[Frontiers in Bioscience E4, 1287-1292, January 1, 2012]

Cytogenetics of hepatoblastoma

Gail E. Tomlinson1

1University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas, USA

TABLE OF CONTENTS

1. Abstract
2. Text
3. References

1. ABSTRACT

The cytogenetics of hepatoblastoma demonstrate recurring events which include whole chromosome trisomies, most commonly trisomy of chromosome 2, 8, or 10. In addition, unbalanced translocations involving a breakpoint on the proximal short arm of chromosome 1 are observed which result in a duplication of the long arm of chromosome 1q. The most commonly involved reciprocal chromosomal arm is 4q, although the reciprocal chromosome is highly variable and always results in a loss of chromosomal material. The full significance of these chromosomal changes has yet to be confirmed in large studies, however a suggestion of an association of duplication of regions of 2q with a poor prognosis. A rare sub-type of hepatoblastoma, known as the small cell undifferentiated variant, is associated with deletion or translocation of 22q, the locus of the rhabdoid tumor gene, SMARCB1.

2. TEXT

The cytogenetics of many childhood malignancies has led the way to identification of crucial genes which contribute to the oncogenic process, either through the creation of chimeric proteins, or by transposing an existing gene into a different regulatory setting. In many instances of childhood cancer, selection of treatment options and prediction of outcome is influenced by cytogenetics, either by the absolute number of chromosomes as in childhood leukemia, in which the presence of chromosomal trisomies, particularly trisomy of chromosome 4 or 10, is associated with a favorable prognoses, or alternatively the presence of the Philadelphia chromosome associated with a poor prognosis (1, 2).

Hepatoblastoma is a tumor characterized by recurring chromosomal abnormalities, however the full significance of these abnormalities is not yet fully understood. Some of the earliest reported cases karyotyped from young children with hepatoblastoma carried a single extra chromosome (3, 4). Other early studies focused on single cases or small series which revealed chromosome trisomes, most often chromosome 2, 8, or 20, often seen together with structural alterations (5-13).

In 1997, Schneider et al described a recurring translocation in which the entire long arm of chromosome 1 is translocated to the distal region of chromosome 4, with net loss of material at the distal region of chromosome 4 and a net gain of chromosome 1q (14). This translocation in most cases is seen in conjunction with the observed chromosomal trisomies. A perhaps "classic" hepatoblastoma karyotype is seen in Figure 1, demonstrating trisomy 2, 8, and 20 as well as the t(1;4) translocation.

It soon became apparent that the cytogenetics of hepatoblastoma are complex, but recurring themes have emerged. Karyotypic changes in hepatoblastomas can clearly be classified into two broad categories: numerical changes and structural changes of individual chromosomes. Numerical aberrations in hepatoblastomas are not random, but are characterized cytogenetically by distinct patterns. Most result in addition of whole chromosomes, but occasionally result in loss of chromosomes. Trisomies of chromosome 2, 8 and 20 are the most common recurring numerical aberrations, with trisomy of chromosome 20 observed most frequently. The distribution of trisomies among the different chromosomes in hepatoblastoma karyotypes previously published is shown in Figure 2. (15). As indicated above, such non-random chromosomal trisomies are not unique to hepatoblastoma, but are seen in other pediatric tumors including acute lymphoblastic leukemia which demonstrate extra copies of chromosomes 4 and 10 and the solid renal mesoblastic nephroma which demonstrate extra copies of chromosomes chromosome 11 (1, 16).

The most common structural cytogenetic abnormality in hepatoblastoma involves an unbalanced translocation involving the long arm of chromosome 1. The initial recurring translocation described was the translocation involving chromosomes 1 and 4, t(1;4)(q12;q34), which was reported by several groups (17-19). It is notable that the reciprocal breakpoints on chromosome 4 are not identical in all tumors and have been observed to occur at both 4q32 and 4q34. Likewise the breakpoints on chromosome 1 have been observed both at chromosome 1q12 and 1q21. It had since been reported in a large series that hepatoblastomas that there exists a family of chromosome translocations with similar breakpoints on either chromosome 1q12 or 1q21 and multiple different reciprocal chromosome arms (15). The different resulting derivative chromosomes are shown in Table 1. Each such translocation observed is unbalanced, resulting in a gain of the long arm of chromosome 1 and loss of material on the distal part of the reciprocal chromosome. These translocations are frequently associated with numerous whole chromosomal gains as well.

