurally more complex later-myelinating oligodendrocytes and their myelin are especially vulnerable during both developmental (44) as well as degenerative phases (39, 45) of the lifelong myelination trajectory. From the prospective of the model, the development and maintenance/repair of myelin's functional integrity over our lifespan is the single most important element for acquiring and maintaining normal human cognition and behavior. In short, myelin may also arguably represent the "weakest link" of both brain development as well as age-related degeneration and underlies many of the normal changes as well disease-causing pathophysiologies over the entire human lifespan. By including glia and myelin, this perspective can help explain normal brain function, phenomenology of multiple diseases, as well as their shared responsiveness to pharmaceutical and nutritional interventions (reviewed in sections 4,8, and 9).
3.2. Functional networks depend on synchrony and timing of oscillations
Brain regions communicate through synchronized firing of populations of neurons in networks whose activity is reflected in the extracellular field potential as brain oscillations measured through techniques such as electroencephalography (46). Oscillation-based synchrony is the most energy-efficient physical mechanism for temporal coordination. Mammalian cortical neurons form behavior-dependent oscillating networks that span a very wide frequency spectrum (from 0.0.5 to 500 Hz) creating tremendous information processing potential. These networks vary in size, are phylogenetically conserved, and oscillation-based functions they support can be highly heritable (47, 48) (reviewed in 49). Synchronized oscillations may also establish the precise action potential timing needed for use-dependent synaptic plasticity (long term potentiation) to occur (reviewed in 50).
Higher-frequency (30-100Hz) Gamma oscillations have been especially studied, as they seem to underlie higher cognitive functions (51). Gamma is an important oscillations frequency between different cortical regions (52) and may define thalamus-frontal lobe oscillations, while different frequencies may predominate in thalamus connections to other cortical regions (53). Abnormal oscillations have been clearly demonstrated in SZ (reviewed in 46, 50) as well as BD and depression (54), autism (55, 56) and the earliest stages of cognitive decline into AD (57, 58).
The first step towards network synchronization is achieved in childhood by myelinating the subcortical white matter portion of axons connecting widely distributed brain regions into functional networks. This initial subcortical myelination can be initiated/directed by neuronal signals themselves (59, 60) and results in the very fast (>100 times faster than unmyelinated axon) conduction between widely separated gray matter regions such as thalamus and various cortical regions it interacts with. Once subcortical myelination is achieved, the total conduction time between these regions becomes primarily dependent on the much longer time (roughly 10 times) action potentials spend traversing the short but unmyelinated portion of axons within cortex. This intracortical distance to a specific neuronal layer is roughly constant. The constant intracortical distance, together with the slow signal propagation, establishes the initial roughly synchronous arrival of action potentials to all cortical regions that are at different distances from thalamus (61, 62). Thus, the short intracortical portion of axonal propagation exerts a markedly disproportionate influence on synchronicity of action potential arrival across functional networks and their vast numbers of neurons and synapses.
3.3. Intracortical myelin optimizes network oscillations and brain function
Even faster transmission as well as exquisitely more precisely synchronized timing can be achieved by adding the appropriate amounts of myelin to the intracortical portion of fibers. As Figure 2 suggests, this later-developed acceleration and "fine grain" synchronization of cognitive and behavioral networks may continue to be refined over the entire first six decades of life. This later-myelination may serve as a powerful mechanism of brain plasticity and its disturbance could have important consequences for disease pathophysiology as well as efficacy of antipsychotic treatment (66).
Primate data suggests that during adult aging, repair and plasticity processes result in oligodendrocyte numbers increasing substantially more in the cortex (50%) than in white matter tracks (<25%) and in addition, the strongest associations between myelin damage and cognitive function is also strongest in cortex (67). These results support the suggestion that intracortical myelin plasticity could also compensate for network synchrony disruptions brought by changes in transmission speeds anywhere in the circuitry, including those resulting from subcortical myelin repair processes that can reduce transmission speed. This possibility is consistent with recent human data suggesting that early in the disease, antipsychotics increase intracortical myelin (66) and that in never-medicated SZ subjects, as little as six-weeks of atypical antipsychotic treatment results in increased regional synchronization of neural activity (68).
The importance of intracortical myelin in compensating for subcortical transmission delays and optimizing brain function is further supported by observations from multiple sclerosis (MS), a classic myelin disease. Until recently myelin-destroying intracortical lesions, which post-mortem data show represent as much as 60% of multiple sclerosis lesions and are associated with brain atrophy, were under-appreciated due to difficulty in detecting them on MRI (69, 70) (reviewed in 71). Prospective studies show that absence of such cortical lesions is associated with a favorable clinical and cognitive outcome independent of the well-known deep white matter lesion accumulation (72). Conversely, presence and progression of cortical lesions are most clearly associated with cognitive decline (including processing speed and memory) (73).
Processing speed seems to be more heritable that other cognitive measures (74) and is believed to be the most sensitive measure of cognitive decline over time in MS (75, 76). SZ and BD share cortical myelin deficits with multiple sclerosis except that unlike the focal deficits seen in MS, in these common psychiatric disorders the deficits are less focal and most apparent in later myelinating cortical regions (see section 8). As in MS, slowed cognitive processes are also critical in SZ and BD where such deficits are consistently and positively associated with clinical outcome (77-82). Other speed-related similarities are evident in decreased responses to stimuli as assessed by event-related potentials in MS (83) and are also evident in SZ and BD (84-86). Imaging data support the proposition that the biologic underpinnings of cognitive processing speed may be myelin integrity (21, 87-90).
3.3.1. Measuring intracortical myelin (ICM) in vivo with MRI
Intracortical myelination (Figure 2) can have a differential impact on MRI measures of cortical thickness by shifting the gray/white matter border detected by MRI (91). This shift may be dependent on the type of imaging sequence used (Figure 3). The effect of intracortical myelin on MRI measures has remained underappreciated and may have contributed to ambiguities in interpreting imaging data. Recent reviews of MRI literature on antipsychotic effects on brain structure are striking in the absence of a clear pattern of cortical changes (92-95). Key controversies remain regarding separation of medication and disease effects (96-98) and the potential detrimental medication effects on the progressive brain atrophy most often observed in subgroups with poor outcome (92). These controversies are fueled by the difficulties in interpreting differences in cortical volumes (99, 100).
Until recently, an in vivo measure to confirm the post-mortem evidence of an intracortical myelination deficit in SZ (see section 8) has not been available (66). Based on observations derived from assessing intracortical myelin (Figure 3), the inconsistencies in the literature can be explained as partially due to an under-appreciation of several key factors: (1) the extensive myelination of the human brain compared to other species and the exceptionally high cholesterol content of myelin (9, 91), (2) the effect of intracortical myelin (ICM) on the separation of gray and white matter in MRI images and the differential ability of imaging sequences to detect intracortical myelin (Figure 3) (66, 91), (3) the quadratic (non-linear) lifespan trajectory of human brain myelination in healthy subjects (Figure 2) (63, 101), (4) the dysregulation of this developmental trajectory in SZ (102-105), (4) the impact of medications on this trajectory (66, 106), and (5) the under-appreciation of medication adherence effects on structural brain changes and clinical outcomes (107).
We have previously postulated that reduced ICM may account for the finding of increased neuronal density in SZ (108, 109) and proposed that psychotropic medications may be changing ICM (see sections 3.4. and 9) (6, 110). The development of a method to estimate ICM (Figure 3) may be useful in examining this possibility in vivo (66) as well as understanding the clinical significance of accumulating post-mortem evidence showing ICM deficits in SZ and BD (see section 8).
3.4. Neurotransmitters can trigger oscillations and may also refine intracortical myelination
The glutamate and GABA (gamma-aminobutyric acid) neurotransmitter systems, and particularly the parvalbumin-expressing fast spiking GABA interneurons (GABApv), seem to be most directly involved in triggering oscillations (50, 51). Oscillations can also be manipulated with drugs such as ketamine, which may act in part by damaging white matter (111) and GABApv interneurons (112) (see section 7), and can induce correlated changes in oscillations and psychiatric symptom measures (113).
Abnormal neuregulin-ErbB signaling changes myelination and is believed to be involved in multiple psychiatric disorders such as SZ and BD (see sections 2.1. and 8). Not surprisingly, altering neuron-glial communication through the neuregulin-ErbB system has also been shown to alter Gamma oscillations (114). Deficits in optimizing synchronization may degrade practice-based learning and result in poor skill acquisition in schizophrenic subjects (115, 116). This deficit may respond to treatment with atypical antipsychotics more than with typical (117) (reviewed in 118) and impact clinical outcome (119, 120). Medication adherence can also impact clinical outcomes (107) yet it is not often assessed in pharmacological literature and may contribute to the uncertainty surrounding the issue of medication effects on cognition and learning (118).
Herein a deceptively simple proposal is made: the fact that the vast majority of efficacious pharmacologic interventions alter neurotransmission within gray matter is not a coincidence. It is within gray matter structures such as the cortex that neurotransmitters themselves can mediate neuron-glial interactions (see section 9). In gray matter neuronal networks themselves can provide a direct layer of control on intracortical myelination through neurotransmitter release. By directly influencing intracortical myelination (66, 121) neurotransmitters may further refine speed and synchrony of action potentials on which optimal cognition and behavior depend (see section 3.3.). In order to understand the key role of oligodendrocytes and their myelin in multiple disease states, a review on the exceptional attributes and vulnerabilities that makes them "the weakest link" will follow next.
4. DISTINCTIVE ATTRIBUTES OF OLIGODENDROCYTES AND THEIR MYELIN
4.1. High metabolic requirements
Key evolutionary changes in metabolism and structure occurred to make oligodendrocytes exceptional in several important ways that are directly pertinent to the model (reviewed in 9). First, the production and maintenance of the myelin sheath(s) that is up to 600x the surface area of oligodendrocyte soma membrane and 100x the weight of the soma (122, 123) makes the energy requirements of oligodendrocytes 2-3 fold higher than other brain cells (124, 125). Oligodendrocytes use of lactate to synthesize lipids at a 6-fold greater rate than neurons and astrocytes while their use of glucose for this purpose is 2-fold greater (125). Since approximately 2-3% of the oxygen consumed in normal mitochondrial respiration is obligatorily transformed into free radicals (126, 127), cells with high metabolism such as oligodendrocytes and neurons (at synapses primarily) may be at risk due to their elevated levels of damaging oxidative reactions. This metabolic stress makes oligodendrocyte most vulnerable to a variety of insults ranging from hypoperfusion, toxic products of activated microglia and inflammation, other free radicals, to heavy metals and excitotoxicity (for review see 13, 128). The metabolic demands are even higher for precursors and oligodendrocytes that are actively myelinating axon segments. Their differentiation induces a marked increase in mitochondrial and cholesterol metabolism enzyme transcripts. Not surprisingly mitochondrial disease often manifests with dysmyelination (129) and mitochondrial variants have been described in psychiatric disorders (130). Oligodendrocyte precursors produce three times their own weight in membrane lipids each day (123) and are even more exquisitely vulnerable than mature cells (131-134) (reviewed in 11). Not surprisingly, oxidative stress has been consistently observed in SZ and BD both peripherally (135-137) and in brain tissue (138-141), as well as in disorders of older age such as AD (142) (reviewed in 9). Several treatments may help address this problem (see section 7).
Humans devote 20% of their total energy to the brain compared to 13% in non-human primates and 2-8% in other vertebrates (143). In order to meet the extraordinary demands for energy and lipid production, important evolutionary adaptations may have occurred to make the development of our highly myelinated brain possible. An evolutionary switch occurred among primates changing lactate dehydrogenase function from supporting primarily anaerobic to oxidative metabolism (144). Thus in brain, astrocytes produce lactate to supply metabolic needs of neurons (145) and especially oligodendrocytes which consume the bulk (>80%) of this supply (125). Lactate concentrations seem to be elevated in the CSF of subjects with BD and SZ (146) and such increases have been observed in prodromal phases of the diseases (147). These observations are consistent with dysregulated myelination (6, 104, 105) (see section 8) and possible underutilization of this trophic factor by oligodendrocytes.
During brain evolution, the vulnerability of oligodendrocytes and their myelin to insults and especially oxidative damage and its associated inflammatory reactions was mitigated by several additional adaptive compensations (148-150). Oligodendrocytes are especially enriched in peroxisomes, organelles that help detoxify reactive oxygen species, and their peroxisomes may be superior to other brain cells at performing this function (148, 151). Peroxisomes also produce plasmalogens (Pls) and myelin is especially enriched in Pls and the omega 3 fatty acids ((O3FAs) - especially docosahexaenoic acid (DHA)) they contain (150). Pls are unique phospholipids characterized by the presence of vinyl-ether bond at the sn-1 position of the glycerol backbone while the sn-2 bond is occupied by polyunsaturated fatty acids such as DHA (152-154). The vinyl-ether bond acts as an endogenous antioxidant protecting DHA (155, 156) from oxidative damage (155, 157). Peroxisome function and Pl production is thus essential for adequate myelination (149, 152). Given these properties it is not surprising that Pls seem most enriched in myelin (150). Brain myelin content appears to drive Pl concentrations that peak in mid-life (158-160) following a similar quadratic lifespan trajectory as myelin (Figure 1) (63, 65, 161) from very low levels at birth (162).
As much as 20-30% of all brain lipids are either arachadonic acid (AA, an omega 6 fatty acid (O6FA)) or DHA, by far the most abundant O3FA (163, 164) (see section 5). In addition to structural role in membranes these FAs and their metabolites have important secondary functions related to inflammation as well as recovery, repair, and CNS protection (163, 165). Phospholipases A2 are an enzyme superfamily with over 20 isoforms that specifically hydrolyze FAs from the sn-2 position of plasmalogens to release free FAs such as AA and DHA and lypophospholipid (166). The effects of phospholipases can be quite drastic and many powerful snake venoms contain such enzymes (163). Once released, AA can be oxidized to eicosanoids and platelet activating factor that promote inflammation. Conversely, released DHA can be metabolized to docosanoids and several anti-inflammatory/protective species such as resolvin, protectin D1, and neuroprotectin D1 (163, 165). DHA may also promote repair by inducing the rate-limiting enzymes in Pl synthesis pathway (167) and lipid transport (168). Furthermore, it may induce powerful transcription factors that control lipid metabolism (retinoic acid receptors, retinoid X receptors, and peroxisome proliferator-activated receptors). These transcription factors decline with age and are involved in many cellular processes including maintenance of cognitive functions (169). It thus seems that higher brain DHA levels may be protective and direct treatment with such lipids may have substantial therapeutic benefits (see section 5) (170, 171).
4.2. High cholesterol content and requirements
Brain cholesterol is synthesized almost exclusively de novo by glia (primarily oligodendrocytes and astrocytes) (125, 172, 173) and peripheral cholesterol does not enter the brain (174). The human brain, which is approximately 2% of the body by weight, contains approximately 25% of the body's membrane cholesterol (172, 175) and up to 80% of brain cholesterol is in myelin (176). Cholesterol does not bind as much water as the polar phospholipids in membrane bilayers. Thus, cholesterol enrichment in the outer myelin membrane bilayers reduces water binding and allows the juxtaposition and tight membrane packing achieved in myelin sheaths. Cholesterol is thus indispensable for myelination (173, 177). With the aid of apolipoproteins such as E, D, and J, (ApoE, ApoD, and ApoJ) cholesterol (and other lipids) is transported and can be "exported" to neurons (178, 179) and contribute to a variety of brain processes, including synaptogenesis, that are dependent on this essential membrane ingredient (180, 181). Cholesterol is metabolically expensive to synthesize and it is extensively recycled from broken down myelin (182) for use in repair/production of new myelin and other membranes (20, 21, 174). This recycling depends on interactions between apolipoproteins (especially ApoE), ATP-binding cassette transporter A1 that lipidates ApoE, low-density lipoproteins (LDL) with which ApoE associates, and LDL receptors (see sections 5-7). The efficiency of this recycling gives human brain cholesterol a half-life measured in years (183) (summarized in Figure 4).
4.3. High iron content and requirements
Oligodendrocytes have the highest iron content of all brain cell types (124, 184, 185) (reviewed in 186) and as much as 70% of brain iron may be associated with myelin (187, 188) The high iron level is consistent with the iron requirement of cholesterol and lipid-synthesizing enzymes (189) including synthesis of endogenously produced steroids or "neurosteroids" (190-192) that may themselves be involved in promoting myelin repair (193, 194). High iron is also consistent with increased metabolic/mitochondrial needs for the respiratory chain and recent data shows oligodendrocyte differentiation cannot proceed without this induction of mitochondrial genes (195). Mitochondrial defects would thus be expected to and do influence the pathophysiology of SZ, BD, and AD (130, 196-198). Thus, an increase in intracellular iron is essential for oligodendrocyte differentiation (199). Inadequate dietary iron during early development can result in poor myelination and associated mental deficiencies in human infants (124, 200) and young adults (201).
Brain iron levels increase with age (202, 203) and are abnormally elevated in and contribute to the pathophysiology of degenerative diseases of old age such as AD (188, 204, 205). Elevated iron can promote the production of free radicals and their associated oxidative damage (133) compromising a variety of essential functions such as DNA repair (206), phagocytosis, and lysosomal activity (207). Post mortem human data suggests that SZ and BD as well as degenerative diseases such as Alzheimer's are all associated with increased oxidative damage (see sections 4.5. and 7).
4.4. Continued development and proliferation throughout the lifespan
Another distinctive oligodendrocyte feature is especially important to postnatal as well as adult brain development. Unlike neurons, whose numbers are essentially established at birth, in healthy primates, vast numbers of oligodendrocyte progenitors are produced to support the decades-long and diverse process of postnatal myelination and repair/remyelination (208, 209). Progenitor cells comprise 5% of total adult brain cells and they continue to divide and increase the numbers of adult oligodendrocytes across the lifespan by as much as 50% (210-212) (reviewed in 213) while building, repairing, and remyelinating damaged or lost sheaths (212, 214). Large numbers of "reserve" progenitor oligodendrocytes (5-8% of brain glia) exist in this undifferentiated form (208, 209).
The continual capacity of oligodendrocytes to proliferate and repair holds the promise of function restoration as well as the danger of increased vulnerability and toxicity as increased oligodendrocyte numbers are associated with increased iron levels (205, 215) (section 4.3.). Oligodendrocytes may be critical to uptake of iron as recent observations show that 50% of hippocampal oligodendrocytes are juxtaposed directly on blood vessels where they may be able to acquire iron directly (209). Increased numbers of oligodendrocytes and iron levels have been associated with aging (202, 203, 210-212) and degenerative diseases such as Huntington's disease (216-218) (reviewed in 215), Parkinson's and AD (188, 204, 205), as well as presymptomatic cases of AD (219, 220). The age-related increase brain iron may contribute to the development of an increasingly oxidation-prone brain environment (205) that could be further exacerbated by mitochondrial deficits observed in SZ, BD, and AD (130, 196-198) (see sections 5, 7, and 10) (summarized in Figure 4).
4.5. Developmentally-determined heterogeneity and vulnerability continuum
Oligodendrocytes are markedly heterogeneous based on when, during the protracted process of human brain development, they differentiated into myelin producing cells. At birth, each oligodendrocyte myelinates a single segment of the largest axons that form our primary motor and sensory circuits. Throughout subsequent development however, each oligodendrocyte continually increases the number of segments it myelinates such that by middle age, in association cortical regions for example (Figure 2), each myelinates upwards of 50 axon segments (209, 221). Oligodendrocytes can thus achieve remarkable complexity and undergo specific differentiation for specific circuitry (209). Later-differentiating oligodendrocytes have different lipid properties, myelin turnover, and reduced capacity for myelin repair than earlier differentiating cells (209, 222-225). Compared to earlier-myelinating oligodendrocytes later-myelinating cells support thinner myelin sheaths (226, 227) with shorter internodal length (213). Overall, the later-myelinating regions are more vulnerable to a variety of insults including aging as manifested by higher levels of myelin damage (67, 228) and loss (45) that correlate with cognitive declines (reviewed in 9, 67, 205).
4.6. Epigenetic modifications of oligodendrocytes throughout the lifespan
The continued oligogenesis, myelination, and repair processes have additional consequences that may be unique to myelin. These processes remove the debris from broken down myelin and may "mask" the role of myelin damage and repair in normal function as well as disease states (reviewed in 9). Thus, the principal evidence for these processes is indirect and consists of thinner myelin with shorter segments characteristic of repaired segments, and the age-related increase in oligodendrocytes numbers needed to support repair (reviewed in 213). These lifelong developmental processes produce a spectrum of cells ranging from precursors to differentiated oligodendrocytes and create opportunities for environmental-genetic interactions through epigenetic modifications of gene expression (summarized in Figure 4).
Epigenetic modifications of gene expression result from environmental effects that alter nuclear chromatin through methylation and demethylation reactions and histone modifications. These modifications alter gene expression of cells as they differentiate and thus affect cell function far into their future (229-234). Environmental insults (defined as deviations from optimal conditions including brain and peripheral diseases and malnutrition) that occur in earlier stages of development can thus have both immediate as well as long-term effects on developmental/repair processes through epigenetic changes of gene expression.
In a continually dividing and differentiating cell line such as oligodendrocytes, epigenetic modifications on gene expression can be introduced in each subsequent generation of differentiating cells and thus reflect environmental conditions at different stages of the lifespan. Furthermore, myelination itself drives age-related brain structure change (Figure 2) (reviewed in 9, 91). Thus, later-differentiating generations of oligodendrocytes myelinate increasing numbers of axon segments (section 4.4.) and are exposed to increased brain iron levels (section 4 .3.), increasing metabolic demands on individual cells (section 4.1.). For oligodendrocytes, "developmental" requirements (e.g., nutrition, metabolism - see sections 4.1.-4.3) do not stop in infancy and may continue or increase well into adult years. These requirements may actually increase as repair-associated needs increase into old age (9) while concomitantly, epigenetic effects may contribute to the degradation of myelin repair efficiency (234). Without adequate interventions this decline in repair ability may make age-related cognitive decline and dementia almost inevitable for the vast proportion of the population (reviewed in 9).
Since myelination continues into middle age and beyond, repeated episodes of diseases such as SZ and BD may also have both immediate as well as delayed destructive effects through epigenetic modifications of myelination and repair. In postnatal brain, most if not all progenitor cells receive direct excitatory and inhibitory synaptic input (235-237) (see section 9.1.). The neuronal input is likely dramatically disturbed during illness episodes (as well as during episodes of illicit drug use (see section 9.1.)) and could potentially result in a multitude of immediate and long-term changes in progenitors. Psychotic, affective, or illicit drug use episodes could for example prematurely trigger epigenetic effects and accelerate the decline in myelin repair efficiency that is observed in old age (234). Consistent with such a possibility, severe psychotic (positive) symptoms of SZ seem to have similar detrimental effects on clinical outcomes whether they occur at first admission or during later episode (238, 239). A reduction in intracortical myelin may contribute to this illness-related deterioration and the associated deterioration in response to antipsychotics commonly dubbed "treatment resistance" (110). Promyelinating effects of medications may be able to partially counteract such epigenetic process (66, 240) (see section 9) (summarized in Figure 4) especially when initiated early in the disease process (241).
Similar destructive processes may occur in mood disorders where repeated episodes seem to increase severity of subsequent episodes (242), accelerate cognitive decline (243-245), increase the risk of old-age dementia (246-248), and also result in increasing treatment resistance (reviewed in 249). Conversely, continuous treatment with lithium or antidepressants seems to be associated with reduced risk of dementia (250-252). As in SZ, some reports suggest that antipsychotic treatment may also increases white matter volume in BD (240, 253) (see section 9).
Other nutritional and pharmaceutical interventions that could directly influence epigenetic modifications are also worth considering. Valproic acid for example a branched chain fatty acid that is effective for treatment of seizures and BD may directly impact epigenetic modifications. Valproic acid inhibits histone deacetylases that are crucial to epigenetic processes (234, 254-256). Direct alterations/reversal of epigenetic changes may thus be possible through such interventions. Consistent with this possibility, this medication also affects multiple important transcription factors that are lipid metabolism "control points" including PPARd (254, 255, 257), PPARg (257, 258), and PPARa (259) activators. Furthermore, it may block gene expression of adiponectin (produced by adipocytes and controls insulin sensitivity and glucose homeostasis) that is reduced in overweight, diabetic individuals, and patients receiving it (260-262). It is thus not surprisingly that in addition to beneficial effects on brain, valproic acid also causes obesity and insulin resistance (261, 262).
Specific nutrients such as folate can also influence the methylation reactions and may thus affect the epigenetic processes (263). Furthermore, availability of nutrients such as O3FA (see section 5) that are essential building blocks of myelin and hormones such as VitD may mediate other environmental interactions related to climate (see section 6) (summarized in Figure 4).
