[Frontiers in Bioscience E3, 864-870, June 1, 2011]

Suppressing allergic immune responses

Hua Huang

Department of Medicine and Integrated Department of Immunology, National Jewish Health, University of Colorado Denver School of Medicine, 1400 Jackson Street, K613e, Denver, CO 80206

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Allergic inflammation
4. The IFN-g-STAT1-IRF or the IFN-g-STAT-T-bet pathway in suppressing Il4 gene transcription
5. The role of T regulatory cells and IL-10 in suppressing Th2 differentiation
6. IL-27-mediated suppression of Th2 differentiation
7. The role of chromatin structure in suppressing Th2 cytokine gene expression
8. Can the knowledge gained be used to improve immunotherapy?
9. Acknowledgements
10. References

1. ABSTRACT

While most studies are devoted to understanding the activation of cytokine gene transcription, few studies have focused on the silencing of cytokine gene transcription. This review will focus on the molecular mechanisms by which Th1-promoting factors downregulate the Il4 gene.

2. INTRODUCTION

The incidence and mortality of allergic diseases-such as food allergies, anaphylaxis, allergic rhinitis, atopic dermatitis and asthma-has increased at an alarming rate in Western countries over the past several decades. In the United States alone, over 50 million people suffer from allergic diseases (1, 2). The economic cost of allergic diseases was estimated at a staggering $13 billion in 2006 (3). The Hygiene Hypothesis, based on epidemic studies, was developed to explain such a remarkable increase in the incidence and mortality of allergic diseases (4, 5). Accumulated experimental evidence supports the notion that factors that promote Th1 responses can also have profound effects on suppressing Th2 responses. This review will focus on the molecular mechanisms by which Th1-promoting factors downregulate the Il4 gene.

3. ALLERGIC INFLAMMATION

Allergic disorders are immune-mediated diseases (6-10). Allergens are environmental substances that include both indoor and outdoor allergens. The most common indoor allergens include house dust mites and cat/dog danders; the most common outdoor allergens include pollens and fungal spores (11). Allergens affect susceptible individuals in ways that do not resemble bacteria and viruses. Generally, allergens do not activate toll-like receptor (TLR), whereas bacteria and viruses do activate TLR. Rather, they trigger certain types of immune responses, known as type-2 immune responses. Effector cells that carry out the type-2 immune responses include T-helper 2 (Th2) cells, eosinophils, mast cells and basophils (6-9). Th2 cells produce interleukin 4 (IL-4), IL-5, IL-9 and IL-13 (6-9). IL-4 and IL-13 are essential for IgE production (12, 13), which can activate eosinophils, basophils and mast cells by crosslinking the FcepislonR1 receptor displayed on their surface (14). Th2-type cytokines are known to play a critical role in recruiting effector cells to the site of allergic inflammation. IL-4 and IL-13 can selectively upregulate the expression of vascular cell adhesion molecule-1 (15, 16). These cytokines also powerfully induce the expression of chemokines such as MDC/CCL22, TCA3/CCL1, and eotaxin/CCL11 (17). IL-4 and IL-13 also upregulate the expression of CCR3, CCR4, and CCR8 (8-10). These upregulated molecules are pivotal in recruiting Th2 cells, eosinophils and basophils to the site of inflammation. Both IL-4 and IL-13 play important roles in goblet cell differentiation and mucus production (18, 19), while IL-5 is essential in development of lung eosinophilia. For instance, mice deficient in IL-5 fail to exhibit eosinophilia (20, 21).

IL-4 acts as the major factor in initiating airway inflammation because of its ability to drive naïve CD4+ T cells to differentiate into Th2 cells (22-25). IL-4 is essential in IgE production, which can activate basophils, eosinophils, and mast cells. Although we have learned much about the transcription of the Il4 gene, limited studies have focused specifically on the downregulation of Th2 cytokine gene expression.

4. THE IFN-GAMMA-STAT1-IRF OR THE IFN-GAMMA-STAT-T-BET PATHWAY IN SUPPRESSING IL4 GENE TRANSCRIPTION

It has been reported that regulatory factors, such as T-bet, which are important in Ifng gene transcription (26, 27) also possess the ability to suppress Il4 gene transcription (26, 27). Ectopic expression of T-bet in Th2 cells induced Ifng gene transcription and suppressed Il4 gene transcription. However, different reports have documented various degrees of suppression of Il4 gene transcription by T-bet in Th2 cells. The reported level of inhibition ranged from 70% inhibition (26) to undetectable inhibition (28). It has also been shown that phosphorylated T-bet was able to bind GATA-3 and thus interaction resulted in sequestration of GATA3 by T-bet (29, 30). The notion that T-bet plays an important role in suppressing the Il4 gene is further supported by an in vivo study using targeted T-bet deletion. T-bet deficient mice developed spontaneous allergic airway inflammation and asthma (31). Polymorphisms in T-bet have been found to correlate with susceptibility to asthma development in humans (32).

