Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity
Birgit Strobl1, Dagmar Stoiber2,3, Veronika Sexl4, Mathias Mueller1,5
1
Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria, 2Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Waehringerstrasse 13A, 1090 Vienna, Austria, 3Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria, 4Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria, 5Biomodels Austria, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
TABLE OF CONTENTS
- 1. Abstract
- 2. Introduction
- 3. TYK2 protein structure and regulation
- 4. TYK2 in cytokine signalling
- 4.1. Type I IFN
- 4.2. IL-10 family
- 4.3. IL-12 family
- 4.4. IL-13 and IL-4
- 4.5. IFNgamma and IL-18
- 4.6. Other TYK2-activating cytokines
- 5. Biological functions of TYK2 in specific cell types
- 5.1. B cells and megakaryocytes
- 5.2. Mast cells
- 5.3. Macrophages
- 5.4. Dendritic cells
- 5.5. Natural killer cells and T lymphocytes
- 6. Consequences of TYK2 deficiency in mice
- 6.1. Impact of TYK2 deficiency on infectious diseases
- 6.2. TYK2 in inflammation, allergy and autoimmune diseases
- 6.3. TYK2 and cancer
- 7. TYK2 in human diseases
- 8. Open questions and future perspectives
- 9. Acknowledgements
- 10. References
1. ABSTRACT
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signal transduction pathway is essential to transmit signals from transmembrane receptors to the nucleus in order to alter gene expression programs and to respond to extracellular cues. Tyrosine kinase 2 (TYK2) was the first member of the JAK family that was identified within a screen for molecules complementing human cell lines mutant for interferon (IFN) responses. During the last decades biochemical studies and gene-targeted mice uncovered the crucial role of TYK2 in immunity. Tyk2-deficient mice are viable and fertile but display multiple immunological defects, most prominently high sensitivity to infections and defective tumour surveillance. In contrast, absence of TYK2 results in increased resistance against allergic, autoimmune and inflammatory diseases. In support of these data, the only patient with TYK2 deficiency described so far displays high serum immunoglobulin E (IgE) levels and increased sensitivity to infectious diseases. Furthermore, numerous genome-wide association studies in humans propose a link between TYK2 genetic variants and several autoimmune diseases, inflammatory diseases and tumours. Thus, TYK2 appears as an attractive target for therapeutic intervention. Future work will be required to further delineate structure-function relationships and to fully understand the involvement of TYK2 in immune regulatory networks.
2. INTRODUCTION
Tyrosine kinase 2 (TYK2) has been originally identified and cloned from a lymphoid cDNA screen using the c-fms kinase domain as a probe (1, 2). The involvement of TYK2 in cytokine signalling has been discovered by its ability to complement defects in a mutant human cell line that is unresponsive to interferon (IFN)alpha/beta (3). A similar approach led to the identification of other Janus kinase (JAK) family members and the signal transducers and activators of transcription (STATs) as major components of signal transduction in response to many cytokines, and the JAK/STAT pathway as a paradigm for cytokine signalling (4). Four JAKs (JAK1, JAK2, JAK3 and TYK2) and seven STATs (STAT1-4, STAT5a, STAT5b and STAT6) exist in mammalian cells. JAKs are receptor-associated tyrosine kinases that get activated upon ligand binding to the extracellular domain of the respective receptor complex. JAKs auto- and/or transphosphorylate and phosphorylate receptor chains, which become docking sites for STATs. JAKs then phosphorylate recruited STAT homo- and/or heterodimers, which subsequently translocate to the nucleus and induce transcription of target genes. JAKs specifically associate with different cytokine receptors and act either alone or in combination with other JAK family members. Interestingly, TYK2 is activated in combination with JAK1 and/or JAK2 but not with JAK3. Depending on the cytokine and the cell type, one or up to all seven different STATs can be activated. However, specific STAT complexes dominate the biological responses to a given cytokine and the role of additionally activated STATs is often unknown (5, 6).
Most of the early studies addressing molecular functions of TYK2 have been performed in a human fibrosarcoma cell line lacking TYK2 (U1A) and derivatives thereof (3). Tyk2-deficient mice have been generated by three groups using different targeting strategies, i.e. replacement of the exons encoding part of JH7, JH6-JH5 and part of JH4 (7) or of the first coding exon (8) by a neomycin cassette, or deletion of 3 exons encompassing the 5' non-translated region and the start codon (9). The B10.Q/J (B10.D1-H2q/SgJ) mouse strain, a naturally occurring Tyk2 mutant mouse strain, represents an additional mouse model to study TYK2 functions (10). The B10.Q/J Tyk2 gene contains a single point mutation (G2538A) resulting in a non-conserved amino acid exchange in the pseudokinase domain (E775K). It is not yet clear whether TYK2 protein is absent (10) or just inactive (11) in these mice. Tyk2-deficient mice are viable and fertile, but show multiple and striking immunological phenotypes. This is in contrast to the embryonic and perinatal lethal phenotype of Jak2- and Jak1-deficient mice, as these two JAKs are crucial for signalling of cytokines involved in erythropoietic and neuronal development, respectively (12, 13). Jak3-deficient mice are viable but suffer from severe combined immunodeficiency (SCID) (14, 15), which is due to the essential role of JAK3 in signalling of cytokines essential during haematopoiesis and T cell development.
In this review we summarize the current knowledge about the role of TYK2 in cytokine signalling, the consequences of Tyk2 deficiency in mice and humans and we discuss the challenges for future work.
3. TYK2 PROTEIN STRUCTURE AND REGULATION
The Tyk2 gene is located on chromosome 9 in mice and on chromosome 19 in humans (1, 10). Tyk2 is ubiquitously expressed, although the expression level differs between cell types (http://biogps.gnf.org). The TYK2 protein has around 1200 amino acids and a theoretical molecular weight of approximately 130 kDa (Figure 1). JAKs are multi-domain proteins that share seven homology regions (JH1-JH7). They contain tandem kinase domains, one is an active kinase (carboxyl-terminal JH1) and the other adjacent domain is catalytically inactive and referred to as kinase-like or pseudokinase domain (JH2). Within JH1, conserved dual tyrosine residues are located in the so-called activation-loop, a general characteristic of protein tyrosine kinases. Auto- and/or transphosphorylation by other JAKs is thought to induce conformational changes that usually positively regulate kinase activity and facilitate substrate binding (6). In human TYK2 mutation of these adjacent tyrosine residues (Y1054/Y1055) to phenylalanine does not impair basal catalytic activity of the kinase but completely abolishes ligand-induced activation (16). Lysine 930 (K930) constitutes the ATP binding site of the kinase domain and, consequently, mutation of this site completely abrogates enzyme activity (16). The pseudokinase domain exerts critical regulatory functions (6). Deletion or specific point mutations (V584D, G596V, H669P, R856G) in the pseudokinase domain of TYK2 abolish catalytic activity (17, 18). In contrast, mutation of valine 678 to phenylalanine (V678F) increases TYK2 kinase activity (19, 20).
The N-terminal half of JAK proteins is most divergent and contains a src-homology 2 (SH2) domain (JH3 and part of JH4) with unknown function and a four-point-one, ezrin, radixin, moesin (FERM) homology domain (part of JH4 and JH5-JH7). The FERM domain is a protein-protein interaction domain and is implicated in JAK-receptor interaction and specificity and, at least in the case of JAK2, can regulate kinase activity (6). Extensive analysis of TYK2 deletion mutants using in vitro binding assays identified the major interaction surface of TYK2 with IFNalpha/beta receptor chain 1 (IFNAR1) within the amino acids 21-221 (part of JH6 and JH7), whereas JH3-5 contribute to the stable assembly of TYK2-IFNAR1 complexes (21). Apart from the dual tyrosine residues in the kinase domain, additional phosphorylation sites have been identified by phosphoproteome mapping in human TYK2, namely one tyrosine (Y292) and two serine (S499 and S884) residues (22-26). Potential regulatory functions of these sites remain to be investigated. There are no complete three-dimensional structures available for the JAKs, but the crystal structure of the kinase domains of all JAKs has been solved in their active, inhibitor-bound state (27-30). Theoretical models for the structures of the tandem kinase domains and the full-length protein have been presented for JAK2 (31, 32).
A number of tyrosine phosphatases can inactivate JAKs (33). The SH2 domain-containing phosphatase SHP-1 has been shown to associate with TYK2 (34, 35) and stable transfection of SHP-1 in lymphoblast cell lines promotes TYK2 protein degradation (36). A substrate-trapping mutant of the tyrosine phosphatase PTB1B interacts with JAK2 and TYK2 and PTB1B negatively regulates IFNalpha and IFNgamma signalling (37). The receptor tyrosine phosphatase CD45 can suppress phosphorylation of JAKs1-3 and TYK2 (38), however, the physiological significance of CD45-mediated downregulation of JAK activity needs to be further investigated. JAK activity is also inhibited by members of the suppressor of cytokine signalling (SOCS) protein family (39). SOCS proteins inhibit JAK/STAT signalling either by direct inhibition of JAK activity (e.g. SOCS1), recruitment to the receptor cytoplasmic domain followed by inhibition of JAK activity (e.g. SOCS3), or by competition with STATs for binding to receptor phosphotyrosine motifs (e.g. SOCS2). In addition, SOCS proteins can also target JAKs for proteasomal degradation which is mediated by the interaction of the SOCS box motif with an E3 ubiquitin-ligase complex. Among the SOCS proteins, SOCS1 and SOCS3 can interact with TYK2 (40-42).
Interestingly, several viruses specifically target TYK2 protein and/or activity by as yet unknown mechanisms. The Human Papilloma Virus-18 E6 protein and the Epstein-Barr Virus LMP-1 protein physically associate with TYK2 and impair STAT1/2 activation in response to IFNalpha/beta (43, 44). Sendai virus infection and transfection of the complete Hepatitis Delta Virus genome block TYK2 phosphorylation in response to IFNalpha/beta without affecting JAK1 activity (45, 46).
4. TYK2 IN CYTOKINE SIGNALLING
Type I and type II cytokine receptors are a structurally distinct class of receptors that lack intrinsic kinase activity and specifically associate with certain JAKs. Different cytokines use specific combinations of receptor chains and, consequently, activate different combinations of JAKs. TYK2 associates with IFNAR1, IL-12Rbeta1, IL-10R2, gp130 and IL-13Ralpha1 receptor chains which are utilized by a large number of different cytokines (Figure 2), the respective second receptor chain associates with JAK1 and/or JAK2.
4.1. Type I IFN
The type I IFN family includes more than 20 members, most prominently several IFNalpha subtypes and IFNeta (47, 48). Type I IFNs signal through IFNAR1 and IFNAR2, which associate with TYK2 and JAK1, respectively. STAT1 and STAT2 are the major signal transducing STATs in response to type I IFNs (4, 49). Nevertheless, also all other STATs can be activated and contribute to responses in a cell type-specific manner (50). Mutant human cell lines lacking TYK2 are completely unresponsive to IFNalpha and show reduced responses to IFNbeta (3). This seems to be largely due to a dramatic reduction of IFNAR1 surface expression and the consequent loss of high-affinity IFNalpha binding in the absence of TYK2 (51, 52). Importantly, this is different in murine cells. Fibroblasts and macrophages derived from Tyk2-deficient mice show normal IFNAR1 surface expression and only partially impaired IFNalpha/beta signalling (7-9). In fact, strong effects of Tyk2 deficiency on IFNalpha/beta responses are only observed at low-dose of IFNs in murine fibroblasts and macrophages as monitored by antiviral activity and MHC Class I induction, respectively (8). Recent studies identified a linear endocytic motif in the cytoplasmic domain of human IFNAR1 (53). Binding of TYK2 to this motif prevents ligand-independent IFNAR1 internalisation and thus ensures maintenance of receptor surface expression. Importantly, this motif is absent in murine IFNAR1. In human cells, kinase-inactive TYK2 and deletion mutants lacking either the kinase or the pseudokinase domain restore IFNAR1 surface expression (52). Nevertheless, the pseudokinase domain is involved in the establishment of high-affinity IFNalpha receptor complexes (18). In contrast to the basal IFNAR1 surface expression, TYK2 kinase activity contributes to efficient IFNAR1 ubiquitination and degradation upon ligand-binding (54). With respect to type I IFN-induced signalling in human fibrosarcoma cells, kinase activity of TYK2 appears to be specifically required for IFNbeta-induced STAT3 and IFNAR1 but not for STAT1 and STAT2 phosphorylation (55). Accordingly, TYK2 kinase activity is redundant for the expression of some but not all interferon-stimulated genes (ISGs) in response to IFNbeta (56, 57). Furthermore, TYK2 has a dual role in the activation of STAT5 in response to type I IFN. TYK2 is required for STAT5 phosphorylation (58) but also activates the dual-specificity phosphatase VHR which then selectively dephosphorylates STAT5 (58, 59). Apart from the activation of STATs, IFNs activate a number of additional signalling cascades, some of which depend on TYK2 (60, 61). Moreover, TYK2 has been implicated in the IFN-induced activation of RNA-dependent protein kinase (PKR) (62).
