Telomere and telomerase in stem cells: relevance in ageing and disease
Bibha Choudhary1, Anjali A. Karande1, Sathees C. Raghavan1
1
Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
TABLE OF CONTENTS
- 1. Abstract
- 2. Introduction
- 3. Telomere and telomerase activity in human and mouse stem cells
- 3.1. Hematopoietic stem cells
- 3.2. Mesenchymal stem cells
- 3.3. Neural stem cells
- 3.4. Cardiac stem cells
- 3.5. Primordial germ cells
- 3.6. Satellite stem cells
- 3.7. Cancer stem cells
- 4. Embryonic stem cells and induced pluripotent stem cells
- 5. Telomere, telomerase during aging and disease
- 6. Telomere and stem cell dysfunction
- 7. Telomere and cancer
- 8. Conclusion and perspectives
- 9. Acknowledgements
- 10. References
1. ABSTRACT
Telomeres, at the end of chromosomes provide genomic stability. During embryonic development, telomerase, a reverse transcriptase elongates the ends of the DNA. In somatic cells, the activity of telomerase decreases after birth leading to shortening of telomere with cell division, which thereby triggers senescence. In embryonic stem cells and germ cells, telomere length is maintained. In adults, the tissue specific stem cells have telomerase activity, but it is not enough to maintain the length of telomere. The stem cells also undergo the process of ageing but it is delayed as compared to the somatic cells. Studies on the genetic disorder, dyskeratosis congenital, caused by mutations in the human telomerase, reiterate the importance of telomere maintenance in human stem cells. This review covers the role of telomere and telomerase in stem cells and their relevance in disease and ageing.
2. INTRODUCTION
Telomeres are present at the ends of the chromosomes and protect DNA from terminal degradation and chromosomal fusion (1). In eukaryotes, telomeres are characterized by the presence of short guanine-rich repeats, which vary in length from 5 to 20 Kb depending on the age and the renewal potential of tissue or cell type in an individual (2). During replication, DNA polymerase fails to completely copy the end of chromosomes leading to loss of telomere repeats (3). This gradual shortening of the telomere is considered as one of the mechanisms underlying aging and critically short telomeres lead to senescence and loss of cell viability (2, 4, 5). The 3' end of the telomere is single-stranded, which folds back into D-loop (double-stranded DNA) forming a "T-loop" structure. The double-stranded region of telomere is bound by two sequence-specific DNA binding proteins, telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding factor 2 (TRF2) along with other telomeric DNA-binding complex of proteins known as Shelterin (6) (Figure 1). TRF2 has been shown to bind to ATM and interfere with the DNA damage response at the ends of the chromosome (7, 8). It has also been shown to interact with DNA damage signaling and repair factors, particularly MRE11 complex (5). Telomere length and capping is also controlled by the proteins known to be involved in DNA damage and response, both nonhomologous DNA endjoining (Ku and DNA-PKCs) and homologous recombination (RAD51d, RAD54, XRCC3) pathways (9-13).
Telomerase is a ribonucleoprotein complex consisting of a protein component with reverse transcriptase activity (TERT) and an RNA component which serves as template for telomere synthesis (TERC) (14-17). The RNA component of telomerase is characterized by the presence of a box H/ACA small nucleolar (sno RNA-like) RNA- like domain, which is bound by dyskerin protein, which binds to three other small proteins (NHP2, NOP10 and GAR1). Another domain CAB (Cajal body box) is bound by a protein TCAB1 (18, 19) which also interacts with dyskerin. TCAB1 is essential for telomerase localization to Cajal bodies. Absence of TCAB1 leads to telomere shortening with each cell division. In humans, mutations in the telomerase core component have been detected in patients suffering from aplastic anemia and dyskeratosis congenital (DKC). In human beings, telomerase is known to be expressed during early embryogenesis, before blastocyst implantation, and then gradually decrease in the differentiated tissues of the embryo. In adults, most of the somatic tissues except for highly proliferative tissues such as that of hematopoietic system, intestinal crypt cells and skin cells lack any detectable level of telomerase (20). In germ cells, telomerase activity is maintained at a similar level, throughout the life of an individual. Telomerase activity and telomere maintenance have been correlated with the unlimited potential of growth in cancer cells, embryonic stem cells and germ-line cells. The role of telomerase in aging and cancer has been studied extensively, but recently, the interest has shifted towards the understanding of role of stem cells in the progression of cancer and ageing (21).