5. ESSENTIAL LIPIDS: OMEGA 3 AND 6 FATTY ACIDS (O3FA AND O6FA) AND THEIR METABOLITES
Essential fatty acids cannot be synthesized by humans and must be obtained from diet. Human brain may be especially susceptible to DHA deficits due to inadequate dietary intake and/or accelerated degradation from oxidative and inflammatory processes (see sections 4.1.-4.3., 7, and 8). A major reason for such deficits may be that DHA synthesis from O3FA precursors is very low in omnivorous primates (264). In humans this deficit is especially pronounced in men (265) while in women, higher estrogen levels seem to upregulate DHA formations from O3FA precursors to a modest degree (169, 266). Providing DHA itself in the diet is much more efficient (over seven-fold) in increasing brain DHA levels than providing precursors (267). Unfortunately, most recommendations for daily intake/supplementation with O3FA refer to alpha-linoleic acid requirements (a DHA precursor) as opposed to DHA requirements (reviewed in 268, 269). To increase US intake levels (which are around 100 mg per day in adults) and reach the same levels as a fish-consuming country like Japan, a daily intake of 700-1000 mg may be required for the average US adult (269, 270). The results of such supplementation efforts can be substantially influenced by genetic variants (271, 272) as well as gender/estrogen. Hormonal and genetic effects may have important clinical consequences such as contributing to milder and later onset of SZ in women and may help resolve epidemiologic observations regarding associations between genetic variants, climate, nutrition, and brain disease (see section 6).
As described above, essential fatty acids are especially enriched in myelin but are also important for many other brain membranes. The principal brain O3FA is DHA (22:6n-3), and it comprises 15% of total FA while the principal O6FA, arachadonic acid (AA, 20:4n-6), comprises another 10% (273). In healthy individuals these levels decline with age during adulthood although the mRNA for lipogenic enzymes involved in their synthesis have a quadratic age trajectory peaking in middle age (similar to intracortical myelination - Figure 2) suggesting compensatory responses that crest in middle age (274).
Significantly reduced peripheral levels of O3FA have been consistently reported in never-medicated first episode schizophrenic subjects (275-279). Frontal cortex O3FA levels are also reduced in SZ (280), major depressive disorder (281, 282), BD (283, 284), as well as degenerative disorders of old age such as AD (285-288). It is not clear whether these reductions are due to decreased uptake from diet, increased metabolic breakdown of these fatty acids from processes such as oxidation (see just below), or both. Many damaging processes (such as oxidation, inflammation, and toxins) can directly cause myelin breakdown (289, 290) (section 7).
The above evidence of lipid deficits has been fundamental to the suggestion that abnormalities in brain lipids may have an etiologic role in SZ (170). Further support for this possibility has come from O3FA supplementation trials. A recent study carried out in high-risk subjects with prodromal symptoms reported a significant reduction in the number of subjects who went on to develop SZ as well as reducing their symptom burden (171). In subjects with chronic disease the results of such supplementation are less clear. Although many trials showed that adding O3FA supplementation to psychotropic medications may improve outcome in SZ, BD, and major depressive disorder, the results of meta analyses remain inconclusive and produced consistent calls for larger more definitive studies (291-295).
The apparent dichotomy between first break/prodromal studies and chronic studies may be multifactorial. O3FA deficits may be ameliorated somewhat by antipsychotic treatment (atypical>typical) (273, 296) making effects of supplementation harder to detect in medicated subjects. In addition, myelination deficits seem to increase with the chronicity of disease, a phenomenon most clearly documented in SZ (102, 104, 105, 297) (reviewed in 6, 298). These increasing deficits suggest that the underlying etiology, together with the brain's adaptive/homeostatic responses and epigenetic effects (section 4.6.) could undermine treatment responsiveness to both psychotropic medications as well as nutritional supplementation (e.g., development of "treatment resistance" (110)).
6. PSYCHIATRIC EPIDEMIOLOGY: CROSSROADS OF GENES, LIPID METABOLISM, AND NUTRITION
As described above, the extensive myelination of the human brain requires massive amounts of energy, iron, and lipids. Not surprisingly, epidemiologic data consistently suggests that starvation and malnutrition (of both iron as well as lipids) increase SZ risk (299-301) (302, 303) (reviewed in 304). Interactions between lipid metabolism genes such as Apolipoprotein E (ApoE) and malnutrition have also been reported (305). In SZ and BD increased levels of ApoE have been observed in frontal lobes (306, 307) and CSF (308) suggesting upregulated lipid metabolism in both disorders (see below).
ApoE is a secreted glycoprotein that associates with lipoproteins such as chylomicrons and very low density lipoproteins (VLDL) and mediates uptake of these lipid-rich particles into cells via receptor-mediated endocytosis (309). The polymorphisms of ApoE (with three common alleles designated E2, E3, E4) have important effects on lipid absorption, metabolism, and repair of membranes such as myelin and manifest with very different consequences peripherally versus centrally.
Peripherally, ApoE4 (and 3) are substantially better than ApoE2 at clearing lipids from the circulation due to a better interaction with receptors on target organs such as liver (310, 311) while ApoE2 delays this lipid clearance. Thus, ApoE alleles may impact disposition of small lipid particles such as chylomicrons (produced during intestinal absorption of lipids) and Low Density Lipoprotein (LDL, a key lipid transport in the bloodstream) (312, 313). ApoE genotype may therefore also influence the absorption of several nutrients such as VitD (reviewed in 314), and essential fatty acids (EFA) such as omega 3 and 6 fatty acids (O3FA and O6FA) (271, 272). It thus appears that overall clearance and deposition of food/lipid nutrients into cells is best with ApoE4 alleles and may be advantageous for survival in a resource-poor environment such as northern latitudes or hunter-gatherer as opposed to agrarian societies. Increased resistance to infection in ApoE4 carriers (315) may also be related to this advantage in nutrient absorption.
The superior nutrient absorption (including vitamins such as Vitamins D and K from food sources) may help explain ApoE epidemiology. The ancestral (primate) ApoE4 allele increases in frequency as one moves north in latitude in Europe, Japan (reviewed by 316), and China (317). This observation gave rise to hypotheses that ApoE4 alleles may interact with environmental factors such as sunlight exposure (which can produce VitD in skin) (316) and nutrition (305, 318) since both nutritional abundance and sunlight may be reduced at higher/colder latitudes.
The higher endocytosis of ApoE4 may contribute to the observation of fewer circulating ApoE molecules compared to those without an ApoE4 allele (319-322) (reviewed in 323). A similar quantitative gradient (ApoE2>ApoE3>ApoE4) is observed in CSF of transgenic mice that had human ApoE alleles knocked in (324-326). In brain however, fewer circulating ApoE molecules may have detrimental effects.
In brain, ApoE is the primary transporter of endogenously produced brain lipids such as cholesterol and sulfatide (327-332) that are essential for membrane and especially myelin production, function, and integrity (173, 177, 331-333). The poor interaction of ApoE2 with endocytosis receptors may in part explain the higher number of ApoE2 containing lipoprotein particles, and may also increase the distance these particles diffuse before being endocytosed. The higher levels and further diffusion could make ApoE2 advantageous for the process of clearing lipid debris created by breakdown of myelin and recycling these lipids to wherever they would be most needed (9). This wider dispersal may be especially important for toxic or inflammatory debris such as sulfatide (9) and toxic proteins (334).
In human brain, the tremendous lipid needs (see section 4.2.) combined with a generalized and accelerating age-related myelin breakdown process (161, 335, 336) (Figure 2) would put a premium on the capacity to mobilize lipids such as cholesterol and recycle them for myelin repair. Thus, ApoE4+ carriers may be at a critical disadvantage in a variety of diseases where repair is important such as AD (9, 21) and this allele is by far the strongest genetic risk factor for late onset form of this disease (337).
7. MYELOTOXICITY AND TREATMENT EFFECTS
Post mortem human data suggests that SZ and BD as well as AD are all associated with increased oxidative damage (136-140) (141, 338, 339). This damage is not likely to be caused by medications since they are observed in unmedicated individuals (139, 338) and some medications have antioxidant properties (see below). Oligodendrocytes and their myelin are distinctively vulnerable to many toxins and especially oxidative damage (section 4.5.). Oxidative damage is likely the most prevalent myelotoxin and is associated with the oxidative peroxidation byproduct lipofuscin (340-342), monotonic increase of brain iron (203) (section 4.3.), as well as compensatory upregulation of repair mechanisms involving ApoE and ApoD (306, 307, 343, 344).
Multiple toxins that may contribute to the development of psychosis may share dysregulations in oxidative pathways (345). One important immunotoxin is interleukin 6 (IL6), a proinflammatory cytokine that can enter the brain (346). In humans and animal models elevated peripheral IL6 has been consistently associated with lower global and regional brain gray and white matter volumes (346-349) as well as functional measures of frailty in older individuals (350, 351). IL6-induced oxidative stress may also be a final common pathway to several insults that trigger inflammatory reactions including psychotogenic pharmaceuticals such as ketamine and methamphetamine, which can be especially toxic to fast-spiking GABApv interneurons (112, 352). Some of these interneurons have especially heavily myelinated axons (353, 354) and, if their myelin becomes dysfunctional, they may be susceptible to compensatory feedback overstimulation from their excitatory efferent inputs (e.g., excitotoxicity) (355). Supporting evidence for white matter damage related to abuse of these drugs has recently been published (111, 356). An excitotoxic mechanism could help explain significant reductions of GABApv interneurons in SZ (357, 358, reviewed in 359) and the psychotogenic effects produced by abuse of these drugs (360-362).
Recent data suggests that antipsychotics may promote myelination although they may have different myelination effects (8, 66, 240, 363-365). Multiple mechanisms could promote myelination and contribute to differences amongst treatments. For example, some but not all antipsychotics may have antioxidant properties (364). Greater increase in cortical DHA has been reported with atypical versus typical antipsychotic medications (273, 296). This possibility is supported by animal data showing that treatment with antipsychotics can increase O3FA (366) although this increase is not seen with clozaril and haldol (367, 368). Given that both typical and atypical antipsychotics are effective in reducing clinical symptoms, these data suggests that medications may achieve similar pro-lipidation/myelination effects through different mechanisms (106, 121, 273, 363, 364) although in healthy animals treatment-related decreases in oligodendrocyte markers have been reported (369, 370).
Cell culture models reveal that several antipsychotic and antidepressant medications increase lipid biosynthesis by upregulating Sterol Regulatory Binding Element-Binding Protein (SREBP) (371-373) although, since substantial differences exist between medications (374), once again different mechanisms may be at work. The effects of medications may also be altered by SREBP gene polymorphisms that have been associated with susceptibility to SZ (375) as well as metabolic side-effects (376). Compensatory reparative increases in apolipoproteins (ApoD and ApoE (306, 307, 343, 344)) and other enzymes involved in lipid metabolism have also been observed, suggesting that medications may impact "master regulator" transcription factors such as Liver X receptor and sterol regulatory element transcription factor (375, 377). The possibility that antipsychotic and antidepressant medications have metabolic effects in common may underlie their shared antidepressant and antimanic properties (378). The wide spectrum of efficacy of atypical antipsychotics in treating affective symptoms has recently led to the drastic expansion of their FDA-approved indications and support the suggestion that lipid and myelin abnormalities may be shared by several psychiatric disorders (see sections 3, 4, 8 and 9).
The suggestion that antipsychotics may also act on lipidation and specifically ameliorate myelin toxicity is supported by several recent studies of cuprizone, a myelin-specific toxin whose effects depend at least in part on increased cytokine production and oxidative stress (379) (reviewed in 364, 380). Antipsychotics promote myelin repair in the cuprizone animal model (364, 381, 382). Protecting intracortical myelin seems to be more difficult however as only the combination of haldol and clozapine was able to attenuate demyelination in prefrontal cortex while in caudate, putamen, and hippocampus both quetiapine and clozapine did so but haldol did not (364). The ameliorative effects of antipsychotic medications on cuprizone-induced toxicity (364, 381, 382) support the suggestion that antipsychotic treatments could be directly supporting myelination as part of their mechanism of action (6, 66, 102, 240) (see section 9). This is consistent with human studies that reveal a deficient myelination process in SZ (102, 104, 105) (section 8) and significant beneficial effects in cortex lipidation (66, 139) (section 9). Although both typical (fluphenazine) and atypical (risperidone) antipsychotics may increase prefrontal cortex myelination, risperidone may increase myelination significantly more (Figure 3) (66). A superior promyelinating effects of atypicals on intracortical myelin may also help explain the apparently wider spectrum of efficacy observed with this class of medications and their expanding FDA indications. The combined animal and human data could be interpreted to suggest that, in disorders involving abnormal myelination and/or myelin damage, cortical myelination may be mediating antipsychotic efficacy however, much additional research is needed to clarify neuronal and/or glial mechanisms of action and their interactions (section 9).
Given the increasing evidence of oxidative damage or deficient myelination in psychiatric disorders, it is not surprising that several clinical trials of an antioxidant intervention have shown efficacy in several disorders. N-acetyl cysteine (NAC) supplementation is well tolerated and helps replenish the rate-limiting supply of cysteine for glutathione (a tripeptide that is arguably the principal brain antioxidant) (reviewed in 383) (249, 384) and is decreased in the brain of psychiatric subjects (141). NAC penetrates the blood-brain-barrier (385) and has been shown to protect oligodendrocytes from oxidative damage and a variety of toxins (134, 386-391). Protective effects of NAC treatment have been observed in animal models of several myelin diseases (389, 392, 393) and animal models of psychiatric disease caused by toxic effects of drugs of abuse such as methamphetamine, cocaine, and phencyclidine (394-397). Furthermore, this treatment has shown promising results in a senescent-accelerated mouse that develops premature memory deficits (385). This mouse strain also shows the major elements of oxidative stress and myelin breakdown including increased pro-inflammatory cytokines such as IL6 (398), loss of hippocampus oligodendrocytes (399), and premature age-related degeneration of myelin (400). Most importantly, placebo-controlled human clinical trials have shown significant symptom reduction in SZ, BD, trichotillomania, and AD (401-404) as well as improved cognitive performance (405).
8. DYSREGULATED MYELINATION IN SCHIZOPHRENIA (SZ) AND BIPOLAR DISORDER (BD)
In the last decade the importance of myelin pathology in SZ (reviewed in 6, 406, 407) and BD (408, 409) has become widely recognized. This section will summarize the evidence that myelin pathology contributes to these diseases. Twin studies suggest that in both diseases, white matter reductions are related to the genetic risk of developing the disease while the cortical gray matter changes seem related to environmental factors (410-412).
Although the white matter abnormalities are present in both diseases and they may share myelination abnormalities, the patterns are not identical (413). In SZ, imaging studies that assessed white matter volume (102-105); (reviewed in 6) and post-mortem studies (44, 414-422) provide converging evidence to support the view of a deficient frontal lobe cortical myelination trajectory. Further, post mortem studies suggest that subcortical myelin deficits are absent or not as prominent as cortical myelin reductions (423-426). DTI studies examining subcortical white matter of younger-onset groups of subjects (mean age <26) suggest that abnormalities are not present at disease onset but rather develop as the disease progresses (427, 428) while DTI studies that assessed older-onset (mean age >28) first-episode subjects found significant deficits in white matter integrity (429-433). In first-brake studies of similarly older-onset individuals (mean age >28) the location of subcortical white matter integrity deficits has varied widely. For example, reduced fractional anisotropy was observed in the splenium but not genu of corpus callosum in one study (433) and vice versa in another (432).
The apparent absence of subcortical oligodendrocyte and myelin fiber deficits in post-mortem studies (425, 426) suggest that if present, subcortical myelin deficits may be patchy and initially more amenable to repair and become most pronounced later in the disease and/or in later-onset disease. Such a pattern is consistent with a dynamic process of continual repair of subcortical myelin that would result in reduced myelin thickness (213) without loss of myelinated fibers or oligodendrocytes (425, 426). The totality of the data would thus suggests that the myelination deficit associated with SZ may be limited to and/or more severe in late-myelinating structures such as the cortex and adjacent white matter (66, 414, 434) while subcortical myelin may have better reparative abilities.
In contrast to consistent reports of white matter deficits in SZ (435), several DTI reports suggest increased white matter integrity in BD (436-440). Other DTI studies suggest reduced white matter integrity (441) including reductions in early-myelinating regions such as the internal capsule (409). In BD, disease state (e.g., depressed versus manic) may be contributing to these apparently contradictory observations. Thus one could speculate that hyperactivity/increased verbal output, that is often observed clinically in association with elevated mood states, could be related to increased myelination and cognitive processing speed of some circuits (e.g., excitatory) and/or decreased myelination in others (e.g., inhibitory circuits). Supporting this possibility is recently published data suggesting beneficial effects of the myelotoxic agent ketamine in treatment-resistant BD (111, 442, 443) as well as myelination-reducing effects of lithium (444).
Other factors could also contribute to contradictory imaging DTI findings. Differences in exposure to neuroleptic treatment that have been reported to change DTI parameters (445) just as they seem to change volumetric parameters (66, 240, 253). A third possible contribution may be genetic differences in NRG1-ErbB signaling which, in addition to altering myelination, may also alter cellular migration to final locations (33, 446, 447). Altered neuronal migrations could result in altered fiber organization and this possibility must be kept in mind in interpreting DTI measures that can be influenced by fiber orientation/crossing (448). Furthermore, many other gene variants and environmental effects may alter brain homeostasis and influence both the development of these disorders as well as imaging findings (Figure 4).
Human brain cytology data confirm a cortical glial deficit of patients with SZ that is primarily due to lower numbers of oligodendrocytes (44, 414-417). Staining data confirms an intracortical myelin (ICM) deficit (418-421) that seems to be particularly prominent in frontal lobes (44, 415, 417, 420). The ICM deficit is consistent with decreased expression of myelin genes revealed in proteome and transcriptome analyses (449-451) (reviewed in 452) and the prominence of myelin and myelination signaling genes as candidates for genetic components of this disease (27) (reviewed in 25, 26).
The oligodendrocyte reductions and myelin gene expression deficits are also observed in BD (44, 453, 454) (reviewed in 409) and may even occur in severe unipolar depression (44). Furthermore, genetic susceptibility risks alleles such as the ones for neuregulin and its ErbB family of receptors, that have crucial roles in myelination (see section 2.1.), seem to be shared by SZ and BD (23, 24). The cortical localization of myelination deficits is less clear in BD than in SZ however. Furthermore, in BD subcortical myelin deficits may be more prominent (455) and on MRI, focal regions of subcortical myelin damage manifested as increased signal intensity in white matter is consistently reported (456) (reviewed in 457).
9. PSYCHOTROPIC MEDICATIONS INFLUENCE GLIA AND MYELINATION: A KEY MECHANISM OF ACTION?
9.1. Synaptic and non-synaptic neurotransmitter effects on glia
Treatment interventions with O3FA, antioxidants, and some psychotropic medications that may have epigenetic effects (e.g., valproic acid) have been reviewed above (sections 4.6., 5, and 7). These interventions have a wide spectrum of efficacy and reinforce the hypothesis that the production and maintenance of myelin may be the "weakest link" of the human CNS and may represent shared pathophysiology amongst multiple neuropsychiatric disorders (sections 2, 3, 8). Pharmacotherapy using antipsychotics remains the best established, efficacious, and widely used clinical intervention for SZ. Antipsychotics have also established a much wider spectrum of efficacy that includes affective disorders and multiple disorders that are "treatment-resistant" to approved/accepted first line pharmacotherapy. Any model of psychopathology must by necessity incorporate testable hypotheses that help explain the mode of action and wide spectrum of efficacy of antipsychotics.
Much of current clinical psychopharmacology (including antipsychotics) acts at synapses that are primarily confined to gray matter. This has helped focus clinical and research attention on synapses, neurons, and gray matter and likely contributed to the under-appreciation of the contribution of glial and especially oligodendrocytes and their myelin in optimizing neuronal network function. As reviewed in sections 3.2. and 3.4. however, it is in cortical gray matter that myelin may have some of the most powerful "plastic" synchronizing effects on neural network function. In this context, it is crucial to reconsider the widely accepted dogma that all or even most neurotransmission is synaptic and contemplate the alternative possibility that many neurotransmitters also directly affect glia through a variety of neurotransmitter receptors (458) (reviewed in 121, 235, 459) (summarized in Figure 4).
Active glutaminergic neuronal synapses on oligodendrocyte progenitors that directly affect their differentiation have been demonstrated (460, 461). Neurotransmitters effects on glia can also occur in deep white matter (59, 60, 462), have been shown to have functional importance in oligodendrocyte differentiation and myelin repair (460, 461), and to be functionally integrated with and responsive to excitatory and inhibitory input from neuronal networks in gray matter regions such as hippocampus (237, 463). Activity-dependant neuron-glial communication can also be supported through neuronal ATP release. ATP activates purinergic receptors that modulate intracellular calcium and cyclic AMP and have multiple effects on glia, oligodendrocytes, and myelination (60).
The neurotransmitter targets of major classes of existing pharmacologic treatments of psychiatric disorders also have substantial neuron-glial signaling roles. A very large proportion of cholinergic transmission (up to 90%) both in the developing and adult brain is non-synaptic (e.g., absence of post-synaptic neuronal button), with acetylcholine being released from cholinergic varicosities directly into the extracellular space (464-466). In addition to acetylcholine, catecholamines (primarily dopamine, serotonin, and norepinephrine) are also largely (>50%) non-synaptically released (467, 468). All these neurotransmitters can impact oligodendrocyte differentiation and myelination (30, 458, 469-472) (reviewed in 121). It is thus apparent that neurons have a multitude of neurotransmitter mechanisms to communicate with oligodendrocytes and influence/direct myelination and repair processes in cortex (reviewed in 121, 459, 470). These multiple neurotransmitter effects range from dopamine, which is shared by all antipsychotics (362), to serotonin, norepinephrine, acetylcholine, etc. which are present in varying portions amongst the antipsychotics and may help explain their differential effects (e.g., typical versus atypical (Figure 3) (66)). It is therefore proposed that the efficacy of current pharmacology may be due, at least in part, to changes induced in glia and in particular oligodendrocytes and their myelin (66, 240) (section 3.3. and 3.4.). The supporting evidence for two key neurotransmitter systems targeted by existing pharmacology (acetylcholine and dopamine) will be reviewed next.
9.2. The cholinergic system and myelination
A considerable portion of brain cholinergic receptors is associated with non-excitable cells such as oligodendrocytes and their progenitors (reviewed in 121). These non-neuronal receptors may be involved in mammalian brain development (473-477) and the especially protracted, extensive, and "plastic" nature of the lifelong myelination process in human brain (see sections 3.3. and 3.4.) (Figure 2).
Cholinergic treatments are the mainstay of treatment for AD and have been shown to improve both cognition (and in particular processing speed (478)), as well as the vast array of behavioral syndromes (including psychoses) associated with this disease (479). The substantial proportion of patients with Alzheimer's that develop psychosis may be especially benefited from such treatments (480). Conversely, anticholinergic drugs are well known to be capable of inducing psychotic symptoms and cognitive deficits in both young (481) and elderly individuals (482, 483).
Cholinergic treatments have been hypothesized to have promyelinating effects (reviewed in 121). The cognitive impairments and psychosis-inducing potential of anticholinergic drugs can also be considered from the prospective of myelin. It is proposed that anticholinergics interfere with cholinergic stimulation of oligodendrocytes, compromise myelin, and thus degrade myelin-dependent network synchronicity on which optimal brain function depends (section 3.3. and 3.4.). The psychotic symptoms produced by anticholinergic drugs (481-483) can thus reconceptualized to be the result, at least in part, of interference with myelination, its maintenance and/or repair rather than an exclusive neuronal cholinergic receptor effect. Conversely, the beneficial effects of cholinergic stimulation in AD (480, 484, 485) can also be considered from the perspective of promoting myelination. In this context, it is not surprising that beneficial effects have also been observed in SZ (486) (reviewed in 121).
9.3. The dopaminergic system and myelination
Catecholamines can affect oligodendrocytes and their progenitors (470-472). Myelin-specific toxins such as cuprizone are associated with dopamine disturbance and antipsychotic medications mitigate this damage (364) (see section 7). Knock out mouse models also support a strong relationship between dopamine and myelin (30). NRG1-erbB signaling is important for oligodendrocyte development and both NRG1 and its ErbB4 receptor are genetically linked with susceptibility to SZ and BD (see section 2.1. and 8). Transgenic mice in which ErbB signaling is specifically blocked only in oligodendrocytes leads to changes in oligodendrocyte number and morphology, reduced myelin thickness, and slower conduction velocity in specific regions such as corpus callosum and basal ganglia that suggest primary effects on earlier-myelinating circuits. Importantly, these mice also manifested increased dopamine receptor and transporter levels and behavioral alterations consistent with neuropsychiatric disorders (30). In primates and humans however, even an apparently "limited" effect on oligodendrocyte progenitors may have far reaching consequences since progenitors continue to differentiate and myelinate into middle age and beyond (section 4.4.). Thus a wide spectrum of early- to late-myelination as well as remyelination of damaged/lost segments may be mediated through effects on progenitor cells (reviewed in 9, 121) (section 4.6.).