4.2. IL-10 family
Interleukin (IL)-10 signals via IL-10R1 and IL-10R2, which associate with JAK1 and TYK2, respectively. The role of TYK2 in IL-10 signalling is not entirely clear and may be cell type- and/or context-dependent. In macrophages and CD3- splenocytes TYK2 is redundant for IL-10-induced STAT3 activation. IL-10-mediated suppression of TNF production in macrophages, up-regulation of MHC Class II in CD3- splenocytes as well as T cell proliferation in response to IL-2/IL-10 are unchanged in the absence of TYK2 (7, 8). Reduced IL-10-mediated STAT3 activation and reduced suppression of IFNgamma-induced nitrite production has been reported in a later study in Tyk2-deficient thioglycollate-elicited peritoneal macrophages (63). The TYK2-associated IL-10R2 chain is engaged by several additional members of the IL-10 family (i.e. IL-22, IL-26, IFNlambda1, IFNlambda2, and IFNlambda3) (64). These are more recently identified cytokines with only just emerging biological functions and often cell type-restricted expression of the second receptor chain. The role of TYK2 in the respective signalling cascades is still unknown. IFNlambda1, IFNlambda2 and IFNlambda3 (also known as IL-29, IL-28A and IL-28B) are functionally similar to type I IFNs and designated type III IFNs (65).
4.3. IL-12 family
TYK2 associates with IL-12Rbeta1, a receptor chain that is used by two members of the IL-12 family, i.e. the heterodimeric cytokines IL-12 and IL-23 that are composed of the p40 and p35 or p40 and p19 subunits, respectively (66). The second receptor chain for both cytokines (IL-12Rbeta2 and IL-23R, respectively) associates with JAK2. Although STAT1, STAT3, STAT4 and STAT5 can be activated by IL-12 and IL-23, biological responses are mainly mediated by STAT4 in response to IL-12 and STAT3 in response to IL-23. IL-12 signalling is clearly compromised in the absence of TYK2. STAT3 and STAT4 activation are strongly impaired and as a consequence Tyk2-/- activated splenocytes, T cells, natural killer (NK) cells and dendritic cells (DCs) fail to produce IFNgamma in response to IL-12 (7, 8, 67-70). In contrast, IL-12 costimulatory effects on T cell proliferation remain intact in the absence of TYK2 (8). TYK2 is also activated in response to IL-23 (71) and defective IL-23-induced STAT3 activation has been observed in T cell blasts derived from B10.Q/J mice (10). In line with these findings, IL-23-induced IFNgamma production in DCs (68) and IL-23-mediated IL-17 expression in gammadelta T cells and Th17 cells (72, 73) is impaired in the absence of TYK2.
4.4. IL-13 and IL-4
IL-13 can signal via the IL-4 receptor alpha (IL-4Ralpha) and the IL-13 receptor alpha1 (IL-13Ralpha1) chain and uses STAT6 as major signal transducer (74). TYK2 associates with IL-13Ralpha1 (75) and is required for the IL-13-induced 15-lipoxygenase activation in human monocytes (76, 77). IL-13Ralpha1/IL-4Ralpha is also utilized by IL-4 as an alternative receptor complex (74). The contribution of TYK2 to IL-4 responses remains to be determined.
4.5. IFNgamma and IL-18
TYK2 also indirectly impacts on signalling of IFNgamma and IL-18, even though these cytokines do not activate TYK2. IFNgamma signals through IFNGR1 and IFNGR2, which are associated with JAK1 and JAK2, respectively (47). Nevertheless, Tyk2-deficient fibroblasts and macrophages show reduced STAT1 activation in response to IFNgamma, which is most likely caused by a reduced STAT1 protein expression in the absence of TYK2 (7). Importantly, reduced levels of STAT1 protein in Tyk2-deficient cells might also impact on signalling and gene induction by other STAT1-utilizing cytokines. In addition, genes constitutively regulated by unphosphorylated STAT1 (78) might be similarly affected. The IL-18 receptor belongs to the IL-1 receptor superfamily and does not utilize JAKs for signal transduction (79). IL-18-mediated and IL-12/IL-18 synergistic induction of IFNgamma are reduced in TYK2-deficient NK and T cells (67). This is at least partly caused by reduced IL-18 receptor (IL-18R) expression and impaired IL-12-mediated upregulation of IL-18R in the absence of TYK2. It cannot be excluded that other effects, such as cross-talk between the different signalling cascades at either the receptor level or by additionally activated signalling cascades, contribute to this phenotype.
4.6. Other TYK2-activating cytokines
A number of cytokines induce TYK2 phosphorylation but do not require TYK2 for signal transduction. Prominent examples are cytokines sharing the gp130 receptor subunit (IL-6, leukaemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), IL-11, and IL-27) that induce phosphorylation of JAK1, JAK2 and TYK2 (80). TYK2 is redundant for at least IL-6- and LIF-induced STAT3 activation (7, 8, 81). Similarly, TYK2 phosphorylation occurs in response to granulocyte colony-stimulating factor (G-CSF) (82, 83), but neither TYK2 mutant human nor Tyk2-deficient murine cells show any defect in G-CSF responses (7, 82). Also, TYK2 is phosphorylated in response to thrombopoietin (TPO) (84, 85) and enhances TPO receptor surface expression (86), but is not essential for TPO-induced signal transduction (7, 87).
5. BIOLOGICAL FUNCTIONS OF TYK2 IN SPECIFIC CELL TYPES
5.1. B cells and megakaryocytes
Type I IFNs can inhibit cell growth and induce apoptosis in a complex and cell type-specific manner. TYK2 is essential for IFNbeta-induced apoptosis and for IFNlpha- and limitin-induced growth inhibition of murine pro-B cells (88-90). Interestingly, these effects are STAT1-independent and require STAT3. Possibly causatively linked, mitochondrial respiration is reduced in pro-B cells in the absence of TYK2 both before and after IFNbeta treatment (91). TYK2 kinase activity is redundant in resting cells but needed to maintain mitochondrial respiration once cells are exposed to IFNeta. It is currently unclear, how TYK2 influences mitochondrial function, however, in IFNeta-treated cells this is at least partially mediated by STAT3. In addition, IFNalpha and limitin-mediated growth suppression of murine megakaryocytes also requires TYK2 but, in contrast to B lymphocytes, depends on the presence of STAT1 (92).
5.2. Mast cells
Cell type-specific TYK2 functions in type I IFN responses have been reported in murine mast cells as compared to fibroblasts. Mast cells show a stronger dependence on TYK2 for IFNalpha-induced STAT1 phosphorylation and target gene expression (93). Notably, lower levels of Ifnar1 mRNA were reported in these cells and it might be interesting to determine whether receptor density impacts on TYK2 dependence. In addition, mast cells utilize specific and alternative receptor complexes for IL-15 signalling (94). Although IL-15-mediated phosphorylation of TYK2 has been reported (95), the exact role of TYK2 in IL-15 signalling is unclear.
5.3. Macrophages
A number of studies addressed the function of TYK2 in murine macrophage innate immune responses. Already the basal gene and protein expression patterns are influenced by the absence of TYK2 (96-98). At the transcriptome level, this mainly affects type I IFN-inducible genes (96). This is particularly important, since the impact of low-level constitutive type I IFN signalling on innate immune responses is becoming increasingly evident (99-102). Consistently, Tyk2-deficient macrophages show dramatically decreased intrinsic antiviral activity against Murine Cytomegalovirus (MCMV) (103). Autocrine/paracrine actions of type I IFN in response to lipopolysaccharide (LPS) and after MCMV infection are reduced in Tyk2-/- macrophages, especially at early time points (7, 98, 103). Absence of TYK2 likely also results in a reduced IFNalpha/beta production due to an impaired positive amplification loop (98). Moreover, TYK2 affects translational regulatory pathways (104), as Tyk2 deficiency results in enhanced mRNA translation of specific genes (e.g. IL-1beta) after LPS treatment. The mechanism of TYK2-mediated translational suppression is unknown but likely occurs via IFNAR1- and STAT1-dependent mechanisms. This is of particular interest, since type I IFNs can on the one hand globally inhibit mRNA translation (62, 105-107) and on the other hand increase mRNA translation of certain ISGs (108).
5.4. Dendritic cells
In contrast to the TYK2-independent IL-12 production in LPS-treated macrophages (98), DCs require TYK2 to efficiently produce IL-12 and IL-23 in response to LPS or CpG oligodeoxynucleotide stimulation (68). This might be due to an autocrine IL-12 amplification loop acting in DCs (109). Consistent with defective IFNgamma and IL-12 production, Tyk2-deficient DCs fail to promote Th1 differentiation upon antigen stimulation in co-culture experiments and in vivo (68). Despite the impaired production of IL-23, IL-17 production is increased if Tyk2-/- DCs are co-cultured with CD4+ T cells. This may be explained by the impaired IL-12-induced IFNgamma production in the absence of TYK2, since IFNgamma can suppress IL-17 production in T cells (110) and anti-IFNgamma antibodies abolish this effect (68).
5.5. Natural killer cells and T lymphocytes
NK cells have been reported to require TYK2 for the up-regulation of their lytic activity (67). Both, IL-12 and IL-18 triggered cytotoxicity was reduced in Tyk2-/- NK cells when tested against the NK target cell line YAC-1. In line with this, ex vivo derived and IL-2 expanded Tyk2-/- NK cells killed YAC-1 cells as well as lymphoma cells less efficiently (111).
An important role for TYK2 in CD8+ T cell function has been identified in cytotoxic T lymphocyte (CTL) assays (112). Tyk2-deficient CD8+ T cells (on OT-1 background) were described to be significantly less capable of killing antigen (OVA)-expressing target cells (EG7). This defect in antigen-specific target cell lysis was confirmed in in vivo CTL assays. Following immunization with a peptide (OVA257-264) and adjuvant specific killing was significantly decreased in Tyk2-/- mice. This TYK2-dependent defect in CTLs was linked to defective type I IFN signalling since Ifnar1-/- mice mimicked this phenotype.
6. CONSEQUENCES OF TYK2 DEFICIENCY IN MICE
6.1. Impact of Tyk2 deficiency on infectious diseases
Among the cytokines that require TYK2 for signalling, IL-12 and IFNalpha/beta have well established crucial functions in innate and adaptive immune responses to infections. In line with this, Tyk2-/- mice are generally more prone to infectious diseases (Table 1). The most prominent activity of IL-12 in the course of infections is the stimulation of IFNgamma production by NK and T cells (66). In addition, IFNgamma can also be induced by IFNalpha/beta (113, 114). In both cases, transcriptional activation of the Ifngamma gene depends on STAT4, whereby IL-18-derived signals can synergize. The role of IL-23 in infectious diseases is just emerging. Protective functions have for example been reported against viral and bacterial infections, whereas the role during fungal diseases appears to be largely deleterious (115-117).
Efficient host defence against many viruses requires both functional IFNalpha/beta and IL-12 signalling, although to different extents. Tyk2-/- mice fail to efficiently mount CD8+ CTL responses after infection with Lymphocytic Choriomeningitis Virus (LCMV) (7). Consistent with the role of TYK2 in mediating pro-B cell apoptosis in vitro, Tyk2-deficient mice show reduced B cell loss in spleen and bone marrow after LCMV infection (89). Tyk2-/- mice are also compromised in their defence against Vaccinia Virus (VV) infection, as they show increased viral load in spleens after intravenous infection (7). Tyk2-/- mice are highly susceptible to lethal challenge with MCMV and show increased viral titers in the spleen, liver, lung and salivary gland after sublethal MCMV infection (103). A surprisingly modest, if any, effect of Tyk2 deficiency on survival rates is observed after Vesicular Stomatitis Virus (VSV) infection (7), a virus that is mainly controlled by type I IFN-dependent mechanisms (118). It remained unclear whether the reduced IFNalpha/beta responses in the absence of TYK2 suffice to control viral infections in vivo or whether the lack of a clear effect is specific for the VSV infection model used. Further work using other viral infection models is required to address this issue.
With respect to bacterial infections, IL-12 is generally protective (66) whereas IFNalpha/beta can be either sensitizing or protective (119). In the context of Listeria monocytogenes, IFNalpha/beta is clearly deleterious for the host and mice lacking IFNAR1 are less susceptible to intraperitoneal L. monocytogenes infection (120, 121). Despite this fact, survival of Tyk2-/- mice upon L. monocytogenes infection is significantly reduced (122). CD4+ and CD8+ T cells fail to produce IFNgamma in the absence of TYK2 and DC-priming of CD8+ T cells is impaired. TYK2 is also required for antigen-specific CD8+ T cell contraction in a L. monocytogenes infection model (123). More recently, increased bacterial load and defective IL-17 production by gammadelta T cells in response to intraperitoneal Escherichia coli infection were reported in Tyk2-/- mice. IL-23 production is unimpaired but IL-17 expression is reduced and correlates with reduced neutrophil numbers in the peritoneal cavity (72).