An Il4 gene silencer has been described by Rao and colleagues (33). Deletion of the silencer region in the Il4 gene promoted IL-4 expression. The authors further demonstrated that T-bet binds to the "silencer" region of the Il4 gene and recruits Runx3 and Cbfbeta(33, 34). Our own work shows that continuous T-bet expression is required to silence the IL-4-producing potential in Th1 cells (35). We further analyzed signaling pathways that lead to the silencing of the IL-4-producing potential in Th1 cells and demonstrated that the IL-12-STAT4 pathway and the IFN-gamma-STAT1 pathway converge at the point of T-bet. Compared with the IL-12-STAT4 pathway, the IFN-gamma-STAT1-T-bet signaling pathway is the major pathway that leads to silencing of the IL-4-producing potential of Th1 cells (36).

Using an approach that combined traditional genetic and transcriptional profiling analyses, Bix and colleagues have identified another Il4 gene repressor, Mina-1 (a member of jumonji C family) (37). Mina expression levels inversely correlated with the susceptibility to develop Th2-mediated diseases. Mina can repress IL-4 via its binding to NFAT. Overexpression of Mina in transgenic mice suppressed Il4 expression, whereas knocked down Mina expression resulted in elevated Il4 expression (37). These findings explain the Th2 bias (the propensity to heighten Th2 immune responses) in certain mouse strains and Th2 disease-susceptible individuals.

In addition to T-bet, it has been reported that IFN-gamma-R-/-, STAT4-/-, IRF-1-/-, and IRF-2-/- mice demonstrated a propensity to mount a Th2-type immune response even to pathogens that were expected to elicit a Th1 response in wild type mice (38-42). These results suggest that Th1-promoting factors are critical in suppressing Th2 responses. It was discovered that IL-4-induced STAT6 phosphorylation was reduced in committed Th1 cells (43, 44). Our group demonstrated that IFN-gamma was the key factor in silencing the Il4 gene (45). We believe that IFN-gamma can suppress Il4 gene expression by inducing T-bet (36) and by inhibiting STAT6 recruitment to the IL-4 Receptor (46).

5. THE ROLE OF T REGULATORY CELLS AND IL-10 IN SUPPRESSING TH2 DIFFERENTIATION

IL-10 is a potent regulatory cytokine (8). IL-10 knockout mice had a higher baseline airway reactivity and more eosinophilic airway inflammation after allergen challenges (47), indicating an important role for IL-10 in controlling airway inflammation and responsiveness. IL-10 treatment suppresses airway hyperreactivity, goblet cell hyperplasia, and airway eosinophilia, whereas antibody against IL-10 or IL-10 receptor (IL-10R) enhances asthmatic systems (48). IL-10 acts on many types of cells, including CD4+ T cells (49). Treg inhibition appears to be non-specific to Th2 cells. IL-10 inhibits Th1 and Th2 cell differentiation (50, 51). O'Garra and colleagues have reviewed this topic extensively (52); therefore, I will not cover this topic further. Rather, I want to draw your attention to two recent studies, which use an approach that deletes a gene of interest only in Foxp3 positive Treg. These studies reveal that CTLA-4 and IRF-4 play essential roles in Treg-mediated suppression of autoimmune diseases (53, 54). Notably, these two recent papers have firmly established that Treg cells are critical in keeping IgE serum levels in check under normal physiological conditions (53, 54).

6. IL-27-MEDIATED SUPPRESSION OF TH2 DIFFERENTIATION

IL-27 is a recently discovered member of the IL-12 family (55). It is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and p28. IL-27 binds to the IL-27 receptor (IL-27R) and gp130 to exert its biological functions (55-57). It has been reported that IL-27 is a potent inducer of Th1 cell differentiation (58-62) as well as a promoter of T regulatory type 1 (Tr1) cell differentiation (63, 64). IL-27 has been shown to suppress Th17 cell differentiation (65, 66) and to suppress Th2 cell differentiation or Th2 immune responses in parasitic infection, allergic asthma, and autoimmune diseases (67-73). It has also been shown that IL-27 acts directly on CD4+ T cells and suppresses the Il4 gene independent of IFN-gamma (68, 74). However, it is less clear if IL-27 suppresses the Il4 gene independent of IL-10 or if human IL-27 carries out the same biological effects in a similar manner as its murine counterpart. Our own work suggests that both human and mouse IL-27 suppresses Il4 gene expression in the absence of IL-10 (our unpublished data). It appears that mouse IL-27 suppresses the Il4 gene in a STAT-1-dependent and T-bet-independent manner (our unpublished data). Finding the IL-27-induced Il4 gene repressor would be of interest for future research.