3. TELOMERE AND TELOMERASE ACTIVITY IN HUMAN AND MOUSE STEM CELLS
Most of the adult tissues have a resident stem cell population. These cells were identified based on their ability to retain BrdU (Label-retaining technique) (22-24). In mice tissues, longer telomeres have been mapped to the stem cell compartment in hair, skin, small intestine, testis, cornea and brain (25). Telomere length, shortened in the stem cell compartment as well as the differentiated cells, concomitant with decreased telomerase activity and loss of stem cell function with age (25). Disruption of a component of telomerase (Terc) showed decreased efficiency in tissue renewal and life span of mice (26, 27). The deficiency of Terc in mice led to male and female infertility, heart failure, immunosenescence, and decreased regeneration of the digestive system, the skin, and the hematopoietic system (28-31). On the other hand, Tert transgenic mice showed longer telomeres in stem cells and differentiated cells. These mice showed a decrease in ageing associated inflammatory processes, and an increase in the median survival rate (32). It has also been shown that telomere length influences the ability of epidermal stem cells to regenerate tissues in mice (33). Deficiency of Shelterin components in mouse (Trf1, Trf2 and Tin2) are embryonically lethal and therefore it is not possible to study their affect on aging (34). On the other hand overexpression of Trf2 in skin led to short telomere and premature deterioration of skin and also UV induced skin cancer (35). Thus, the studies from mouse mutants of telomere binding proteins and telomerase complex show that the telomere length can be correlated to the renewal potential of the tissues, aging and cancer.
3.1. Hematopoietic Stem Cells (HSCs)
In adult hematopoietic and non-hematopoietic human stem cells, low level of telomerase activity has been detected (36). Although telomerase is present, it is not sufficient for maintaining the length of the telomere (Table 1). Hematopoiesis is one of the processes which occur throughout the lifetime of an individual and therefore serves as a good model to study the changes in stem cells during aging and disease progression. Hematopoietic stem cells (HSCs) give rise to progenitor cells, which then differentiate into multiple cell types which include granulocytes, monocytes, and mast cells of myeloid lineage, which is important for innate immune response and T and B lymphocytes of lymphoid lineage, which are responsible for adaptive immune response. Decline in both innate and adaptive immune response has been observed with aging (37), which could be correlated with the shortening of telomere, as observed in the peripheral blood T- and B-lymphocytes (38, 39). In vivo, comparative analysis of telomere length of leukocytes between donor and recipient after bone marrow (BM) transplantation showed that all the cell types from different lineages showed loss of telomere following extensive cell division (40-42).
HSCs purified from bone marrow have shorter telomeres when compared to HSCs from fetal liver (FL) or umbilical cord blood (UCB). The HSCs from younger individuals have longer telomeres than that of older individuals (43). Average telomere length of CD34 positive cells of UCB, BM and peripheral blood, was around 10.4 Kb, 7.6 Kb and 7.4 Kb, respectively (44, 45). The level of telomerase also varied between HSCs and their differentiated progeny (46-51) (Figure 2). Telomerase was expressed in the progenitor cells of both lymphoid and myeloid origin but downregulated in mature, resting cells (52). Unlike mature myeloid cells, which do not express telomerase after activation, in mature lymphocytes expression can be detected during development, differentiation and activation (53). Telomere shortening has been observed in T-cells with age in vivo and in vitro (54). In this regard, T-cells from Down's syndrome patients showed higher loss of telomere with age when compared to age matched controls (55). Loss of telomere in B-lymphocytes occurs with age (56) although the shortening of telomere is slower than T-cells. Telomerase activation is observed after antigenic activation of B-cells (57).
Shortening of telomere length in blood cells has also been observed in many diseases (Table 2). Examples include hematologic neoplasias such as myelodysplastic syndrome (MDS) wherein telomeres were shortened (58). In the case of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder characterized by the Philadelphia chromosome (Ph), studies showed changes in telomere length and telomerase activity between chronic phase (CP) and blast phase (BP) (59-61). A high level of telomerase activity was observed in patients with CML-BP, but not in patients with CP. In dyskeratosis congenita (DKC) (62), which is caused by mutation in the components of telomerase, bone marrow failure has been observed. In these cases, haematopoetic progenitors are reduced in number, both in bone marrow and peripheral blood. This could be because the cells reach a critically short length of telomere, earlier than normal and thereby enter replicative senescence (63).