Tyk2-deficient mice show increased sensitivity to infection with protozoan pathogens. Tyk2-/- mice develop more severe skin lesions after infection with Leishmania major (70). IFNgamma production of NK and CD8+ T cells is strongly decreased early after infection and NK cells display impaired cytotoxicity. At later stages of infection, IFNgamma production is partially restored and TYK2 is not needed for the eventual control of the disease. A defective IFNgamma production of CD4+ and CD8+ T cells is also observed after Toxoplasma gondii infection in B10.Q/J mice. Again, IFNgamma production occurs only delayed and can be restored by administration of recombinant IL-18 (124).
Summarizing the data obtained so far, the predominant effect of TYK2 deficiency during infections is a delayed or impaired IFNgamma production and the consequences thereof (Figure 3). Besides that, defective IL-23-mediated IL-17 production of gammadelta T cells constitutes another important defect in Tyk2-/- mice which may have important consequences for the defence against various pathogens. It can be speculated that IL-23-mediated maintenance of Th17 cells may also be affected by the absence of TYK2. However, in vivo evidence remains to be provided. Moreover, the partial impairment of IFNalpha/beta responses is likely to contribute to the increased sensitivity to viral infections. Again, the extent of this effect is unclear and needs further evaluation.
6.2. TYK2 in inflammation, allergy and autoimmune diseases
As opposed to infectious diseases, TYK2 mainly acts deleterious in inflammatory and autoimmune diseases (Table 2). Interestingly, this is not the case during contact hypersensitivity and future work is needed to understand the precise role of TYK2 in the underlying signalling networks. Again, the predominant effect of Tyk2 deficiency seems to be an impaired IFNgamma production. Defective IL-23 responses likely also contribute but remain to be investigated in more detail.
Endotoxin shock is characterized by a severe systemic inflammatory response that frequently results in multi-organ dysfunction. Tyk2-/- mice survive high-dose LPS-induced endotoxin shock. IFNgamma and IFNbeta have substantial roles in the susceptibility to LPS, but only Ifnbeta-/- mice display comparable resistance to Tyk2-/- mice (98, 125, 126). Tyk2-/- mice show normal systemic levels of the pro-inflammatory cytokines TNF and IL-1beta, at least early after LPS challenge, but IFNgamma production is strongly impaired (98). However, it is clear that STAT1-independent mechanisms are involved since Stat1-/- mice succumb to a lower dose of LPS than Tyk2-/- mice (98, 125). Furthermore, Tyk2-/- mice show similar but less pronounced defects than Ifnar1-/- mice with respect to the induction of co-stimulatory molecules in splenocytes, but an organ-specific differential defect in inducible nitric oxide synthase expression (127, 128). It is currently unknown whether combinatorial effects of reduced IFNalphabeta signalling and IFNgamma production in Tyk2-/- mice are sufficient to confer the high LPS resistance. Notably, increased resistance of Tyk2-/- mice was also reported in an intestinal ischemia/reperfusion shock model (129).
Up to now, TYK2 has been reported to aggravate autoimmune diseases in two different murine disease models. The Tyk2 mutant B10.Q/J mouse strain is resistant against collagen-induced arthritis (CIA). Lymph node cells from these mice fail to produce IFNgamma in response to antigen stimulation and the mice show reduced production of IgG2a and IgG1 collagen-specific antibodies (69). More recently, two independent studies demonstrated an involvement of TYK2 in the development of experimental autoimmune encephalomyelitis (EAE). B10.Q/J and Tyk2-/- mice show increased resistance against myelin oligodendrocyte glycoprotein (MOG)-induced EAE (73, 130). In Tyk2-/- mice reduced infiltration of macrophages, neutrophils, Th1 cells and Th17 cells in the spinal cord was reported. However, normal numbers of MOG-specific Th17 cells were found in draining lymph nodes (73). This is surprising, since Tyk2-deficient Th17 cells fail to respond to IL-23 in vitro (73) and Il23-/- and Il23R-/- mice have clearly reduced numbers of MOG-specific Th17 cells (131-133). Thus either TYK2 is dispensable for IL-23 responses in vivo or other TYK2-dependent mechanisms counteract the defects. Possibly, reduced levels of IFNgamma in the absence of TYK2 might facilitate the generation of Th17 cells, as IFNgamma inhibits Th17 differentiation (134, 135). Importantly, adoptive transfer experiments demonstrated that TYK2 in T cells is required for the development of EAE, whereas TYK2 in the cellular environment is dispensable, arguing for a crucial role of TYK2 in pathogenic CD4+ T cell responses (73). Surprisingly, reduced IL-6 production was found in B10.Q/J lymph node cells in ex vivo restimulation assays, however, the in vivo relevance of this finding remains to be determined (130). Il6-/- mice show increased resistance against EAE (136-139) and neutralization of IL-6 blocks the development of EAE and the generation of myelin-specific Th17 cells (140). Ifngamma- and Ifngr1-deficient mice display increased sensitivity to EAE (141, 142), but IFNgamma can also act disease promoting (143). In line with the resistance of Tyk2-/- and B10.Q/J mice to EAE, quantitative trait locus (QTL) analyses demonstrated a correlation of TYK2 inactivity with increased central nervous system (CNS) repair in a Theiler's virus infection model (11).
Although TYK2 is not directly involved in the generation of Th2 cells, Th2 differentiation can be inhibited by TYK2-dependent Th1 cell-derived signals. Accordingly, Tyk2-/- mice show increased Th2 development and are highly susceptible to Th2 cell-mediated allergic airway inflammation (144). Tyk2-/- mice show increased antigen-specific IgE production and increased eosinophil and CD4+ T cell recruitment in the airways. In contrast, the number of goblet cells and the expression of a mucin gene after antigen-inhalation were reduced in Tyk2-/- mice. Since IL-13 is crucial for epithelial goblet cell hyperplasia and mucin gene expression (145), these results support in vitro data arguing for an essential role of TYK2 in IL-13 signalling.
Surprisingly, Tyk2-/- mice are highly susceptible to hapten-induced contact hypersensitivity (CHS), a disease that is believed to be promoted by IL-12/IFNgamma. Ear swelling during CHS is increased, whereas levels of IFNgamma and IL-12 at the reaction site are lower and levels of IL-2 and IL-4 higher in the absence of TYK2 (146). Studies with a large number of different knockout mice revealed crucial, sometimes opposing roles of TYK2-activating cytokines in the development of CHS (147) and it will be of interest to determine how TYK2 balances immune responses towards CHS resistance.
6.3. TYK2 and cancer
Thus far, only a few studies addressed the role of TYK2 for tumour development and surveillance (Table 3). The first link of TYK2 to cancer formation has been observed in studies on murine lymphoid malignancies (111). Animals deficient for TYK2 develop Abelson murine leukaemia virus-induced B lymphoid leukaemia/lymphoma as well as Tel-JAK2-induced T lymphoid leukaemia with a higher incidence and shortened latency. The high susceptibility of Tyk2-/- mice to lymphoid tumours was the result of an impaired tumour surveillance rather than a tumour cell intrinsic effect. In particular, Tyk2-deficient NK and NKT cells showed decreased cytotoxic capacity. Later reports verified a role of TYK2 also for T cell-mediated tumour surveillance and showed that Tyk2-/- mice are highly tumour-prone when challenged with tumour cells that are under the control of CTLs such as EL4 cells (112). Although TYK2 was described to be dispensable for the maturation of DCs, in vitro and in vivo assays revealed a severe impairment of CD8+ T cell-mediated cytotoxicity upon Tyk2 deficiency. This reduced CTL-dependent killing could be linked to an impaired type I IFN signalling, since tumours derived from an OVA-expressing derivative of the EL4 cell line (EG7) grew faster in Tyk2-/- and Ifnar1-/-, but not in Ifngamma-/- or Il12p35-/- mice. Further support for this concept comes from a vaccination study using neutralizing antibodies against type I IFN where the importance of type I IFN for the generation of tumour specific CTLs has been determined (148). In contrast to the essential role of TYK2 in tumour surveillance, TYK2 seems to be of less importance for transformation or tumour cell intrinsic effects. The absence of TYK2 neither affects Abelson murine leukaemia virus-induced transformation (111), nor latency in an FLT3-ITD (FLT3 tyrosine kinase-internal tandem duplication) bone marrow transplantation model that leads to lethal myeloproliferative disease/acute myeloid leukaemia (AML) (149). However, TYK2 has been implicated in metastasis and tumour cell infiltration in human patients (150). A similar observation has been made in Emu-Myc transgenic mice, where the lack of TYK2 significantly reduced tumour cell infiltration into the liver, however, the formation of solid B cell lymphomas occurred irrespective of the presence of TYK2 (151). Although the JAK/STAT signalling cascade has been implicated in chemokine signalling, which may be involved in tissue infiltration (152-154), the mechanism of how exactly TYK2 could influence tumour cell invasiveness still needs to be addressed.
7. TYK2 IN HUMAN DISEASES
Up until now, only one patient with TYK2 deficiency has been reported (155). This patient presented with a clinical phenotype overlapping with that of autosomal recessive hyper IgE syndrome, suffered from atopic dermatitis and had recurrently suffered from infectious diseases, including dermal Herpes Simplex Virus infections, oral candidiasis, salmonella gastroenteritis and Bacille Calmette-Guerin (BCG) infection. The TYK2 gene of this patient displayed a homozygous deletion (nt 550-553) causing a frame-shift mutation from the amino acid position 70 (aa70) onwards resulting in a premature stop codon at aa90. No TYK2 protein could be detected in cells derived from this patient and the theoretical truncated protein consists only of parts of the FERM domain. T cells and peripheral blood mononuclear cells (PBMCs) from this patient are completely unresponsive to both IFNbeta and IFNalpha with respect to phosphorylation of STATs1-4 and the induction of IFN target genes, respectively. Neither IFNalpha nor IFNbeta could establish an antiviral state against Herpes Simplex Virus infection in the patient's B cells. Consistent with TYK2 mutant human cell lines, the patient's T cells show reduced IFNAR1 surface expression. Interestingly and as reported for murine cells derived from Tyk2-deficient mice, basal STAT1 protein levels and IFNgamma-mediated gene induction are reduced in patient's cells. Furthermore, the patient's T cells show no detectable STAT4 phosphorylation and reduced IFNgamma secretion in response to IL-23. PBMCs derived from the patient have a reduced induction of SOCS3 by IL-10 and macrophages show reduced inhibition of LPS-induced TNF production by IL-10. In contrast to the redundant role of TYK2 for IL-6-induced STAT3 activation in both human and murine cells, the patient's T cells do not induce SOCS3 in response to IL-6. Consistent with observations in Tyk2-deficient mice, the patient's T cells exhibit a reduced Th1 and accelerated Th2 differentiation in vitro (155).
Over the last years several reports on TYK2 and human cancer have emerged. Overexpression of TYK2 has been found in human breast cancer cell lines (156) and in human tumours, such as prostate cancer and squamous cervical carcinoma (150, 157). In these tissues TYK2 protein levels seem to be specifically elevated in malignant cells compared to the non-transformed surrounding healthy tissue. Importantly, inhibition of TYK2-dependent signalling by siRNA or by employing a TYK2 inhibitor significantly reduced the invasiveness of prostate cancer cells in vitro (150). More recently it was reported that blocking TYK2 activity also inhibits the migration of a cell line originating from breast cancer (158). These data suggest that TYK2 has an important role in facilitating the invasion of malignant cells and that TYK2 inhibition might be a useful strategy to prevent metastatic tissue infiltration. Support for this notion has been obtained in a murine model (see above).
Besides sporadic somatic mutations that accumulate in the developing tumour due to cancer genome instability, a TYK2 single nucleotide polymorphism (SNP) has been associated with tumour formation (159). The polymorphism leads to a pointmutation in the kinase domain of TYK2 (P1104A) and was found in four independent tumour tissues (1 out of 37 breast tumours, 2 out of 9 colon tumours and 1 out of 10 stomach tumours). The TYK2 P1104A variant was also detected in about 7% of AML patient samples using high-throughput re-sequencing of the kinase domains of 26 tyrosine kinases in tumour samples of AML patients (160). Interestingly, expression of the TYK2 P1104A mutant in the TYK2-deficient human cell line U1A demonstrated decreased type I IFN-mediated phosphorylation and presumably decreased kinase activity of TYK2 P1104A. P1104 is one of the first anchoring residues in the helical region of the kinase domain (29). In JAK2 deletion and mutation of structurally important residues in this region have been recently shown to abrogate kinase activity (161). Besides this germline mutation also 10 other non-synonymous sequence variants of TYK2, which are scattered over the whole TYK2 gene, could be identified in this particular approach. By cDNA-based sequence analysis of the entire tyrosine kinase transcriptome of 254 tumour cell lines additional germline but also some somatic mutations of TYK2 could be identified (162). Interestingly, a potential tumour-promoting effect of a TYK2 polymorphism (TYK2 V362F) in brain, haematopoietic and lymphoid system was delineated. In contrast to the most prominent somatic mutation of a Janus kinase (JAK2 V617F), that is frequently associated with myeloproliferative disorders, the homologous mutation of TYK2 (V678F) has not yet been identified in human cancer (19, 163).