7. THE ROLE OF CHROMATIN STRUCTURE IN SUPPRESSING TH2 CYTOKINE GENE EXPRESSION

It has become well documented that chromatin structure plays a pivotal role in Th2 cytokine gene expression (75). As naïve CD4+ T cells differentiate into Th1 or Th2 cells, the histone molecules that surround the regulatory regions of Th1 or Th2 cytokine gene loci undergo covalent modifications. These modifications lead to conformational changes in chromatin structure, which allows transcription factors to gain access to cytokine gene loci. Chromatin modifications include the demethylation of CpG islands in the regulatory regions; the acetylation of lysine residues of histone 3 (H3); and the demethylation of lysine 4 of H3 that surrounds the regulatory regions of the cytokine genes. For example, the Ifng locus becomes "open" to transcription factors under Th1-inducing conditions (76, 77). Similarly, the Il4 locus becomes "open" under Th2-inducing conditions (76, 77).

Inactive cytokine genes are often associated with "repressive" chromatin structure, which is a highly condensed structure. Several potential mechanisms have been proposed to explain how a "repressive" chromatin structure can silence the Il4 locus in Th1 cells. Wilson and colleagues demonstrated that DNA methyltransferase 1 (Dnmt1) plays a critical role in suppressing Th2 cytokine gene transcription (78, 79). Modification of H3 at lysine 9 and 27 has been shown to inversely correlate with gene transcription. Bix and colleagues showed that H3 trimethylation at lysine 27 was detected in Th1 cells that had gone through two rounds of differentiation under Th1-inducing conditions (80). However, this delayed modification might not reflect the initial T-bet-mediated formation of the repressive chromatin-remodeling complex. The group also reported that they did not observe modification of lysine 9 of H3 at the Il4 locus (80). Thus, the exact histone modifications that lead to the silencing of the Il4 gene remain to be identified. Since the first histone lysine demethylase KDM1 (LSD1) was discovered in 2004, a large number of histone lysine demethylases have been recognized and shown to play important roles in gene expression as well as cellular differentiation and animal development (81). Among these demethylases, LSD1 may be more likely to suppress the Il4 gene because this enzyme specifically demethylates the dimethyl modification of H3 at lysine 4 (H3K4me2 is a modification that has been linked to Il4 gene transcription) (82). It is not clear whether T-bet is involved in recruiting Dnmt1 or LSD1 into the Il4 regulatory regions of the Il4 gene.

8. CAN THE KNOWLEDGE GAINED BE USED TO IMPROVE IMMUNOTHERAPY?

The effectiveness of immunotherapy, using allergen extract (a high dose of antigen) to induce a patient's tolerance to allergens (to which they already have developed hypersensitivity) has been well documented; patients who received subcutaneous injections of allergen extracts show remarkable reduction in allergy symptoms (83-85). Immunotherapy has been shown to induce the development of T regulatory cells (Treg). Treg cells suppress allergic immune responses via the production of IL-10 and TGF-beta1 (86, 87). However, current immunotherapy, developed 100 years ago, faces two obstacles: systemic allergic reaction and repeated doctor visits over a long period of time (83).

Based on epidemic studies (the Hygiene Hypothesis) (4) and discovery of Toll-like receptor (88, 89), promoting Th1 responses has been proposed as an effective way to suppress Th2 response. Coffman and colleagues demonstrated that mice immunized with a TLR-9 agonist (CpG-containing immunostimulatory sequences, ISSs) prior to exposure to allergens completely prevented any development of allergic airway inflammation and airway hyperreactivity (90). ISSs conjugated to a major allergic component of ragweed have been shown to be effective in reducing allergic symptoms in several clinical studies (90-92). It has been reported that ISSs can inhibit Th2 response by rendering dendritic lung cells unable to effectively present antigens to Th2 cells and ISSs can inhibit the IgE-dependent release of Th2 cytokines, especially IL-4, from basophils and/or mast cells (93).

Because Th2 inhibitory factors produced by dendritic cells in response to infection can suppress the Th2 response early during immune responses, there is a need to identify and characterize the DC-produced Th2 inhibitory factors. Early-acting Th2 inhibitory factors could be used to develop an improved immunotherapy.

9. ACKNOWLEDGEMENTS

HH is in part supported by grants from the National Institution of Health (AI083986 and AI068083).