Strikingly, all currently available antipsychotic medications share dopamine receptor blockade as a principal if not only known shared effect, and their dopamine-2 receptor affinity is highly correlated with their clinically effective dose (362). Furthermore, dopamine receptor agonists may have protective effects on oligodendrocytes (472) and antipsychotics have shown effectiveness in multiple disorders that do not necessarily involve psychotic symptoms (see section 8). Dopamine receptor blockers such as haldol promote oligodendrocyte precursors proliferation but may actually inhibit their differentiation into myelinating cells (365). On the other hand, dopaminergic treatments may promote myelination (471) and protect oligodendrocytes from metabolic and excitotoxic insults (472) while excess dopamine, caused by drugs of abuse such as methamphetamine and cocaine for example, may damage myelin (487), arrest myelination (488, 133), and cause or exacerbate psychotic symptoms (reviewed in 362). Dopamine receptor blockade can produce secondary upregulation of dopamine receptors that is associated with extrapyramidal side effects and loss of efficacy (489) however the effect of such blockade on oligodendrocytes remains unexplored.
A striking dichotomy of dopamine metabolism exists in different brain regions. In subcortical structures such as the basal ganglia and nucleus accumbens, dopamine transporters clear the vast majority of released dopamine (490, 491). In the prefrontal cortex however, dopamine transporters are sparse (492) and reuptake of dopamine is primarily dependent on norepinephrine transporters and catecol-O-methyltransferase (COMT) (493) which catalyses the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to catecholic compounds (494, 495) and is responsible for approximately half the dopamine metabolism (493). The most common COMT single nucleotide polymorphism (G -> A transition at codon 158 (rs4680)) is associated with a greater than two-fold decreases in enzyme activity and increased dopamine levels especially in prefrontal cortex (496, 497). Most COMT is associated with glia and especially oligodendrocytes (498, 499) and its polymorphisms have been associated with a variety of neuropsychiatric diseases (500, 501), cognitive function (502), and treatment responsiveness (503-507). Although evidence of interactions between COMT and neuregulin and GABA polymorphisms exist (495, 508), no data that pertain to oligodendrocytes has been published. Nevertheless, COMT alleles have been associated with brain volume changes (509-511) and associations between intelligence and white matter integrity measures (512, 513).
Furthermore, although the dopamine blockade occurs within minutes, the therapeutic effects of antipsychotics can take days to weeks. We postulate that both the therapeutic effects of antipsychotics (see below) and the counter therapeutic/toxic effects of drugs of abuse (section 7) may act, at least in part, through changes in the myelination process. The delay in the therapeutic effects suggests an indirect mechanism. The common dopamine receptor blockade triggers a homeostatic response on the part of neurons to increase dopamine release in specific cortical regions and layers (514). The dopamine from non-synaptic neuronal buttons could create/reinforce the "normal" neuronal circuit-directed stimulus for myelination. This directed signaling may increase myelination of appropriate axons, improve network synchrony and function, and thus eventually manifest in decreased clinical symptoms and improved cognition. On the other hand, indiscriminate drug-induced dopamine increase could also promote myelination in a "random" fashion that is not responsive/directed by neuronal circuits to specific regions and/or cortical layers. This could degrade rather than optimize network synchrony and function and thus worsen or produce de-novo clinical symptoms. Furthermore, stimulants such as methamphetamine and cocaine could be directly toxic by markedly increasing extracellular levels of dopamine whose oxidative metabolism can cause secondary toxicity to oligodendrocytes and precursors (133, 515). These effects may contribute to the consistently observed "U" shape relationships between dopamine and measures of brain structure and function (502, 511, 512, 516) that suggest an optimal amount of dopamine is flanked by suboptimal low and high amounts.
Consistent with clinical observations, the euphoric effects of drugs of abuse would be immediate (e.g., synaptic), accounting for their highly reinforcing properties. Their ability to trigger rapid psychotic symptoms would depend on whether the network circuitry of drug users is already dysfunctional, as would be the case with psychiatric patients that abuse these drugs. Conversely, healthy individuals who would be presumably further from the "brink" of brain dysfunction (e.g., "recreational" users) would be less likely to suffer immediate psychotogenic effects but may experience such symptoms after substantial cumulative/toxic exposure (362).
10. CONCLUSIONS ON NEUROGLIALPHARMACOLOGY
For optimal brain function, no class of cells is dispensable. Despite the focus on oligodendrocytes, the goal of this work was to redirect a greater proportion of research attention to the role of glia in general and the importance and complexity of neuron-glial interactions (summarized in Figure 4). In order to help dissipate the historic artificial divide between neurons and glia, a more appropriate nomenclature (e.g., neuroglialpharmacology) may better serve both clinical and research enterprises.
Vertebrate brain function and especially the very recently evolved capabilities of human brain are dependent on our species' pervasive and dynamic process of myelination. The tremendous post-natal elaboration of myelin and its key role in synchronizing neuronal networks and optimizing cognitive and behavioral functions have arguably earned oligodendrocytes the status of "the cells that make us human" and raises the prospect that, in the cognitive and behavioral spheres, humans may be best described as "myelin beings". The tremendous success of homo sapiens is a testament to the amazing power of this adaptation. Our specie's very recent evolution however has denied this most recent brain elaboration the time needed for continued improvement and may be contributing to common occurrence of myelin deficits during its development as well as age-related deficits in its maintenance and repair. This has earned oligodendrocytes and the myelin they produce the status of the "weakest link" of the human brain and may help explain the tremendous burden of psychiatric disease our species suffers from during all life stages.
A century of neuron-centric under-appreciation of the importance, vulnerability, and dynamic lifelong elaboration of our brain's myelination have unfortunately also helped undermine progress in clinical and research endeavors into both normal brain function and disease-related abnormalities. Herein an attempt is made to show that both clinical treatment and research endeavors may be converging onto glia and oligodendrocytes in particular as the indispensable key for understanding function as well as dysfunction of the human brain (summarized in Figure 4). The wide spectrum of efficacy of several classes of existing medications, the shared metabolic effects of pharmacotherapy, and beneficial effects nutritional supplements such as O3FA and NAC supports the possibility that treatment efficacy may well be primarily associated with protecting (section 7), nurturing (section 5 and 6), and promoting maturation (section 8 and 9) of glia and especially oligodendrocytes and myelin. The myelin model of the brain may also help dismantle artificial barriers created by the clinical symptom clusters on which disease classification is currently based and may provide more parsimonious explanations for substantial portions of symptomatology, pharmacology, and pathology of several common diseases. Thus, decrements in the timing of action potentials and synchronous interaction of neuronal networks may result in behavioral and cognitive dysfunctions that secondarily result in clinical symptom clusters despite different etiologies.
Current clinical categorizations such as the DSM do not "fit" either the wide spectrum of efficacy of available treatments nor the preexisting metabolic abnormalities associated with some psychiatric diseases. Furthermore, metabolic abnormalities and weight increases associated with pharmacologic treatments also do not segregate neatly into our clinical diagnostic classifications. The totality of the data seems to suggests that several mechanisms (e.g., metabolic, toxic, developmental, maintenance, and repair-related) may be shared between diseases in various proportions and imply that perpetuating the historic and imperfect artificial divide between diseases into discrete categories based on symptoms may have become counterproductive.
A better understanding of the human condition cannot easily occur without an increased appreciation of the continual and interrelated dynamic changes that influence trajectories of change. For example, repair of subcortical myelin produces shorter myelin segments altering transmission speed and thus triggers compensatory changes in intracortical myelin (ICM) for optimal function to be restored (section 3.3 and Figure 4). The under-appreciation of dynamic brain changes that occur throughout the lifespan has likely contributed to the myriad of contradictory findings in the literature. This is much worse that the parable of three blind men touching different parts of an elephant and coming to widely differing conclusions. The difficulty in arriving at the correct conclusion is greatly amplified if, in addition to different body parts, they are examining a mixture of newborns, adolescents, and adult elephants. Since the timeline/trajectory of myelination differs amongst networks, the clinical and research community has an even more complex problem to overcome.
The hypotheses delineated above are testable through in vivo imaging technologies that provide new avenues of assessing the trajectory of human myelin development and its subsequent breakdown (39, 161, 517, 518), as well as receptor changes in both gray and white matter (519-521). These technologies, together with genetic as well as clinical and cognitive measures make it possible to directly test in humans the practical utility of the myelin-centered model to accelerate medication development. The lifespan trajectory framework together with these new technologies can be imbedded into clinical trials to help foster the development of novel treatments, as well as assessing the efficacy of currently available treatments (9, 121). It is possible that much of the wide spectrum of efficacy of available treatments is due to improved oligodendrocyte protection, and promotion of myelination and myelin repair. Such effects on the brain's vulnerable oligodendrocyte populations may offer exciting opportunities for treatment as well as primary prevention of both developmental and degenerative brain disorders and deserve much closer scrutiny (7, 9).
11. ACKNOWLEDGMENTS
This work was supported in part by NIH grants (MH 0266029; AG027342), Research and Psychiatry Services of the Department of Veterans Affairs, and the RCS Foundation. The author thanks Lori L. Altshuler, M.D., and Keith H. Nuechterlein, Ph.D. for reading the manuscript and providing suggestions for improving it.
12. REFERENCES
1. A. Dasgupta, O. P. Singh, J. K. Rout, T. Saha and S. Mandal: Insulin resistance and metabolic profile in antipsychotic naive schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry (2010)
2. G. Venkatasubramanian, R. Arasappa, N. P. Rao, R. V. Behere, S. Kalmady and B. N. Gangadhar: Inverse relationship between serum high density lipoprotein and negative syndrome in antipsychotic-naive schizophrenia. Clin Chem Lab Med, 48(1), 95-8 (2010)
doi:10.1515/CCLM.2010.004
PMid:19929755
3. G. Venkatasubramanian, S. Chittiprol, N. Neelakantachar, M. N. Naveen, J. Thirthall, B. N. Gangadhar and K. T. Shetty: Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry, 164(10), 1557-60 (2007)
doi:10.1176/appi.ajp.2007.07020233
PMid:17898347
4. M. C. Ryan, P. Collins and J. H. Thakore: Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry, 160(2), 284-9 (2003)
doi:10.1176/appi.ajp.160.2.284
PMid:12562574
5. B. Kirkpatrick, E. Messias, P. D. Harvey, E. Fernandez-Egea and C. R. Bowie: Is schizophrenia a syndrome of accelerated aging? Schizophr Bull, 34(6), 1024-32 (2008)
doi:10.1093/schbul/sbm140
PMid:18156637 PMCid:2632500
6. G. Bartzokis: Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology, 27(4), 672-83. (2002)
doi:10.1016/S0893-133X(02)00364-0
7. G. Bartzokis: Brain myelination in prevalent neuropsychiatric developmental disorders: Primary and comorbid addiction. Adolescent Psychiatry, 29, 55-96 (2005)
PMid:18668184 PMCid:2490819
8. T. Yamauchi, K. Tatsumi, M. Makinodan, S. Kimoto, M. Toritsuka, H. Okuda, T. Kishimoto and A. Wanaka: Olanzapine increases cell mitotic activity and oligodendrocyte-lineage cells in the hypothalamus. Neurochem Int (2010)
9. G. Bartzokis: Alzheimer's disease as Homeostatic Responses to Age-Related Myelin Breakdown. Neurobiology of Aging, doi: 10.1.016/j.neurobiolaging.2009.0.8.0.07 (2009)
10. F. Jacob: Evolution and tinkering. Science, 196(4295), 1161-6 (1977)
doi:10.1126/science.860134
PMid:860134
11. G. Bartzokis: Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging, 25(1), 5-18 (2004)
doi:10.1016/j.neurobiolaging.2003.03.001
PMid:14675724
12. B. Zalc, D. Goujet and D. Colman: The origin of the myelination program in vertebrates. Curr Biol, 18(12), R511-2 (2008)
doi:10.1016/j.cub.2008.04.010
PMid:18579089
13. G. Bartzokis: Quadratic trajectories of brain myelin content: unifying construct for neuropsychiatric disorders. Neurobiol Aging, 25(1), 49-62 (2004)
doi:10.1016/j.neurobiolaging.2003.08.001
14. G. V. Michailov, M. W. Sereda, B. G. Brinkmann, T. M. Fischer, B. Haug, C. Birchmeier, L. Role, C. Lai, M. H. Schwab and K. A. Nave: Axonal neuregulin-1 regulates myelin sheath thickness. Science, 304(5671), 700-3 (2004)
doi:10.1126/science.1095862
PMid:15044753
15. C. Taveggia, P. Thaker, A. Petrylak, G. L. Caporaso, A. Toews, D. L. Falls, S. Einheber and J. L. Salzer: Type III neuregulin-1 promotes oligodendrocyte myelination. Glia, 56(3), 284-93 (2008)
PMid:16962312
16. K. A. Nave and J. L. Salzer: Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol, 16(5), 492-500 (2006)
doi:10.1016/j.conb.2006.08.008
17. R. Nashmi and M. G. Fehlings: Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev, 38(1-2), 165-91 (2001)
doi:10.1016/S0165-0173(01)00134-5
PMid:14733940
18. C. Lai and L. Feng: Implication of gamma-secretase in neuregulin-induced maturation of oligodendrocytes. Biochem Biophys Res Commun, 314(2), 535-42 (2004)
doi:10.1016/j.bbrc.2003.12.131
PMid:19013149 PMCid:2646910
19. C. P. Blobel, G. Carpenter and M. Freeman: The role of protease activity in ErbB biology. Exp Cell Res, 315(4), 671-82 (2009)
doi:10.1016/j.yexcr.2008.10.011
PMid:16389198
20. G. Bartzokis, P. H. Lu, D. H. Geschwind, N. Edwards, J. Mintz and J. L. Cummings: Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: Implications for cognitive decline and dementia. Archives of General Psychiatry, 63(1), 63-72 (2006)
doi:10.1001/archpsyc.63.1.63
PMid:17659264
21. G. Bartzokis, P. H. Lu, D. Geschwind, K. Tingus, D. Huang, M. F. Mendez, N. Edwards and J. Mintz: Apolipoprotein E Affects Both Myelin Breakdown and Cognition: Implications for Age-Related Trajectories of Decline Into Dementia. Biological Psychiatry, 62(12), 1380-7 (2007)
doi:10.1016/j.biopsych.2007.03.024
PMid:17522104
22. J. Ringman, J. O'Neill, D. Geschwind, L. Medina, L. Apostolova, Y. Rodriguez, B. Schaffer, A. Varpetian, B. Tseng, F. Ortiz, J. Fitten, J. L. Cummings and G. Bartzokis: Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain, 130(Pt 7), 1767-76 (2007)
doi:10.1093/brain/awm102
PMid:18466881
23. L. Georgieva, A. Dimitrova, D. Ivanov, I. Nikolov, N. M. Williams, D. Grozeva, I. Zaharieva, D. Toncheva, M. J. Owen, G. Kirov and M. C. O'Donovan: Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry, 64(5), 419-27 (2008)
doi:10.1016/j.biopsych.2008.03.025
PMid:19712980 PMCid:2755075
24. R. M. Walker, A. Christoforou, P. A. Thomson, K. A. McGhee, A. Maclean, T. W. Muhleisen, J. Strohmaier, V. Nieratschker, M. M. Nothen, M. Rietschel, S. Cichon, S. W. Morris, O. Jilani, D. Stclair, D. H. Blackwood, W. J. Muir, D. J. Porteous and K. L. Evans: Association analysis of Neuregulin 1 candidate regions in schizophrenia and bipolar disorder. Neurosci Lett (2010)
25. H. Jaaro-Peled, A. Hayashi-Takagi, S. Seshadri, A. Kamiya, N. J. Brandon and A. Sawa: Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci, 32(9), 485-495 (2009)
doi:10.1016/j.tins.2009.05.007
PMid:17266109
26. H. Le-Niculescu, Y. Balaraman, S. Patel, J. Tan, K. Sidhu, R. E. Jerome, H. J. Edenberg, R. Kuczenski, M. A. Geyer, J. I. Nurnberger, Jr., S. V. Faraone, M. T. Tsuang and A. B. Niculescu: Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet, 144B(2), 129-58 (2007)
doi:10.1002/ajmg.b.30481
PMid:19652122
27. M. Alaerts, S. Ceulemans, D. Forero, L. N. Moens, S. De Zutter, L. Heyrman, A. S. Lenaerts, K. F. Norrback, P. De Rijk, L. G. Nilsson, D. Goossens, R. Adolfsson and J. Del-Favero: Support for NRG1 as a susceptibility factor for schizophrenia in a northern Swedish isolated population. Arch Gen Psychiatry, 66(8), 828-37 (2009)
doi:10.1001/archgenpsychiatry.2009.82
PMid:19626024
28. K. K. Nicodemus, A. J. Law, A. Luna, R. Vakkalanka, R. E. Straub, J. E. Kleinman and D. R. Weinberger: A 5' promoter region SNP in NRG1 is associated with schizophrenia risk and type III isoform expression. Mol Psychiatry, 14(8), 741-3 (2009)
doi:10.1038/mp.2008.150
PMid:19995212
29. D. Li, G. Feng and L. He: Case-control study of association between the functional candidate gene ERBB3 and schizophrenia in Caucasian population. World J Biol Psychiatry, 10(4 Pt 2), 595-8 (2009)
doi:10.1080/15622970903304442
PMid:17483467 PMCid:1876583
30. K. Roy, J. C. Murtie, B. F. El-Khodor, N. Edgar, S. P. Sardi, B. M. Hooks, M. Benoit-Marand, C. Chen, H. Moore, P. O'Donnell, D. Brunner and G. Corfas: Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci U S A, 104(19), 8131-6 (2007)
doi:10.1073/pnas.0702157104
PMid:19935654
31. M. Ohno, Y. Hiraoka, T. Matsuoka, H. Tomimoto, K. Takao, T. Miyakawa, N. Oshima, H. Kiyonari, T. Kimura, T. Kita and E. Nishi: Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat Neurosci, 12(12), 1506-13 (2009)
doi:10.1038/nn.2438
PMid:19234765 PMCid:2645990
32. H. G. Bernstein, R. Stricker, U. Lendeckel, I. Bertram, H. Dobrowolny, J. Steiner, B. Bogerts and G. Reiser: Reduced neuronal co-localisation of nardilysin and the putative alpha-secretases ADAM10 and ADAM17 in Alzheimer's disease and Down syndrome brains. Age (Dordr), 31(1), 11-25 (2009)
doi:10.1007/s11357-008-9076-x
PMid:18996920
33. S. Seshadri, A. Kamiya, Y. Yokota, I. Prikulis, S. I. Kano, A. Hayashi-Takagi, A. Stanco, T. Y. Eom, S. Rao, K. Ishizuka, P. Wong, C. Korth, E. S. Anton and A. Sawa: Disrupted-in-Schizophrenia-1 expression is regulated by {beta}-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci U S A (2010)
34. J. D. Wood, F. Bonath, S. Kumar, C. A. Ross and V. T. Cunliffe: Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Hum Mol Genet, 18(3), 391-404 (2009)
doi:10.1093/hmg/ddn361
PMid:19477230
35. R. Sims, P. Hollingworth, V. Moskvina, K. Dowzell, M. C. O'Donovan, J. Powell, S. Lovestone, C. Brayne, D. Rubinsztein, M. J. Owen, J. Williams and R. Abraham: Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neurosci Lett, 461(1), 54-9 (2009)
doi:10.1016/j.neulet.2009.05.051
PMid:16082692
36. R. C. Go, R. T. Perry, H. Wiener, S. S. Bassett, D. Blacker, B. Devlin and R. A. Sweet: Neuregulin-1 polymorphism in late onset alzheimer's disease families with psychoses. Am J Med Genet B Neuropsychiatr Genet, 139B(1), 28-32 (2005)
doi:10.1002/ajmg.b.30219
PMid:11850633
37. K. Semendeferi, A. Lu, N. Schenker and H. Damasio: Humans and great apes share a large frontal cortex. Nat Neurosci, 5(3), 272-6. (2002)
doi:10.1038/nn814
PMid:15665874
38. P. T. Schoenemann, M. J. Sheehan and L. D. Glotzer: Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci, 8(2), 242-52 (2005)
doi:10.1038/nn1394
PMid:15212838
39. G. Bartzokis, D. Sultzer, P. H. Lu, K. H. Nuechterlein, J. Mintz and J. Cummings: Heterogeneous age-related breakdown of white matter structural integrity: Implications for cortical "disconnection" in aging and Alzheimer's disease. Neurobiol Aging, 25(7), 843-851 (2004)
doi:10.1016/j.neurobiolaging.2003.09.005
PMid:19820707 PMCid:2770457
40. J. Scholz, M. C. Klein, T. E. Behrens and H. Johansen-Berg: Training induces changes in white-matter architecture. Nat Neurosci, 12(11), 1370-1 (2009)
doi:10.1038/nn.2412
PMid:16116456
41. S. L. Bengtsson, Z. Nagy, S. Skare, L. Forsman, H. Forssberg and F. Ullen: Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci, 8(9), 1148-50 (2005)
doi:10.1038/nn1516
PMid:15060237
42. H. Als, F. H. Duffy, G. B. McAnulty, M. J. Rivkin, S. Vajapeyam, R. V. Mulkern, S. K. Warfield, P. S. Huppi, S. C. Butler, N. Conneman, C. Fischer and E. C. Eichenwald: Early experience alters brain function and structure. Pediatrics, 113(4), 846-57 (2004)