Genome-wide association studies in humans furthermore implicated the TYK2 gene locus in a number of other human diseases. TYK2 polymorphisms are associated with an increased risk of systemic lupus erythematosus (164-168) and the TYK2 gene has been identified as susceptibility locus for multiple sclerosis (169-172), Crohn's disease (173, 174), psoriasis (175), and type I diabetes (176). Very recently, the relationship of TYK2 gene polymorphisms and autoimmune/inflammatory diseases has been evaluated using a meta-analysis including 11 individual studies (177). Although these reports are meaningful in regard of our current knowledge about TYK2, these polymorphisms/mutations require further experimental evaluation to finally determine their relevance in disease development and/or progression.
8. OPEN QUESTIONS AND FUTURE PERSPECTIVES
TYK2 has emerged as crucial molecule in cytokine signalling and host immunity. Although thus far TYK2 is predominantly associated with IFNalpha/beta, IL-12 and more recently IL-23 signalling, several other less well-characterized cytokines can be predicted to rely at least partially on TYK2 for signal transduction. Future work will show whether these cytokines (e.g. IL-22, type III IFNs) indeed require TYK2 and how this impacts on immune responses. Another recurrent issue is the cell type specificity of signalling networks. Expression levels of TYK2 and other signalling components are significantly different among cell types and can affect cellular responses. This is of particular importance in situations that require complex integration of multiple or potentially opposing signals. Several lines of evidence exist for kinase-independent functions of JAKs, including TYK2. Consequences of TYK2 kinase-inhibition as opposed to the complete loss of TYK2 protein will require future attention, in particular when considering TYK2 kinase inhibition as target for therapeutic intervention. TYK2-specific inhibitors are currently being developed (29, 178, 179) and might be a useful strategy for the treatment of inflammatory and autoimmune diseases and to prevent tumour cell invasiveness. The very recent and surprising report that JAK2 mediates histone phosphorylation (180) raises the attractive possibility that also other JAK family members exert so far unrecognized biological functions. Finally, further characterization of TYK2 naturally-occuring variants and immunological consequences in human patients is another important future challenge.
9. ACKNOWLEDGEMENTS
We apologize to all authors whose work we were unable to cite. Due to space limitations we were unable to include as many primary publications as we would have liked, instead we refer to a number of excellent reviews. We are grateful to Rita Stiefvater for help with the graphical design of the figures and to Rita Stiefvater and Caroline Lassnig for critically reading the manuscript. MM, VS and BS are supported by the Austrian Science fund (FWF SFB-28) and DS by the Austrian Science Fund (FWF P19534-B13). MM and BS are also supported by the Austrian Federal Ministry for Science and Research (GZ.200.191/1-II/1a/2008 to Biomodels Austria) and GEN-AU II/III ("Austrian Network for Functional Genomics of the Mouse" and "Inflammobiota").
10. REFERENCES
1. Firmbach-Kraft, I., M. Byers, T. Shows, R. Dalla-Favera and J. J. Krolewski: tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene, 5(9), 1329-36 (1990)
PMid:2216457
2. Krolewski, J. J., R. Lee, R. Eddy, T. B. Shows and R. Dalla-Favera: Identification and chromosomal mapping of new human tyrosine kinase genes. Oncogene, 5(3), 277-82 (1990)
PMid:2156206
3. Velazquez, L., M. Fellous, G. R. Stark and S. Pellegrini: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell, 70(2), 313-22 (1992)
doi:10.1016/0092-8674(92)90105-L
PMid:1386289
4. Darnell, J. E., Jr., I. M. Kerr and G. R. Stark: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 264(5164), 1415-21 (1994)
doi:10.1126/science.8197455
PMid:8197455
5. Levy, D. E. and J. E. Darnell, Jr.: Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol, 3(9), 651-62 (2002)
doi:10.1038/nrm909
PMid:12209125
6. Ghoreschi, K., A. Laurence and J. J. O'Shea: Janus kinases in immune cell signaling. Immunol Rev, 228(1), 273-87 (2009)
doi:10.1111/j.1600-065X.2008.00754.x
PMid:19290934 PMCid:2782696
7. Karaghiosoff, M., H. Neubauer, C. Lassnig, P. Kovarik, H. Schindler, H. Pircher, B. Mccoy, C. Bogdan, T. Decker, G. Brem, K. Pfeffer and M. Muller: Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity, 13(4), 549-60 (2000)
doi:10.1016/S1074-7613(00)00054-6
PMid:11070173
8. Shimoda, K., K. Kato, K. Aoki, T. Matsuda, A. Miyamoto, M. Shibamori, M. Yamashita, A. Numata, K. Takase, S. Kobayashi, S. Shibata, Y. Asano, H. Gondo, K. Sekiguchi, K. Nakayama, T. Nakayama, T. Okamura, S. Okamura and Y. Niho: Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity, 13(4), 561-71 (2000)
doi:10.1016/S1074-7613(00)00055-8
PMid:11070174
9. Sheehan, K. C., K. S. Lai, G. P. Dunn, A. T. Bruce, M. S. Diamond, J. D. Heutel, C. Dungo-Arthur, J. A. Carrero, J. M. White, P. J. Hertzog and R. D. Schreiber: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res, 26(11), 804-19 (2006)
doi:10.1089/jir.2006.26.804
PMid:17115899
10. Shaw, M. H., V. Boyartchuk, S. Wong, M. Karaghiosoff, J. Ragimbeau, S. Pellegrini, M. Muller, W. F. Dietrich and G. S. Yap: A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Natl Acad Sci U S A, 100(20), 11594-9 (2003)
doi:10.1073/pnas.1930781100
PMid:14500783 PMCid:208803
11. Bieber, A. J., K. Suwansrinon, J. Kerkvliet, W. Zhang, L. R. Pease and M. Rodriguez: Allelic variation in the Tyk2 and EGF genes as potential genetic determinants of CNS repair. Proc Natl Acad Sci U S A, 107(2), 792-7 (2010)
doi:10.1073/pnas.0906589107
PMid:20080754 PMCid:2818917
12. Neubauer, H., A. Cumano, M. Muller, H. Wu, U. Huffstadt and K. Pfeffer: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell, 93(3), 397-409 (1998)
doi:10.1016/S0092-8674(00)81168-X
PMid: 9590174
13. Rodig, S. J., M. A. Meraz, J. M. White, P. A. Lampe, J. K. Riley, C. D. Arthur, K. L. King, K. C. Sheehan, L. Yin, D. Pennica, E. M. Johnson, Jr. and R. D. Schreiber: Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell, 93(3), 373-83 (1998)
doi:10.1016/S0092-8674(00)81166-6
PMid:9590172
14. Thomis, D. C., C. B. Gurniak, E. Tivol, A. H. Sharpe and L. J. Berg: Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science, 270(5237), 794-7 (1995)
doi:10.1126/science.270.5237.794
PMid:7481767
15. Nosaka, T., J.M.A. van Deursen, R.A. Tripp, W.E. Thierfelder, B.A. Witthuhn, A.P. McMickle, P.C. Doherty, G.C. Grosveld, J.N. Ihle: Defective lymphoid development in mice lacking Jak3. Science, 270(5237), 800-802 (1995)
doi:10.1126/science.270.5237.800
PMid: 7481769
16. Gauzzi, M. C., L. Velazquez, R. Mckendry, K. E. Mogensen, M. Fellous and S. Pellegrini: Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem, 271(34), 20494-500 (1996)
doi:10.1074/jbc.271.34.20494
PMid:8702790
17. Velazquez, L., K. E. Mogensen, G. Barbieri, M. Fellous, G. Uze and S. Pellegrini: Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem, 270(7), 3327-34 (1995)
doi:10.1074/jbc.270.7.3327
PMid:7531704
18. Yeh, T. C., E. Dondi, G. Uze and S. Pellegrini: A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling. Proc Natl Acad Sci U S A, 97(16), 8991-6 (2000)
doi:10.1073/pnas.160130297
PMid:10908660 PMCid:16809
19. Staerk, J., A. Kallin, J. B. Demoulin, W. Vainchenker and S. N. Constantinescu: JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem, 280(51), 41893-9 (2005)
doi:10.1074/jbc.C500358200
PMid:16239216
20. Gakovic, M., J. Ragimbeau, V. Francois, S. N. Constantinescu and S. Pellegrini: The Stat3-activating Tyk2 V678F mutant does not up-regulate signaling through the type I interferon receptor but confers ligand hypersensitivity to a homodimeric receptor. J Biol Chem, 283(27), 18522-9 (2008)
doi:10.1074/jbc.M801427200
Pmid: 18456658
21. Richter, M. F., G. Dumenil, G. Uze, M. Fellous and S. Pellegrini: Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem, 273(38), 24723-9 (1998)
doi:10.1074/jbc.273.38.24723
PMid:9733772
22. Daub, H., J. V. Olsen, M. Bairlein, F. Gnad, F. S. Oppermann, R. Korner, Z. Greff, G. Keri, O. Stemmann and M. Mann: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell, 31(3), 438-48 (2008)
doi:10.1016/j.molcel.2008.07.007
PMid:18691976
23. Heibeck, T. H., S. J. Ding, L. K. Opresko, R. Zhao, A. A. Schepmoes, F. Yang, A. V. Tolmachev, M. E. Monroe, D. G. Camp, 2nd, R. D. Smith, H. S. Wiley and W. J. Qian: An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J Proteome Res, 8(8), 3852-61 (2009)
doi:10.1021/pr900044c
PMid:19534553
24. Oppermann, F. S., F. Gnad, J. V. Olsen, R. Hornberger, Z. Greff, G. Keri, M. Mann and H. Daub: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics, 8(7), 1751-64 (2009)
doi:10.1074/mcp.M800588-MCP200
PMid:19369195 PMCid:2709199
25. Rikova, K., A. Guo, Q. Zeng, A. Possemato, J. Yu, H. Haack, J. Nardone, K. Lee, C. Reeves, Y. Li, Y. Hu, Z. Tan, M. Stokes, L. Sullivan, J. Mitchell, R. Wetzel, J. Macneill, J. M. Ren, J. Yuan, C. E. Bakalarski, J. Villen, J. M. Kornhauser, B. Smith, D. Li, X. Zhou, S. P. Gygi, T. L. Gu, R. D. Polakiewicz, J. Rush and M. J. Comb: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190-203 (2007)
doi:10.1016/j.cell.2007.11.025
PMid:18083107
26. Zheng, H., P. Hu, D. F. Quinn and Y. K. Wang: Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol Cell Proteomics, 4(6), 721-30 (2005)
doi:10.1074/mcp.M400077-MCP200
PMid:15659558
27. Lucet, I. S., E. Fantino, M. Styles, R. Bamert, O. Patel, S. E. Broughton, M. Walter, C. J. Burns, H. Treutlein, A. F. Wilks and J. Rossjohn: The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood, 107(1), 176-83 (2006)
doi:10.1182/blood-2005-06-2413
PMid:16174768
28. Boggon, T. J., Y. Li, P. W. Manley and M. J. Eck: Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood, 106(3), 996-1002 (2005)
doi:10.1182/blood-2005-02-0707
PMid:15831699 PMCid:1895152
29. Chrencik, J. E., A. Patny, I. K. Leung, B. Korniski, T. L. Emmons, T. Hall, R. A. Weinberg, J. A. Gormley, J. M. Williams, J. E. Day, J. L. Hirsch, J. R. Kiefer, J. W. Leone, H. D. Fischer, C. D. Sommers, H. C. Huang, E. J. Jacobsen, R. E. Tenbrink, A. G. Tomasselli and T. E. Benson: Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J Mol Biol, 400(3), 413-33 (2010)
doi:10.1016/j.jmb.2010.05.020
PMid:20478313