10. REFERENCE

1. .D. R. Gold and R. Wright: Population disparities in asthma. Annu Rev Public Health, 26, 89-113 (2005)
doi:10.1146/annurev.publhealth.26.021304.144528
doi:10.1146/annurev.publhealth.26.021304.144528

2. L. Akinbami: cytokine induction. J Exp Med, 202(11), 1563-73 (2005)
doi:10.1084/jem.20050631

3. D. M. Williams: Introduction: Asthma epidemiology and economic impact. Am J Health Syst Pharm, 63(10 Suppl 3), S3-4 (2006)
doi:10.2146/ajhp060126

4. D. P. Strachan: Family size, infection and atopy: the first decade of the "hygiene hypothesis". Thorax, 55 Suppl 1, S2-10 (2000)
doi:10.1136/thorax.55.suppl_1.S2

5. D. P. Strachan: Hay fever, hygiene, and household size. Bmj, 299(6710), 1259-60 (1989)

6. N. A. Barrett and K. F. Austen: Innate cells and T helper 2 cell immunity in airway inflammation. Immunity, 31(3), 425-37(2009)
doi:10.1016/j.immuni.2009.08.014

7. S. J. Galli, M. Tsai and A. M. Piliponsky: The development of allergic inflammation. Nature, 454(7203), 445-54 (2008)
doi:10.1038/nature07204

8. F. D. Finkelman, S. P. Hogan, G.K. Hershey, M.E.R othenberg and M. Wills-Karp: Importanceof cytokines in murineallergic airway disease and human asthma. JImmunol, 184(4), 1663-74
doi:10.4049/jimmunol.0902185

9. J. A. Boyce, D. Broide, K. Matsumoto and B. S. Bochner: Advances in mechanisms of asthma, allergy, and immunology in 2008. J Allergy Clin Immunol, 123(3), 569-74 (2009)
doi:10.1016/j.jaci.2009.01.041

10. M. A. Willart and B. N. Lambrecht: The danger within: endogenous danger signals, atopy and asthma. Clin Exp Allergy, 39(1), 12-9(2009)
doi:10.1111/j.1365-2222.2008.03118.x

11. P. J. Bousquet, L. Bousquet-Rouanet, H. B. Co Minh, R. Urbinelli, F. A. Allaert and P. Demoly: ARIA (Allergic Rhinitis and Its Impact on Asthma) classification of allergic rhinitis severity in clinical practice in France. Int Arch AllergyImmunol,143(3),163-9(2007)
doi:10.1159/000099307

12. R. S. Geha, H. H. Jabara and S. R. Brodeur: The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol, 3(9), 721-32(2003)
doi:10.1038/nri1181

13. H. J. Gould and B. J. Sutton: IgE in allergy and asthma today. Nat Rev Immunol, 8(3), 205-17 (2008)
doi:10.1038/nri2273

14. M. Wills-Karp: Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol, 17, 255-81 (1999)
doi:10.1146/annurev.immunol.17.1.255

15. R. P. Schleimer, S. A. Sterbinsky, J. Kaiser, C. A. Bickel, D. A. Klunk, K. Tomioka, W. Newman, F. W. Luscinskas, M. A. Gimbrone, Jr., B. W. McIntyre and et al.: IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol, 148(4), 1086-92. (1992)

16. D. P. Andrew, M. S. Chang, J. McNinch, S. T. Wathen, M. Rihanek, J. Tseng, J. P. Spellberg and C. G. Elias, 3rd: STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13. J Immunol, 161(9), 5027-38. (1998)

17. T. Sekiya, M. Miyamasu, M. Imanishi, H. Yamada, T. Nakajima, M. Yamaguchi, T. Fujisawa, R. Pawankar, Y. Sano, K. Ohta, A. Ishii, Y. Morita, K. Yamamoto, K. Matsushima, O. Yoshie and K. Hirai: Inducible expression of a Th2-type CC chemokine thymus- and activation- regulated chemokine by human bronchial epithelial cells. J Immunol, 165(4), 2205-13. (2000)

18. C. Taube, J. A. Nick, B. Siegmund, C. Duez, K. Takeda, Y. H. Rha, J. W. Park, A. Joetham, K. Poch, A. Dakhama, C. A. Dinarello and E. W. Gelfand: Inhibition of early airway neutrophilia does not affect development of airway hyperresponsiveness. Am J Respir Cell Mol Biol, 30(6), 837-43 (2004)
doi:10.1165/rcmb.2003-0395OC

19. K. Dabbagh, K. Takeyama, H. M. Lee, I. F. Ueki, J. A. Lausier and J. A. Nadel: IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol, 162(10), 6233-7 (1999)