doi:10.1542/peds.113.4.846
PMid:20141286
43. D. S. Darwish, D. Wang, G. W. Konat and B. G. Schreurs: Dietary cholesterol impairs memory and memory increases brain cholesterol and sulfatide levels. Behav Neurosci, 124(1), 115-23 (2010)
doi:10.1037/a0018253
44. N. A. Uranova, V. M. Vostrikov, D. D. Orlovskaya and V. I. Rachmanova: Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res, 67(2-3), 269-75 (2004)
doi:10.1016/S0920-9964(03)00181-6
PMid:12794739
45. L. Marner, J. R. Nyengaard, Y. Tang and B. Pakkenberg: Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol, 462(2), 144-52 (2003)
doi:10.1002/cne.10714
PMid:20184803 PMCid:2834788
46. S. Williams and P. Boksa: Gamma oscillations and schizophrenia. J Psychiatry Neurosci, 35(2), 75-7 (2010)
doi:10.1503/jpn.100021
PMid:18762587 PMCid:2774756
47. L. E. Hong, A. Summerfelt, B. D. Mitchell, R. P. McMahon, I. Wonodi, R. W. Buchanan and G. K. Thaker: Sensory gating endophenotype based on its neural oscillatory pattern and heritability estimate. Arch Gen Psychiatry, 65(9), 1008-16 (2008)
doi:10.1001/archpsyc.65.9.1008
PMid:18077700
48. K. Linkenkaer-Hansen, D. J. Smit, A. Barkil, T. E. van Beijsterveldt, A. B. Brussaard, D. I. Boomsma, A. van Ooyen and E. J. de Geus: Genetic contributions to long-range temporal correlations in ongoing oscillations. J Neurosci, 27(50), 13882-9 (2007)
doi:10.1523/JNEUROSCI.3083-07.2007
PMid:15218136
49. G. Buzsaki and A. Draguhn: Neuronal oscillations in cortical networks. Science, 304(5679), 1926-9 (2004)
doi:10.1126/science.1099745
PMid:20087360
50. P. J. Uhlhaas and W. Singer: Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2), 100-13 (2010)
doi:10.1038/nrn2774
PMid:18080294
51. M. Bartos, I. Vida and P. Jonas: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci, 8(1), 45-56 (2007)
doi:10.1038/nrn2044
PMid:17180162
52. S. M. Doesburg, J. J. Green, J. J. McDonald and L. M. Ward: Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One, 4(7), e6142 (2009)
doi:10.1371/journal.pone.0006142
PMid:19582165 PMCid:2702101
53. M. Rosanova, A. Casali, V. Bellina, F. Resta, M. Mariotti and M. Massimini: Natural frequencies of human corticothalamic circuits. J Neurosci, 29(24), 7679-85 (2009)
doi:10.1523/JNEUROSCI.0445-09.2009
PMid:19535579
54. P. S. Lee, Y. S. Chen, J. C. Hsieh, T. P. Su and L. F. Chen: Distinct neuronal oscillatory responses between patients with bipolar and unipolar disorders: a magnetoencephalographic study. J Affect Disord, 123(1-3), 270-5 (2010)
doi:10.1016/j.jad.2009.08.020
PMid:19755202
55. D. C. Rojas, K. Maharajh, P. Teale and S. J. Rogers: Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 66 (2008)
doi:10.1186/1471-244X-8-66
PMid:18673566 PMCid:2518921
56. E. V. Orekhova, T. A. Stroganova, A. O. Prokofyev, G. Nygren, C. Gillberg and M. Elam: Sensory gating in young children with autism: relation to age, IQ, and EEG gamma oscillations. Neurosci Lett, 434(2), 218-23 (2008)
doi:10.1016/j.neulet.2008.01.066
PMid:18313850
57. P. Missonnier, F. R. Herrmann, A. Michon, L. Fazio-Costa, G. Gold and P. Giannakopoulos: Early disturbances of gamma band dynamics in mild cognitive impairment. J Neural Transm, 117(4), 489-98 (2010)
doi:10.1007/s00702-010-0384-9
PMid:20217436
58. J. A. van Deursen, E. F. Vuurman, F. R. Verhey, V. H. van Kranen-Mastenbroek and W. J. Riedel: Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm, 115(9), 1301-11 (2008)
doi:10.1007/s00702-008-0083-y
PMid:18607528 PMCid:2525849
59. J. L. Ziskin, A. Nishiyama, M. Rubio, M. Fukaya and D. E. Bergles: Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci, 10(3), 321-30 (2007)
doi:10.1038/nn1854
PMid:17293857 PMCid:2140234
60. R. D. Fields and G. Burnstock: Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci, 7(6), 423-36 (2006)
doi:10.1038/nrn1928
PMid:16715052 PMCid:2062484
61. M. Salami, C. Itami, T. Tsumoto and F. Kimura: Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc Natl Acad Sci U S A, 100(10), 6174-9 (2003)
doi:10.1073/pnas.0937380100
PMid:12719546 PMCid:156345
62. F. Kimura and C. Itami: Myelination and isochronicity in neural networks. Front Neuroanat, 3, 12 (2009)
doi:10.3389/neuro.05.012.2009
PMid:19597561 PMCid:2708965
63. G. Bartzokis, M. Beckson, P. H. Lu, K. H. Nuechterlein, N. Edwards and J. Mintz: Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Arch Gen Psychiatry, 58, 461-465 (2001)
doi:10.1001/archpsyc.58.5.461
PMid:11343525
64. T. Kaes: Die Grosshirnrinde des Menschen in ihren Massen und in ihrem Fasergehalt. Gustav Fisher, Jena (1907)
65. T. Kemper: Neuroanatomical and neuropathological changes during aging and dementia. In: Clinical Neurology of Aging. Ed M. Albert&J. Knoefel. Oxford University Press, New York (1994)
66. G. Bartzokis, P. H. Lu, S. B. Stewart, B. Oluwadara, A. J. Lucas, J. Pantages, E. Pratt, J. E. Sherin, L. L. Altshuler, J. Mintz, M. J. Gitlin, K. L. Subotnik and K. H. Nuechterlein: In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res, 113(2-3), 322-31 (2009)
doi:10.1016/j.schres.2009.06.014
PMid:19616412 PMCid:2862048
67. A. Peters, C. Sethares and M. B. Moss: How the primate fornix is affected by age. J Comp Neurol, 518(19), 3962-80 (2010)
doi:10.1002/cne.22434
PMid:20737595
68. S. Lui, T. Li, W. Deng, L. Jiang, Q. Wu, H. Tang, Q. Yue, X. Huang, R. C. Chan, D. A. Collier, S. A. Meda, G. Pearlson, A. Mechelli, J. A. Sweeney and Q. Gong: Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging. Arch Gen Psychiatry, 67(8), 783-92 (2010)
doi:10.1001/archgenpsychiatry.2010.84
PMid:20679586
69. C. Wegner, M. M. Esiri, S. A. Chance, J. Palace and P. M. Matthews: Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology, 67(6), 960-7 (2006)
doi:10.1212/01.wnl.0000237551.26858.39
PMid:17000961
70. N. M. Moll, A. M. Rietsch, A. J. Ransohoff, M. B. Cossoy, D. Huang, F. S. Eichler, B. D. Trapp and R. M. Ransohoff: Cortical demyelination in PML and MS: Similarities and differences. Neurology, 70(5), 336-43 (2008)
doi:10.1212/01.wnl.0000284601.54436.e4
PMid:17914063
71. B. Simon, S. Schmidt, C. Lukas, J. Gieseke, F. Traber, D. L. Knol, W. A. Willinek, J. J. Geurts, H. H. Schild, F. Barkhof and M. P. Wattjes: Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol, 20(7), 1675-83 (2010)
doi:10.1007/s00330-009-1705-y
PMid:20094887 PMCid:2882050
72. M. Calabrese, M. Filippi, M. Rovaris, V. Bernardi, M. Atzori, I. Mattisi, A. Favaretto, P. Grossi, L. Barachino, L. Rinaldi, C. Romualdi, P. Perini and P. Gallo: Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult Scler, 15(1), 36-41 (2009)
doi:10.1177/1352458508096686
PMid:18755823
73. S. D. Roosendaal, B. Moraal, P. J. Pouwels, H. Vrenken, J. A. Castelijns, F. Barkhof and J. J. Geurts: Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult Scler, 15(6), 708-14 (2009)
doi:10.1177/1352458509102907
PMid:19435749
74. T. Lee, J. D. Henry, J. N. Trollor and P. S. Sachdev: Genetic influences on cognitive functions in the elderly: a selective review of twin studies. Brain Res Rev, 64(1), 1-13 (2010)
doi:10.1016/j.brainresrev.2010.02.001
PMid:20152859
75. D. R. Denney, S. G. Lynch and B. A. Parmenter: A 3-year longitudinal study of cognitive impairment in patients with primary progressive multiple sclerosis: speed matters. J Neurol Sci, 267(1-2), 129-36 (2008)
doi:10.1016/j.jns.2007.10.007
PMid:17976653
76. A. M. Bodling, D. R. Denney and S. G. Lynch: Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing. Arch Clin Neuropsychol, 24(8), 761-7 (2009)
doi:10.1093/arclin/acp076
PMid:19820246
77. A. Reichenberg, A. Caspi, H. Harrington, R. Houts, R. S. Keefe, R. M. Murray, R. Poulton and T. E. Moffitt: Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am J Psychiatry, 167(2), 160-9 (2010)
doi:10.1176/appi.ajp.2009.09040574
PMid:20048021
78. C. Gonzalez-Blanch, J. M. Rodriguez-Sanchez, R. Perez-Iglesias, G. Pardo-Garcia, O. Martinez-Garcia, J. L. Vazquez-Barquero and B. Crespo-Facorro: First-episode schizophrenia patients neuropsychologically within the normal limits: Evidence of deterioration in speed of processing. Schizophr Res, 119(1-3), 18-26 (2010)
doi:10.1016/j.schres.2010.02.1072
PMid:20335007
79. P. Sanchez, N. Ojeda, J. Pena, E. Elizagarate, A. B. Yoller, M. Gutierrez and J. Ezcurra: Predictors of longitudinal changes in schizophrenia: the role of processing speed. J Clin Psychiatry, 70(6), 888-96 (2009)
PMid:19422757
80. R. S. Keefe, D. O. Perkins, H. Gu, R. B. Zipursky, B. K. Christensen and J. A. Lieberman: A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophr Res, 88(1-3), 26-35 (2006)
doi:10.1016/j.schres.2006.06.041
PMid:16930949
81. T. A. Niendam, C. E. Bearden, J. K. Johnson, M. McKinley, R. Loewy, M. O'Brien, K. H. Nuechterlein, M. F. Green and T. D. Cannon: Neurocognitive performance and functional disability in the psychosis prodrome. Schizophr Res, 84(1), 100-11 (2006)
doi:10.1016/j.schres.2006.02.005
PMid:16563699
82. F. Dickerson, A. Origoni, C. Stallings, S. Khushalani, D. Dickinson and D. Medoff: Occupational status and social adjustment six months after hospitalization early in the course of bipolar disorder: a prospective study. Bipolar Disord, 12(1), 10-20
doi:10.1111/j.1399-5618.2009.00784.x
PMid:20148863
83. J. Jung, D. Morlet, B. Mercier, C. Confavreux and C. Fischer: Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients. Clin Neurophysiol, 117(1), 85-93 (2006)
doi:10.1016/j.clinph.2005.09.013
PMid:16325469
84. A. Olincy, D. L. Braff, L. E. Adler, K. S. Cadenhead, M. E. Calkins, D. J. Dobie, M. F. Green, T. A. Greenwood, R. E. Gur, R. C. Gur, G. A. Light, J. Mintz, K. H. Nuechterlein, A. D. Radant, N. J. Schork, L. J. Seidman, L. J. Siever, J. M. Silverman, W. S. Stone, N. R. Swerdlow, D. W. Tsuang, M. T. Tsuang, B. I. Turetsky, B. D. Wagner and R. Freedman: Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: Results from the Consortium on Genetics of Schizophrenia. Schizophr Res, 119(1-3), 175-82 (2010)
doi:10.1016/j.schres.2010.03.004
PMid:20382002
85. M. Lijffijt, F. G. Moeller, N. N. Boutros, J. L. Steinberg, S. L. Meier, S. D. Lane and A. C. Swann: Diminished P50, N100 and P200 auditory sensory gating in bipolar I disorder. Psychiatry Res, 167(3), 191-201 (2009)
doi:10.1016/j.psychres.2008.04.001
PMid:19395051 PMCid:2754193
86. V. Parisi, F. Pierelli, R. Restuccia, M. Spadaro, L. Parisi, G. Colacino and M. G. Bucci: Impaired VEP after photostress response in multiple sclerosis patients previously affected by optic neuritis. Electroencephalogr Clin Neurophysiol, 108(1), 73-9 (1998)
doi:10.1016/S0168-5597(97)00063-4
87. P. Kochunov, T. Coyle, J. Lancaster, D. A. Robin, J. Hardies, V. Kochunov, G. Bartzokis, J. Stanley, D. Royall, A. E. Schlosser, M. Null and P. T. Fox: Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage, 49(2), 1190-1199 (2009)
doi:10.1016/j.neuroimage.2009.09.052
PMid:19796691
88. L. Penke, S. M. Maniega, C. Murray, A. J. Gow, M. C. Hernandez, J. D. Clayden, J. M. Starr, J. M. Wardlaw, M. E. Bastin and I. J. Deary: A general factor of brain white matter integrity predicts information processing speed in healthy older people. J Neurosci, 30(22), 7569-74 (2010)
doi:10.1523/JNEUROSCI.1553-10.2010
PMid:20519531
89. B. Bucur, D. J. Madden, J. Spaniol, J. M. Provenzale, R. Cabeza, L. E. White and S. A. Huettel: Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging, 29(7), 1070-9 (2008)
doi:10.1016/j.neurobiolaging.2007.02.008
PMid:17383774 PMCid:2396513
90. P. H. Lu, G. J. Lee, E. P. Raven, K. Tingus, T. Khoo, P. M. Thompson and G. Bartzokis: Age-Related Slowing in Cognitive Processing Speed is Associated with Myelin Integrity in a Very Healthy Elderly Sample. (In Press) (2010)
91. G. Bartzokis and P. H. Lu: Brain Volume: Age-Related Changes. In: Encyclopedia of Neuroscience. Ed L. R. Squire. Academic Press, Oxford (2009)
doi:10.1016/B978-008045046-9.00107-8
92. J. Moncrieff and J. Leo: A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med, 20, 1-14 (2010)
93. S. Navari and P. Dazzan: Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med, 39(11), 1763-77 (2009)
doi:10.1017/S0033291709005315
PMid:19338710
94. C. Pantelis, M. Yucel, E. Bora, A. Fornito, R. Testa, W. J. Brewer, D. Velakoulis and S. J. Wood: Neurobiological markers of illness onset in psychosis and schizophrenia: The search for a moving target. Neuropsychol Rev, 19(3), 385-98 (2009)
doi:10.1007/s11065-009-9114-1
PMid:19728098
95. R. Smieskova, P. Fusar-Poli, P. Allen, K. Bendfeldt, R. D. Stieglitz, J. Drewe, E. W. Radue, P. K. McGuire, A. Riecher-Rossler and S. J. Borgwardt: The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?--a systematic review. Curr Pharm Des, 15(22), 2535-49 (2009)
doi:10.2174/138161209788957456
PMid:19689326
96. S. J. Borgwardt, A. Riecher-Rossler, R. Smieskova, P. K. McGuire and P. Fusar-Poli: Superior temporal gray and white matter changes in schizophrenia or antipsychotic related effects? Schizophr Res, 113(1), 109-10 (2009)
doi:10.1016/j.schres.2009.05.028
PMid:19559570
97. S. J. Borgwardt, R. Smieskova, P. Fusar-Poli, K. Bendfeldt and A. Riecher-Rossler: The effects of antipsychotics on brain structure: what have we learnt from structural imaging of schizophrenia? Psychol Med, 39(11), 1781-2 (2009)
doi:10.1017/S0033291709006060
PMid:19476691
98. D. A. Lewis: Brain volume changes in schizophrenia: how do they arise? What do they mean? Psychol Med, 39(11), 1779-80 (2009)
doi:10.1017/S003329170900573X
PMid:19379533
99. R. K. McClure, K. Carew, S. Greeter, E. Maushauer, G. Steen and D. R. Weinberger: Absence of regional brain volume change in schizophrenia associated with short-term atypical antipsychotic treatment. Schizophr Res, 98(1-3), 29-39 (2008)
doi:10.1016/j.schres.2007.05.012
PMid:17976957
100. D. R. Weinberger and R. K. McClure: Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiatry, 59(6), 553-8. (2002)
doi:10.1001/archpsyc.59.6.553
PMid:12044198
101. T. L. Jernigan and C. Fennema-Notestine: White Matter Mapping is Needed. Neurobiology of Aging, 25(1), 37-9 (2004)
doi:10.1016/j.neurobiolaging.2003.06.002
PMid:14675728
102. G. Bartzokis, K. H. Nuechterlein, P. H. Lu, M. Gitlin, S. Rogers and J. Mintz: Dysregulated brain development in adult men with schizophrenia: A magnetic resonance imaging study. Biol Psychiatry, 53(5), 412-421 (2003)
doi:10.1016/S0006-3223(02)01835-8
103. G. Bartzokis: Myelination and brain electrophysiology in healthy and schizophrenic individuals. Neuropsychopharmacology, 28(6), 1217-8. (2003)
PMid:12700692
104. B. C. Ho, N. C. Andreasen, P. Nopoulos, S. Arndt, V. Magnotta and M. Flaum: Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry, 60(6), 585-94. (2003)
doi:10.1001/archpsyc.60.6.585
PMid:12796222
105. T. J. Whitford, S. M. Grieve, T. F. Farrow, L. Gomes, J. Brennan, A. W. Harris, E. Gordon and L. M. Williams: Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study. Am J Psychiatry, 164(7), 1082-9 (2007)
doi:10.1176/appi.ajp.164.7.1082
PMid:17606660
106. G. Bartzokis, P. H. Lu, E. P. Raven, J. Pantages, N. R. DeTore, C. P. Amar, J. E. Sherin, K. L. Subotnik, J. Ventura, L. R. Casaus, J. S. Luo and K. H. Nuechterlein: Differential Impact of Oral and Long-Acting Risperidone Formulations on Brain Myelination of Adult Schizophrenia Patients. Poster #241 presented at Society of Biological Psychiatry Sixty-Fifth Annual Scientific Convention and Meeting, New Orleans, LA. Biol Psychiatry, 67(9 (Suppl 1)), 75S (2010)
107. S. Keith: Use of long-acting risperidone in psychiatric disorders: focus on efficacy, safety and cost-effectiveness. Expert Rev Neurother, 9(1), 9-31 (2009)
doi:10.1586/14737175.9.1.9
PMid:19102665
108. L. D. Selemon: Increased cortical neuronal density in schizophrenia. Am J Psychiatry, 161(9), 1564 (2004)
doi:10.1176/appi.ajp.161.9.1564
PMid:15337643
109. G. Bartzokis and L. Altshuler: Reduced intracortical myelination in schizophrenia. Am J Psychiatry, 162(6), 1229-30 (2005)
doi:10.1176/appi.ajp.162.6.1229-a
PMid:15930084
110. G. Bartzokis and L. L. Altshuler: Biological Underpinnings of Treatment Resistance in Schizophrenia: An Hypothesis. Psychopharmacol Bull, 37, 5-7 (2003)
PMid:15272475
111. Y. Liao, J. Tang, M. Ma, Z. Wu, M. Yang, X. Wang, T. Liu, X. Chen, P. C. Fletcher and W. Hao: Frontal white matter abnormalities following chronic ketamine use: a diffusion tensor imaging study. Brain, 133(Pt 7), 2115-22 (2010)
doi:10.1093/brain/awq131
PMid:20519326
112. M. M. Behrens, S. S. Ali and L. L. Dugan: Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci, 28(51), 13957-66 (2008)
doi:10.1523/JNEUROSCI.4457-08.2008
PMid:19091984 PMCid:2752712
113. L. E. Hong, A. Summerfelt, R. W. Buchanan, P. O'Donnell, G. K. Thaker, M. A. Weiler and A. C. Lahti: Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology, 35(3), 632-40 (2010)
doi:10.1038/npp.2009.168
PMid:19890262
114. A. Fisahn, J. Neddens, L. Yan and A. Buonanno: Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb Cortex, 19(3), 612-8 (2009)
doi:10.1093/cercor/bhn107
PMid:18632742 PMCid:2638818
115. P. D. Harvey, P. J. Moriarty, J. I. Friedman, L. White, M. Parrella, R. C. Mohs and K. L. Davis: Differential preservation of cognitive functions in geriatric patients with lifelong chronic schizophrenia: less impairment in reading compared with other skill areas. Biol Psychiatry, 47(11), 962-8. (2000)
doi:10.1016/S0006-3223(00)00245-6
116. P. D. Harvey, B. W. Palmer, R. K. Heaton, S. Mohamed, J. Kennedy and A. Brickman: Stability of cognitive performance in older patients with schizophrenia: an 8-week test-retest study. Am J Psychiatry, 162(1), 110-7 (2005)
doi:10.1176/appi.ajp.162.1.110
PMid:15625208
117. P. D. Harvey, P. J. Moriarty, M. R. Serper, E. Schnur and D. Lieber: Practice-related improvement in information processing with novel antipsychotic treatment. Schizophr Res, 46(2-3), 139-48 (2000)
doi:10.1016/S0920-9964(00)00033-5
118. T. E. Goldberg, R. S. Keefe, R. S. Goldman, D. G. Robinson and P. D. Harvey: Circumstances under which practice does not make perfect: a review of the practice effect literature in schizophrenia and its relevance to clinical treatment studies. Neuropsychopharmacology, 35(5), 1053-62 (2010)
doi:10.1038/npp.2009.211
PMid:20090669
119. K. T. Mueser, A. S. Bellack, M. S. Douglas and J. H. Wade: Prediction of social skill acquisition in schizophrenic and major affective disorder patients from memory and symptomatology. Psychiatry Res, 37(3), 281-96 (1991)
doi:10.1016/0165-1781(91)90064-V
120. J. D. Evans, G. R. Bond, P. S. Meyer, H. W. Kim, P. H. Lysaker, P. J. Gibson and S. Tunis: Cognitive and clinical predictors of success in vocational rehabilitation in schizophrenia. Schizophr Res, 70(2-3), 331-42 (2004)
doi:10.1016/j.schres.2004.01.011
PMid:15329308
121. G. Bartzokis: Acetylcholinesterase inhibitors may improve myelin integrity. Biological Psychiatry, 62(4), 294-301 (2007) doi:doi:10.1.016/j.biopsych.2006.0.8.0.20
122. P. Morell and A. D. Toews: In vivo metabolism of oligodendroglial lipids. In: Oligodendroglia. Ed W. T. Norton. Plenium Press, New York (1984)
123. R. C. Wiggins: Myelin development and nutritional insufficiency. Brain Res, 257(2), 151-75. (1982)
PMid:7049327
124. J. R. Connor and S. L. Menzies: Relationship of iron to oligodendrocytes and myelination. Glia., 17, 83-93 (1996)
PMid:10553734
125. L. I. Sanchez-Abarca, A. Tabernero and J. M. Medina: Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia, 36(3), 321-9 (2001)
126. S. A. Chance, J. R. Highley, M. M. Esiri and T. J. Crow: Fiber content of the fornix in schizophrenia: lack of evidence for a primary limbic encephalopathy. Am.J.Psychiatry, 156, 1720-1724 (1999)
PMid:14766439
127. B. H. Juurlink: Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci.Biobehav.Rev., 21, 151-166 (1997)
doi:10.1016/S0149-7634(96)00005-X
PMid:20005986
128. G. Bartzokis, M. Beckson, P. H. Lu, N. Edwards, R. Rapoport, P. Bridge and J. Mintz: Cortical gray matter volumes are associated with subjective responses to cocaine infusion. Am J Addict, 13(1), 64-73 (2004)
doi:10.1080/10550490490265352
PMid:19290059 PMCid:2654519
129. R. Schoenfeld, A. Wong, J. Silva, M. Li, A. Itoh, M. Horiuchi, T. Itoh, D. Pleasure and G. Cortopassi: Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion, 10(2), 143-50 (2010)
doi:10.1016/j.mito.2009.12.141
PMid:16308479
130. B. Rollins, M. V. Martin, P. A. Sequeira, E. A. Moon, L. Z. Morgan, S. J. Watson, A. Schatzberg, H. Akil, R. M. Myers, E. G. Jones, D. C. Wallace, W. E. Bunney and M. P. Vawter: Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One, 4(3), e4913 (2009)
doi:10.1371/journal.pone.0004913
PMid:18234901
131. P. Zatta, P. Zambenedetti, M. Musicco and F. Adorni: Metallothionein-I-II and GFAP positivity in the brains from frontotemporal dementia patients. J Alzheimers Dis, 8(2), 109-16; discussion 209-15 (2005)
PMid:17400258
132. B. Gerstner, T. M. DeSilva, K. Genz, A. Armstrong, F. Brehmer, R. L. Neve, U. Felderhoff-Mueser, J. J. Volpe and P. A. Rosenberg: Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci, 28(5), 1236-45 (2008)
doi:10.1523/JNEUROSCI.3213-07.2008
PMid:17298174 PMCid:1790953
133. S. Hemdan and G. Almazan: Deficient peroxide detoxification underlies the susceptibility of oligodendrocyte progenitors to dopamine toxicity. Neuropharmacology, 52(6), 1385-95 (2007)
doi:10.1016/j.neuropharm.2007.01.019
134. Z. Li, T. Dong, C. Proschel and M. Noble: Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol, 5(2), e35 (2007)
doi:10.1371/journal.pbio.0050035