30. Williams, N. K., R. S. Bamert, O. Patel, C. Wang, P. M. Walden, A. F. Wilks, E. Fantino, J. Rossjohn and I. S. Lucet: Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol, 387(1), 219-32 (2009)
doi:10.1016/j.jmb.2009.01.041
PMid:19361440
31. Lindauer, K., T. Loerting, K. R. Liedl and R. T. Kroemer: Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng, 14(1), 27-37 (2001)
doi:10.1093/protein/14.1.27
PMid:11287676
32. Giordanetto, F. and R. T. Kroemer: Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng, 15(9), 727-37 (2002)
doi:10.1093/protein/15.9.727
PMid: 12456871
33. Xu, D. and C. K. Qu: Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci, 13, 4925-32 (2008)
doi:10.2741/3051
PMid:18508557 PMCid:2599796
34. Tabrizi, M., W. Yang, H. Jiao, E. M. Devries, L. C. Platanias, M. Arico and T. Yi: Reduced Tyk2/SHP-1 interaction and lack of SHP-1 mutation in a kindred of familial hemophagocytic lymphohistiocytosis. Leukemia, 12(2), 200-6 (1998)
doi:10.1038/sj.leu.2400949
PMid:9519782
35. Yetter, A., S. Uddin, J. J. Krolewski, H. Jiao, T. Yi and L. C. Platanias: Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J Biol Chem, 270(31), 18179-82 (1995)
doi:10.1074/jbc.270.31.18179
PMid:7629131
36. Wu, C., Q. Guan, Y. Wang, Z. J. Zhao and G. W. Zhou: SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem, 90(5), 1026-37 (2003)
doi:10.1002/jcb.10727
PMid:14624462
37. Myers, M. P., J. N. Andersen, A. Cheng, M. L. Tremblay, C. M. Horvath, J. P. Parisien, A. Salmeen, D. Barford and N. K. Tonks: TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem, 276(51), 47771-4 (2001)
doi: 10.1074/jbc.C100583200
PMid:11694501
38. Irie-Sasaki, J., T. Sasaki, W. Matsumoto, A. Opavsky, M. Cheng, G. Welstead, E. Griffiths, C. Krawczyk, C. D. Richardson, K. Aitken, N. Iscove, G. Koretzky, P. Johnson, P. Liu, D. M. Rothstein and J. M. Penninger: CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature, 409(6818), 349-54 (2001)
doi:10.1038/35053086
PMid:11201744
39. Croker, B. A., H. Kiu and S. E. Nicholson: SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol, 19(4), 414-22 (2008)
doi:10.1016/j.semcdb.2008.07.010
PMid:18708154 PMCid:2597703
40. Narazaki, M., M. Fujimoto, T. Matsumoto, Y. Morita, H. Saito, T. Kajita, K. Yoshizaki, T. Naka and T. Kishimoto: Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci U S A, 95(22), 13130-4 (1998)
doi:10.1073/pnas.95.22.13130
PMid:9789053 PMCid:23734
41. Sakamoto, H., H. Yasukawa, M. Masuhara, S. Tanimura, A. Sasaki, K. Yuge, M. Ohtsubo, A. Ohtsuka, T. Fujita, T. Ohta, Y. Furukawa, S. Iwase, H. Yamada and A. Yoshimura: A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood, 92(5), 1668-76 (1998)
PMid:9716595
42. Zeng, B., H. Li, Y. Liu, Z. Zhang, Y. Zhang and R. Yang: Tumor-induced suppressor of cytokine signaling 3 inhibits toll-like receptor 3 signaling in dendritic cells via binding to tyrosine kinase 2. Cancer Res, 68(13), 5397-404 (2008)
doi:10.1158/0008-5472.CAN-07-6792
PMid:18593942
43. Li, S., S. Labrecque, M. C. Gauzzi, A. R. Cuddihy, A. H. Wong, S. Pellegrini, G. J. Matlashewski and A. E. Koromilas: The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene, 18(42), 5727-37 (1999)
doi:10.1038/sj.onc.1202960
PMid:10523853
44. Geiger, T. R. and J. M. Martin: The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. J Virol, 80(23), 11638-50 (2006)
doi:10.1128/JVI.01570-06
PMid:16987978 PMCid:1642610
45. Pugnale, P., V. Pazienza, K. Guilloux and F. Negro: Hepatitis delta virus inhibits alpha interferon signaling. Hepatology, 49(2), 398-406 (2009)
doi:10.1002/hep.22654
PMid:19085955
46. Komatsu, T., K. Takeuchi, J. Yokoo, Y. Tanaka and B. Gotoh: Sendai virus blocks alpha interferon signaling to signal transducers and activators of transcription. J Virol, 74(5), 2477-80 (2000)
doi:10.1128/JVI.74.5.2477-2480.2000
PMid:10666284 PMCid:111735
47. Pestka, S., C. D. Krause and M. R. Walter: Interferons, interferon-like cytokines, and their receptors. Immunol Rev, 202, 8-32 (2004)
doi:10.1111/j.0105-2896.2004.00204.x
PMid: 15546383
48. Chen, J., E. Baig and E. N. Fish: Diversity and relatedness among the type I interferons. J Interferon Cytokine Res, 24(12), 687-98 (2004)
doi:10.1089/jir.2004.24.687
PMid:15684736
49. Schindler, C. and C. Plumlee: Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol, 19(4), 311-8 (2008)
doi:10.1016/j.semcdb.2008.08.010
PMid:18765289 PMCid:2741134
50. Van Boxel-Dezaire, A. H., M. R. Rani and G. R. Stark: Complex modulation of cell type-specific signaling in response to type I interferons. Immunity, 25(3), 361-72 (2006)
doi:10.1016/j.immuni.2006.08.014
PMid:16979568
51. Gauzzi, M. C., G. Barbieri, M. F. Richter, G. Uze, L. Ling, M. Fellous and S. Pellegrini: The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc Natl Acad Sci U S A, 94(22), 11839-44 (1997)
doi:10.1073/pnas.94.22.11839
PMid:9342324 PMCid:23625
52. Ragimbeau, J., E. Dondi, A. Alcover, P. Eid, G. Uze and S. Pellegrini: The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J, 22(3), 537-47 (2003)
doi:10.1093/emboj/cdg038
PMid:12554654 PMCid:140723
53. Kumar, K. G., B. Varghese, A. Banerjee, D. P. Baker, S. N. Constantinescu, S. Pellegrini and S. Y. Fuchs: Basal ubiquitin-independent internalization of interferon alpha receptor is prevented by Tyk2-mediated masking of a linear endocytic motif. J Biol Chem, 283(27), 18566-72 (2008)
doi:10.1074/jbc.M800991200
PMid:18474601 PMCid: 2441555
54. Marijanovic, Z., J. Ragimbeau, K. G. Kumar, S. Y. Fuchs and S. Pellegrini: TYK2 activity promotes ligand-induced IFNAR1 proteolysis. Biochem J, 397(1), 31-8 (2006)
doi:10.1042/BJ20060272
PMid: 16551269 PMCid:1479745
55. Rani, M. R., D. W. Leaman, Y. Han, S. Leung, E. Croze, E. N. Fish, A. Wolfman and R. M. Ransohoff: Catalytically active TYK2 is essential for interferon-beta-mediated phosphorylation of STAT3 and interferon-alpha receptor-1 (IFNAR-1) but not for activation of phosphoinositol 3-kinase. J Biol Chem, 274(45), 32507-11 (1999)
doi:10.1074/jbc.274.45.32507
PMid:10542297
56. Rani, M. R., C. Gauzzi, S. Pellegrini, E. N. Fish, T. Wei and R. M. Ransohoff: Induction of beta-R1/I-TAC by interferon-beta requires catalytically active TYK2. J Biol Chem, 274(4), 1891-7 (1999)
doi:10.1074/jbc.274.4.1891
PMid:9890942
57. Rani, M. R., S. Pandalai, J. Shrock, A. Almasan and R. M. Ransohoff: Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. J Interferon Cytokine Res, 27(9), 767-79 (2007)
doi:10.1089/jir.2007.0005
PMid:17892398
58. Fish, E. N., S. Uddin, M. Korkmaz, B. Majchrzak, B. J. Druker and L. C. Platanias: Activation of a CrkL-stat5 signaling complex by type I interferons. J Biol Chem, 274(2), 571-3 (1999)
doi:10.1074/jbc.274.2.571
PMid:9872990
59. Hoyt, R., W. Zhu, F. Cerignoli, A. Alonso, T. Mustelin and M. David: Cutting edge: selective tyrosine dephosphorylation of interferon-activated nuclear STAT5 by the VHR phosphatase. J Immunol, 179(6), 3402-6 (2007)
PMid:17785772
60. Platanias, L. C.: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol, 5(5), 375-86 (2005)
doi:10.1038/nri1604
PMid:15864272
61. Yang, C. H., A. Murti, W. J. Valentine, Z. Du and L. M. Pfeffer: Interferon alpha activates NF-kappaB in JAK1-deficient cells through a TYK2-dependent pathway. J Biol Chem, 280(27), 25849-53 (2005)
doi:10.1074/jbc.M413721200
PMid:15883164 PMCid:1193649
62. Su, Q., S. Wang, D. Baltzis, L. K. Qu, J. F. Raven, S. Li, A. H. Wong and A. E. Koromilas: Interferons induce tyrosine phosphorylation of the eIF2alpha kinase PKR through activation of Jak1 and Tyk2. EMBO Rep, 8(3), 265-70 (2007)
doi:10.1038/sj.embor.7400891
PMid:17290288 PMCid:1808029
63. Shaw, M. H., G. J. Freeman, M. F. Scott, B. A. Fox, D. J. Bzik, Y. Belkaid and G. S. Yap: Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma-dependent IL-10 reactivation. J Immunol, 176(12), 7263-71 (2006)
PMid:16751369
64. Commins, S., J. W. Steinke and L. Borish: The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol, 121(5), 1108-11 (2008)
doi:10.1016/j.jaci.2008.02.026
PMid:18405958
65. Uze, G. and D. Monneron: IL-28 and IL-29: newcomers to the interferon family. Biochimie, 89(6-7), 729-34 (2007)
doi:10.1016/j.biochi.2007.01.008
PMid:17367910
66. Watford, W. T., B. D. Hissong, J. H. Bream, Y. Kanno, L. Muul and J. J. O'Shea: Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev, 202, 139-56 (2004)
doi:10.1111/j.0105-2896.2004.00211.x
PMid:15546391
67. Shimoda, K., H. Tsutsui, K. Aoki, K. Kato, T. Matsuda, A. Numata, K. Takase, T. Yamamoto, H. Nukina, T. Hoshino, Y. Asano, H. Gondo, T. Okamura, S. Okamura, K. Nakayama, K. Nakanishi, Y. Niho and M. Harada: Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood, 99(6), 2094-9 (2002)
doi:10.1182/blood.V99.6.2094
PMid:11877284
68. Tokumasa, N., A. Suto, S. Kagami, S. Furuta, K. Hirose, N. Watanabe, Y. Saito, K. Shimoda, I. Iwamoto and H. Nakajima: Expression of Tyk2 in dendritic cells is required for IL-12, IL-23, and IFN-gamma production and the induction of Th1 cell differentiation. Blood, 110(2), 553-60 (2007)
doi:10.1182/blood-2006-11-059246
PMid:17395783
69. Ortmann, R., R. Smeltz, G. Yap, A. Sher and E. M. Shevach: A heritable defect in IL-12 signaling in B10.Q/J mice. I. In vitro analysis. J Immunol, 166(9), 5712-9 (2001)
PMid:11313413
70. Schleicher, U., J. Mattner, M. Blos, H. Schindler, M. Rollinghoff, M. Karaghiosoff, M. Muller, G. Werner-Felmayer and C. Bogdan: Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol, 34(2), 519-29 (2004)
doi:10.1002/eji.200324465
PMid:14768057
71. Parham, C., M. Chirica, J. Timans, E. Vaisberg, M. Travis, J. Cheung, S. Pflanz, R. Zhang, K. P. Singh, F. Vega, W. To, J. Wagner, A. M. O'Farrell, T. Mcclanahan, S. Zurawski, C. Hannum, D. Gorman, D. M. Rennick, R. A. Kastelein, R. De Waal Malefyt and K. W. Moore: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol, 168(11), 5699-708 (2002)
PMid:12023369
72. Nakamura, R., K. Shibata, H. Yamada, K. Shimoda, K. Nakayama and Y. Yoshikai: Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by gammadelta T cells. J Immunol, 181(3), 2071-5 (2008)
PMid:18641345
73. Oyamada, A., H. Ikebe, M. Itsumi, H. Saiwai, S. Okada, K. Shimoda, Y. Iwakura, K. I. Nakayama, Y. Iwamoto, Y. Yoshikai and H. Yamada: Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis. J Immunol, 183(11), 7539-46 (2009)
doi:10.4049/jimmunol.0902740
PMid:19917699
74. Hershey, G. K.: IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol, 111(4), 677-90 (2003)
doi:10.1067/mai.2003.1333
PMid:12704343