20. P. S. Foster, S. P. Hogan, A. J. Ramsay, K. I. Matthaei and I. G. Young: Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med, 183(1), 195-201. (1996)
doi:10.1084/jem.183.1.195

21. E. Hamelmann, K. Takeda, A. Haczku, G. Cieslewicz, L. Shultz, Q. Hamid, Z. Xing, J. Gauldie and E. W. Gelfand: Interleukin (IL)-5 but not immunoglobulin E reconstitutes airway inflammation and airway hyperresponsiveness in IL-4-deficient mice. Am J Respir Cell Mol Biol, 23(3), 327-34. (2000)

22. G. G. Le, S. S. Ben, R. Seder, F. D. Finkelman and W. E. Paul: Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med, 172(3), 921-9 (1990)

23. R. A. Seder, W. E. Paul, M. M. Davis, d. S. Fazekas and B. Groth: The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med, 176(4), 1091-8 (1992)
doi:10.1084/jem.176.4.1091

24. C. S. Hsieh, A. B. Heimberger, J. S. Gold, A. O'Garra and K. M. Murphy: Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A, 89(13), 6065-9 (1992)
doi:10.1073/pnas.89.13.6065

25. S. L. Swain, A. D. Weinberg, M. English and G. Huston: IL-4 directs the development of Th2-like helper effectors. J Immunol, 145(11), 3796-806 (1990)

26. S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman and L. H. Glimcher: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100(6), 655-69 (2000)

27. S. J. Szabo, B. M. Sullivan, C. Stemmann, A. R. Satoskar, B. P. Sleckman and L. H. Glimcher: Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science, 295(5553), 338-42 (2002)
doi:10.1126/science.1065543

28. M. Afkarian, J. R. Sedy, J. Yang, N. G. Jacobson, N. Cereb, S. Y. Yang, T. L. Murphy and K. M. Murphy: T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol, 3(6), 549-57 (2002)
doi:10.1038/ni794

29. E. S. Hwang, S. J. Szabo, P. L. Schwartzberg and L. H. Glimcher: T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science, 307(5708), 430-3 (2005)
doi:10.1126/science.1103336

30. T. Usui, J. C. Preiss, Y. Kanno, Z. J. Yao, J. H. Bream, J. J. O'Shea and W. Strober: T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med, 203(3),755-66(2006)
doi:10.1084/jem.20052165

31. S. Finotto, M. F. Neurath, J. N. Glickman, S. Qin, H. A. Lehr, F. H. Green, K. Ackerman, K. Haley, P. R. Galle, S. J. Szabo, J. M. Drazen, G. T. De Sanctis and L. H. Glimcher: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science, 295(5553), 336-8 (2002)
doi:10.1126/science.1065544

32. B. A. Raby, E. S. Hwang, K. Van Steen, K. Tantisira, S. Peng, A. Litonjua, R. Lazarus, C. Giallourakis, J. D. Rioux, D. Sparrow, E. K. Silverman, L. H. Glimcher and S. T. Weiss: T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am J Respir Crit Care Med, 173(1), 64-70 (2006)
doi:10.1164/rccm.200503-505OC


33. I. M. Djuretic, D. Levanon, V. Negreanu, Y. Groner, A. Rao and K. M. Ansel: Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol, 8(2), 145-53 (2007)
doi:10.1038/ni1424

34. Y. Naoe, R. Setoguchi, K. Akiyama, S. Muroi, M. Kuroda, F. Hatam, D. R. Littman and I. Taniuchi: Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the Il4 silencer. J Exp Med, 204(8), 1749-55 (2007)
doi:10.1084/jem.20062456

35. Y. Zhuang, Z. Huang, J. Nishida, M. Brown, L. Zhang and H. Huang: A continuous T-bet expression is required to silence the interleukin-4-producing potential in T helper type 1 cells. Immunology, 128(1), 34-42 (2009)
doi:10.1111/j.1365-2567.2009.03049.x

36. Y. Zhuang, Z. Huang, J. Nishida, L. Zhang and H. Huang: Signaling pathways that lead to the silencing of the interleukin-4-producing potential in Th1 cells. J Interferon Cytokine Res, 29(7), 399-406 (2009)
doi:10.1089/jir.2008.0093

37. M. Okamoto, M. Van Stry, L. Chung, M. Koyanagi, X. Sun, Y. Suzuki, O. Ohara, H. Kitamura, A. Hijikata, M. Kubo and M. Bix: Mina, an Il4 repressor, controls T helper type 2 bias. Nat Immunol, 10(8), 872-9 (2009)
doi:10.1038/ni.1747

