[Frontiers in Bioscience E3, 1013-1024, June 1, 2011] |
|
|
Development of semiconductor nanomaterial whole cell imaging sensor on glass slides Hengyi Xu1,2, Zoraida Pascual Aguilar2, Hua Wei1, Andrew Wang2
1 TABLE OF CONTENTS
1. ABSTRACT We report the development of a highly specific semiconductor quantum dots (QDs)-based whole cell imaging sensor that offer rapid, reproducible, accurate, and long term cell imaging system on silanized microscope glass slides. The QD-based imaging sensor involved capture of whole cells with QD labeled highly specific antibodies against over expressed cell membrane proteins. The QDs were first modified with a polymer coating to generate carboxyl groups on the surface. Using the carboxylated QDs, antibodies were covalent conjugated using carbodiimide chemistry to form 20Ab~QD that were used to capture whole cell. The SK-BR3 cell line was used as a model analyte in the sandwich type assay consisting of 10Ab + SK-BR3 + Ab' + 20Ab~QD. The assay was immobilized on an antibody modified silanized microscope slide that was subsequently mounted on a fluorescence microscope for detection. The results indicated that the QD based imaging sensor exhibited brighter signals compared with organic dye Texas red. The QD-based whole cell imaging sensor was visible under the microscope even after one week without fixation. |