75. Roy, B., A. Bhattacharjee, B. Xu, D. Ford, A. L. Maizel and M. K. Cathcart: IL-13 signal transduction in human monocytes: phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats. J Leukoc Biol, 72(3), 580-9 (2002)
PMid:12223527
76. Roy, B. and M. K. Cathcart: Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J Biol Chem, 273(48), 32023-9 (1998)
doi:10.1074/jbc.273.48.32023
PMid:9822675
77. Bhattacharjee, A., A. Mulya, S. Pal, B. Roy, G. M. Feldman and M. K. Cathcart: Monocyte 15-lipoxygenase gene expression requires ERK1/2 MAPK activity. J Immunol, 185(9), 5211-24 (2010)
doi:10.4049/jimmunol.1000514
PMid:20861348
78. Yang, J. and G. R. Stark: Roles of unphosphorylated STATs in signaling. Cell Res, 18(4), 443-51 (2008)
doi:10.1038/cr.2008.41
PMid: 18364677
79. Dinarello, C. A. and G. Fantuzzi: Interleukin-18 and host defense against infection. J Infect Dis, 187 Suppl 2, S370-84 (2003)
doi:10.1086/374751
PMid:12792854
80. Stahl, N., T. G. Boulton, T. Farruggella, N. Y. Ip, S. Davis, B. A. Witthuhn, F. W. Quelle, O. Silvennoinen, G. Barbieri, S. Pellegrini, J. N. Ihle and G. D. Yancopoulos: Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science, 263(5143), 92-5 (1994)
doi:10.1126/science.8272873
PMid:8272873
81. Chung, B. M., H. C. Kang, S. Y. Han, H. S. Heo, J. J. Lee, J. Jeon, J. Y. Lim, I. Shin, S. H. Hong, Y. S. Cho and C. G. Kim: Jak2 and Tyk2 are necessary for lineage-specific differentiation, but not for the maintenance of self-renewal of mouse embryonic stem cells. Biochem Biophys Res Commun, 351(3), 682-8 (2006)
doi:10.1016/j.bbrc.2006.10.081
PMid:17078929
82. Shimoda, K., J. Feng, H. Murakami, S. Nagata, D. Watling, N. C. Rogers, G. R. Stark, I. M. Kerr and J. N. Ihle: Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood, 90(2), 597-604 (1997)
PMid:9226159
83. Marino, V. J. and L. P. Roguin: The granulocyte colony stimulating factor (G-CSF) activates Jak/STAT and MAPK pathways in a trophoblastic cell line. J Cell Biochem, 103(5), 1512-23 (2008)
doi:10.1002/jcb.21542
PMid:17879956
84. Ezumi, Y., H. Takayama and M. Okuma: Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS Lett, 374(1), 48-52 (1995)
doi:10.1016/0014-5793(95)01072-M
PMid:7589510
85. Sattler, M., M. A. Durstin, D. A. Frank, K. Okuda, K. Kaushansky, R. Salgia and J. D. Griffin: The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp Hematol, 23(9), 1040-8 (1995)
PMid:7543416
86. Royer, Y., J. Staerk, M. Costuleanu, P. J. Courtoy and S. N. Constantinescu: Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem, 280(29), 27251-61 (2005)
doi:10.1074/jbc.M501376200
PMid:15899890
87. Drachman, J. G., K. M. Millett and K. Kaushansky: Thrombopoietin signal transduction requires functional JAK2, not TYK2. J Biol Chem, 274(19), 13480-4 (1999)
doi:10.1074/jbc.274.19.13480
PMid:10224114
88. Shimoda, K., K. Kamesaki, A. Numata, K. Aoki, T. Matsuda, K. Oritani, S. Tamiya, K. Kato, K. Takase, R. Imamura, T. Yamamoto, T. Miyamoto, K. Nagafuji, H. Gondo, S. Nagafuchi, K. Nakayama and M. Harada: Cutting edge: tyk2 is required for the induction and nuclear translocation of Daxx which regulates IFN-alpha-induced suppression of B lymphocyte formation. J Immunol, 169(9), 4707-11 (2002)
PMid:12391177
89. Gamero, A. M., R. Potla, J. Wegrzyn, M. Szelag, A. E. Edling, K. Shimoda, D. C. Link, J. Dulak, D. P. Baker, Y. Tanabe, J. M. Grayson and A. C. Larner: Activation of Tyk2 and Stat3 is required for the apoptotic actions of interferon-beta in primary pro-B cells. J Biol Chem, 281(24), 16238-44 (2006)
doi:10.1074/jbc.M509516200
PMid:16601124
90. Aoki, K., K. Shimoda, K. Oritani, T. Matsuda, K. Kamezaki, R. Muromoto, A. Numata, S. Tamiya, T. Haro, F. Ishikawa, K. Takase, T. Yamamoto, T. Yumioka, T. Miyamoto, K. Nagafuji, H. Gondo, S. Nagafuchi, K. Nakayama and M. Harada: Limitin, an interferon-like cytokine, transduces inhibitory signals on B-cell growth through activation of Tyk2, but not Stat1, followed by induction and nuclear translocation of Daxx. Exp Hematol, 31(12), 1317-22 (2003)
doi:10.1016/j.exphem.2003.08.011
PMid:14662340
91. Potla, R., T. Koeck, J. Wegrzyn, S. Cherukuri, K. Shimoda, D. P. Baker, J. Wolfman, S. M. Planchon, C. Esposito, B. Hoit, J. Dulak, A. Wolfman, D. Stuehr and A. C. Larner: Tyk2 tyrosine kinase expression is required for the maintenance of mitochondrial respiration in primary pro-B lymphocytes. Mol Cell Biol, 26(22), 8562-71 (2006)
doi:10.1128/MCB.00497-06
PMid:16982690 PMCid:1636766
92. Ishida, N., K. Oritani, M. Shiraga, H. Yoshida, S. Kawamoto, H. Ujiie, H. Masaie, M. Ichii, Y. Tomiyama and Y. Kanakura: Differential effects of a novel IFN-zeta/limitin and IFN-alpha on signals for Daxx induction and Crk phosphorylation that couple with growth control of megakaryocytes. Exp Hematol, 33(4), 495-503 (2005)
doi:10.1016/j.exphem.2005.01.002
PMid:15781341
93. Mori, Y., K. Hirose, K. Suzuki, H. Nakajima, Y. Seto, K. Ikeda, K. Shimoda, K. Nakayama, Y. Saito and I. Iwamoto: Tyk2 is essential for IFN-alpha-induced gene expression in mast cells. Int Arch Allergy Immunol, 134 Suppl 1, 25-9 (2004)
doi:10.1159/000077789
PMid:15166480
94. Budagian, V., E. Bulanova, R. Paus and S. Bulfone-Paus: IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev, 17(4), 259-80 (2006)
doi:10.1016/j.cytogfr.2006.05.001
PMid:16815076
95. Masuda, A., T. Matsuguchi, K. Yamaki, T. Hayakawa, M. Kubo, W. J. Larochelle and Y. Yoshikai: Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J Biol Chem, 275(38), 29331-7 (2000)
doi:10.1074/jbc.M910290199
PMid: 10882748
96. Vogl, C., T. Flatt, B. Fuhrmann, E. Hofmann, B. Wallner, R. Stiefvater, P. Kovarik, B. Strobl and M. Muller: Transcriptome analysis reveals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon-responsive and metabolic genes. BMC Genomics, 11, 199 (2010)
doi:10.1186/1471-2164-11-199
PMid:20338026 PMCid:2864243
97. Radwan, M., I. Miller, T. Grunert, M. Marchetti-Deschmann, C. Vogl, N. O'Donoghue, M. J. Dunn, T. Kolbe, G. Allmaier, M. Gemeiner, M. Muller and B. Strobl: The impact of tyrosine kinase 2 (Tyk2) on the proteome of murine macrophages and their response to lipopolysaccharide (LPS). Proteomics, 8(17), 3469-85 (2008)
doi:10.1002/pmic.200800260
PMid:18683816
98. Karaghiosoff, M., R. Steinborn, P. Kovarik, G. Kriegshauser, M. Baccarini, B. Donabauer, U. Reichart, T. Kolbe, C. Bogdan, T. Leanderson, D. Levy, T. Decker and M. Muller: Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol, 4(5), 471-7 (2003)
doi:10.1038/ni910
PMid:12679810
99. Taniguchi, T. and A. Takaoka: A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol, 2(5), 378-86 (2001)
doi:10.1038/35073080
PMid:11331912
100. Gough, D. J., N. L. Messina, L. Hii, J. A. Gould, K. Sabapathy, A. P. Robertson, J. A. Trapani, D. E. Levy, P. J. Hertzog, C. J. Clarke and R. W. Johnstone: Functional crosstalk between type I and II interferon through the regulated expression of STAT1. PLoS Biol, 8(4), e1000361 (2010)
doi:10.1371/journal.pbio.1000361
PMid:20436908 PMCid:2860501
101. Fleetwood, A. J., H. Dinh, A. D. Cook, P. J. Hertzog and J. A. Hamilton: GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol, 86(2), 411-21 (2009)
doi:10.1189/jlb.1108702
PMid:19406830
102. Zurney, J., K. E. Howard and B. Sherry: Basal expression levels of IFNAR and Jak-STAT components are determinants of cell-type-specific differences in cardiac antiviral responses. J Virol, 81(24), 13668-80 (2007)
doi:10.1128/JVI.01172-07
PMid:17942530 PMCid:2168836
103. Strobl, B., I. Bubic, U. Bruns, R. Steinborn, R. Lajko, T. Kolbe, M. Karaghiosoff, U. Kalinke, S. Jonjic and M. Muller: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus. J Immunol, 175(6), 4000-8 (2005)
PMid:16148148
104. Radwan, M., R. Stiefvater, T. Grunert, O. Sharif, I. Miller, M. Marchetti-Deschmann, G. Allmaier, M. Gemeiner, S. Knapp, P. Kovarik, M. Muller and B. Strobl: Tyrosine kinase 2 controls IL-1beta production at the translational level. J Immunol, 185(6), 3544-53 (2010)
doi:10.4049/jimmunol.0904000
PMid:20713887 PMCid:2990881
105. Friedman, R. M., R. M. Esteban, D. H. Metz, D. R. Tovell, I. M. Kerr and R. Williamson: Translation of RNA by L cell extracts: Effect of interferon. FEBS Lett, 24(3), 273-277 (1972)
doi:10.1016/0014-5793(72)80371-5
PMid:11946687
106. Metz, D. H. and M. Esteban: Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus. Nature, 238(5364), 385-8 (1972)
doi:10.1038/238385a0
PMid:4559581
107. Kerr, I. M., R. M. Friedman, R. E. Brown, L. A. Ball and J. C. Brown: Inhibition of Protein Synthesis in Cell-Free Systems from Interferon-Treated, Infected Cells: Further Characterization and Effect of Formylmethionyl-tRNA(F). J Virol, 13(1), 9-21 (1974)
PMid:16789138 PMCid:355252
108. Kaur, S., E. Katsoulidis and L. C. Platanias: Akt and mRNA translation by interferons. Cell Cycle, 7(14), 2112-6 (2008)
doi:10.4161/cc.7.14.6258
PMid:18635959
109. Belladonna, M. L., J. C. Renauld, R. Bianchi, C. Vacca, F. Fallarino, C. Orabona, M. C. Fioretti, U. Grohmann and P. Puccetti: IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol, 168(11), 5448-54 (2002)
PMid:12023338
110. Weaver, C. T., L. E. Harrington, P. R. Mangan, M. Gavrieli and K. M. Murphy: Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24(6), 677-88 (2006)
doi:10.1016/j.immuni.2006.06.002
PMid:16782025
111. Stoiber, D., B. Kovacic, C. Schuster, C. Schellack, M. Karaghiosoff, R. Kreibich, E. Weisz, M. Artwohl, O. C. Kleine, M. Muller, S. Baumgartner-Parzer, J. Ghysdael, M. Freissmuth and V. Sexl: TYK2 is a key regulator of the surveillance of B lymphoid tumors. J Clin Invest, 114(11), 1650-8 (2004)
doi:10.1172/JCI22315
PMid:15578097 PMCid:529282
112. Simma, O., E. Zebedin, N. Neugebauer, C. Schellack, A. Pilz, S. Chang-Rodriguez, K. Lingnau, E. Weisz, E. M. Putz, W. F. Pickl, T. Felzmann, M. Muller, T. Decker, V. Sexl and D. Stoiber: Identification of an indispensable role for tyrosine kinase 2 in CTL-mediated tumor surveillance. Cancer Res, 69(1), 203-11 (2009)
doi:10.1158/0008-5472.CAN-08-1705
PMid:19118004
113. Nguyen, K. B., W. T. Watford, R. Salomon, S. R. Hofmann, G. C. Pien, A. Morinobu, M. Gadina, J. J. O'Shea and C. A. Biron: Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science, 297(5589), 2063-6 (2002)
doi:10.1126/science.1074900
PMid:12242445
114. Freudenberg, M. A., T. Merlin, C. Kalis, Y. Chvatchko, H. Stubig and C. Galanos: Cutting edge: a murine, IL-12-independent pathway of IFN-gamma induction by gram-negative bacteria based on STAT4 activation by Type I IFN and IL-18 signaling. J Immunol, 169(4), 1665-8 (2002)