PMid:18657586
135. P. K. Ranjekar, A. Hinge, M. V. Hegde, M. Ghate, A. Kale, S. Sitasawad, U. V. Wagh, V. B. Debsikdar and S. P. Mahadik: Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res, 121(2), 109-22 (2003)
doi:10.1016/S0165-1781(03)00220-8
PMid:18539338
136. M. Kunz, C. S. Gama, A. C. Andreazza, M. Salvador, K. M. Cereser, F. A. Gomes, P. S. Belmonte-de-Abreu, M. Berk and F. Kapczinski: Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 32(7), 1677-81 (2008)
doi:10.1016/j.pnpbp.2008.07.001
PMid:18778095
137. A. C. Andreazza, M. Kauer-Sant'anna, B. N. Frey, D. J. Bond, F. Kapczinski, L. T. Young and L. N. Yatham: Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord, 111(2-3), 135-44 (2008)
doi:10.1016/j.jad.2008.04.013
PMid:20368511
138. S. Prabakaran, J. E. Swatton, M. M. Ryan, S. J. Huffaker, J. T. Huang, J. L. Griffin, M. Wayland, T. Freeman, F. Dudbridge, K. S. Lilley, N. A. Karp, S. Hester, D. Tkachev, M. L. Mimmack, R. H. Yolken, M. J. Webster, E. F. Torrey and S. Bahn: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry, 9(7), 684-97, 643 (2004)
139. E. Schwarz, S. Prabakaran, P. Whitfield, H. Major, F. M. Leweke, D. Koethe, P. McKenna and S. Bahn: High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res, 7(10), 4266-77 (2008)
doi:10.1021/pr800188y
PMid:20633320
140. A. C. Andreazza, L. Shao, J. F. Wang and L. T. Young: Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry, 67(4), 360-8 (2010)
doi:10.1001/archgenpsychiatry.2010.22
PMid:17017864
141. J. W. Gawryluk, J. F. Wang, A. C. Andreazza, L. Shao and L. T. Young: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol, 1-8 (2010)
doi:10.1017/S1461145710000805
142. I. G. Onyango and S. M. Khan: Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer's disease. Curr Alzheimer Res, 3(4), 339-49 (2006)
doi:10.2174/156720506778249489
PMid:4958509
143. J. W. Mink, R. J. Blumenschine and D. B. Adams: Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol, 241(3), R203-12 (1981)
144. F. N. Syner and M. Goodman: Differences in the lactic dehydrogenases of primate brains. Nature, 209(5021), 426-8 (1966)
doi:10.1038/209426a0
PMid:19103439
145. A. Ames, 3rd: CNS energy metabolism as related to function. Brain Res Brain Res Rev, 34(1-2), 42-68 (2000)
doi:10.1016/S0165-0173(00)00038-2
PMid:17712404 PMCid:1942084
146. W. T. Regenold, P. Phatak, C. M. Marano, A. Sassan, R. R. Conley and M. A. Kling: Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry, 65(6), 489-94 (2009)
doi:10.1016/j.biopsych.2008.11.010
PMid:12153487
147. J. T. Huang, F. M. Leweke, T. M. Tsang, D. Koethe, L. Kranaster, C. W. Gerth, S. Gross, D. Schreiber, S. Ruhrmann, F. Schultze-Lutter, J. Klosterkotter, E. Holmes and S. Bahn: CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS One, 2(1), e756 (2007)
doi:10.1371/journal.pone.0000756
PMid:18400901
148. J. Hirrlinger, A. Resch, J. M. Gutterer and R. Dringen: Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem, 82(3), 635-44 (2002)
doi:10.1046/j.1471-4159.2002.00999.x
PMid:17257165
149. L. Hulshagen, O. Krysko, A. Bottelbergs, S. Huyghe, R. Klein, P. P. Van Veldhoven, P. P. De Deyn, R. D'Hooge, D. Hartmann and M. Baes: Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci, 28(15), 4015-27 (2008)
doi:10.1523/JNEUROSCI.4968-07.2008
PMid:15164770
150. A. A. Farooqui, L. A. Horrocks and T. Farooqui: Modulation of inflammation in brain: a matter of fat. J Neurochem, 101(3), 577-99 (2007)
doi:10.1111/j.1471-4159.2006.04371.x
PMid:18540993 PMCid:2575097
151. A. Bottelbergs, S. Verheijden, L. Hulshagen, D. H. Gutmann, S. Goebbels, K. A. Nave, C. Kassmann and M. Baes: Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia (2010)
152. C. Van den Branden, J. Leeman, G. Dacremont, R. Collumbien and F. Roels: Experimental inhibition of peroxisomal beta-oxidation in rats: influence on brain myelination. Glia, 3(6), 458-63 (1990)
PMid:14748736
153. P. Brites, H. R. Waterham and R. J. Wanders: Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta, 1636(2-3), 219-31 (2004)
PMid:16770735
154. M. Khan, J. Singh and I. Singh: Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. J Neurochem, 106(4), 1766-79 (2008)
155. B. Engelmann: Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans, 32(Pt 1), 147-50 (2004)
doi:10.1042/BST0320147
PMid:17805871
156. B. Kuczynski and N. V. Reo: Evidence that plasmalogen is protective against oxidative stress in the rat brain. Neurochem Res, 31(5), 639-56 (2006)
doi:10.1007/s11064-006-9061-7
157. P. J. Sindelar, Z. Guan, G. Dallner and L. Ernster: The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic Biol Med, 26(3-4), 318-24 (1999)
doi:10.1016/S0891-5849(98)00221-4
PMid:16581039
158. G. Rouser and A. Yamamoto: Curvilinear regression course of human brain lipid composition changes with age. Lipids, 3, 284-287 (1968)
doi:10.1007/BF02531202
PMid:12633151
159. M. Weisser, M. Vieth, M. Stolte, P. Riederer, R. Pfeuffer, F. Leblhuber and G. Spiteller: Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem Phys Lipids, 90(1-2), 135-42 (1997)
doi:10.1016/S0009-3084(97)00089-3
PMid:19290965
160. A. Andre, E. Chanseaume, C. Dumusois, S. Cabaret, O. Berdeaux and J. M. Chardigny: Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: a comparison between weaned, adult and aged mice. Brain Res, 1085(1), 28-32 (2006)
doi:10.1016/j.brainres.2006.02.067
PMid:16151530 PMCid:1199531
161. G. Bartzokis, J. L. Cummings, D. Sultzer, V. W. Henderson, K. H. Nuechterlein and J. Mintz: White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol, 60(3), 393-398 (2003)
doi:10.1001/archneur.60.3.393
PMid:19904605
162. I. Labadaridis, M. Moraitou, M. Theodoraki, G. Triantafyllidis, J. Sarafidou and H. Michelakakis: Plasmalogen levels in full-term neonates. Acta Paediatr, 98(4), 640-2 (2009)
doi:10.1111/j.1651-2227.2008.01205.x
PMid:16046045
163. W. J. Lukiw, J. G. Cui, V. L. Marcheselli, M. Bodker, A. Botkjaer, K. Gotlinger, C. N. Serhan and N. G. Bazan: A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest, 115(10), 2774-83 (2005)
doi:10.1172/JCI25420
PMid:18585430
164. T. Fraser, H. Tayler and S. Love: Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer's disease. Neurochem Res, 35(3), 503-13 (2010)
doi:10.1007/s11064-009-0087-5
165. M. Picq, P. Chen, M. Perez, M. Michaud, E. Vericel, M. Guichardant and M. Lagarde: DHA Metabolism: Targeting the Brain and Lipoxygenation. Mol Neurobiol (2010)
166. A. A. Farooqui: Studies on Plasmalogen-Selective Phospholipase A(2) in Brain. Mol Neurobiol (2010)
167. A. Andre, P. Juaneda, J. L. Sebedio and J. M. Chardigny: Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie, 88(1), 103-11 (2006)
doi:10.1016/j.biochi.2005.06.010
PMid:20124114
168. S. Leclercq, J. Skrzypski, A. Courvoisier, C. Gondcaille, F. Bonnetain, A. Andre, J. M. Chardigny, S. Bellenger, J. Bellenger, M. Narce and S. Savary: Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters. Biochimie, 90(10), 1602-7 (2008)
doi:10.1016/j.biochi.2008.05.022
PMid:11264981
169. S. C. Dyall, G. J. Michael and A. T. Michael-Titus: Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res (2010)
170. D. F. Horrobin, A. I. Glen and K. Vaddadi: The membrane hypothesis of schizophrenia. Schizophr Res, 13(3), 195-207 (1994)
doi:10.1016/0920-9964(94)90043-4
PMid:15793579
171. G. P. Amminger, M. R. Schafer, K. Papageorgiou, C. M. Klier, S. M. Cotton, S. M. Harrigan, A. Mackinnon, P. D. McGorry and G. E. Berger: Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry, 67(2), 146-54 (2010)
doi:10.1001/archgenpsychiatry.2009.192
PMid:14764421
172. J. M. Dietschy and S. D. Turley: Cholesterol metabolism in the brain. Current opinion in lipidology, 12, 105-112 (2001)
doi:10.1097/00041433-200104000-00003
PMid:8734440
173. G. Saher, B. Brugger, C. Lappe-Siefke, W. Mobius, R. Tozawa, M. C. Wehr, F. Wieland, S. Ishibashi and K. A. Nave: High cholesterol level is essential for myelin membrane growth. Nat Neurosci, 8(4), 468-75 (2005)
PMid:8776576
174. I. Bjorkhem and S. Meaney: Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol, 24(5), 806-15 (2004)
doi:10.1161/01.ATV.0000120374.59826.1b
PMid:11746769
175. P. Morell and H. Jurevics: Origin of cholesterol in myelin. Neurochem Res, 21(4), 463-70 (1996)
doi:10.1007/BF02527711
PMid:2148548
176. E. D. Muse, H. Jurevics, A. D. Toews, G. K. Matsushima and P. Morell: Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem, 76(1), 77-86 (2001)
doi:10.1046/j.1471-4159.2001.00015.x
177. J. Marcus, S. Honigbaum, S. Shroff, K. Honke, J. Rosenbluth and J. L. Dupree: Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia, 53(4), 372-81 (2006)
178. G. Rouser, G. Kritchevsky, A. Yamamoto and C. F. Baxter: Lipids in the nervous system of different species as a function of age: brain, spinal cord, peripheral nerve, purified whole cell preparations, and subcellular particulates: regulatory mechanisms and membrane structure. Adv Lipid Res, 10, 261-360 (1972)
PMid:10230715
179. W. G. Wood, F. Schroeder, N. A. Avdulov, S. V. Chochina and U. Igbavboa: Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer's disease. Lipids, 34(3), 225-34. (1999)
doi:10.1007/s11745-999-0357-9
PMid:11701931
180. D. H. Mauch, K. Nagler, S. Schumacher, C. Goritz, E. C. Muller, A. Otto and F. W. Pfrieger: CNS synaptogenesis promoted by glia-derived cholesterol. Science, 294(5545), 1354-7. (2001)
doi:10.1126/science.294.5545.1354
PMid:15911344
181. C. Goritz, D. H. Mauch and F. W. Pfrieger: Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci, 29(2), 190-201 (2005)
doi:10.1016/j.mcn.2005.02.006
PMid:12587659
182. S. Ando, Y. Tanaka, Y. Toyoda and K. Kon: Turnover of myelin lipids in aging brain. Neurochem Res, 28(1), 5-13 (2003)
doi:10.1023/A:1021635826032
PMid:16866910
183. I. Bjorkhem, M. Heverin, V. Leoni, S. Meaney and U. Diczfalusy: Oxysterols and Alzheimer's disease. Acta Neurol Scand Suppl, 185, 43-9 (2006)
doi:10.1111/j.1600-0404.2006.00684.x
PMid:1920537
184. S. M. LeVine: Oligodendrocytes and myelin sheaths in normal, quaking and shiverer brains are enriched in iron. J Neurosci Res, 29(3), 413-9 (1991)
doi:10.1002/jnr.490290317
185. G. L. Erb, D. L. Osterbur and S. M. LeVine: The distribution of iron in the brain: a phylogenetic analysis using iron histochemistry. Brain Res Dev Brain Res, 93(1-2), 120-8 (1996)
doi:10.1016/0165-3806(96)00020-X
186. B. Todorich, J. M. Pasquini, C. I. Garcia, P. M. Paez and J. R. Connor: Oligodendrocytes and myelination: The role of iron. Glia, 57(5), 467-478 (2009)
PMid:16364657
187. A. E. de los Monteros, R. A. Korsak, T. Tran, D. Vu, J. de Vellis and J. Edmond: Dietary iron and the integrity of the developing rat brain: a study with the artificially-reared rat pup. Cell Mol Biol (Noisy-le-grand), 46(3), 501-15. (2000)
188. C. Quintana, S. Bellefqih, J. Y. Laval, J. L. Guerquin-Kern, T. D. Wu, J. Avila, I. Ferrer, R. Arranz and C. Patino: Study of the localization of iron, ferritin, and hemosiderin in Alzheimer's disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol, 153(1), 42-54 (2006)
doi:10.1016/j.jsb.2005.11.001
189. P. Cheepsunthorn, C. Palmer, S. Menzies, R. L. Roberts and J. R. Connor: Hypoxic/ischemic insult alters ferritin expression and myelination in neonatal rat brains. J Comp Neurol, 431(4), 382-96. (2001)
doi:10.1002/1096-9861(20010319)431:4<382::AID-CNE1077>3.0.CO;2-#
PMid:19500726
190. C. Cascio, R. C. Brown, Y. Liu, Z. Han, D. B. Hales and V. Papadopoulos: Pathways of dehydroepiandrosterone formation in rat brain glia. J Steroid Biochem Mol Biol, 75(2-3), 177-86 (2000)
doi:10.1016/S0960-0760(00)00163-1
191. Y. Liu, A. Pocivavsek and V. Papadopoulos: Dehydroepiandrosterone formation is independent of cytochrome P450 17alpha-hydroxylase/17, 20 lyase activity in the mouse brain. J Steroid Biochem Mol Biol, 115(3-5), 86-90 (2009)
doi:10.1016/j.jsbmb.2009.03.005
PMid:14743452
192. S. H. Mellon: Neurosteroid regulation of central nervous system development. Pharmacol Ther, 116(1), 107-24 (2007)
doi:10.1016/j.pharmthera.2007.04.011
PMid:19174309
193. C. Fiore, D. M. Inman, S. Hirose, L. J. Noble, T. Igarashi and N. A. Compagnone: Treatment with the neurosteroid dehydroepiandrosterone promotes recovery of motor behavior after moderate contusive spinal cord injury in the mouse. J Neurosci Res, 75(3), 391-400 (2004)
doi:10.1002/jnr.10821
PMid:18428021
194. X. D. Tan, Y. C. Dou, C. W. Shi, R. S. Duan and R. P. Sun: Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J Neuroimmunol, 207(1-2), 39-44 (2009)
doi:10.1016/j.jneuroim.2008.11.011
PMid:18235426
195. R. Schoenfeld, A. Wong, J. Silva, M. Li, A. Itoh, M. Horiuchi, T. Itoh, D. Pleasure and G. Cortopassi: Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion (2009)
196. L. Shao, M. V. Martin, S. J. Watson, A. Schatzberg, H. Akil, R. M. Myers, E. G. Jones, W. E. Bunney and M. P. Vawter: Mitochondrial involvement in psychiatric disorders. Ann Med, 40(4), 281-95 (2008)
doi:10.1080/07853890801923753
PMid:16400659
197. J. A. Quiroz, N. A. Gray, T. Kato and H. K. Manji: Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology, 33(11), 2551-65 (2008)
doi:10.1038/sj.npp.1301671
PMid:9734748
198. A. Maruszak and C. Zekanowski: Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry
199. A. Sow, M. Lamant, J. M. Bonny, P. Larvaron, O. Piaud, C. Lecureuil, I. Fontaine, M. C. Saleh, A. L. Garcia Otin, J. P. Renou, B. Baron, M. Zakin and F. Guillou: Oligodendrocyte differentiation is increased in transferrin transgenic mice. J Neurosci Res, 83(3), 403-14 (2006)
doi:10.1002/jnr.20741
PMid:17344500
200. M. Roncagliolo, M. Garrido, T. Walter, P. Peirano and B. Lozoff: Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr, 68(3), 683-90. (1998)
PMid:13611557
201. L. E. Murray-Kolb and J. L. Beard: Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr, 85(3), 778-87 (2007)
PMid:16563566
202. B. Hallgren and P. Sourander: The effect of age on the non-haemin iron in the human brain. J Neurochem, 3, 41-51 (1958)
doi:10.1111/j.1471-4159.1958.tb12607.x
PMid:17515544
203. G. Bartzokis, T. A. Tishler, P. H. Lu, P. Villablanca, L. L. Altshuler, M. Carter, D. Huang, N. Edwards and J. Mintz: Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiology of Aging, 28(3), 414-423 (2007)
doi:10.1016/j.neurobiolaging.2006.02.005
PMid:19619136 PMCid:2759109
204. A. E. Oakley, J. F. Collingwood, J. Dobson, G. Love, H. R. Perrott, J. A. Edwardson, M. Elstner and C. M. Morris: Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology, 68(21), 1820-5 (2007)
doi:10.1212/01.wnl.0000262033.01945.9a
205. G. Bartzokis, P. H. Lu and J. Mintz: Human brain myelination and amyloid beta deposition in Alzheimer's disease. Alzheimer's & Dementia: the Journal of the Alzheimer's Association, 3(2), 122-125 (2007)
206. H. Li, R. Swiercz and E. W. Englander: Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA. J Neurochem, 110(6), 1774-83 (2009)
doi:10.1111/j.1471-4159.2009.06271.x
207. H. Chen, T. J. Lukas, N. Du, G. Suyeoka and A. H. Neufeld: Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci, 50(4), 1895-902 (2009)
doi:10.1167/iovs.08-2850
PMid:20105232
208. J. M. Levine, R. Reynolds and J. W. Fawcett: The oligodendrocyte precursor cell in health and disease. Trends Neurosci, 24(1), 39-47 (2001)
doi:10.1016/S0166-2236(00)01691-X
PMid:7142445
209. J. Vinet, P. Lemieux, A. Tamburri, P. Tiesinga, J. Scafidi, V. Gallo and A. Sik: Subclasses of oligodendrocytes populate the mouse hippocampus. Eur J Neurosci, 31(3), 425-38 (2010)
doi:10.1111/j.1460-9568.2010.07082.x
PMid:15115733
210. J. O'Kusky and M. Colonnier: Postnatal changes in the number of astrocytes, oligodendrocytes, and microglia in the visual cortex (area 17) of the macaque monkey: a stereological analysis in normal and monocularly deprived animals. J Comp Neurol, 210(3), 307-15 (1982)
doi:10.1002/cne.902100309
PMid:19636385 PMCid:2713738
211. A. Peters and C. Sethares: Oligodendrocytes, their Progenitors and other Neuroglial Cells in the Aging Primate Cerebral Cortex. Cereb Cortex, 14, 995-1007 (2004)
doi:10.1093/cercor/bhh060
PMid:12687688
212. A. Peters, A. Verderosa and C. Sethares: The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia (2008)
213. A. Peters: The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front Neuroanat, 3, 11 (2009)
doi:10.3389/neuro.05.011.2009
PMid:17484051
214. A. Peters and C. Sethares: Is there remyelination during aging of the primate central nervous system? J Comp Neurol, 460(2), 238-54 (2003)
doi:10.1002/cne.10639
PMid:1829794
215. G. Bartzokis, P. H. Lu, T. A. Tishler, S. M. Fong, B. Oluwadara, J. P. Finn, D. Huang, Y. Bordelon, J. Mintz and S. Perlman: Myelin breakdown and iron changes in Huntington's Disease: Pathogenesis and treatment implications. Neurochem Res, 32(10), 1655-64 (2007)
doi:10.1007/s11064-007-9352-7
PMid:1836225
216. A. Sotrel, P. A. Paskevich, D. K. Kiely, E. D. Bird, R. S. Williams and R. H. Myers: Morphometric analysis of the prefrontal cortex in Huntington's disease. Neurology, 41(7), 1117-23 (1991)
217. R. H. Myers, J. P. Vonsattel, P. A. Paskevich, D. K. Kiely, T. J. Stevens, L. A. Cupples, E. P. Richardson, Jr. and E. D. Bird: Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J Neuropathol Exp Neurol, 50(6), 729-42 (1991)
doi:10.1097/00005072-199111000-00005
PMid:19388095 PMCid:2723054
218. E. Gomez-Tortosa, M. E. MacDonald, J. C. Friend, S. A. Taylor, L. J. Weiler, L. A. Cupples, J. Srinidhi, J. F. Gusella, E. D. Bird, J. P. Vonsattel and R. H. Myers: Quantitative neuropathological changes in presymptomatic Huntington's disease. Ann Neurol, 49(1), 29-34. (2001)
doi:10.1002/1531-8249(200101)49:1<29::AID-ANA7>3.0.CO;2-B
PMid:20061651 PMCid:2842004
219. M. D. Meadowcroft, J. R. Connor, M. B. Smith and Q. X. Yang: MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. J Magn Reson Imaging, 29(5), 997-1007 (2009)
doi:10.1002/jmri.21731
220. M. A. Smith, X. Zhu, M. Tabaton, G. Liu, D. W. McKeel Jr, M. L. Cohen, X. Wang, S. L. Siedlak, B. E. Dwyer, T. Hayashi, M. Nakamura, A. Nunomura and G. Perry: Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. J Alzheimers Dis, 19(1), 363-372 (2010)
221. P. Wood and R. P. Bunger: The biology of the oligodendrocyte. In: Oligodendroglia. Ed W. T. Norton. Plenum Press, New York (1984)
222. C. Hildebrand, S. Remahl, H. Persson and C. Bjartmar: Myelinated nerve fibres in the CNS. Prog Neurobiol, 40, 319-384 (1993)
doi:10.1016/0301-0082(93)90015-K
PMid:11977987
223. R. Nieuwenhuys: Structure and Organization of Fibre Systems (Chapter 3). In: The Central Nervous System of Vertebrates. Ed R. Nieuwenhuys, J. H. Tendokelaar&C. Nicholson. Springer, Berlin (1999)
PMid:11829340
224. J. Power, M. Mayer-Proschel, J. Smith and M. Noble: Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol, 245(2), 362-75. (2002)
doi:10.1006/dbio.2002.0610
PMid:1706358
225. J. Bauer, M. Bradl, M. Klein, M. Leisser, T. L. Deckwerth, H. Wekerle and H. Lassmann: Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. J Neuropathol Exp Neurol, 61(1), 12-22. (2002)
PMid:2329189
226. P. R. Hof and J. H. Morrison: Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex. J Comp Neurol, 301(1), 55-64. (1990)
doi:10.1002/cne.903010106
PMid:10405027
227. A. S. Lamantia and P. Rakic: Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol, 291(4), 520-37. (1990)
doi:10.1002/cne.902910404
PMid:19395859
228. M. L. Feldman and A. Peters: Ballooning of myelin sheaths in normally aged macaques. J Neurocytol, 27(8), 605-14 (1998)
doi:10.1023/A:1006926428699
PMid:17611286 PMCid:2652665
229. D. R. Grayson, Y. Chen, E. Dong, M. Kundakovic and A. Guidotti: From trans-methylation to cytosine methylation: evolution of the methylation hypothesis of schizophrenia. Epigenetics, 4(3), 144-9 (2009)
doi:10.4161/epi.4.3.8534
PMid:18725899
230. J. K. Kim, M. Samaranayake and S. Pradhan: Epigenetic mechanisms in mammals. Cell Mol Life Sci (2008)
231. A. Liu, Y. R. Han, J. Li, D. Sun, M. Ouyang, M. R. Plummer and P. Casaccia-Bonnefil: The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J Neurosci, 27(27), 7339-43 (2007)
doi:10.1523/JNEUROSCI.1226-07.2007
PMid:17318215
232. B. Popko: Epigenetic control of myelin repair. Nat Neurosci, 11(9), 987-8 (2008)
doi:10.1038/nn0908-987
PMid:14661022
233. S. Shen, A. Liu, J. Li, C. Wolubah and P. Casaccia-Bonnefil: Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging (2006)
234. S. Shen, J. Sandoval, V. A. Swiss, J. Li, J. Dupree, R. J. Franklin and P. Casaccia-Bonnefil: Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci (2008)
235. V. Gallo: Surprising synapses deep in the brain. Nat Neurosci, 10(3), 267-9 (2007)
doi:10.1038/nn0307-267
236. S. C. Lin and D. E. Bergles: Synaptic signaling between neurons and glia. Glia, 47(3), 290-8 (2004)
237. S. C. Lin and D. E. Bergles: Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci, 7(1), 24-32 (2004)
doi:10.1038/nn1162
PMid:16288467
238. G. L. Haas, L. S. Garratt and J. A. Sweeney: Delay to first antipsychotic medication in schizophrenia: impact on symptomatology and clinical course of illness. J Psychiatr Res, 32(3-4), 151-9 (1998)
doi:10.1016/S0022-3956(98)00008-9
PMid:18837051
239. P. D. Harvey, J. M. Silverman, R. C. Mohs, M. Parrella, L. White, P. Powchik, M. Davidson and K. L. Davis: Cognitive decline in late-life schizophrenia: a longitudinal study of geriatric chronically hospitalized patients. Biol Psychiatry, 45(1), 32-40. (1999)
doi:10.1016/S0006-3223(98)00273-X
PMid:15252819