The clinical significance of these translocations and numerical abnormalities is just beginning to be explored. An interesting case of partial duplication of chromosome 2 revealed by fluorescence in situ hybridization in which a segment on the long arm of chromosome 2 is inserted into chromosome 9, suggested that the critical region for trisomy 2 is on the long arm between 2q21 and 2qter (20). A region of amplification of chromosome 2q localized to 2q24 has been noted to be associated with a poor prognosis (21).

Although these whole chromosome changes have described previously by classical karyotype analysis, they can also be visualized by whole genome comparative genomic hybridization (CGH) as shown in Figure 3. CGH determines copy number such that whole chromosome additions or deletions are easily detected. The recurring translocations involving breakpoints on chromosome 1q can also be detected as an increase in copy number along the length of the q arm of chromosome 1. CGH is used increasingly in analyzing tumors for genetic changes at the chromosome level, as it does not rely on dividing tumor cells. There are limitations in CGH, however, in that it is not possible to ascertain with certainty the reciprocal arms of unbalanced translocations, particularly in complex karyotypes. In addition any balanced chromosomal translocations, although infrequent in hepatoblastoma, would not be detected by CGH.

Approximately 5% of cases of hepatoblastoma are of the small cell undifferentiated (SCU) variant. Several cases of SCU hepatoblastomas have been reported in the literature with karyotypes showing deletion or translocation of 22q. (22, 23) We recently reported that SCU variant of hepatoblastoma was characterized by absence of the SMARCB1 gene (also known as hSNF5/INI1, or the rhabdoid tumor gene), which maps to chromosome 22q11. Using oaCGH a small interstitial homoyzgous deletion on chromosome 22q11 encompassing SMARCB1 was detected in tumor tissue from a young infant with a hepatoblastoma with SCU histologic features. (24) These molecular cytogenetic findings, together with demographic and clinical characteristics, suggest that this variant of hepatoblastoma has similarity to rhabdoid tumors of other sites.

Hepatocellular carcinoma is less common in children, but is also characterized by chromosomal gains and losses, with loss of the Y chromosome notable. (25). Duplication of chromosome 1q is also seen in hepatocellular carcinoma with increased expression of numerous chromosome 1 genes (26, 27). Cytogenetic data on the fibrolamellar variant of HCC is sparse, but one childhood fibrolamellar carcinoma has been characterized by a hypertriploid karyotype with clonal evolution with multiple additional chromosomal gains as well as loss of the Y chromosome. (28).

The field of cytogenetics of hepatoblastoma continues to move forward. Current efforts are being applied both in Europe and in the United States, to understand the impact on prognosis of both the numerical aberrations as well as the structural abnormalities. The precise breakpoint on chromosome 1 has remained elusive to date because of the difficulty in mapping this highly repetitive region of the genome. (29).

3. REFERENCES

1. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM, Nitschke R, Pullen J, Steuber CP, Land VJ. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 79(12):3316-24 (1992)
PMID:1596572

2. Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology/oncology clinics of North America 23(5):1043-63, (2009)
doi:10.1016/j.hoc.2009.07.007
PMID:19825452

3. Bardi G, Johansson B, Pandis N, Heim S, Mandahl N, Andren-Sandberg A, Hagerstrand I, Mitelman F. Trisomy 2 as the sole chromosomal abnormality in a hepatoblastoma. Genes, chromosomes & cancer 4(1):78-80 (1992).
doi:10.1002/gcc.2870040111

4. Mascarello J, Krous H. Second report of a translocation involving 19q13.4 in a mesenchymal hamartoma of the liver. Cancer genetics and cytogenetics 58:141-2(1992)
doi:10.1016/0165-4608(92)90100-M