PMid:12165484
115. Meeks, K. D., A. N. Sieve, J. K. Kolls, N. Ghilardi and R. E. Berg: IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol, 183(12), 8026-34 (2009)
doi:10.4049/jimmunol.0901588
PMid:19923464
116. Cooper, A. M.: IL-23 and IL-17 have a multi-faceted largely negative role in fungal infection. Eur J Immunol, 37(10), 2680-2 (2007)
doi:10.1002/eji.200737804
PMid:17899544
117. Kohyama, S., S. Ohno, A. Isoda, O. Moriya, M. L. Belladonna, H. Hayashi, Y. Iwakura, T. Yoshimoto, T. Akatsuka and M. Matsui: IL-23 enhances host defense against vaccinia virus infection via a mechanism partly involving IL-17. J Immunol, 179(6), 3917-25 (2007)
PMid:17785829
118. Muller, U., U. Steinhoff, L. F. Reis, S. Hemmi, J. Pavlovic, R. M. Zinkernagel and M. Aguet: Functional role of type I and type II interferons in antiviral defense. Science, 264(5167), 1918-21 (1994)
doi:10.1126/science.8009221
PMid:8009221
119. Decker, T., M. Muller and S. Stockinger: The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol, 5(9), 675-87 (2005)
doi:10.1038/nri1684
PMid:16110316
120. Auerbuch, V., D. G. Brockstedt, N. Meyer-Morse, M. O'Riordan and D. A. Portnoy: Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med, 200(4), 527-33 (2004)
doi:10.1084/jem.20040976
PMid:15302899 PMCid:2211930
121. Carrero, J. A., B. Calderon and E. R. Unanue: Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med, 200(4), 535-40 (2004)
doi:10.1084/jem.20040769
PMid:15302900 PMCid:2211931
122. Aizu, K., W. Li, T. Yajima, T. Arai, K. Shimoda, Y. Nimura and Y. Yoshikai: An important role of Tyk2 in APC function of dendritic cells for priming CD8+ T cells producing IFN-gamma. Eur J Immunol, 36(11), 3060-70 (2006)
doi:10.1002/eji.200636173
PMid:17048270
123. Li, W., H. Yamada, T. Yajima, R. Nakagawa, K. Shimoda, K. Nakayama and Y. Yoshikai: Tyk2 signaling in host environment plays an important role in contraction of antigen-specific CD8+ T cells following a microbial infection. J Immunol, 178(7), 4482-8 (2007)
PMid:17372006
124. Yap, G. S., R. Ortmann, E. Shevach and A. Sher: A heritable defect in IL-12 signaling in B10.Q/J mice. II. Effect on acute resistance to Toxoplasma gondii and rescue by IL-18 treatment. J Immunol, 166(9), 5720-5 (2001)
PMid:11313414
125. Kamezaki, K., K. Shimoda, A. Numata, T. Matsuda, K. Nakayama and M. Harada: The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int Immunol, 16(8), 1173-9 (2004)
doi:10.1093/intimm/dxh118
PMid:15226272
126. Car, B. D., V. M. Eng, B. Schnyder, L. Ozmen, S. Huang, P. Gallay, D. Heumann, M. Aguet and B. Ryffel: Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med, 179(5), 1437-44 (1994)
doi:10.1084/jem.179.5.1437
PMid:8163930
127. Painz, R., I. Walter, T. Kolbe, D. Rigler, C. Vogl, R. Steinborn, T. Rulicke, M. Helmreich, M. Karaghiosoff and M. Muller: Organ-specific and differential requirement of TYK2 and IFNAR1 for LPS-induced iNOS expression in vivo. Immunobiology, 212(9-10), 863-75 (2007)
doi:10.1016/j.imbio.2007.09.017
PMid:18086385
128. Schneider, A., U. Reichart, W. Gerner, T. Kolbe, A. Saalmuller and M. Muller: Selective contribution of Tyk2 to cell activation by lipopolysaccharide. FEBS Lett, 582(25-26), 3681-6 (2008)
doi:10.1016/j.febslet.2008.09.053
PMid:18845149
129. Costantino, G., M. Egerbacher, T. Kolbe, M. Karaghiosoff, B. Strobl, C. Vogl, M. Helmreich and M. Muller: Tyk2 and signal transducer and activator of transcription 1 contribute to intestinal I/R injury. Shock, 29(2), 238-44 (2008)
doi: 10.1097/shk.0b013e3180cab252
PMid:17693920
130. Spach, K. M., R. Noubade, B. Mcelvany, W. F. Hickey, E. P. Blankenhorn and C. Teuscher: A single nucleotide polymorphism in Tyk2 controls susceptibility to experimental allergic encephalomyelitis. J Immunol, 182(12), 7776-83 (2009)
doi:10.4049/jimmunol.0900142
PMid:19494301
131. Langrish, C. L., Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. Mcclanahan, R. A. Kastelein and D. J. Cua: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 201(2), 233-40 (2005)
doi:10.1084/jem.20041257
PMid:15657292 PMCid:2212798
132. Murphy, C. A., C. L. Langrish, Y. Chen, W. Blumenschein, T. Mcclanahan, R. A. Kastelein, J. D. Sedgwick and D. J. Cua: Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 198(12), 1951-7 (2003)
doi:10.1084/jem.20030896
PMid:14662908 PMCid:2194162
133. Thakker, P., M. W. Leach, W. Kuang, S. E. Benoit, J. P. Leonard and S. Marusic: IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol, 178(4), 2589-98 (2007)
PMid:17277169
134. Harrington, L. E., R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 6(11), 1123-32 (2005)
doi:10.1038/ni1254
PMid:16200070
135. Park, H., Z. Li, X. O. Yang, S. H. Chang, R. Nurieva, Y. H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian and C. Dong: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 6(11), 1133-41 (2005)
doi:10.1038/ni1261
PMid:16200068 PMCid:1618871
136. Komiyama, Y., S. Nakae, T. Matsuki, A. Nambu, H. Ishigame, S. Kakuta, K. Sudo and Y. Iwakura: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol, 177(1), 566-73 (2006)
PMid:16785554
137. Okuda, Y., S. Sakoda, C. C. Bernard, H. Fujimura, Y. Saeki, T. Kishimoto and T. Yanagihara: IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol, 10(5), 703-8 (1998)
doi:10.1093/intimm/10.5.703
PMid:9645618
138. Eugster, H. P., K. Frei, M. Kopf, H. Lassmann and A. Fontana: IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol, 28(7), 2178-87 (1998)
doi:10.1002/(SICI)1521-4141(199807)28:07<2178::AID-IMMU2178>3.0.CO;2-D
PMid:9692887
139. Samoilova, E. B., J. L. Horton, B. Hilliard, T. S. Liu and Y. Chen: IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol, 161(12), 6480-6 (1998)
PMid:9862671
140. Serada, S., M. Fujimoto, M. Mihara, N. Koike, Y. Ohsugi, S. Nomura, H. Yoshida, T. Nishikawa, F. Terabe, T. Ohkawara, T. Takahashi, B. Ripley, A. Kimura, T. Kishimoto and T. Naka: IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A, 105(26), 9041-6 (2008)
doi:10.1073/pnas.0802218105
PMid:18577591 PMCid:2449361
141. Ferber, I. A., S. Brocke, C. Taylor-Edwards, W. Ridgway, C. Dinisco, L. Steinman, D. Dalton and C. G. Fathman: Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol, 156(1), 5-7 (1996)
PMid:8598493
142. Krakowski, M. and T. Owens: Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol, 26(7), 1641-6 (1996)
doi:10.1002/eji.1830260735
PMid:8766573
143. Owens, T., H. Wekerle and J. Antel: Genetic models for CNS inflammation. Nat Med, 7(2), 161-6 (2001)
doi:10.1038/84603
PMid:11175845
144. Seto, Y., H. Nakajima, A. Suto, K. Shimoda, Y. Saito, K. I. Nakayama and I. Iwamoto: Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice. J Immunol, 170(2), 1077-83 (2003)
PMid:12517976
145. Kasaian, M. T. and D. K. Miller: IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol, 76(2), 147-55 (2008)
doi:10.1016/j.bcp.2008.04.002
PMid:18502398
146. Hosogi, M., H. Tonogaito, A. Aioi, K. Hamada, K. Shimoda, R. Muromoto, T. Matsuda and Y. Miyachi: Hapten-induced contact hypersensitivity is enhanced in Tyk2-deficient mice. J Dermatol Sci, 36(1), 51-6 (2004)
doi:10.1016/j.jdermsci.2004.07.007
PMid:15488705
147. Wang, B., C. Esche, A. Mamelak, I. Freed, H. Watanabe and D. N. Sauder: Cytokine knockouts in contact hypersensitivity research. Cytokine Growth Factor Rev, 14(5), 381-9 (2003)
doi:10.1016/S1359-6101(03)00050-9
PMid:12948522
148. Wakita, D., K. Chamoto, Y. Zhang, Y. Narita, D. Noguchi, H. Ohnishi, T. Iguchi, T. Sakai, H. Ikeda and T. Nishimura: An indispensable role of type-1 IFNs for inducing CTL-mediated complete eradication of established tumor tissue by CpG-liposome co-encapsulated with model tumor antigen. Int Immunol, 18(3), 425-34 (2006)
doi:10.1093/intimm/dxh381
PMid:16415100
149. Nakajima, H., F. Shibata, H. Kumagai, K. Shimoda and T. Kitamura: Tyk2 is dispensable for induction of myeloproliferative disease by mutant FLT3. Int J Hematol, 84(1), 54-9 (2006)
doi:10.1532/IJH97.06016
PMid:16867903
150. Ide, H., T. Nakagawa, Y. Terado, Y. Kamiyama, S. Muto and S. Horie: Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells. Biochem Biophys Res Commun, 369(2), 292-6 (2008)
doi:10.1016/j.bbrc.2007.08.160
PMid:17920038
151. Schuster, C., M. Muller, M. Freissmuth, V. Sexl and D. Stoiber: Commentary on H. Ide et al., "Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells". Biochem Biophys Res Commun, 366(4), 869-70 (2008)
doi:10.1016/j.bbrc.2007.12.017
PMid:18082134
152. Mellado, M., J. M. Rodriguez-Frade, S. Manes and A. C. Martinez: Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol, 19, 397-421 (2001)
doi:10.1146/annurev.immunol.19.1.397
PMid:11244042
153. Muller, A., B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. Mcclanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verastegui and A. Zlotnik: Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50-6 (2001)
doi:10.1038/35065016
PMid:11242036
154. Wiley, H. E., E. B. Gonzalez, W. Maki, M. T. Wu and S. T. Hwang: Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst, 93(21), 1638-43 (2001)
doi:10.1093/jnci/93.21.1638
PMid:11698568
155. Minegishi, Y., M. Saito, T. Morio, K. Watanabe, K. Agematsu, S. Tsuchiya, H. Takada, T. Hara, N. Kawamura, T. Ariga, H. Kaneko, N. Kondo, I. Tsuge, A. Yachie, Y. Sakiyama, T. Iwata, F. Bessho, T. Ohishi, K. Joh, K. Imai, K. Kogawa, M. Shinohara, M. Fujieda, H. Wakiguchi, S. Pasic, M. Abinun, H. D. Ochs, E. D. Renner, A. Jansson, B. H. Belohradsky, A. Metin, N. Shimizu, S. Mizutani, T. Miyawaki, S. Nonoyama and H. Karasuyama: Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity, 25(5), 745-55 (2006)
doi:10.1016/j.immuni.2006.09.009
PMid:17088085
156. Song, X. C., G. Fu, X. Yang, Z. Jiang, Y. Wang and G. W. Zhou: Protein expression profiling of breast cancer cells by dissociable antibody microarray (DAMA) staining. Mol Cell Proteomics, 7(1), 163-9 (2008)
doi:10.1074/mcp.M700115-MCP200
PMid:17934210
157. Zhu, X., J. Lv, L. Yu, J. Wu, S. Zou and S. Jiang: Proteomic identification of differentially-expressed proteins in squamous cervical cancer. Gynecol Oncol, 112(1), 248-56 (2009)
doi:10.1016/j.ygyno.2008.09.045
PMid:19007971
168. Caldas-Lopes, E., L. Cerchietti, J. H. Ahn, C. C. Clement, A. I. Robles, A. Rodina, K. Moulick, T. Taldone, A. Gozman, Y. Guo, N. Wu, E. De Stanchina, J. White, S. S. Gross, Y. Ma, L. Varticovski, A. Melnick and G. Chiosis: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A, 106(20), 8368-73 (2009)