240. G. Bartzokis, P. H. Lu, K. H. Nuechterlein, M. Gitlin, C. Doi, N. Edwards, C. Lieu, L. L. Altshuler and J. Mintz: Differential effects of typical and atypical antipsychotics on brain myelination in schizophrenia. Schizophr Res, 93(1-3), 13-22 (2007)
doi:10.1016/j.schres.2007.02.011
PMid:17407804 PMCid:1974878
241. R. J. Wyatt and I. D. Henter: The effects of early and sustained intervention on the long-term morbidity of schizophrenia. J Psychiatr Res, 32(3-4), 169-77 (1998)
doi:10.1016/S0022-3956(97)00014-9
242. L. V. Kessing: Severity of depressive episodes during the course of depressive disorder. Br J Psychiatry, 192(4), 290-3 (2008)
doi:10.1192/bjp.bp.107.038935
PMid:18378992
243. L. J. Robinson and I. N. Ferrier: Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disord, 8(2), 103-16 (2006)
doi:10.1111/j.1399-5618.2006.00277.x
PMid:16542180
244. L. J. Robinson, J. M. Thompson, P. Gallagher, U. Goswami, A. H. Young, I. N. Ferrier and P. B. Moore: A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord, 93(1-3), 105-15 (2006)
doi:10.1016/j.jad.2006.02.016
PMid:16677713
245. I. J. Torres, V. G. Boudreau and L. N. Yatham: Neuropsychological functioning in euthymic bipolar disorder: a meta-analysis. Acta Psychiatr Scand Suppl(434), 17-26 (2007)
246. L. V. Kessing and P. K. Andersen: Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? J Neurol Neurosurg Psychiatry, 75(12), 1662-6 (2004)
doi:10.1136/jnnp.2003.031773
PMid:50411
247. V. M. Dotson, M. A. Beydoun and A. B. Zonderman: Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75(1), 27-34 (2010)
doi:10.1212/WNL.0b013e3181e62124
PMid:20603482
248. J. S. Saczynski, A. Beiser, S. Seshadri, S. Auerbach, P. A. Wolf and R. Au: Depressive symptoms and risk of dementia: The Framingham Heart Study. Neurology, 75(1), 35-41 (2010)
doi:10.1212/WNL.0b013e3181e62138
PMid:20603483
249. R. M. Post: Mechanisms of Illness Progression in the Recurrent Affective Disorders. Neurotox Res (2010)
250. L. V. Kessing, L. Sondergard, J. L. Forman and P. K. Andersen: Antidepressants and dementia. J Affect Disord, 117(1-2), 24-9 (2009)
doi:10.1016/j.jad.2008.11.020
PMid:19138799
251. L. V. Kessing, L. Sondergard, J. L. Forman and P. K. Andersen: Lithium treatment and risk of dementia. Arch Gen Psychiatry, 65(11), 1331-5 (2008)
doi:10.1001/archpsyc.65.11.1331
PMid:18981345
252. L. V. Kessing, J. L. Forman and P. K. Andersen: Does lithium protect against dementia? Bipolar Disord, 12(1), 87-94 (2010)
doi:10.1111/j.1399-5618.2009.00788.x
PMid:20148870
253. L. D. Jones, M. E. Payne, D. F. Messer, J. L. Beyer, J. R. Macfall, K. R. Krishnan and W. D. Taylor: Temporal lobe volume in bipolar disorder: Relationship with diagnosis and antipsychotic medication use. J Affect Disord (2008)
254. A. Lampen, C. Carlberg and H. Nau: Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives. Eur J Pharmacol, 431(1), 25-33 (2001)
doi:10.1016/S0014-2999(01)01423-6
255. A. Lampen, P. A. Grimaldi and H. Nau: Modulation of peroxisome proliferator-activated receptor delta activity affects neural cell adhesion molecule and polysialyltransferase ST8SiaIV induction by teratogenic valproic acid analogs in F9 cell differentiation. Mol Pharmacol, 68(1), 193-203 (2005)
PMid:15829700
256. D. C. Lagace and M. W. Nachtigal: Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J Biol Chem, 279(18), 18851-60 (2004)
doi:10.1074/jbc.M312795200
PMid:14985358
257. M. J. Lan, P. Yuan, G. Chen and H. K. Manji: Neuronal peroxisome proliferator-activated receptor gamma signaling: regulation by mood-stabilizer valproate. J Mol Neurosci, 35(2), 225-34 (2008)
doi:10.1007/s12031-008-9056-8
PMid:18437585 PMCid:2804882
258. A. Angelucci, P. Muzi, L. Cristiano, D. Millimaggi, A. Cimini, V. Dolo, R. Miano, C. Vicentini, M. P. Ceru and M. Bologna: Neuroendocrine transdifferentiation induced by VPA is mediated by PPARgamma activation and confers resistance to antiblastic therapy in prostate carcinoma. Prostate, 68(6), 588-98 (2008)
doi:10.1002/pros.20708
PMid:18288684
259. K. Tamura, A. Ono, T. Miyagishima, T. Nagao and T. Urushidani: Profiling of gene expression in rat liver and rat primary cultured hepatocytes treated with peroxisome proliferators. J Toxicol Sci, 31(5), 471-90 (2006)
doi:10.2131/jts.31.471
PMid:17202761
260. L. Qiao, J. Schaack and J. Shao: Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid. Endocrinology, 147(2), 865-74 (2006)
doi:10.1210/en.2005-1030
PMid:16282359
261. R. Greco, G. Latini, F. Chiarelli, P. Iannetti and A. Verrotti: Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid. Neurology, 65(11), 1808-9 (2005)
doi:10.1212/01.wnl.0000187074.27586.d1
PMid:16344528
262. M. Rauchenzauner, E. Haberlandt, S. Scholl-Burgi, B. Ernst, F. Hoppichler, D. Karall, C. F. Ebenbichler, K. Rostasy and G. Luef: Adiponectin and visfatin concentrations in children treated with valproic acid. Epilepsia, 49(2), 353-7 (2008)
doi:10.1111/j.1528-1167.2007.01460.x
PMid:18070089
263. I. P. Pogribny, A. R. Karpf, S. R. James, S. Melnyk, T. Han and V. P. Tryndyak: Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res, 1237, 25-34 (2008)
doi:10.1016/j.brainres.2008.07.077
PMid:18694733
264. A. T. Hsieh and J. T. Brenna: Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates. Prostaglandins Leukot Essent Fatty Acids, 81(2-3), 105-10 (2009)
doi:10.1016/j.plefa.2009.05.012
PMid:19524425
265. G. C. Burdge, A. E. Jones and S. A. Wootton: Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br J Nutr, 88(4), 355-63 (2002)
doi:10.1079/BJN2002662
PMid:12323085
266. R. Pawlosky, J. Hibbeln, Y. Lin and N. Salem, Jr.: n-3 fatty acid metabolism in women. Br J Nutr, 90(5), 993-4; discussion 994-5 (2003)
doi:10.1079/BJN2003985
PMid:14667193
267. J. T. Brenna, N. Salem, Jr., A. J. Sinclair and S. C. Cunnane: alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids, 80(2-3), 85-91 (2009)
doi:10.1016/j.plefa.2009.01.004
PMid:19269799
268. A. S. Ryan, J. D. Astwood, S. Gautier, C. N. Kuratko, E. B. Nelson and N. Salem, Jr.: Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids, 82(4-6), 305-14 (2010)
doi:10.1016/j.plefa.2010.02.007
PMid:20188533
269. L. G. Saldanha, N. Salem, Jr. and J. T. Brenna: Workshop on DHA as a required nutrient: overview. Prostaglandins Leukot Essent Fatty Acids, 81(2-3), 233-6 (2009)
doi:10.1016/j.plefa.2009.07.001
PMid:19643589
270. R. K. McNamara: Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations. Prostaglandins Leukot Essent Fatty Acids, 81(2-3), 223-31 (2009)
doi:10.1016/j.plefa.2009.05.017
PMid:19515544
271. M. Plourde, M. C. Vohl, M. Vandal, P. Couture, S. Lemieux and S. C. Cunnane: Plasma n-3 fatty acid response to an n-3 fatty acid supplement is modulated by apoE epsilon4 but not by the common PPAR-alpha L162V polymorphism in men. Br J Nutr, 102(8), 1121-4 (2009)
doi:10.1017/S000711450938215X
PMid:19828088
272. T. L. Huang, P. P. Zandi, K. L. Tucker, A. L. Fitzpatrick, L. H. Kuller, L. P. Fried, G. L. Burke and M. C. Carlson: Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology, 65(9), 1409-14 (2005)
doi:10.1212/01.wnl.0000183148.34197.2e
PMid:16275829
273. R. K. McNamara, R. Jandacek, T. Rider, P. Tso, C. G. Hahn, N. M. Richtand and K. E. Stanford: Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr Res, 91(1-3), 37-50 (2007)
doi:10.1016/j.schres.2006.11.027
PMid:17236749 PMCid:1853256
274. R. K. McNamara, Y. Liu, R. Jandacek, T. Rider and P. Tso: The aging human orbitofrontal cortex: decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity. Prostaglandins Leukot Essent Fatty Acids, 78(4-5), 293-304 (2008)
doi:10.1016/j.plefa.2008.04.001
PMid:18499418 PMCid:2494852
275. M. Arvindakshan, S. Sitasawad, V. Debsikdar, M. Ghate, D. Evans, D. F. Horrobin, C. Bennett, P. K. Ranjekar and S. P. Mahadik: Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry, 53(1), 56-64 (2003)
doi:10.1016/S0006-3223(02)01443-9
276. M. M. Khan, D. R. Evans, V. Gunna, R. E. Scheffer, V. V. Parikh and S. P. Mahadik: Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res, 58(1), 1-10 (2002)
doi:10.1016/S0920-9964(01)00334-6
277. R. D. Reddy, M. S. Keshavan and J. K. Yao: Reduced red blood cell membrane essential polyunsaturated fatty acids in first episode schizophrenia at neuroleptic-naive baseline. Schizophr Bull, 30(4), 901-11 (2004)
PMid:15957200
278. A. Kale, S. Joshi, N. Naphade, S. Sapkale, M. S. Raju, A. Pillai, H. Nasrallah and S. P. Mahadik: Opposite changes in predominantly docosahexaenoic acid (DHA) in cerebrospinal fluid and red blood cells from never-medicated first-episode psychotic patients. Schizophr Res, 98(1-3), 295-301 (2008)
doi:10.1016/j.schres.2007.09.036
PMid:17997280
279. A. Kale, N. Naphade, S. Sapkale, M. Kamaraju, A. Pillai, S. Joshi and S. Mahadik: Reduced folic acid, vitamin B(12) and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: Implications for altered one-carbon metabolism. Psychiatry Res, 175(1-2), 47-53 (2010)
doi:10.1016/j.psychres.2009.01.013
PMid:19969375
280. K. Hamazaki, K. H. Choi and H. Y. Kim: Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: No changes in docosahexaenoic acid species. J Psychiatr Res (2010)
281. R. K. McNamara, C. G. Hahn, R. Jandacek, T. Rider, P. Tso, K. E. Stanford and N. M. Richtand: Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry, 62(1), 17-24 (2007)
doi:10.1016/j.biopsych.2006.08.026
PMid:17188654
282. S. M. Conklin, C. A. Runyan, S. Leonard, R. D. Reddy, M. F. Muldoon and J. K. Yao: Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder. Prostaglandins Leukot Essent Fatty Acids, 82(2-3), 111-9 (2010)
doi:10.1016/j.plefa.2009.12.002
PMid:20060277
283. R. K. McNamara, R. Jandacek, T. Rider, P. Tso, K. E. Stanford, C. G. Hahn and N. M. Richtand: Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res, 160(3), 285-99 (2008)
doi:10.1016/j.psychres.2007.08.021
PMid:18715653 PMCid:2620106
284. R. K. McNamara: DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr, 140(4), 864-8 (2010)
doi:10.3945/jn.109.113233
PMid:20147466
285. M. Soderberg, C. Edlund, K. Kristensson and G. Dallner: Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids, 26(6), 421-5 (1991)
doi:10.1007/BF02536067
286. M. Soderberg, C. Edlund, I. Alafuzoff, K. Kristensson and G. Dallner: Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. J Neurochem, 59(5), 1646-53. (1992)
doi:10.1111/j.1471-4159.1992.tb10994.x
287. M. R. Prasad, M. A. Lovell, M. Yatin, H. Dhillon and W. R. Markesbery: Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem Res, 23(1), 81-8. (1998)
doi:10.1023/A:1022457605436
PMid:9482271
288. V. Martin, N. Fabelo, G. Santpere, B. Puig, R. Marin, I. Ferrer and M. Diaz: Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J Alzheimers Dis, 19(2), 489-502 (2010)
PMid:20110596
289. S. De, M. A. Trigueros, A. Kalyvas and S. David: Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci, 24(3), 753-65 (2003)
doi:10.1016/S1044-7431(03)00241-0
290. S. I. Rapoport, M. Basselin, H. W. Kim and J. S. Rao: Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res Rev, 61(2), 185-209 (2009)
doi:10.1016/j.brainresrev.2009.06.003
PMid:19555719 PMCid:2757443
291. C. B. Joy, R. Mumby-Croft and L. A. Joy: Polyunsaturated fatty acid supplementation for schizophrenia. Cochrane Database Syst Rev, 3, CD001257 (2006)
PMid:16855961
292. B. M. Ross, J. Seguin and L. E. Sieswerda: Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis, 6, 21 (2007)
doi:10.1186/1476-511X-6-21
PMid:17877810 PMCid:2071911
293. P. Montgomery and A. J. Richardson: Omega-3 fatty acids for bipolar disorder. Cochrane Database Syst Rev(2), CD005169 (2008)
294. M. P. Freeman: Omega-3 fatty acids in major depressive disorder. J Clin Psychiatry, 70 Suppl 5, 7-11 (2009)
doi:10.4088/JCP.8157su1c.02
PMid:19909687
295. P. Y. Lin and K. P. Su: A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry, 68(7), 1056-61 (2007)
doi:10.4088/JCP.v68n0712
PMid:17685742
296. R. Kaddurah-Daouk and K. R. Krishnan: Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology, 34(1), 173-86 (2009)
doi:10.1038/npp.2008.174
PMid:18843269
297. N. Gogtay, A. Lu, A. D. Leow, A. D. Klunder, A. D. Lee, A. Chavez, D. Greenstein, J. N. Giedd, A. W. Toga, J. L. Rapoport and P. M. Thompson: Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry. Proc Natl Acad Sci U S A, 105(41), 15979-84 (2008)
doi:10.1073/pnas.0806485105
PMid:18852461 PMCid:2566993
298. J. Moncrieff and J. Leo: A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med, 1-14 (2010)
299. E. S. Susser and S. P. Lin: Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch Gen Psychiatry, 49(12), 983-8 (1992)
PMid:1449385
300. D. St Clair, M. Xu, P. Wang, Y. Yu, Y. Fang, F. Zhang, X. Zheng, N. Gu, G. Feng, P. Sham and L. He: Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. Jama, 294(5), 557-62 (2005)
PMid:16077049
301. D. K. Kinney, P. Teixeira, D. Hsu, S. C. Napoleon, D. J. Crowley, A. Miller, W. Hyman and E. Huang: Relation of schizophrenia prevalence to latitude, climate, fish consumption, infant mortality, and skin color: a role for prenatal vitamin d deficiency and infections? Schizophr Bull, 35(3), 582-95 (2009)
doi:10.1093/schbul/sbp023
PMid:19357239 PMCid:2669590
302. H. J. Sorensen, P. R. Nielsen, C. B. Pedersen and P. B. Mortensen: Association Between Prepartum Maternal Iron Deficiency and Offspring Risk of Schizophrenia: Population-Based Cohort Study With Linkage of Danish National Registers. Schizophr Bull (2010)
303. B. J. Insel, C. A. Schaefer, I. W. McKeague, E. S. Susser and A. S. Brown: Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry, 65(10), 1136-44 (2008)
doi:10.1001/archpsyc.65.10.1136
PMid:18838630
304. A. S. Brown and E. S. Susser: Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull, 34(6), 1054-63 (2008)
doi:10.1093/schbul/sbn096
PMid:18682377 PMCid:2632499
305. W. Liu, G. Breen, J. Zhang, S. Li, N. Gu, G. Feng, S. Bai, T. Shen, A. Yu, H. Xue, D. St Clair and L. He: Association of APOE gene with schizophrenia in Chinese: a possible risk factor in times of malnutrition. Schizophr Res, 62(3), 225-30 (2003)
doi:10.1016/S0920-9964(02)00384-5
306. B. Dean, S. M. Laws, E. Hone, K. Taddei, E. Scarr, E. A. Thomas, C. Harper, C. McClean, C. Masters, N. Lautenschlager, S. E. Gandy and R. N. Martins: Increased levels of apolipoprotein E in the frontal cortex of subjects with schizophrenia. Biol Psychiatry, 54(6), 616-22 (2003)
doi:10.1016/S0006-3223(03)00075-1
307. A. Digney, D. Keriakous, E. Scarr, E. Thomas and B. Dean: Differential changes in apolipoprotein E in schizophrenia and bipolar I disorder. Biol Psychiatry, 57(7), 711-5 (2005)
doi:10.1016/j.biopsych.2004.12.028
PMid:15820227
308. D. Martins-De-Souza, T. Wobrock, I. Zerr, A. Schmitt, J. Gawinecka, T. Schneider-Axmann, P. Falkai and C. W. Turck: Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World J Biol Psychiatry, 11(5), 719-28 (2010)
doi:10.3109/15622971003758748
PMid:20446881
309. G. W. Rebeck, M. J. LaDu, S. Estus, G. Bu and E. J. Weeber: The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener, 1, 15 (2006)
doi:10.1186/1750-1326-1-15
PMid:17062143 PMCid:1635701
310. M. S. Weintraub, S. Eisenberg and J. L. Breslow: Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest, 80(6), 1571-7 (1987)
doi:10.1172/JCI113243
PMid:3479440 PMCid:442425
311. J. Saupe, M. J. Shearer and M. Kohlmeier: Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr, 58(2), 204-8 (1993)
PMid:8393269
312. E. Bravo and M. Napolitano: Mechanisms involved in chylomicron remnant lipid uptake by macrophages. Biochem Soc Trans, 35(Pt 3), 459-63 (2007)
PMid:17511627
313. F. Bejta, E. H. Moore, M. Avella, P. J. Gough, K. E. Suckling and K. M. Botham: Oxidation of chylomicron remnant-like particles inhibits their uptake by THP-1 macrophages by apolipoprotein E-dependent processes. Biochim Biophys Acta, 1771(7), 901-10 (2007)
PMid:17540618 PMCid:1906864
314. K. D. Cashman and K. Seamans: Bone health, genetics, and personalised nutrition. Genes Nutr, 2(1), 47-51 (2007)
doi:10.1007/s12263-007-0010-0
315. P. Toniutto, G. Fattovich, C. Fabris, R. Minisini, M. Burlone, C. Pravadelli, L. Peraro, E. Falleti, F. Caldera, D. Bitetto and M. Pirisi: Genetic polymorphism at the apolipoprotein E locus affects the outcome of chronic hepatitis B. J Med Virol, 82(2), 224-331 (2010)
doi:10.1002/jmv.21642
PMid:20029801
316. L. U. Gerdes: The common polymorphism of apolipoprotein E: geographical aspects and new pathophysiological relations. Clin Chem Lab Med, 41(5), 628-31 (2003)
doi:10.1515/CCLM.2003.094
PMid:12812258
317. P. Hu, Y. H. Qin, C. X. Jing, L. Lu, B. Hu and P. F. Du: Does the geographical gradient of ApoE4 allele exist in China? A systemic comparison among multiple Chinese populations. Mol Biol Rep (2010)
318. P. P. Singh, M. Singh and S. S. Mastana: APOE distribution in world populations with new data from India and the UK. Ann Hum Biol, 33(3), 279-308 (2006)
doi:10.1080/03014460600594513
PMid:17092867
319. I. A. Larson, J. M. Ordovas, C. DeLuca, J. R. Barnard, G. Feussner and E. J. Schaefer: Association of apolipoprotein (Apo)E genotype with plasma apo E levels. Atherosclerosis, 148(2), 327-35 (2000)
doi:10.1016/S0021-9150(99)00280-4
320. J. Poirier: Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer's disease. Neurobiol Aging, 26(3), 355-61 (2005)
doi:10.1016/j.neurobiolaging.2004.09.003
PMid:15639314
321. P. van Vliet, R. G. Westendorp, P. Eikelenboom, H. C. Comijs, M. Frolich, E. Bakker, W. van der Flier and E. van Exel: Parental history of Alzheimer disease associated with lower plasma apolipoprotein E levels. Neurology, 73(9), 681-7 (2009)
doi:10.1212/WNL.0b013e3181b59c2e
PMid:19720974 PMCid:2734293
322. P. M. Sullivan, B. Han, F. Liu, B. E. Mace, J. F. Ervin, S. Wu, D. Koger, S. Paul and K. R. Bales: Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging (2009)
323. J. Poirier: Apolipoprotein E represents a potent gene-based therapeutic target for the treatment of sporadic Alzheimer's disease. Alzheimers Dement, 4(1 Suppl 1), S91-7 (2008)
doi:10.1016/j.jalz.2007.11.012
PMid:18632009
324. J. D. Fryer, R. B. Demattos, L. M. McCormick, M. A. O'Dell, M. L. Spinner, K. R. Bales, S. M. Paul, P. M. Sullivan, M. Parsadanian, G. Bu and D. M. Holtzman: The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem, 280(27), 25754-9 (2005)
doi:10.1074/jbc.M502143200
PMid:15888448
325. R. B. DeMattos: Apolipoprotein E dose-dependent modulation of beta-amyloid deposition in a transgenic mouse model of Alzheimer's disease. J Mol Neurosci, 23(3), 255-62 (2004)
doi:10.1385/JMN:23:3:255
326. D. R. Riddell, H. Zhou, K. Atchison, H. K. Warwick, P. J. Atkinson, J. Jefferson, L. Xu, S. Aschmies, Y. Kirksey, Y. Hu, E. Wagner, A. Parratt, J. Xu, Z. Li, M. M. Zaleska, J. S. Jacobsen, M. N. Pangalos and P. H. Reinhart: Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci, 28(45), 11445-53 (2008)
doi:10.1523/JNEUROSCI.1972-08.2008
PMid:18987181
327. J. Poirier: Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer's disease. Trends Mol Med, 9(3), 94-101. (2003)
doi:10.1016/S1471-4914(03)00007-8
328. L. Puglielli, R. E. Tanzi and D. M. Kovacs: Alzheimer's disease: the cholesterol connection. Nat Neurosci, 6(4), 345-51 (2003)
doi:10.1038/nn0403-345
PMid:12658281
329. V. Hirsch-Reinshagen, S. Zhou, B. L. Burgess, L. Bernier, S. A. McIsaac, J. Y. Chan, G. H. Tansley, J. S. Cohn, M. R. Hayden and C. L. Wellington: Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem, 279(39), 41197-207 (2004)
doi:10.1074/jbc.M407962200
PMid:15269218
330. D. K. Lahiri, K. Sambamurti and D. A. Bennett: Apolipoprotein gene and its interaction with the environmentally driven risk factors: molecular, genetic and epidemiological studies of Alzheimer's disease. Neurobiol Aging, 25(5), 651-60 (2004)
doi:10.1016/j.neurobiolaging.2003.12.024
PMid:15172744
331. J. M. Dietschy and S. D. Turley: Thematic review series: Brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res, 45(8), 1375-97 (2004)
doi:10.1194/jlr.R400004-JLR200
PMid:15254070
332. J. P. Vos, M. Lopes-Cardozo and B. M. Gadella: Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta, 1211(2), 125-49. (1994)
PMid:8117740
333. E. Gielen, W. Baron, M. Vandeven, P. Steels, D. Hoekstra and M. Ameloot: Rafts in oligodendrocytes: evidence and structure-function relationship. Glia, 54(6), 499-512 (2006)
PMid:8759775
334. X. Han: The Pathogenic Implication of Abnormal Interaction Between Apolipoprotein E Isoforms, Amyloid-beta Peptides, and Sulfatides in Alzheimer's Disease. Mol Neurobiol (2010)
335. A. Peters, D. L. Rosene, M. B. Moss, T. L. Kemper, C. R. Abraham, J. Tigges and M. S. Albert: Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol, 55(8), 861-74 (1996)
336. A. Peters: Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res, 136, 455-65. (2002)
doi:10.1016/S0079-6123(02)36038-2
PMid:15172743
337. J. Raber, Y. Huang and J. W. Ashford: ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging, 25(5), 641-50 (2004)
doi:10.1016/j.neurobiolaging.2003.12.023
PMid:19624391
338. J. F. Wang, L. Shao, X. Sun and L. T. Young: Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord, 11(5), 523-9 (2009)
doi:10.1111/j.1399-5618.2009.00717.x
339. Y. Che, J. F. Wang, L. Shao and T. Young: Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci (2010)
340. K. L. Double, V. N. Dedov, H. Fedorow, E. Kettle, G. M. Halliday, B. Garner and U. T. Brunk: The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci (2008)
341. S. H. Benavides, A. J. Monserrat, S. Farina and E. A. Porta: Sequential histochemical studies of neuronal lipofuscin in human cerebral cortex from the first to the ninth decade of life. Arch Gerontol Geriatr, 34(3), 219-31 (2002)