5. Fletcher J, Kozakewich H, Pavelka K, Grier HE, Shamberger RC, Korf B, Morton CC. Consistent cytogenetic aberrations in hepatoblastoma: a common pathway of genetic alterations in embryonal liver and skeletal muscle malignancies? Genes, chromosomes & cancer 3:37-43(1991)
doi:10.1002/gcc.2870030107

6. Rodriguez E, Reuter V, Miles C, Bosl GJ, Chaganti RS. Abnormalities of 2q: a common genetic link between rhabdomyosarcoma and heptoblastoma? Genes, chromosomes & cancer 3:122-7(1991)
doi:10.1002/gcc.2870030207

7. Soukup SW, Lampkin BL. Trisomy 2 and 20 in two hepatoblastomas. Genes, chromosomes & cancer 3(3):231-4(1991)
doi:10.1002/gcc.2870030310

8. Tonk VS, Wilson KS, Timmons CF, Schneider NR. Trisomy 2, trisomy 20, and del(17p) as sole chromosomal abnormalities in three cases of hepatoblastoma. Genes, chromosomes & cancer 11(3):199-202(1994)
doi:10.1002/gcc.2870110309

9. Swarts S, Wisecarver J, Bridge JA. Significance of extra copies of chromosome 20 and the long arm of chromosome 2 in hepatoblastoma. Cancer genetics and cytogenetics 91(1):65-7(1996)
doi:10.1016/S0165-4608(96)00128-8

10. Bove K, Soukup S, Ballard E, Ryckman F. Hepatoblastoma in a child with trisomy 18: cytogenetics, liver anomalies and literature review. Pediatr Pathol Lab Med 16:253-62(1996)
doi:10.1080/107710496175732

11. Parada LA, Bardi G, Hallen M, Hagerstrand I, Tranberg KG, Mitelman F. Cytogenetic abnormalities and clonal evolution in an adult hepatoblastoma. Am J surg pathol 21(11):1381-6(1997)
doi:10.1097/00000478-199711000-00015
PMID:9351578

12. Yeh YA, Rao PH, Cigna CT, Middlesworth W, Lefkowitch JH, Murty VV. Trisomy 1q, 2, and 20 in a case of hepatoblastoma: possible significance of 2q35-q37 and 1q12-q21 rearrangements. Cancer genetics and cytogenetics 123(2):140-3(2000)
doi:10.1016/S0165-4608(00)00323-X

13. Ali W, Savasan S, Rabah R, Mohamed AN. Cytogenetic findings in two new cases of hepatoblastoma. Cancer genetics and cytogenetics 133(2):179-82(2002)
doi:10.1016/S0165-4608(01)00588-X

14. Schneider N, Cooley L, Finegold M, Douglass EC, Tomlinson GE. The first recurring chromosome translocation in hepatoblastoma: der(4)t(1;4)(q12;q34). Genes, chromosomes & cancer 19:291-4(1997)
doi:10.1002/(SICI)1098-2264(199708)19:4<291::AID-GCC13>3.0.CO;2-J

15. Tomlinson G, Douglass E, Pollock B, Finegold M, Schneider N. Cytogenetic analysis of a large series of hepatoblastoma: numerical aberrtions with recurring translocations involving 1q12-21.Genes, chromosome and cancer 44:177-84(2005)

16. Dal Cin P, Lipcsei G, Hermand G, Boniver J, Van den Berghe H. Congenital mesoblastic nephroma and trisomy 11. Cancer genetics and cytogenetics 103(1):68-70(1998)
doi:10.1016/S0165-4608(97)00350-6

17. Schneider N, Cooley L, Finegold M, Douglass E, Tomlinson G. Report of the first recurring chromosome translocation: der(4)t(1;4)(q12;q34). Genes, Chrom Cancer 19:291-4(1997)
doi:10.1002/(SICI)1098-2264(199708)19:4<291::AID-GCC13>3.0.CO;2-J