38. M. H. Kaplan, Y. L. Sun, T. Hoey and M. J. Grusby: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature, 382(6587), 174-7 (1996)
doi:10.1038/382174a0


39. S. Taki, T. Sato, K. Ogasawara, T. Fukuda, M. Sato, S. Hida, G. Suzuki, M. Mitsuyama, E. H. Shin, S. Kojima, T. Taniguchi and Y. Asano: Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity, 6(6), 673-9 (1997)
doi:10.1016/S1074-7613(00)80443-4

40. M. Lohoff, D. Ferrick, H. W. Mittrucker, G. S. Duncan, S. Bischof, M. Rollinghoff and T. W. Mak: Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity, 6(6), 681-9 (1997)
doi:10.1016/S1074-7613(00)80444-6

41. S. Hida, M. Tadachi, T. Saito and S. Taki: Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood, 106(6), 2011-7 (2005)
doi:10.1182/blood-2005-04-1344


42. A. Fukushima, T. Yamaguchi, W. Ishida, K. Fukata, K. Udaka and H. Ueno: Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses. Immunogenetics, 57(5), 337-43 (2005)
doi:10.1007/s00251-005-0805-3


43. H. Huang and W. E. Paul: Impaired interleukin 4 signaling in T helper type 1 cells. J Exp Med, 187(8), 1305-13 (1998)
doi:10.1084/jem.187.8.1305

44. M. Kubo, J. Ransom, D. Webb, Y. Hashimoto, T. Tada and T. Nakayama: T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. EMBO J, 16(13), 4007-20 (1997)
doi:10.1093/emboj/16.13.4007

45. Y. Zhang, R. Apilado, J. Coleman, S. Ben-Sasson, S. Tsang, J. Hu-Li, W. E. Paul and H. Huang: Interferon gamma stabilizes the T helper cell type 1 phenotype. J Exp Med, 194(2), 165-72 (2001)
doi:10.1084/jem.194.2.165


46. Z. Huang, J. Xin, J. Coleman and H. Huang: IFN-gamma suppresses STAT6 phosphorylation by inhibiting its recruitment to the IL-4 receptor. J Immunol, 174(3), 1332-7 (2005)

47. K. G. Tournoy, J. C. Kips and R. A. Pauwels: Endogenous interleukin-10 suppresses allergen-induced airway inflammation and nonspecific airway responsiveness. Clin Exp Allergy, 30(6), 775-83 (2000)
doi:10.1046/j.1365-2222.2000.00838.x

48. O. Akbari, R. H. DeKruyff and D. T. Umetsu: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol, 2(8), 725-31 (2001)
doi:10.1038/90667


49. K. W. Moore, R. de Waal Malefyt, R. L. Coffman and A. O'Garra: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 19, 683-765 (2001)
doi:10.1146/annurev.immunol.19.1.683


50. D. Xu, H. Liu, M. Komai-Koma, C. Campbell, C. McSharry, J. Alexander and F. Y. Liew: CD4+CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol, 170(1), 394-9 (2003)

51. M. Stassen, H. Jonuleit, C. Muller, M. Klein, C. Richter, T. Bopp, S. Schmitt and E. Schmitt: Differential regulatory capacity of CD25+ T regulatory cells and preactivated CD25+ T regulatory cells on development, functional activation, and proliferation of Th2 cells. J Immunol, 173(1), 267-74 (2004)

52. C. M. Hawrylowicz and A. O'Garra: Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol, 5(4), 271-83 (2005)
doi:10.1038/nri1589


53. K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. Nomura and S. Sakaguchi: CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322(5899), 271-5 (2008)
doi:10.1126/science.1160062


54. Y. Zheng, A. Chaudhry, A. Kas, P. deRoos, J. M. Kim, T. T. Chu, L. Corcoran, P. Treuting, U. Klein and A. Y. Rudensky: Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature, 458(7236), 351-6 (2009)
doi:10.1038/nature07674


55. R. A. Kastelein, C. A. Hunter and D. J. Cua: Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol, 25, 221-42 (2007)
doi:10.1146/annurev.immunol.22.012703.104758


56. A. Villarino, L. Hibbert, L. Lieberman, E. Wilson, T. Mak, H. Yoshida, R. A. Kastelein, C. Saris and C. A. Hunter: The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity, 19(5), 645-55 (2003)
doi:10.1016/S1074-7613(03)00300-5

57. C. A. Hunter: New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol, 5(7), 521-31 (2005)
doi:10.1038/nri1648


58. L. Hibbert, S. Pflanz, R. De Waal Malefyt and R. A. Kastelein: IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res, 23(9), 513-22 (2003)
doi:10.1089/10799900360708632