doi:10.1016/S0167-4943(01)00223-0
342. E. A. Porta: Pigments in aging: an overview. Ann N Y Acad Sci, 959, 57-65 (2002)
doi:10.1111/j.1749-6632.2002.tb02083.x
PMid:19519777
343. W. S. Kim, J. Wong, C. S. Weickert, M. J. Webster, S. Bahn and B. Garner: Apolipoprotein-D expression is increased during development and maturation of the human prefrontal cortex. J Neurochem, 109(4), 1053-66 (2009)
doi:10.1111/j.1471-4159.2009.06031.x
PMid:19481443
344. A. Navarro, E. Del Valle, A. Juarez, E. Martinez, C. Ordonez, A. Astudillo and J. Tolivia: Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan. Age (Dordr) (2009)
345. K. Q. Do, J. H. Cabungcal, A. Frank, P. Steullet and M. Cuenod: Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol, 19(2), 220-30 (2009)
doi:10.1016/j.conb.2009.05.001
PMid:20298794
346. A. A. Willette, B. B. Bendlin, D. G. McLaren, E. Canu, E. K. Kastman, K. J. Kosmatka, G. Xu, A. S. Field, A. L. Alexander, R. J. Colman, R. H. Weindruch, C. L. Coe and S. C. Johnson: Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage, 51(3), 987-94 (2010)
doi:10.1016/j.neuroimage.2010.03.015
PMid:10993694
347. B. Hauss-Wegrzyniak, J. P. Galons and G. L. Wenk: Quantitative volumetric analyses of brain magnetic resonance imaging from rat with chronic neuroinflammation. Exp Neurol, 165(2), 347-54 (2000)
doi:10.1006/exnr.2000.7469
PMid:17389308 PMCid:2758770
348. A. L. Jefferson, J. M. Massaro, P. A. Wolf, S. Seshadri, R. Au, R. S. Vasan, M. G. Larson, J. B. Meigs, J. F. Keaney, Jr., I. Lipinska, S. Kathiresan, E. J. Benjamin and C. DeCarli: Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study. Neurology, 68(13), 1032-8 (2007)
doi:10.1212/01.wnl.0000257815.20548.df
PMid:18514163 PMCid:2562462
349. A. L. Marsland, P. J. Gianaros, S. M. Abramowitch, S. B. Manuck and A. R. Hariri: Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry, 64(6), 484-90 (2008)
doi:10.1016/j.biopsych.2008.04.016
PMid:10774463
350. W. B. Ershler and E. T. Keller: Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med, 51, 245-70 (2000)
doi:10.1146/annurev.med.51.1.245
PMid:19016933 PMCid:2754409
351. C. A. Sarkisian, T. L. Gruenewald, W. John Boscardin and T. E. Seeman: Preliminary evidence for subdimensions of geriatric frailty: the MacArthur study of successful aging. J Am Geriatr Soc, 56(12), 2292-7 (2008)
doi:10.1111/j.1532-5415.2008.02041.x
PMid:18991854
352. J. Goncalves, T. Martins, R. Ferreira, N. Milhazes, F. Borges, C. F. Ribeiro, J. O. Malva, T. R. Macedo and A. P. Silva: Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci, 1139, 103-11 (2008)
doi:10.1196/annals.1432.043
353. U. Gartner, W. Hartig, K. Brauer, G. Bruckner and T. Arendt: Immunofluorescence and immunoelectron microscopic evidence for differences in myelination of GABAergic and cholinergic septohippocampal fibres. Int J Dev Neurosci, 19(3), 347-52 (2001)
doi:10.1016/S0736-5748(01)00019-3
PMid:17699661 PMCid:2270609
354. S. Jinno, T. Klausberger, L. F. Marton, Y. Dalezios, J. D. Roberts, P. Fuentealba, E. A. Bushong, D. Henze, G. Buzsaki and P. Somogyi: Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci, 27(33), 8790-804 (2007)
doi:10.1523/JNEUROSCI.1847-07.2007
PMid:19523965 PMCid:2739086
355. M. M. Behrens and T. J. Sejnowski: Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology, 57(3), 193-200 (2009)
doi:10.1016/j.neuropharm.2009.06.002
PMid:18991959 PMCid:2769923
356. S. Berman, J. O'Neill, S. Fears, G. Bartzokis and E. D. London: Abuse of amphetamines and structural abnormalities in the brain. Ann N Y Acad Sci, 1141, 195-220 (2008)
doi:10.1196/annals.1441.031
357. C. L. Beasley, Z. J. Zhang, I. Patten and G. P. Reynolds: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry, 52(7), 708-15 (2002)
doi:10.1016/S0006-3223(02)01360-4
PMid:12867516
358. T. Hashimoto, D. W. Volk, S. M. Eggan, K. Mirnics, J. N. Pierri, Z. Sun, A. R. Sampson and D. A. Lewis: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci, 23(15), 6315-26 (2003)
PMid:20556669
359. G. Gonzalez-Burgos, T. Hashimoto and D. A. Lewis: Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia. Curr Psychiatry Rep, 12(4), 335-44 (2010)
doi:10.1007/s11920-010-0124-8
PMid:19919593
360. C. J. Morgan, L. Muetzelfeldt and H. V. Curran: Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction, 105(1), 121-33 (2010)
doi:10.1111/j.1360-0443.2009.02761.x
PMid:15500598
361. C. J. Morgan, L. Monaghan and H. V. Curran: Beyond the K-hole: a 3-year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction, 99(11), 1450-61 (2004)
doi:10.1111/j.1360-0443.2004.00879.x
PMid:20651832
362. P. Seeman: All Roads to Schizophrenia Lead to Dopamine Supersensitivity and Elevated Dopamine D2 Receptors. CNS Neurosci Ther (2010)
363. J. Niu, F. Mei, N. Li, H. Wang, X. Li, J. Kong and L. Xiao: Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures. Biochem Cell Biol, 88(4), 611-20 (2010)
doi:10.1139/O09-178
PMid:20305752 PMCid:2842101
364. H. Xu, H. J. Yang, B. McConomy, R. Browning and X. M. Li: Behavioral and neurobiological changes in C57BL/6 mouse exposed to cuprizone: effects of antipsychotics. Front Behav Neurosci, 4, 8 (2010)
doi:10.3389/fnbeh.2010.00008
PMid:16927294
365. H. Wang, H. Xu, J. Niu, F. Mei, X. Li, J. Kong, W. Cai and L. Xiao: Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res (2010)
366. R. K. McNamara, J. A. Able, R. Jandacek, T. Rider and P. Tso: Chronic risperidone treatment preferentially increases rat erythrocyte and prefrontal cortex omega-3 fatty acid composition: evidence for augmented biosynthesis. Schizophr Res, 107(2-3), 150-7 (2009)
doi:10.1016/j.schres.2008.09.027
PMid:18993032 PMCid:2662584
367. B. Levant, J. F. Crane and S. E. Carlson: Sub-chronic antipsychotic drug treatment does not alter brain phospholipid fatty acid composition in rats. Prog Neuropsychopharmacol Biol Psychiatry, 30(4), 728-32 (2006)
doi:10.1016/j.pnpbp.2005.11.034
PMid:16442197
368. V. E. Barakauskas, A. R. Ypsilanti, A. M. Barr, S. M. Innis, W. G. Honer and C. L. Beasley: Effects of sub-chronic clozapine and haloperidol administration on brain lipid levels. Prog Neuropsychopharmacol Biol Psychiatry (2010)
369. G. T. Konopaske, K. A. Dorph-Petersen, R. A. Sweet, J. N. Pierri, W. Zhang, A. R. Sampson and D. A. Lewis: Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry, 63(8), 759-65 (2008)
doi:10.1016/j.biopsych.2007.08.018
PMid:17945195 PMCid:2386415
370. S. Narayan, K. E. Kass and E. A. Thomas: Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J Neurosci Res, 85(4), 757-65 (2007)
doi:10.1002/jnr.21161
PMid:17177202
371. J. Ferno, M. B. Raeder, A. O. Vik-Mo, S. Skrede, M. Glambek, K. J. Tronstad, H. Breilid, R. Lovlie, R. K. Berge, C. Stansberg and V. M. Steen: Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J, 5(5), 298-304 (2005)
doi:10.1038/sj.tpj.6500323
PMid:16027736
372. M. B. Raeder, J. Ferno, M. Glambek, C. Stansberg and V. M. Steen: Antidepressant drugs activate SREBP and up-regulate cholesterol and fatty acid biosynthesis in human glial cells. Neurosci Lett, 395(3), 185-90 (2006)
doi:10.1016/j.neulet.2005.10.096
PMid:16324787
373. I. Kristiana, L. J. Sharpe, V. S. Catts, L. H. Lutze-Mann and A. J. Brown: Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol. Pharmacogenomics J (2009)
374. J. Ferno, S. Skrede, A. O. Vik-Mo, B. Havik and V. M. Steen: Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci, 7, 69 (2006)
doi:10.1186/1471-2202-7-69
PMid:17052361 PMCid:1635424
375. S. Le Hellard, T. W. Muhleisen, S. Djurovic, J. Ferno, Z. Ouriaghi, M. Mattheisen, C. Vasilescu, M. B. Raeder, T. Hansen, J. Strohmaier, A. Georgi, F. F. Brockschmidt, I. Melle, I. Nenadic, H. Sauer, M. Rietschel, M. M. Nothen, T. Werge, O. A. Andreassen, S. Cichon and V. M. Steen: Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Mol Psychiatry (2008)
376. S. Le Hellard, F. M. Theisen, M. Haberhausen, M. B. Raeder, J. Ferno, S. Gebhardt, A. Hinney, H. Remschmidt, J. C. Krieg, C. Mehler-Wex, M. M. Nothen, J. Hebebrand and V. M. Steen: Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry (2008)
377. A. O. Vik-Mo, J. Ferno, S. Skrede and V. M. Steen: Psychotropic drugs up-regulate the expression of cholesterol transport proteins including ApoE in cultured human CNS- and liver cells. BMC Pharmacol, 9, 10 (2009)
doi:10.1186/1471-2210-9-10
PMid:19715613 PMCid:2753324
378. P. Corena-McLeod Mdel, A. Oliveros, C. Charlesworth, B. Madden, Y. Q. Liang, M. Boules, A. Shaw, K. Williams and E. Richelson: Paliperidone as a mood stabilizer: a pre-frontal cortex synaptoneurosomal proteomics comparison with lithium and valproic acid after chronic treatment reveals similarities in protein expression. Brain Res, 1233, 8-19 (2008)
doi:10.1016/j.brainres.2008.07.021
PMid:18657526
379. L. A. Pasquini, C. A. Calatayud, A. L. Bertone Una, V. Millet, J. M. Pasquini and E. F. Soto: The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res, 32(2), 279-92 (2007)
doi:10.1007/s11064-006-9165-0
PMid:17063394
380. M. Kipp, T. Clarner, J. Dang, S. Copray and C. Beyer: The cuprizone animal model: new insights into an old story. Acta Neuropathol, 118(6), 723-36 (2009)
doi:10.1007/s00401-009-0591-3
PMid:19763593
381. Y. Zhang, H. Xu, W. Jiang, L. Xiao, B. Yan, J. He, Y. Wang, X. Bi, X. Li, J. Kong and X. M. Li: Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr Res (2008)
382. L. Xiao, H. Xu, Y. Zhang, Z. Wei, J. He, W. Jiang, X. Li, L. E. Dyck, R. M. Devon, Y. Deng and X. M. Li: Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry, 13(7), 697-708 (2008)
doi:10.1038/sj.mp.4002064
PMid:17684494
383. O. M. Dean, M. van den Buuse, A. I. Bush, D. L. Copolov, F. Ng, S. Dodd and M. Berk: A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Curr Med Chem, 16(23), 2965-76 (2009)
doi:10.2174/092986709788803060
PMid:19689277
384. A. Chan and T. B. Shea: Apolipoprotein E3 as a Risk Factor for Alzheimer's Disease Under Conditions of Nutritional Imbalance. J Alzheimers Dis (2010)
385. S. A. Farr, H. F. Poon, D. Dogrukol-Ak, J. Drake, W. A. Banks, E. Eyerman, D. A. Butterfield and J. E. Morley: The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem, 84(5), 1173-83 (2003)
doi:10.1046/j.1471-4159.2003.01580.x
PMid:12603840
386. M. Mayer and M. Noble: N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci U S A, 91(16), 7496-500 (1994)
doi:10.1073/pnas.91.16.7496
387. A. Krasowska and G. W. Konat: Vulnerability of brain tissue to inflammatory oxidant, hypochlorous acid. Brain Res, 997(2), 176-84 (2004)
doi:10.1016/j.brainres.2003.09.080
PMid:14706870
388. M. K. Paintlia, A. S. Paintlia, E. Barbosa, I. Singh and A. K. Singh: N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res, 78(3), 347-61 (2004)
doi:10.1002/jnr.20261
PMid:15389835
389. M. K. Paintlia, A. S. Paintlia, M. A. Contreras, I. Singh and A. K. Singh: Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: attenuation by N-acetyl cysteine. Exp Neurol, 210(2), 560-76 (2008)
doi:10.1016/j.expneurol.2007.12.011
PMid:18291369 PMCid:2673813
390. M. K. Paintlia, A. S. Paintlia, M. Khan, I. Singh and A. K. Singh: Modulation of peroxisome proliferator-activated receptor-alpha activity by N-acetyl cysteine attenuates inhibition of oligodendrocyte development in lipopolysaccharide stimulated mixed glial cultures. J Neurochem, 105(3), 956-70 (2008)
doi:10.1111/j.1471-4159.2007.05199.x
PMid:18205750 PMCid:2659629
391. N. Ercal, P. Treeratphan, T. C. Hammond, R. H. Matthews, N. H. Grannemann and D. R. Spitz: In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med, 21(2), 157-61 (1996)
doi:10.1016/0891-5849(96)00020-2
392. S. S. Kamboj, R. K. Vasishta and R. Sandhir: N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem, 112(1), 77-91 (2010)
doi:10.1111/j.1471-4159.2009.06435.x
PMid:19840221
393. R. Stanislaus, A. G. Gilg, A. K. Singh and I. Singh: N-acetyl-L-cysteine ameliorates the inflammatory disease process in experimental autoimmune encephalomyelitis in Lewis rats. J Autoimmune Dis, 2(1), 4 (2005)
doi:10.1186/1740-2557-2-4
PMid:15869713 PMCid:1097751
394. K. Hashimoto, H. Tsukada, S. Nishiyama, D. Fukumoto, T. Kakiuchi, E. Shimizu and M. Iyo: Effects of N-acetyl-L-cysteine on the reduction of brain dopamine transporters in monkey treated with methamphetamine. Ann N Y Acad Sci, 1025, 231-5 (2004)
doi:10.1196/annals.1316.028
PMid:15542721
395. G. Fukami, K. Hashimoto, K. Koike, N. Okamura, E. Shimizu and M. Iyo: Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res, 1016(1), 90-5 (2004)
doi:10.1016/j.brainres.2004.04.072
PMid:15234256
396. K. Moussawi, A. Pacchioni, M. Moran, M. F. Olive, J. T. Gass, A. Lavin and P. W. Kalivas: N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci, 12(2), 182-9 (2009)
doi:10.1038/nn.2250
PMid:19136971 PMCid:2661026
397. D. A. Baker, A. Madayag, L. V. Kristiansen, J. H. Meador-Woodruff, V. Haroutunian and I. Raju: Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology, 33(7), 1760-72 (2008)
doi:10.1038/sj.npp.1301532
PMid:17728701
398. K. K. Tha, Y. Okuma, H. Miyazaki, T. Murayama, T. Uehara, R. Hatakeyama, Y. Hayashi and Y. Nomura: Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res, 885(1), 25-31 (2000)
doi:10.1016/S0006-8993(00)02883-3
399. J. Tanaka, Y. Okuma, K. Tomobe and Y. Nomura: The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull, 28(4), 615-8 (2005)
doi:10.1248/bpb.28.615
400. H. Yagi, M. Irino, T. Matsushita, S. Katoh, M. Umezawa, T. Tsuboyama, M. Hosokawa, I. Akiguchi, R. Tokunaga and T. Takeda: Spontaneous spongy degeneration of the brain stem in SAM-P/8 developed memory-deficient strain. J Neuropathol Exp Neurol, 48(5), 577-90 (1989)
doi:10.1097/00005072-198909000-00008
PMid:2769310
401. M. Berk, D. Copolov, O. Dean, K. Lu, S. Jeavons, I. Schapkaitz, M. Anderson-Hunt, F. Judd, F. Katz, P. Katz, S. Ording-Jespersen, J. Little, P. Conus, M. Cuenod, K. Q. Do and A. I. Bush: N-acetyl cysteine as a glutathione precursor for schizophrenia--a double-blind, randomized, placebo-controlled trial. Biol Psychiatry, 64(5), 361-8 (2008)
doi:10.1016/j.biopsych.2008.03.004
PMid:18436195
402. M. Berk, D. L. Copolov, O. Dean, K. Lu, S. Jeavons, I. Schapkaitz, M. Anderson-Hunt and A. I. Bush: N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial. Biol Psychiatry, 64(6), 468-75 (2008)
doi:10.1016/j.biopsych.2008.04.022
PMid:18534556
403. J. E. Grant, B. L. Odlaug and S. W. Kim: N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry, 66(7), 756-63 (2009)
doi:10.1001/archgenpsychiatry.2009.60
PMid:19581567
404. R. Remington, A. Chan, J. Paskavitz and T. B. Shea: Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer's disease: a placebo-controlled pilot study. Am J Alzheimers Dis Other Demen, 24(1), 27-33 (2009)
doi:10.1177/1533317508325094
PMid:19056706
405. S. Lavoie, M. M. Murray, P. Deppen, M. G. Knyazeva, M. Berk, O. Boulat, P. Bovet, A. I. Bush, P. Conus, D. Copolov, E. Fornari, R. Meuli, A. Solida, P. Vianin, M. Cuenod, T. Buclin and K. Q. Do: Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology, 33(9), 2187-99 (2008)
doi:10.1038/sj.npp.1301624
PMid:18004285
406. G. Corfas, K. Roy and J. D. Buxbaum: Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci, 7(6), 575-80 (2004)
doi:10.1038/nn1258
PMid:15162166
407. A. J. Dwork, B. Mancevski and G. Rosoklija: White matter and cognitive function in schizophrenia. Int J Neuropsychopharmacol, 1-24 (2007)
408. P. Brambilla, M. Bellani, P. H. Yeh and J. C. Soares: Myelination in bipolar patients and the effects of mood stabilizers on brain anatomy. Curr Pharm Des, 15(22), 2632-6 (2009)
doi:10.2174/138161209788957519
PMid:19689333
409. A. M. McIntosh, J. Hall, G. K. Lymer, J. E. Sussmann and S. M. Lawrie: Genetic risk for white matter abnormalities in bipolar disorder. Int Rev Psychiatry, 21(4), 387-93 (2009)
doi:10.1080/09540260902962180
PMid:20374152
410. T. Kieseppa, T. G. van Erp, J. Haukka, T. Partonen, T. D. Cannon, V. P. Poutanen, J. Kaprio and J. Lonnqvist: Reduced left hemispheric white matter volume in twins with bipolar I disorder. Biol Psychiatry, 54(9), 896-905 (2003)
doi:10.1016/S0006-3223(03)00373-1
411. A. C. van der Schot, R. Vonk, R. G. Brans, N. E. van Haren, P. C. Koolschijn, V. Nuboer, H. G. Schnack, G. C. van Baal, D. I. Boomsma, W. A. Nolen, H. E. Hulshoff Pol and R. S. Kahn: Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry, 66(2), 142-51 (2009)
doi:10.1001/archgenpsychiatry.2008.541
PMid:19188536
412. H. E. Hulshoff Pol, R. G. Brans, N. E. van Haren, H. G. Schnack, M. Langen, W. F. Baare, C. J. van Oel and R. S. Kahn: Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol Psychiatry, 55(2), 126-30 (2004)
doi:10.1016/S0006-3223(03)00728-5
413. J. M. Goldstein, S. L. Buka, L. J. Seidman and M. T. Tsuang: Specificity of familial transmission of schizophrenia psychosis spectrum and affective psychoses in the New England family study's high-risk design. Arch Gen Psychiatry, 67(5), 458-67 (2010)
doi:10.1001/archgenpsychiatry.2010.38
PMid:20439827
414. C. L. Beasley, M. Honavar, I. P. Everall and D. Cotter: Two-dimensional assessment of cytoarchitecture in the superior temporal white matter in schizophrenia, major depressive disorder and bipolar disorder. Schizophr Res, 115(2-3), 156-62 (2009)
doi:10.1016/j.schres.2009.09.028
PMid:19833481
415. P. R. Hof, V. Haroutunian, C. Copland, K. L. Davis and J. D. Buxbaum: Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res, 27(10), 1193-200. (2002)
doi:10.1023/A:1020981510759
PMid:12462417
416. A. Schmitt, C. Steyskal, H. G. Bernstein, T. Schneider-Axmann, E. Parlapani, E. L. Schaeffer, W. F. Gattaz, B. Bogerts, C. Schmitz and P. Falkai: Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol, 117(4), 395-407 (2009)
doi:10.1007/s00401-008-0430-y
PMid:18777029
417. V. M. Vostrikov, N. A. Uranova and D. D. Orlovskaya: Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res, 94(1-3), 273-80 (2007)
doi:10.1016/j.schres.2007.04.014
PMid:17566708
418. J. S. Chambers and N. I. Perrone-Bizzozero: Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem Res, 29(12), 2293-302 (2004)
doi:10.1007/s11064-004-7039-x
PMid:15672553
419. S. W. Flynn, D. J. Lang, A. L. Mackay, V. Goghari, I. M. Vavasour, K. P. Whittall, G. N. Smith, V. Arango, J. J. Mann, A. J. Dwork, P. Falkai and W. G. Honer: Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry, 8(9), 811-20 (2003)
doi:10.1038/sj.mp.4001337
PMid:12931208
420. P. R. Hof, V. Haroutunian, V. L. Friedrich, Jr., W. Byne, C. Buitron, D. P. Perl and K. L. Davis: Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry, 53(12), 1075-85. (2003)
doi:10.1016/S0006-3223(03)00237-3
421. E. Parlapani, A. Schmitt, A. Erdmann, H. G. Bernstein, B. Breunig, O. Gruber, G. Petroianu, M. von Wilmsdorff, T. Schneider-Axmann, W. Honer and P. Falkai: Association between myelin basic protein expression and left entorhinal cortex pre-alpha cell layer disorganization in schizophrenia. Brain Res, 1301, 126-134 (2009)
doi:10.1016/j.brainres.2009.09.007
PMid:19747901
422. S. Narayan, S. R. Head, T. J. Gilmartin, B. Dean and E. A. Thomas: Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res, 87(1), 278-88 (2009)
doi:10.1002/jnr.21822
PMid:18683247 PMCid:2606914
423. W. Byne, S. Dracheva, B. Chin, J. M. Schmeidler, K. L. Davis and V. Haroutunian: Schizophrenia and sex associated differences in the expression of neuronal and oligodendrocyte-specific genes in individual thalamic nuclei. Schizophr Res, 98(1-3), 118-28 (2008)
doi:10.1016/j.schres.2007.09.034
PMid:18029146 PMCid:2678297
424. G. Chana, S. Landau, I. Everall and D. Cotter: Glial cell number and nuclear size in the mediodorsal thalamic nucleus (MDNT) in schizophrenia. Schizophr Res, 102(1-3), 344-5 (2008)
doi:10.1016/j.schres.2008.04.021
PMid:18508240
425. L. Marner and B. Pakkenberg: Total length of nerve fibers in prefrontal and global white matter of chronic schizophrenics. J Psychiatr Res, 37(6), 539-47 (2003)
doi:10.1016/S0022-3956(03)00069-4
426. D. Segal, C. Schmitz and P. R. Hof: Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol, 117(4), 385-94 (2009)
doi:10.1007/s00401-008-0379-x
PMid:18438678 PMCid:2656594
427. J. I. Friedman, C. Tang, D. Carpenter, M. Buchsbaum, J. Schmeidler, L. Flanagan, S. Golembo, I. Kanellopoulou, J. Ng, P. R. Hof, P. D. Harvey, N. D. Tsopelas, D. Stewart and K. L. Davis: Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. Am J Psychiatry, 165(8), 1024-32 (2008)
doi:10.1176/appi.ajp.2008.07101640
PMid:18558643
428. T. White, V. A. Magnotta, H. J. Bockholt, S. Williams, S. Wallace, S. Ehrlich, B. A. Mueller, B. C. Ho, R. E. Jung, V. P. Clark, J. Lauriello, J. R. Bustillo, S. C. Schulz, R. L. Gollub, N. C. Andreasen, V. D. Calhoun and K. O. Lim: Global White Matter Abnormalities in Schizophrenia: A Multisite Diffusion Tensor Imaging Study. Schizophr Bull (2009)
429. V. Cheung, C. Cheung, G. M. McAlonan, Y. Deng, J. G. Wong, L. Yip, K. S. Tai, P. L. Khong, P. Sham and S. E. Chua: A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol Med, 38(6), 877-85 (2008)
doi:10.1017/S0033291707001808
430. W. Y. Chan, G. L. Yang, M. Y. Chia, I. Y. Lau, Y. Y. Sitoh, W. L. Nowinski and K. Sim: White matter abnormalities in first-episode schizophrenia: A combined structural MRI and DTI study. Schizophr Res (2010)
431. R. Kanaan, G. Barker, M. Brammer, V. Giampietro, S. Shergill, J. Woolley, M. Picchioni, T. Toulopoulou and P. McGuire: White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry, 194(3), 236-42 (2009)