18. Sainati L, Leszl A, Stella M, Montaldi A, Perilongo G, Rugge M, Bolcato S, Iolascon A, Basso G. Cytogenetic analysis of hepatoblastoma: hypothesis of cytogenetic evolution in such tumors and results of a multicentric study. Cancer genetics and cytogenetics 104(1):39-44(1998)
doi:10.1016/S0165-4608(97)00432-9

19. Ma SK, Cheung AN, Choy C, Chan GC, Ha SY, Ching LM, Wan TS, Chan LC. Cytogenetic characterization of childhood hepatoblastoma. Cancer genetics and cytogenetics 119(1):32-6(2000)
doi:10.1016/S0165-4608(99)00203-4

20. Balogh E, Swanton S, Kiss C, Jakab ZS, Secker-Walker LM, Olah E. Fluorescence in situ hybridization reveals trisomy 2q by insertion into 9p in hepatoblastoma. Cancer genetics and cytogenetics 102(2):148-50(1998)
doi:10.1016/S0165-4608(97)00318-X

21. Kumon K, Kobayashi H, Namiki T, Tsunematsu Y, Miyauchi J, Kikuta A, Horikoshi Y, Komada Y, Hatae Y, Eguchi H, Kaneko Y. Frequent increase of DNA copy number in the 2q24 chromosomal region and its association with a poor clinical outcome in hepatoblastoma: cytogenetic and comparative genomic hybridization analysis. Jpn J Cancer Res 92(8):854-62(2001)
PMID:11509117

22. Hansen K, Bagtas J, Mark H, Homans A, SInger D. Undifferentiated small cell hepatoblastoma with a unique chromosomal translocation: a case report. Pediatr Pathol 12:457-62(1992)
doi:10.3109/15513819209023325

23. Gunawan B, Schafer KL, Sattler B, Lorf T, Dockhorn-Dworniczak B, Ringe B, Fuzesi L Undifferentiated small cell hepatoblastoma with a chromosomal translocation t(22;22)(q11;q13). Histopathology 40(5):485-7(2002)
doi:10.1046/j.1365-2559.2002.t01-2-01390.x
PMID:12010372

24. Trobaugh-Lotrario AD, Tomlinson GE, Finegold MJ, Gore L, Feusner JH. Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatric blood & cancer 52(3):328-34(2009)
doi:10.1002/pbc.21834

25. Bardi G, Johansson B, Pandis N, Heim S, Mandahn N, Andren-Sandberg A, Hagerstrand I, Mitelman F. Cytogenetic findings in three primary hepatocellular carcinomas. Cancer genetics and cytogenetics 58(2):191-5(1992)
doi:10.1016/0165-4608(92)90111-K

26. Park SJ, Jeong SY, Kim HJ. Y chromosome loss and other genomic alterations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array. Cancer genetics and cytogenetics 166(1):56-64(2006)
doi:10.1016/j.cancergencyto.2005.08.022
PMID:16616112

27. Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J, Kreipe H, Schlegelberger B Wilkens L. Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 21(5):505-16 (2008).
doi:10.1038/modpathol.3800998
PMID:18277965

28. Lowichik A, Schneider NR, Tonk V, Ansari MQ, Timmons CF. Report of a complex karyotype in recurrent metastatic fibrolamellar hepatocellular carcinoma and a review of hepatocellular carcinoma cytogenetics. Cancer genetics and cytogenetics 88(2):170-4(1996)
doi:10.1016/0165-4608(95)00314-2

29. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E. The DNA sequence and biological annotation of human chromosome 1. Nature 441(7091):315-21(2006)
doi:10.1038/nature04727
PMID:16710414

1. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM, Nitschke R, Pullen J, Steuber CP, Land VJ. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 79(12):3316-24 (1992)
PMID:1596572

2. Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology/oncology clinics of North America 23(5):1043-63, (2009)
doi:10.1016/j.hoc.2009.07.007
PMID:19825452

3. Bardi G, Johansson B, Pandis N, Heim S, Mandahl N, Andren-Sandberg A, Hagerstrand I, Mitelman F. Trisomy 2 as the sole chromosomal abnormality in a hepatoblastoma. Genes, chromosomes & cancer 4(1):78-80 (1992).
doi:10.1002/gcc.2870040111