doi:10.1073/pnas.0903392106
PMid:19416831
159. Kaminker, J. S., Y. Zhang, A. Waugh, P. M. Haverty, B. Peters, D. Sebisanovic, J. Stinson, W. F. Forrest, J. F. Bazan, S. Seshagiri and Z. Zhang: Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res, 67(2), 465-73 (2007)
doi:10.1158/0008-5472.CAN-06-1736
PMid:17234753
160. Tomasson, M. H., Z. Xiang, R. Walgren, Y. Zhao, Y. Kasai, T. Miner, R. E. Ries, O. Lubman, D. H. Fremont, M. D. Mclellan, J. E. Payton, P. Westervelt, J. F. Dipersio, D. C. Link, M. J. Walter, T. A. Graubert, M. Watson, J. Baty, S. Heath, W. D. Shannon, R. Nagarajan, C. D. Bloomfield, E. R. Mardis, R. K. Wilson and T. J. Ley: Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood, 111(9), 4797-808 (2008)
doi:10.1182/blood-2007-09-113027
PMid:18270328 PMCid:2343607
161. Haan, C., D. C. Kroy, S. Wuller, U. Sommer, T. Nocker, C. Rolvering, I. Behrmann, P. C. Heinrich and S. Haan: An unusual insertion in Jak2 is crucial for kinase activity and differentially affects cytokine responses. J Immunol, 182(5), 2969-77 (2009)
doi:10.4049/jimmunol.0800572
PMid:19234192
162. Ruhe, J. E., S. Streit, S. Hart, C. H. Wong, K. Specht, P. Knyazev, T. Knyazeva, L. S. Tay, H. L. Loo, P. Foo, W. Wong, S. Pok, S. J. Lim, H. Ong, M. Luo, H. K. Ho, K. Peng, T. C. Lee, M. Bezler, C. Mann, S. Gaertner, H. Hoefler, S. Iacobelli, S. Peter, A. Tay, S. Brenner, B. Venkatesh and A. Ullrich: Genetic alterations in the tyrosine kinase transcriptome of human cancer cell lines. Cancer Res, 67(23), 11368-76 (2007)
doi:10.1158/0008-5472.CAN-07-2703
PMid:18056464
163. Shide, K., K. Shimoda, K. Kamezaki, H. Kakumitsu, T. Kumano, A. Numata, F. Ishikawa, K. Takenaka, K. Yamamoto, T. Matsuda and M. Harada: Tyk2 mutation homologous to V617F Jak2 is not found in essential thrombocythaemia, although it induces constitutive signaling and growth factor independence. Leuk Res, 31(8), 1077-84 (2007)
doi:10.1016/j.leukres.2006.08.018
PMid:17011030
164. Suarez-Gestal, M., M. Calaza and A. Gonzalez: Lack of interaction between systemic lupus erythematosus-associated polymorphisms in TYK2 and IRF5. J Rheumatol, 37(3), 676-7; author reply 678 (2010)
doi:10.3899/jrheum.090823
PMid:20197570
165. Sigurdsson, S., G. Nordmark, H. H. Goring, K. Lindroos, A. C. Wiman, G. Sturfelt, A. Jonsen, S. Rantapaa-Dahlqvist, B. Moller, J. Kere, S. Koskenmies, E. Widen, M. L. Eloranta, H. Julkunen, H. Kristjansdottir, K. Steinsson, G. Alm, L. Ronnblom and A. C. Syvanen: Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet, 76(3), 528-37 (2005)
doi:10.1086/428480
PMid:15657875 PMCid:1196404
166. Hellquist, A., T. M. Jarvinen, S. Koskenmies, M. Zucchelli, C. Orsmark-Pietras, L. Berglind, J. Panelius, T. Hasan, H. Julkunen, M. D'amato, U. Saarialho-Kere and J. Kere: Evidence for genetic association and interaction between the TYK2 and IRF5 genes in systemic lupus erythematosus. J Rheumatol, 36(8), 1631-8 (2009)
doi:10.3899/jrheum.081160
PMid:19567624
167. Jarvinen, T. M., A. Hellquist, S. Koskenmies, E. Einarsdottir, L. L. Koskinen, L. Jeskanen, L. Berglind, J. Panelius, T. Hasan, A. Ranki, J. Kere and U. Saarialho-Kere: Tyrosine kinase 2 and interferon regulatory factor 5 polymorphisms are associated with discoid and subacute cutaneous lupus erythematosus. Exp Dermatol, 19(2), 123-31 (2010)
doi:10.1111/j.1600-0625.2009.00982.x
PMid:19758313
168. Cunninghame Graham, D. S., M. Akil and T. J. Vyse: Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology (Oxford), 46(6), 927-30 (2007)
doi:10.1093/rheumatology/kel449
PMid:17384181
169. Mero, I. L., A. R. Lorentzen, M. Ban, C. Smestad, E. G. Celius, J. H. Aarseth, K. M. Myhr, J. Link, J. Hillert, T. Olsson, I. Kockum, T. Masterman, A. B. Oturai, H. B. Sondergaard, F. Sellebjerg, J. Saarela, A. Kemppinen, I. Elovaara, A. Spurkland, F. Dudbridge, B. A. Lie and H. F. Harbo: A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. Eur J Hum Genet, 18(4), 502-4 (2010)
doi:10.1038/ejhg.2009.195
PMid:19888296
170. Ban, M., A. Goris, A. R. Lorentzen, A. Baker, T. Mihalova, G. Ingram, D. R. Booth, R. N. Heard, G. J. Stewart, E. Bogaert, B. Dubois, H. F. Harbo, E. G. Celius, A. Spurkland, R. Strange, C. Hawkins, N. P. Robertson, F. Dudbridge, J. Wason, P. L. De Jager, D. Hafler, J. D. Rioux, A. J. Ivinson, J. L. Mccauley, M. Pericak-Vance, J. R. Oksenberg, S. L. Hauser, D. Sexton, J. Haines, S. Sawcer and A. Compston: Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. Eur J Hum Genet, 17(10), 1309-13 (2009)
doi:10.1038/ejhg.2009.41
PMid:19293837 PMCid:2782567
171. Johnson, B. A., J. Wang, E. M. Taylor, S. J. Caillier, J. Herbert, O. A. Khan, A. H. Cross, P. L. De Jager, P. A. Gourraud, B. C. Cree, S. L. Hauser and J. R. Oksenberg: Multiple sclerosis susceptibility alleles in African Americans. Genes Immun, 11(4), 343-50 (2010)
doi:10.1038/gene.2009.81
PMid:19865102 PMCid:2880217
172. Consortium, Australia and New Zealand Multiple Scelrosis Genetics: Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet, 41(7), 824-8 (2009)
doi:10.1038/ng.396
PMid:19525955
173. Sato, K., M. Shiota, S. Fukuda, E. Iwamoto, H. Machida, T. Inamine, S. Kondo, K. Yanagihara, H. Isomoto, Y. Mizuta, S. Kohno and K. Tsukamoto: Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn's disease in the Japanese population. J Clin Immunol, 29(6), 815-25 (2009)
doi:10.1007/s10875-009-9320-x
PMid:19653082 PMCid:2788098
174. Franke, A., D. P. Mcgovern, J. C. Barrett, K. Wang, G. L. Radford-Smith, T. Ahmad, C. W. Lees, T. Balschun, J. Lee, R. Roberts, C. A. Anderson, J. C. Bis, S. Bumpstead, D. Ellinghaus, E. M. Festen, M. Georges, T. Green, T. Haritunians, L. Jostins, A. Latiano, C. G. Mathew, G. W. Montgomery, N. J. Prescott, S. Raychaudhuri, J. I. Rotter, P. Schumm, Y. Sharma, L. A. Simms, K. D. Taylor, D. Whiteman, C. Wijmenga, R. N. Baldassano, M. Barclay, T. M. Bayless, S. Brand, C. Buning, A. Cohen, J. F. Colombel, M. Cottone, L. Stronati, T. Denson, M. De Vos, R. D'inca, M. Dubinsky, C. Edwards, T. Florin, D. Franchimont, R. Gearry, J. Glas, A. Van Gossum, S. L. Guthery, J. Halfvarson, H. W. Verspaget, J. P. Hugot, A. Karban, D. Laukens, I. Lawrance, M. Lemann, A. Levine, C. Libioulle, E. Louis, C. Mowat, W. Newman, J. Panes, A. Phillips, D. D. Proctor, M. Regueiro, R. Russell, P. Rutgeerts, J. Sanderson, M. Sans, F. Seibold, A. H. Steinhart, P. C. Stokkers, L. Torkvist, G. Kullak-Ublick, D. Wilson, T. Walters, S. R. Targan, S. R. Brant, J. D. Rioux, M. D'amato, R. K. Weersma, S. Kugathasan, A. M. Griffiths, J. C. Mansfield, S. Vermeire, R. H. Duerr, M. S. Silverberg, J. Satsangi, S. Schreiber, J. H. Cho, V. Annese, H. Hakonarson, M. J. Daly and M. Parkes: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet (2010)
doi:10.1038/ng.717
PMid:21102463
175. Strange, A., F. Capon, C. C. Spencer, J. Knight, M. E. Weale, M. H. Allen, A. Barton, G. Band, C. Bellenguez, J. G. Bergboer, J. M. Blackwell, E. Bramon, S. J. Bumpstead, J. P. Casas, M. J. Cork, A. Corvin, P. Deloukas, A. Dilthey, A. Duncanson, S. Edkins, X. Estivill, O. Fitzgerald, C. Freeman, E. Giardina, E. Gray, A. Hofer, U. Huffmeier, S. E. Hunt, A. D. Irvine, J. Jankowski, B. Kirby, C. Langford, J. Lascorz, J. Leman, S. Leslie, L. Mallbris, H. S. Markus, C. G. Mathew, W. H. Mclean, R. Mcmanus, R. Mossner, L. Moutsianas, A. T. Naluai, F. O. Nestle, G. Novelli, A. Onoufriadis, C. N. Palmer, C. Perricone, M. Pirinen, R. Plomin, S. C. Potter, R. M. Pujol, A. Rautanen, E. Riveira-Munoz, A. W. Ryan, W. Salmhofer, L. Samuelsson, S. J. Sawcer, J. Schalkwijk, C. H. Smith, M. Stahle, Z. Su, R. Tazi-Ahnini, H. Traupe, A. C. Viswanathan, R. B. Warren, W. Weger, K. Wolk, N. Wood, J. Worthington, H. S. Young, P. L. Zeeuwen, A. Hayday, A. D. Burden, C. E. Griffiths, J. Kere, A. Reis, G. Mcvean, D. M. Evans, M. A. Brown, J. N. Barker, L. Peltonen, P. Donnelly and R. C. Trembath: A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet, 42(11), 985-90 (2010)
doi:10.1038/ng.694
PMid:20953190
176. Wallace, C., D. J. Smyth, M. Maisuria-Armer, N. M. Walker, J. A. Todd and D. G. Clayton: The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet, 42(1), 68-71 (2010)
doi:10.1038/ng.493
PMid:19966805 PMCid:2820243
177. Tao, J. H., Y. F. Zou, X. L. Feng, J. Li, F. Wang, F. M. Pan and D. Q. Ye: Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. Mol Biol Rep (2010)
doi: 10.1007/s11033-010-0601-5
PMid:21140222
178. Malerich, J. P., J. S. Lam, B. Hart, R. M. Fine, B. Klebansky, M. J. Tanga and A. D'andrea: Diamino-1,2,4-triazole derivatives are selective inhibitors of TYK2 and JAK1 over JAK2 and JAK3. Bioorg Med Chem Lett, 20(24), 7454-7 (2010)
doi:10.1016/j.bmcl.2010.10.026
PMid:21106455
179. Tsui, V., P. Gibbons, M. Ultsch, K. Mortara, C. Chang, W. Blair, R. Pulk, M. Stanley, M. Starovasnik, D. Williams, M. Lamers, P. Leonard, S. Magnuson, J. Liang and C. Eigenbrot: A new regulatory switch in a JAK protein kinase. Proteins (2010)
doi: 10.1002/prot.22889
PMid:21117080
180. Dawson, M. A., A. J. Bannister, B. Gottgens, S. D. Foster, T. Bartke, A. R. Green and T. Kouzarides: JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature, 461(7265), 819-22 (2009)
doi:10.1038/nature08448
PMid:19783980
Abbreviations: AML: acute myeloid leukemia, CHS: contact hypersensitivity, CIA: collagen-induced arthritis, CNTF: ciliary neurotrophic factor, CT-1: cardiotrophin-1, CTL: cytotoxic T lymphocyte, DC: dendritic cell, EAE: experimental autoimmune encephalomyelitis, FERM: four-point-one, ezrin, radixin, moesin, G-CSF: granulocyte colony-stimulating factor, IFN: interferon, IFNAR1: IFNalpha/beta receptor 1, IFNGR1: IFNgamma receptor 1, IL: interleukin, ISG: IFN-stimulated gene, JAK: Janus kinase, LCMV: Lymphocytic Choriomeningitis Virus, LIF: leukemia inhibitory factor, LPS: lipopolysaccharide, MCMV: Murine Cytomegalovirus, MOG: myelin oligodendrocyte glycoprotein, NK cells: natural killer cells, OSM: oncostatin M, PTPB: phosphotyrosine phosphatase B, SH2: src-homolgy 2, SOCS: suppressor of cytokine signalling, STAT: signal transducer and activator of transcription, TPO: thrombopoietin, TNF: tumour necrosis factor, TYK2: tyrosine kinase 2, VSV: Vesicular Stomatitis Virus, VV: Vaccinia Virus
Key Words: Janus kinase, TYK2, Signalling, Immunity, Infection, Cancer, Review
Send correspondence to: Birgit Strobl, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna,
Veterinaerplatz 1, A-1210 Vienna, Austria, Tel: 0043 1 25077-5604, Fax: 0043 1 25077-5693, E-mail:birgit.strobl@vetmeduni.ac.at