3.2. Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) can be derived from many sources like BM, Wharton's jelly and adipose tissues. These cells are selected on the basis of their plastic adherence property (64). MSCs can differentiate into mesodermal cell lineages, adipocytes, chondrocytes, osteocytes and endothelial cells as well as non-mesodermal lineage to neuronal like cells (65, 66). Human MSCs can grow until senescence at approximately 22 population doublings (67). The MSCs obtained from young (18-29) and old (68-81yrs) donors showed difference in their proliferative capacity as younger ones could undergo more population doubling than older ones and the senescent phenotype was seen in MSCs obtained from aged individuals earlier than young ones (68). The differentiation capacity also decreased with age (69, 70). The analysis of telomere length from early and late passages of MSCs did not show any major difference in the telomere length. These cells do not display detectable telomerase activity (71) (Table 1). Several growth factors (PDGF, TGF-b, FGF, EGF) enhance the mitogenic potential of human MSCs (hMSCs) (72, 73). In the presence of basic FGF (74), MSCs can undergo 100 PDs and the telomere length is maintained. Telomerase immortalized human MSCs cells grown for 189 PDs also showed stable telomere length pattern (67, 75) and enhanced differentiation potential (76). It is likely that there is an alternative to telomerase in MSCs which help in maintaining telomere length. Overexpression of telomerase in hMSCs led to better proliferation and differentiation capacity (76). In mice, MSCs express telomerase and they can be passaged for more than 100 PDs (77). In telomerase knockout mMSCs, the cells did not differentiate into adipocytes or chondrocytes even at earlier passages (78). It therefore seems that telomere length is the criteria in MSCs that determines retention of their proliferative and differentiation ability inspite of low levels of telomerase.
3.3. Neural Stem Cells
Most of the studies on neural stem cells have been done in mice. Stem cell based neurogenesis is restricted to two areas in the brain, the sub granular zone of the dentate gyrus and the sub ependymal zone (SEZ) of lateral ventricles (79) . The neural stem cells (NSCs) are reduced in Terc deficient mice and the absence of telomerase leads to reduction in neurogenesis (80). Telomerase expression in neural progenitors is downregulated during differentiation (81, 82). Overexpression of telomerase inhibits neuronal differentiation in neural cell lines (83). Telomere shortening occurs with age in NSCs of SEZ. Telomere shortening in adult NSCs has been shown to disrupt neuronal differentiation and neuritogenesis in mice (84). In human, neural progenitor cells from embryos (hNPCs) showed a very low level of telomerase and shortening of telomere length was observed with each passage (Table 1). These cells could undergo only 40-50 population doubling before they ceased to divide (85). Upon transplantation, hNPCs grown in culture were shown to grow and make axonal connections. These cells can differentiate into neurons and glia (86, 87). Shortening of the telomere and low levels of telomerase is seen with age in NSCs.
3.4. Cardiac Stem Cells
Cardiac stem cells (CSCs) reside in heart and are characterized by the presence of shorter telomeres and expression of p16INK4a (88). These cells, under the influence of CDK inhibitors do not undergo division and maintain CSC pool. The increase in myocyte death leads to a need for myocyte replacement. The c-kit positive p16INK4a negative cells differentiate to myocyte leading to an overall decrease in CSC population (89). Insulin Growth Factor -1 in myocytes has been shown to bind to receptors on CSCs and modulate telomerase expression. CSCs have been shown to delay organ ageing and dysfunction of heart by differentiating to myocytes. Telomerase activity is markedly decreased in dividing cells leading to telomeric shortening and growth arrest. In heart, the presence of nuclear phospho-Akt prevents the onset of myopathy. Nuclear phospho-Akt can modulate the expression of telomerase by phosphorylating it, thereby increasing enzyme activity (89, 90). Increase in phospho-Akt was observed more in acute phase CSC concomitant with increase in telomerase activity and other telomere binding proteins. As compared to controls, CSCs with p16INK4a expression and shorter telomeres increased in number in acute followed by chronic phase. This decrease in the number of functional CSCs in the chronic phase would account for progression of the disease and terminal failure. This suggests that although resident stem cells are present and can revive the disease early on, lack of telomerase activity and short telomere would make CSCs also enter senescence.
3.5. Primordial Germ Cells
The male and female germ cell lineages are derived from specialized stem cells in the embryo called as primordial germ cells (PGCs). In both human and mice, telomerase activity is observed in oocytes (91, 92) (Table 1) and in testis (93, 94) but not in spermatozoa (92, 95). Normally telomere length is maintained in germ line. In absence of telomerase in successive generations, shortening of telomere and male sterility has been reported. In female both immature and mature oocytes express telomerase. The PGCs in male stop expressing telomerase as the cells enter a phase of growth arrest. Spermatogonial stem cells have been grown in culture and have been shown to differentiate into multiple lineages. This also suggests that telomerase activity in stem cells can be correlated to its renewal and differentiation potential.