4. Mascarello J, Krous H. Second report of a translocation involving 19q13.4 in a mesenchymal hamartoma of the liver. Cancer genetics and cytogenetics 58:141-2(1992)
doi:10.1016/0165-4608(92)90100-M

5. Fletcher J, Kozakewich H, Pavelka K, Grier HE, Shamberger RC, Korf B, Morton CC. Consistent cytogenetic aberrations in hepatoblastoma: a common pathway of genetic alterations in embryonal liver and skeletal muscle malignancies? Genes, chromosomes & cancer 3:37-43(1991)
doi:10.1002/gcc.2870030107

6. Rodriguez E, Reuter V, Miles C, Bosl GJ, Chaganti RS. Abnormalities of 2q: a common genetic link between rhabdomyosarcoma and heptoblastoma? Genes, chromosomes & cancer 3:122-7(1991)
doi:10.1002/gcc.2870030207

7. Soukup SW, Lampkin BL. Trisomy 2 and 20 in two hepatoblastomas. Genes, chromosomes & cancer 3(3):231-4(1991)
doi:10.1002/gcc.2870030310

8. Tonk VS, Wilson KS, Timmons CF, Schneider NR. Trisomy 2, trisomy 20, and del(17p) as sole chromosomal abnormalities in three cases of hepatoblastoma. Genes, chromosomes & cancer 11(3):199-202(1994)
doi:10.1002/gcc.2870110309

9. Swarts S, Wisecarver J, Bridge JA. Significance of extra copies of chromosome 20 and the long arm of chromosome 2 in hepatoblastoma. Cancer genetics and cytogenetics 91(1):65-7(1996)
doi:10.1016/S0165-4608(96)00128-8

10. Bove K, Soukup S, Ballard E, Ryckman F. Hepatoblastoma in a child with trisomy 18: cytogenetics, liver anomalies and literature review. Pediatr Pathol Lab Med 16:253-62(1996)
doi:10.1080/107710496175732

11. Parada LA, Bardi G, Hallen M, Hagerstrand I, Tranberg KG, Mitelman F. Cytogenetic abnormalities and clonal evolution in an adult hepatoblastoma. Am J surg pathol 21(11):1381-6(1997)
doi:10.1097/00000478-199711000-00015
PMID:9351578

12. Yeh YA, Rao PH, Cigna CT, Middlesworth W, Lefkowitch JH, Murty VV. Trisomy 1q, 2, and 20 in a case of hepatoblastoma: possible significance of 2q35-q37 and 1q12-q21 rearrangements. Cancer genetics and cytogenetics 123(2):140-3(2000)
doi:10.1016/S0165-4608(00)00323-X

13. Ali W, Savasan S, Rabah R, Mohamed AN. Cytogenetic findings in two new cases of hepatoblastoma. Cancer genetics and cytogenetics 133(2):179-82(2002)
doi:10.1016/S0165-4608(01)00588-X

14. Schneider N, Cooley L, Finegold M, Douglass EC, Tomlinson GE. The first recurring chromosome translocation in hepatoblastoma: der(4)t(1;4)(q12;q34). Genes, chromosomes & cancer 19:291-4(1997)
doi:10.1002/(SICI)1098-2264(199708)19:4<291::AID-GCC13>3.0.CO;2-J

15. Tomlinson G, Douglass E, Pollock B, Finegold M, Schneider N. Cytogenetic analysis of a large series of hepatoblastoma: numerical aberrtions with recurring translocations involving 1q12-21.Genes, chromosome and cancer 44:177-84(2005)

16. Dal Cin P, Lipcsei G, Hermand G, Boniver J, Van den Berghe H. Congenital mesoblastic nephroma and trisomy 11. Cancer genetics and cytogenetics 103(1):68-70(1998)
doi:10.1016/S0165-4608(97)00350-6

17. Schneider N, Cooley L, Finegold M, Douglass E, Tomlinson G. Report of the first recurring chromosome translocation: der(4)t(1;4)(q12;q34). Genes, Chrom Cancer 19:291-4(1997)
doi:10.1002/(SICI)1098-2264(199708)19:4<291::AID-GCC13>3.0.CO;2-J