doi:10.1192/bjp.bp.108.054320
PMid:19252154 PMCid:2802507
432. R. Perez-Iglesias, D. Tordesillas-Gutierrez, G. J. Barker, P. K. McGuire, R. Roiz-Santianez, I. Mata, E. M. de Lucas, F. Quintana, J. L. Vazquez-Barquero and B. Crespo-Facorro: White matter defects in first episode psychosis patients: a voxelwise analysis of diffusion tensor imaging. Neuroimage, 49(1), 199-204
doi:10.1016/j.neuroimage.2009.07.016
PMid:19619664
433. R. Gasparotti, P. Valsecchi, F. Carletti, A. Galluzzo, R. Liserre, B. Cesana and E. Sacchetti: Reduced fractional anisotropy of corpus callosum in first-contact, antipsychotic drug-naive patients with schizophrenia. Schizophr Res (2008)
434. N. A. Uranova, V. M. Vostrikov, O. V. Vikhreva, I. S. Zimina, N. S. Kolomeets and D. D. Orlovskaya: The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol, 1-9 (2007)
435. I. Ellison-Wright and E. Bullmore: Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res, 108(1-3), 3-10 (2009)
doi:10.1016/j.schres.2008.11.021
PMid:19128945
436. M. Wessa, J. Houenou, M. Leboyer, S. Chanraud, C. Poupon, J. L. Martinot and M. L. Paillere-Martinot: Microstructural white matter changes in euthymic bipolar patients: a whole-brain diffusion tensor imaging study. Bipolar Disord, 11(5), 504-14 (2009)
doi:10.1111/j.1399-5618.2009.00718.x
PMid:19624389
437. J. Houenou, M. Wessa, G. Douaud, M. Leboyer, S. Chanraud, M. Perrin, C. Poupon, J. L. Martinot and M. L. Paillere-Martinot: Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol Psychiatry, 12(11), 1001-10 (2007)
doi:10.1038/sj.mp.4002010
PMid:17471288
438. A. Versace, J. R. Almeida, S. Hassel, N. D. Walsh, M. Novelli, C. R. Klein, D. J. Kupfer and M. L. Phillips: Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry, 65(9), 1041-52 (2008)
doi:10.1001/archpsyc.65.9.1041
PMid:18762590 PMCid:2730162
439. D. A. Yurgelun-Todd, M. M. Silveri, S. A. Gruber, M. L. Rohan and P. J. Pimentel: White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord, 9(5), 504-12 (2007)
doi:10.1111/j.1399-5618.2007.00395.x
PMid:17680921
440. M. M. Haznedar, F. Roversi, S. Pallanti, N. Baldini-Rossi, D. B. Schnur, E. M. Licalzi, C. Tang, P. R. Hof, E. Hollander and M. S. Buchsbaum: Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry, 57(7), 733-42 (2005)
doi:10.1016/j.biopsych.2005.01.002
PMid:15820230
441. K. A. Macritchie, A. J. Lloyd, M. E. Bastin, K. Vasudev, P. Gallagher, R. Eyre, I. Marshall, J. M. Wardlaw, I. N. Ferrier, P. B. Moore and A. H. Young: White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry, 196(1), 52-8 (2010)
doi:10.1192/bjp.bp.108.058586
PMid:20044661
442. N. Diazgranados, L. Ibrahim, N. E. Brutsche, A. Newberg, P. Kronstein, S. Khalife, W. A. Kammerer, Z. Quezado, D. A. Luckenbaugh, G. Salvadore, R. Machado-Vieira, H. K. Manji and C. A. Zarate, Jr.: A Randomized Add-on Trial of an N-methyl-D-aspartate Antagonist in Treatment-Resistant Bipolar Depression. Arch Gen Psychiatry, 67(8), 793-802 (2010)
doi:10.1001/archgenpsychiatry.2010.90
PMid:20679587
443. M. J. Hunt, M. Falinska, S. Leski, D. K. Wojcik and S. Kasicki: Differential effects produced by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus accumbens. J Psychopharmacol (2010)
444. K. Orre, M. Wennstrom and A. Tingstrom: Chronic lithium treatment decreases NG2 cell proliferation in rat dentate hilus, amygdala and corpus callosum. Prog Neuropsychopharmacol Biol Psychiatry, 33(3), 503-10 (2009)
doi:10.1016/j.pnpbp.2009.01.015
PMid:19439244
445. T. Minami, K. Nobuhara, G. Okugawa, K. Takase, T. Yoshida, S. Sawada, S. Ha-Kawa, K. Ikeda and T. Kinoshita: Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology, 47(3), 141-5 (2003)
doi:10.1159/000070583
PMid:12759557
446. C. Rio, H. I. Rieff, P. Qi, T. S. Khurana and G. Corfas: Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron, 19(1), 39-50 (1997)
doi:10.1016/S0896-6273(00)80346-3
447. J. Neddens and A. Buonanno: Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus, 20(6), 724-44 (2010)
PMid:19655320 PMCid:2958210
448. C. Beaulieu: The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed, 15(7-8), 435-55 (2002)
doi:10.1002/nbm.782
PMid:12489094
449. C. Aston, L. Jiang and B. P. Sokolov: Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res, 77(6), 858-66 (2004)
doi:10.1002/jnr.20208
PMid:15334603
450. Y. Hakak, J. R. Walker, C. Li, W. H. Wong, K. L. Davis, J. D. Buxbaum, V. Haroutunian and A. A. Fienberg: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. PNAS, 98(8), 4746-4751 (2001)
doi:10.1073/pnas.081071198
PMid:11296301 PMCid:31905
451. P. Katsel, K. L. Davis and V. Haroutunian: Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: A gene ontology study. Schizophr Res, 79(2-3), 157-73 (2005)
doi:10.1016/j.schres.2005.06.007
PMid:16139990
452. D. Martins-de-Souza: Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. J Psychiatr Res (2009)
453. D. Tkachev, M. L. Mimmack, M. M. Ryan, M. Wayland, T. Freeman, P. B. Jones, M. Starkey, M. J. Webster, R. H. Yolken and S. Bahn: Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362(9386), 798-805 (2003)
doi:10.1016/S0140-6736(03)14289-4
454. G. Rajkowska, A. Halaris and L. D. Selemon: Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry, 49(9), 741-52 (2001)
doi:10.1016/S0006-3223(01)01080-0
455. W. T. Regenold, P. Phatak, C. M. Marano, L. Gearhart, C. H. Viens and K. C. Hisley: Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res, 151(3), 179-88 (2007)
doi:10.1016/j.psychres.2006.12.019
PMid:17433451
456. L. L. Altshuler, J. G. Curran, P. Hauser, J. Mintz, K. Denicoff and R. Post: T2 hyperintensities in bipolar disorder: magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiatry, 152(8), 1139-44 (1995)
PMid:7625460
457. J. L. Beyer, R. Young, M. Kuchibhatla and K. R. Krishnan: Hyperintense MRI lesions in bipolar disorder: A meta-analysis and review. Int Rev Psychiatry, 21(4), 394-409 (2009)
doi:10.1080/09540260902962198
PMid:20374153
458. A. Karschin, E. Wischmeyer, N. Davidson and H. A. Lester: Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in oligodendroglia. Eur J Neurosci, 6(11), 1756-64 (1994)
doi:10.1111/j.1460-9568.1994.tb00568.x
PMid:7874315
459. R. Karadottir and D. Attwell: Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience, 145(4), 1426-38 (2007)
doi:10.1016/j.neuroscience.2006.08.070
PMid:17049173 PMCid:2173944
460. M. Kukley, A. Nishiyama and D. Dietrich: The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J Neurosci, 30(24), 8320-31 (2010)
doi:10.1523/JNEUROSCI.0854-10.2010
PMid:20554883
461. A. Etxeberria, J. M. Mangin, A. Aguirre and V. Gallo: Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci, 13(3), 287-9 (2010)
doi:10.1038/nn.2500
PMid:20173746
462. M. Kukley, E. Capetillo-Zarate and D. Dietrich: Vesicular glutamate release from axons in white matter. Nat Neurosci, 10(3), 311-20 (2007)
doi:10.1038/nn1850
PMid:17293860
463. J. M. Mangin, A. Kunze, R. Chittajallu and V. Gallo: Satellite NG2 progenitor cells share common glutamatergic inputs with associated interneurons in the mouse dentate gyrus. J Neurosci, 28(30), 7610-23 (2008)
doi:10.1523/JNEUROSCI.1355-08.2008
PMid:18650338 PMCid:2696165
464. C. Avendano, D. Umbriaco, R. W. Dykes and L. Descarries: Acetylcholine innervation of sensory and motor neocortical areas in adult cat: a choline acetyltransferase immunohistochemical study. J Chem Neuroanat, 11(2), 113-30 (1996)
doi:10.1016/0891-0618(96)00132-9
465. N. Aznavour, K. C. Watkins and L. Descarries: Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: Quantitative light and electron microscopic immunocytochemical study. J Comp Neurol, 486(1), 61-75 (2005)
doi:10.1002/cne.20501
PMid:15834959
466. M. Ligorio, L. Descarries and R. A. Warren: Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat, 37(1), 33-45 (2009)
doi:10.1016/j.jchemneu.2008.08.003
PMid:18773952
467. D. Umbriaco, S. Garcia, C. Beaulieu and L. Descarries: Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus, 5(6), 605-20 (1995)
doi:10.1002/hipo.450050611
PMid:8646286
468. M. Parent, M. J. Wallman and L. Descarries: Distribution and ultrastructural features of the serotonin innervation in rat and squirrel monkey subthalamic nucleus. Eur J Neurosci, 31(7), 1233-42 (2010)
doi:10.1111/j.1460-9568.2010.07143.x
PMid:20345924
469. S. Howard, C. Landry, R. Fisher, O. Bezouglaia, V. Handley and A. Campagnoni: Postnatal localization and morphogenesis of cells expressing the dopaminergic D2 receptor gene in rat brain: expression in non-neuronal cells. J Comp Neurol, 391(1), 87-98 (1998)
doi:10.1002/(SICI)1096-9861(19980202)391:1<87::AID-CNE8>3.0.CO;2-N
470. S. Belachew, B. Rogister, J. M. Rigo, B. Malgrange and G. Moonen: Neurotransmitter-mediated regulation of CNS myelination: a review. Acta Neurol Belg, 99(1), 21-31 (1999)
PMid:10218089
471. E. R. Bongarzone, S. G. Howard, V. Schonmann and A. T. Campagnoni: Identification of the dopamine D3 receptor in oligodendrocyte precursors: potential role in regulating differentiation and myelin formation. J Neurosci, 18(14), 5344-53 (1998)
PMid:9651217
472. C. Rosin, S. Colombo, A. A. Calver, T. E. Bates and S. D. Skaper: Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia, 52(4), 336-43 (2005)
PMid:12111855
473. S. W. Rogers, N. Z. Gregori, N. Carlson, L. C. Gahring and M. Noble: Neuronal nicotinic acetylcholine receptor expression by O2A/oligodendrocyte progenitor cells. Glia, 33(4), 306-13. (2001)
PMid:12436417
474. S. C. MacDonald, R. Simcoff, L. M. Jordan, J. G. Dodd, K. W. Cheng and S. Hochman: A population of oligodendrocytes derived from multipotent neural precursor cells expresses a cholinergic phenotype in culture and responds to ciliary neurotrophic factor. J Neurosci Res, 68(3), 255-64 (2002)
doi:10.1002/jnr.10200
PMid:15210938 PMCid:470758
475. G. Sharma and S. Vijayaraghavan: Nicotinic receptor signaling in nonexcitable cells. J Neurobiol, 53(4), 524-34 (2002)
doi:10.1002/neu.10114
PMid:14970827
476. N. Mechawar, A. Saghatelyan, R. Grailhe, L. Scoriels, G. Gheusi, M. M. Gabellec, P. M. Lledo and J. P. Changeux: Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc Natl Acad Sci U S A, 101(26), 9822-6 (2004)
doi:10.1073/pnas.0403361101
PMid:17986678
477. J. W. Young, K. Finlayson, C. Spratt, H. M. Marston, N. Crawford, J. S. Kelly and J. Sharkey: Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology, 29(5), 891-900 (2004)
doi:10.1038/sj.npp.1300393
478. R. W. Buchanan, R. R. Conley, D. Dickinson, M. P. Ball, S. Feldman, J. M. Gold and R. P. McMahon: Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry, 165(1), 82-9 (2008)
doi:10.1176/appi.ajp.2007.07050724
PMid:20164585
479. J. L. Cummings and C. Back: The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer's disease. Am J Geriatr Psychiatry, 6(2 Suppl 1), S64-78 (1998)
PMid:19821638
480. J. Cummings, M. Emre, D. Aarsland, S. Tekin, N. Dronamraju and R. Lane: Effects of rivastigmine in Alzheimer's disease patients with and without hallucinations. J Alzheimers Dis, 20(1), 301-11 (2010)
481. O. M. Vallersnes, C. Lund, A. K. Duns, H. Netland and I. A. Rasmussen: Epidemic of poisoning caused by scopolamine disguised as Rohypnol tablets. Clin Toxicol (Phila), 47(9), 889-93 (2009)
doi:10.3109/15563650903333804
PMid:19229475
482. I. Cancelli, L. Valentinis, G. Merlino, M. Valente and G. L. Gigli: Drugs with anticholinergic properties as a risk factor for psychosis in patients affected by Alzheimer's disease. Clin Pharmacol Ther, 84(1), 63-8 (2008)
doi:10.1038/sj.clpt.6100435
PMid:15205878
483. I. Cancelli, M. Beltrame, G. L. Gigli and M. Valente: Drugs with anticholinergic properties: cognitive and neuropsychiatric side-effects in elderly patients. Neurol Sci, 30(2), 87-92 (2009)
doi:10.1007/s10072-009-0033-y
PMid:20053170
484. J. I. Friedman: Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl), 174(1), 45-53 (2004)
doi:10.1007/s00213-004-1794-x
PMid:20297855
485. T. T. Money, E. Scarr, M. Udawela, A. S. Gibbons, W. J. Jeon, M. S. Seo and B. Dean: Treating schizophrenia: novel targets for the cholinergic system. CNS Neurol Disord Drug Targets, 9(2), 241-56 (2010)
PMid:18081184
486. S. R. Ribeiz, D. P. Bassitt, J. A. Arrais, R. Avila, D. C. Steffens and C. M. Bottino: Cholinesterase inhibitors as adjunctive therapy in patients with schizophrenia and schizoaffective disorder: a review and meta-analysis of the literature. CNS Drugs, 24(4), 303-17 (2010)
doi:10.2165/11530260-000000000-00000
487. J. F. Bowyer, B. Robinson, S. Ali and L. C. Schmued: Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse, 62(3), 193-204 (2007)
doi:10.1002/syn.20478
PMid:18688210
488. G. Bartzokis, M. Beckson, P. H. Lu, N. Edwards, P. Bridge and J. Mintz: Brain maturation may be arrested in chronic cocaine addicts. Biol Psychiatry, 51(8), 605-11. (2002)
doi:10.1016/S0006-3223(02)01315-X
PMid:11784783
489. N. Ginovart, A. A. Wilson, D. Hussey, S. Houle and S. Kapur: D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal (11C)-raclopride PET study in cats. Neuropsychopharmacology, 34(3), 662-71 (2009)
doi:10.1038/npp.2008.116
490. J. A. Moron, A. Brockington, R. A. Wise, B. A. Rocha and B. T. Hope: Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci, 22(2), 389-95 (2002)
PMid:9502827
491. M. S. Mazei, C. P. Pluto, B. Kirkbride and E. A. Pehek: Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res, 936(1-2), 58-67 (2002)
doi:10.1016/S0006-8993(02)02542-8
PMid:10581325
492. S. R. Sesack, V. A. Hawrylak, C. Matus, M. A. Guido and A. I. Levey: Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci, 18(7), 2697-708 (1998)
PMid:20520724 PMCid:2875391
493. M. Kaenmaki, A. Tammimaki, T. Myohanen, K. Pakarinen, C. Amberg, M. Karayiorgou, J. A. Gogos and P. T. Mannisto: Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem (2010)
494. P. T. Mannisto and S. Kaakkola: Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev, 51(4), 593-628 (1999)
PMid:15457404
495. Y. Sei, Z. Li, J. Song, R. Ren-Patterson, E. M. Tunbridge, Y. Iizuka, M. Inoue, B. T. Alfonso, S. Beltaifa, Y. Nakai, B. S. Kolachana, J. Chen and D. R. Weinberger: Epistatic and functional interactions of catechol-o-methyltransferase (COMT) and AKT1 on neuregulin1-ErbB signaling in cell models. PLoS One, 5(5), e10789 (2010)
doi:10.1371/journal.pone.0010789
PMid:8807664
496. J. Chen, B. K. Lipska, N. Halim, Q. D. Ma, M. Matsumoto, S. Melhem, B. S. Kolachana, T. M. Hyde, M. M. Herman, J. Apud, M. F. Egan, J. E. Kleinman and D. R. Weinberger: Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet, 75(5), 807-21 (2004)
doi:10.1086/425589
497. H. M. Lachman, D. F. Papolos, T. Saito, Y. M. Yu, C. L. Szumlanski and R. M. Weinshilboum: Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243-50 (1996)
doi:10.1097/00008571-199606000-00007
498. G. P. Kaplan, B. K. Hartman and C. R. Creveling: Immunohistochemical demonstration of catechol-o-methyltransferase in mammalian brain. Brain Res, 167(2), 241-50 (1979)
doi:10.1016/0006-8993(79)90819-9
PMid:18574484 PMCid:2811226
499. T. Karhunen, C. Tilgmann, I. Ulmanen and P. Panula: Neuronal and non-neuronal catechol-O-methyltransferase in primary cultures of rat brain cells. Int J Dev Neurosci, 13(8), 825-34 (1995)
doi:10.1016/0736-5748(95)00070-4
PMid:18923401
500. N. Mukherjee, K. K. Kidd, A. J. Pakstis, W. C. Speed, H. Li, Z. Tarnok, C. Barta, S. L. Kajuna and J. R. Kidd: The complex global pattern of genetic variation and linkage disequilibrium at catechol-O-methyltransferase. Mol Psychiatry, 15(2), 216-25 (2010)
doi:10.1038/mp.2008.64
PMid:17707347
501. H. M. Lachman: Does COMT val158met affect behavioral phenotypes: yes, no, maybe? Neuropsychopharmacology, 33(13), 3027-9 (2008)
doi:10.1038/npp.2008.189
PMid:19754458
502. C. M. Diaz-Asper, T. E. Goldberg, B. S. Kolachana, R. E. Straub, M. F. Egan and D. R. Weinberger: Genetic variation in catechol-O-methyltransferase: effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biol Psychiatry, 63(1), 72-9 (2008)
doi:10.1016/j.biopsych.2007.03.031
PMid:19520435
503. S. Y. Lee, S. L. Chen, S. H. Chen, S. Y. Huang, N. S. Tzeng, Y. H. Chang, C. L. Wang, I. H. Lee, T. L. Yeh, Y. K. Yang and R. B. Lu: The COMT and DRD3 genes interacted in bipolar I but not bipolar II disorder. World J Biol Psychiatry (2010)
504. S. H. Fatemi, T. J. Reutiman and T. D. Folsom: The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder. Biochem Soc Trans, 37(Pt 5), 1090-5 (2009)
doi:10.1042/BST0371090
PMid:20053459
505. F. Benedetti, B. Barbini, A. Bernasconi, M. C. Fulgosi, S. Dallaspezia, C. Gavinelli, C. Locatelli, C. Lorenzi, A. Pirovano, D. Radaelli, E. Smeraldi and C. Colombo: Acute antidepressant response to sleep deprivation combined with light therapy is influenced by the catechol-O-methyltransferase Val(108/158)Met polymorphism. J Affect Disord, 121(1-2), 68-72 (2010)
doi:10.1016/j.jad.2009.05.017
PMid:15522252
506. C. Y. Kang, X. F. Xu, Z. Y. Shi, J. Z. Yang, H. Liu and H. H. Xu: Interaction of catechol-O-methyltransferase (COMT) Val108/158 Met genotype and risperidone treatment in Chinese Han patients with schizophrenia. Psychiatry Res, 176(1), 94-5 (2010)
doi:10.1016/j.psychres.2009.02.009
PMid:20357758
507. T. W. Weickert, T. E. Goldberg, A. Mishara, J. A. Apud, B. S. Kolachana, M. F. Egan and D. R. Weinberger: Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry, 56(9), 677-82 (2004)
doi:10.1016/j.biopsych.2004.08.012
PMid:17504246
508. S. Marenco, A. A. Savostyanova, J. W. van der Veen, M. Geramita, A. Stern, A. S. Barnett, B. Kolachana, E. Radulescu, F. Zhang, J. H. Callicott, R. E. Straub, J. Shen and D. R. Weinberger: Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology, 35(8), 1708-17
PMid:19071221 PMCid:2702693
509. S. Ehrlich, E. M. Morrow, J. L. Roffman, S. R. Wallace, M. Naylor, H. J. Bockholt, A. Lundquist, A. Yendiki, B. C. Ho, T. White, D. S. Manoach, V. P. Clark, V. D. Calhoun, R. L. Gollub and D. J. Holt: The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage (2009)
510. J. Zinkstok, N. Schmitz, T. van Amelsvoort, M. Moeton, F. Baas and D. Linszen: Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes Brain Behav, 7(1), 61-9 (2008)
PMid:18615479
511. R. Honea, B. A. Verchinski, L. Pezawas, B. S. Kolachana, J. H. Callicott, V. S. Mattay, D. R. Weinberger and A. Meyer-Lindenberg: Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage, 45(1), 44-51 (2009)
doi:10.1016/j.neuroimage.2008.10.064
512. M. E. Thomason, R. F. Dougherty, N. L. Colich, L. M. Perry, E. I. Rykhlevskaia, H. M. Louro, J. F. Hallmayer, C. E. Waugh, R. Bammer, G. H. Glover and I. H. Gotlib: COMT genotype affects prefrontal white matter pathways in children and adolescents. Neuroimage (2010)
513. J. Li, C. Yu, Y. Li, B. Liu, Y. Liu, N. Shu, M. Song, Y. Zhou, W. Zhu, K. Li and T. Jiang: COMT val158met modulates association between brain white matter architecture and IQ. Am J Med Genet B Neuropsychiatr Genet, 150B(3), 375-80 (2009)
doi:10.1002/ajmg.b.30825
PMid:16443286
514. T. A. Reader, P. Masse and J. de Champlain: The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat. Brain Res, 177(3), 499-513 (1979)
doi:10.1016/0006-8993(79)90467-0
PMid:16214373
515. Y. Bozzi and E. Borrelli: Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci, 29(3), 167-74 (2006)
doi:10.1016/j.tins.2006.01.002
PMid:15917106
516. J. Costas, J. Sanjuan, R. Ramos-Rios, E. Paz, S. Agra, J. L. Ivorra, M. Paramo, J. Brenlla and M. Arrojo: Heterozygosity at catechol-O-methyltransferase Val158Met and schizophrenia: New data and meta-analysis. J Psychiatr Res (2010)
517. J. Hendry, T. Devito, N. Gelman, M. Densmore, N. Rajakumar, W. Pavlosky, P. C. Williamson, P. M. Thompson, D. J. Drost and R. Nicolson: White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage, 29(4), 1049-57 (2006)
doi:10.1016/j.neuroimage.2005.08.039
PMid:12955099
518. D. H. Salat, D. S. Tuch, D. N. Greve, A. J. van der Kouwe, N. D. Hevelone, A. K. Zaleta, B. R. Rosen, B. Fischl, S. Corkin, H. D. Rosas and A. M. Dale: Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging, 26(8), 1215-27 (2005)
doi:10.1016/j.neurobiolaging.2004.09.017
PMid:15236351
519. S. L. Pimlott, M. Piggott, J. Owens, E. Greally, J. A. Court, E. Jaros, R. H. Perry, E. K. Perry and D. Wyper: Nicotinic Acetylcholine Receptor Distribution in Alzheimer's Disease, Dementia with Lewy Bodies, Parkinson's Disease, and Vascular Dementia: In vitro Binding Study Using 5-((125)I)-A-85380. Neuropsychopharmacology, 29(1), 108-16 (2004)
doi:10.1038/sj.npp.1300302
PMid:15331657
520. Y. S. Ding, J. S. Fowler, J. Logan, G. J. Wang, F. Telang, V. Garza, A. Biegon, D. Pareto, W. Rooney, C. Shea, D. Alexoff, N. D. Volkow and F. Vocci: 6-(18F)Fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse, 53(3), 184-9 (2004)
doi:10.1002/syn.20051
PMid:16078234
521. D. B. Vaupel, S. R. Tella, D. L. Huso, V. O. Wagner, 3rd, A. G. Mukhin, S. I. Chefer, A. G. Horti, E. D. London, A. O. Koren and A. S. Kimes: Pharmacological and Toxicological Evaluation of 2-Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a Ligand for Imaging Cerebral Nicotinic Acetylcholine Receptors with Positron Emission Tomography. J Pharmacol Exp Ther, 312(1), 355-65 (2005)
doi:10.1124/jpet.104.073999
PMid:11246229
Key Words: White matter, oligodendrocyte, neuregulin, ErbB, DISC1, nardilysin, apolipoprotein, secretase, medication, degeneration, MRI, Review
Send correspondence to: George Bartzokis, 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA 90095-6968, Tel: 310-206-3207, E-mail:gbar@ucla.edu