59. T. Owaki, M. Asakawa, F. Fukai, J. Mizuguchi and T. Yoshimoto: IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J Immunol, 177(11), 7579-87 (2006)

60. S. Pflanz, J. C. Timans, J. Cheung, R. Rosales, H. Kanzler, J. Gilbert, L. Hibbert, T. Churakova, M. Travis, E. Vaisberg, W. M. Blumenschein, J. D. Mattson, J. L. Wagner, W. To, S. Zurawski, T. K. McClanahan, D. M. Gorman, J. F. Bazan, R. de Waal Malefyt, D. Rennick and R. A. Kastelein: IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity, 16(6), 779-90 (2002)
doi:10.1016/S1074-7613(02)00324-2

61. T. Yoshimura, A. Takeda, S. Hamano, Y. Miyazaki, I. Kinjyo, T. Ishibashi, A. Yoshimura and H. Yoshida: Two-sided roles of IL-27: induction of Th1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J Immunol, 177(8), 5377-85 (2006) 62. A. Takeda, S. Hamano, A. Yamanaka, T. Hanada, T. Ishibashi, T. W. Mak, A. Yoshimura and H. Yoshida: Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol, 170(10), 4886-90 (2003)

63. A. Awasthi, Y. Carrier, J. P. Peron, E. Bettelli, M. Kamanaka, R. A. Flavell, V. K. Kuchroo, M. Oukka and H. L. Weiner: A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol, 8(12), 1380-9 (2007)
doi:10.1038/ni1541

64. C. Pot, L. Apetoh, A. Awasthi and V. K. Kuchroo: Molecular pathways in the induction of interleukin-27-driven regulatory type 1 cells. J Interferon Cytokine Res, 30(6), 381-8
doi:10.1089/jir.2010.0047

65. A. Amadi-Obi, C. R. Yu, X. Liu, R. M. Mahdi, G. L. Clarke, R. B. Nussenblatt, I. Gery, Y. S. Lee and C. E. Egwuagu: TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med, 13(6), 711-8 (2007)
doi:10.1038/nm1585

66. C. F. Anderson, J. S. Stumhofer, C. A. Hunter and D. Sacks: IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol, 183(7), 4619-27 (2009)
doi:10.4049/jimmunol.0804024

67. D. Artis, A. Villarino, M. Silverman, W. He, E. M. Thornton, S. Mu, S. Summer, T. M. Covey, E. Huang, H. Yoshida, G. Koretzky, M. Goldschmidt, G. D. Wu, F. de Sauvage, H. R. Miller, C. J. Saris, P. Scott and C. A. Hunter: The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol, 173(9), 5626-34 (2004)

68. D. Artis, L. M. Johnson, K. Joyce, C. Saris, A. Villarino, C. A. Hunter and P. Scott: Cutting edge: early IL-4 production governs the requirement for IL-27-WSX-1 signaling in the development of protective Th1 cytokine responses following Leishmania major infection. J Immunol, 172(8), 4672-5 (2004)

69. T. Yoshimoto, K. Yasuda, J. Mizuguchi and K. Nakanishi: IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol, 179(7), 4415-23 (2007)

70. H. Yoshida, S. Hamano, G. Senaldi, T. Covey, R. Faggioni, S. Mu, M. Xia, A. C. Wakeham, H. Nishina, J. Potter, C. J. Saris and T. W. Mak: WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity, 15(4), 569-78 (2001)
doi:10.1016/S1074-7613(01)00206-0

71. S. Zahn, S. Wirtz, M. Birkenbach, R. S. Blumberg, M. F. Neurath and E. von Stebut: Impaired Th1 responses in mice deficient in Epstein-Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur J Immunol, 35(4), 1106-12 (2005)
doi:10.1002/eji.200425926

72. Y. Miyazaki, H. Inoue, M. Matsumura, K. Matsumoto, T. Nakano, M. Tsuda, S. Hamano, A. Yoshimura and H. Yoshida: Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice. J Immunol, 175(4), 2401-7 (2005)

73. S. Shimizu, N. Sugiyama, K. Masutani, A. Sadanaga, Y. Miyazaki, Y. Inoue, M. Akahoshi, R. Katafuchi, H. Hirakata, M. Harada, S. Hamano, H. Nakashima and H. Yoshida: Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1). J Immunol, 175(11), 7185-92 (2005)

74. S. Lucas, N. Ghilardi, J. Li and F. J. de Sauvage: IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A, 100(25), 15047-52 (2003)
doi:10.1073/pnas.2536517100

75. K. M. Ansel, I. Djuretic, B. Tanasa and A. Rao: Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol, 24, 607-56 (2006)
doi:10.1146/annurev.immunol.23.021704.115821