18. Sainati L, Leszl A, Stella M, Montaldi A, Perilongo G, Rugge M, Bolcato S, Iolascon A, Basso G. Cytogenetic analysis of hepatoblastoma: hypothesis of cytogenetic evolution in such tumors and results of a multicentric study. Cancer genetics and cytogenetics 104(1):39-44(1998)
doi:10.1016/S0165-4608(97)00432-9

19. Ma SK, Cheung AN, Choy C, Chan GC, Ha SY, Ching LM, Wan TS, Chan LC. Cytogenetic characterization of childhood hepatoblastoma. Cancer genetics and cytogenetics 119(1):32-6(2000)
doi:10.1016/S0165-4608(99)00203-4

20. Balogh E, Swanton S, Kiss C, Jakab ZS, Secker-Walker LM, Olah E. Fluorescence in situ hybridization reveals trisomy 2q by insertion into 9p in hepatoblastoma. Cancer genetics and cytogenetics 102(2):148-50(1998)
doi:10.1016/S0165-4608(97)00318-X

21. Kumon K, Kobayashi H, Namiki T, Tsunematsu Y, Miyauchi J, Kikuta A, Horikoshi Y, Komada Y, Hatae Y, Eguchi H, Kaneko Y. Frequent increase of DNA copy number in the 2q24 chromosomal region and its association with a poor clinical outcome in hepatoblastoma: cytogenetic and comparative genomic hybridization analysis. Jpn J Cancer Res 92(8):854-62(2001)
PMID:11509117

22. Hansen K, Bagtas J, Mark H, Homans A, SInger D. Undifferentiated small cell hepatoblastoma with a unique chromosomal translocation: a case report. Pediatr Pathol 12:457-62(1992)
doi:10.3109/15513819209023325

23. Gunawan B, Schafer KL, Sattler B, Lorf T, Dockhorn-Dworniczak B, Ringe B, Fuzesi L Undifferentiated small cell hepatoblastoma with a chromosomal translocation t(22;22)(q11;q13). Histopathology 40(5):485-7(2002)
doi:10.1046/j.1365-2559.2002.t01-2-01390.x
PMID:12010372

24. Trobaugh-Lotrario AD, Tomlinson GE, Finegold MJ, Gore L, Feusner JH. Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatric blood & cancer 52(3):328-34(2009)
doi:10.1002/pbc.21834

25. Bardi G, Johansson B, Pandis N, Heim S, Mandahn N, Andren-Sandberg A, Hagerstrand I, Mitelman F. Cytogenetic findings in three primary hepatocellular carcinomas. Cancer genetics and cytogenetics 58(2):191-5(1992)
doi:10.1016/0165-4608(92)90111-K

26. Park SJ, Jeong SY, Kim HJ. Y chromosome loss and other genomic alterations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array. Cancer genetics and cytogenetics 166(1):56-64(2006)
doi:10.1016/j.cancergencyto.2005.08.022
PMID:16616112

27. Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J, Kreipe H, Schlegelberger B Wilkens L. Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 21(5):505-16 (2008).
doi:10.1038/modpathol.3800998
PMID:18277965

28. Lowichik A, Schneider NR, Tonk V, Ansari MQ, Timmons CF. Report of a complex karyotype in recurrent metastatic fibrolamellar hepatocellular carcinoma and a review of hepatocellular carcinoma cytogenetics. Cancer genetics and cytogenetics 88(2):170-4(1996)
doi:10.1016/0165-4608(95)00314-2

29. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E. The DNA sequence and biological annotation of human chromosome 1. Nature 441(7091):315-21(2006)
doi:10.1038/nature04727
PMID:16710414

Key Words: Liver, Tumor, Hepatoblastoma, Karyotype, Trisomy

Send correspondence to: Gail E. Tomlinson, University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, 8403 Floyd Curl Drive, San Antonio, Texas 78229USA, Tel: 210-562-9116, Fax: 210-562-9014, E-mail: tomlinsong@uthscsa.edu