[Frontiers in Bioscience S3, 1263-1272, June 1, 2011] |
|
|
|
Tetrahydrobiopterin attenuates superoxide-induced reduction in nitric oxide Mark C. Bowers1, Laura A. Hargrove1, Katherine A. Kelly1, Guoyao Wu1,2, Cynthia J. Meininger1
1 TABLE OF CONTENTS
1. ABSTRACT NADPH oxidase, a source of superoxide anion (.O2-), can be stimulated by oxidized low-density lipoprotein (OxLDL). We examined whether tetrahydrobiopterin (BH4) could reduce OxLDL-induced .O2- production by NADPH oxidase, increasing nitric oxide (NO) synthesis. Endothelial cells incubated with OxLDL produced more .O2- (35-67%) than untreated cells, with the highest increase 1 hour after OxLDL addition. The elevated .O2- production correlated with the translocation of the p47phox subunit of NADPH oxidase from the cytosol to the membrane. Cells exhibited a marked decrease in both BH4 (83%) and NO (54%) in the same hour following exposure to OxLDL. An NADPH oxidase inhibitor, apocynin, or antioxidant, N-acetyl-L-cysteine, substantially attenuated the reduction in both BH4 and NO. The .O2- production was increased when cells were pretreated with an inhibitor of BH4 synthesis and decreased following pretreatment with a BH4 precursor, suggesting that NADPH oxidase-induced imbalance of endothelial NO and .O2- production can be modulated by BH4 concentrations. BH4 may be critical in combating oxidative stress, restoring proper redox state, and reducing risk for cardiovascular disease including atherosclerosis. |