76. S. Agarwal and A. Rao: Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity, 9(6), 765-75 (1998)
doi:10.1016/S1074-7613(00)80642-1

77. J. J. Bird, D. R. Brown, A. C. Mullen, N. H. Moskowitz, M. A. Mahowald, J. R. Sider, T. F. Gajewski, C. R. Wang and S. L. Reiner: Helper T cell differentiation is controlled by the cell cycle. Immunity, 9(2), 229-37 (1998)
doi:10.1016/S1074-7613(00)80605-6

78. K. W. Makar and C. B. Wilson: DNA methylation is a nonredundant repressor of the Th2 effector program. J Immunol, 173(7), 4402-6 (2004)

79. K. W. Makar, M. Perez-Melgosa, M. Shnyreva, W. M. Weaver, D. R. Fitzpatrick and C. B. Wilson: Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol, 4(12), 1183-90 (2003)
doi:10.1038/ni1004

80. M. Koyanagi, A. Baguet, J. Martens, R. Margueron, T. Jenuwein and M. Bix: EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem, 280(36), 31470-7 (2005)
doi:10.1074/jbc.M504766200

81. K. Agger, J. Christensen, P. A. Cloos and K. Helin: The emerging functions of histone demethylases. Curr Opin Genet Dev, 18(2), 159-68 (2008)
doi:10.1016/j.gde.2007.12.003

82. A. Baguet and M. Bix: Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc Natl Acad Sci U S A, 101(31), 11410-5 (2004)
doi:10.1073/pnas.0403334101

83. H. S. Nelson: Allergen immunotherapy: where is it now? J Allergy Clin Immunol, 119(4), 769-79 (2007)
doi:10.1016/j.jaci.2007.01.036

84. H. S. Nelson: Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol, 119(4), 872-80 (2007)
doi:10.1016/j.jaci.2006.12.613

85. H. S. Nelson: Specific immunotherapy with allergen mixes: what is the evidence? Curr Opin Allergy Clin Immunol, 9(6), 549-53 (2009)
doi:10.1097/ACI.0b013e328330ee69

86. D. T. Umetsu: Understanding the immunological basis of asthma; immunotherapy and regulatory T cells. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M(95), 211-4; discussion 215-6 (2006)

87. A. Joetham, K. Takeda, C. Taube, N. Miyahara, S. Matsubara, T. Koya, Y. H. Rha, A. Dakhama and E. W. Gelfand: Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol, 178(3), 1433-42 (2007)

88. K. Takeda, T. Kaisho and S. Akira: Toll-like receptors. Annu Rev Immunol, 21, 335-76 (2003)
doi:10.1146/annurev.immunol.21.120601.141126

89. E. Kopp and R. Medzhitov: Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol, 15(4), 396-401 (2003)
doi:10.1016/S0952-7915(03)00080-3

90. D. M. Klinman: Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol, 4(4), 249-58 (2004)
doi:10.1038/nri1329

91. D. Higgins, R. Rodriguez, R. Milley, J. Marshall, C. Abbate, T. dela Cruz, K. Patton, F. Walker, K. Chichester, J. Eiden, S. Tuck and G. Van Nest: Modulation of immunogenicity and allergenicity by controlling the number of immunostimulatory oligonucleotides linked to Amb a 1. J Allergy Clin Immunol, 118(2), 504-10 (2006)
doi:10.1016/j.jaci.2006.05.001

92. J. D. Marshall, S. Abtahi, J. J. Eiden, S. Tuck, R. Milley, F. Haycock, M. J. Reid, A. Kagey-Sobotka, P. S. Creticos, L. M. Lichtenstein and G. Van Nest: Immunostimulatory sequence DNA linked to the Amb a 1 allergen promotes T(H)1 cytokine expression while downregulating T(H)2 cytokine expression in PBMCs from human patients with ragweed allergy. J Allergy Clin Immunol, 108(2), 191-7 (2001)
doi:10.1067/mai.2001.116984

93. E. M. Hessel, M. Chu, J. O. Lizcano, B. Chang, N. Herman, S. A. Kell, M. Wills-Karp and R. L. Coffman: Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med, 202(11), 1563-73 (2005)
doi:10.1084/jem.20050631

Key Words: Allergy immune responses, IL-4, airway inflammation, Th1-Promoting Factors, Review

Send correspondence to: Hua Huang, Department of Medicine and Integrated Department of Immunology, National Jewish Health, University of Colorado Denver School of Medicine, 1400 Jackson Street, K613e, Denver, CO 80206, Tel: 303-398-1281, Fax: 303-398-1806, E- mail: huangh@njhealth.org