3.6. Satellite Stem Cells
Satellite stem cells are quiescent mononucleated myogenic cells, located between the sarcolemma and basement membrane of terminally-differentiated muscle fibers. They are quiescent in adult muscle, but can proliferate in response to injury and regenerate muscle (96). The study in humans showed that the telomere length is not affected in satellite stem cells in young vs adult but there was a reduction in the number of satellite stem cells in adults which would correlate with low regenerative capacity of muscle with aging (98). Mouse satellite stem cells have been shown to have high telomerase activity and it decreases upon differentiation (97). But under diseased condition where muscle undergoes degeneration and regeneration (DMD) resulting in loss of the muscle mass and extensive fibrosis, telomere shortening was 14 times greater in satellite stem cells than that observed in controls. Under these conditions satellite cells enter senescence much earlier than normal owing to the decrease in regenerative capacity (98, 99).
3.7. Cancer Stem Cells
The evidence of presence of cancer stem cells (CSCs) came from the studies of hematopoietic malignancies (100). Telomere shortening is the characteristic feature of cancer cells. This leads to chromosomal instability and malignant transformation. It is debatable whether CSCs have longer telomeres, which would be a requirement if CSCs have to replicate and divide. It is also not clear whether the CSCs have telomerase activity or not, owing to the difficulty in isolating CSCs from solid tumors. One of the recent studies showed that telomerase is downregulated in brain cancer stem cells and they have shorter telomere than other cancer cells (101). In contrast, breast cancer stem cells showed similar level of telomerase activity and telomere length as other tumour cells (102) which was shorter than the telomeres in the normal stem cells. This suggests that telomerase is present in CSCs, but gets activated in the later stages of cancer. One of the major therapeutics for cancer which has been gaining grounds, is the treatment using drugs which can block telomerase activity in the resident cancer stem cells (103).
4. EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT STEM CELLS
Embryonic stem cells (ESCs) are pluripotent cells capable of indefinite self renewal and differentiation into cells of all the lineages. ESCs have very high telomerase activity and hTERT expression (Table 1). The level of telomerase decreases as they undergo differentiation (104). TERT overexpressing ESCs showed increase in proliferation, self renewal and differentiation (104). Telomerase is reactivated during reprogramming of human fibroblasts to induced pluripotent stem cells (iPS) (105, 106). It was shown that telomere length is significantly increased in 3F and 4F iPS cells compared to parental differentiated cells, reaching intermediate levels to those of control ES cells in early passages but reaching telomere length comparable to control ES cells at later passages (107). Telomere heterochromatin was also remodeled in iPS cells, to a conformation similar to that of telomeric chromatin of ESCs. As in ES cells, iPS also showed a significant decrease in the density of histone heterochromatic markers (H3K9m3 and H4K30m3) at telomeric regions compared to differentiated mouse embryonic fibroblast (MEF) cells. The donor cells with short telomeres obtained from old animals showed telomere elongation and functional telomere capping during reprogramming into iPS cells, suggesting that telomere length and telomerase activity are important for cells to undergo indefinite self renewal.
5. TELOMERE, TELOMERASE DURING AGING AND DISEASE
With ageing most of the normal human tissues and organs (108) including peripheral blood cells, lymphocytes, kidney epithelium, hepatocytes, intestinal epithelial cells, lung epithelial cells, muscle show telomere shortening (Table 3). As mentioned above stem cells from each of these tissues also show telomere shortening or is maintained (see Table 1). Telomere shortening could be correlated to low telomerase levels in tissue resident stem cells with few exceptions such as primordial germ cells, and muscle satellite stem cells (Table 1) (109). As a result of telomere shortening in the stem cell compartment during aging, there is loss of stem cell function (110). Telomere shortening has been observed in many diseases (Table 2). Some of these are associated with mutations in the genes encoding for the telomere binding proteins (Figure 1) such as TRF2 and components of the enzyme telomerase (TERT, TERC and Dyskerin). Few of such diseases are also due to mutations in the DNA DSB repair proteins associated with telomere such as Mre11, Rad50, Nbs1 complex, ATM, BLM and WRN. Loss of function of telomerase components have been seen in DKC, which is discussed below. In patients with Aplastic Anemia, mutations in telomerase TERC and TERT genes have been observed, which is associated with telomere shortening and premature death (111, 112). Elevated telomerase levels are seen in most of the cancers discussed below. Telomere shortening has also been observed in patients with heart failure, coronary artery disease and others (Table 2). In this regards it has been observed that individuals with short telomeres had a 3.18-fold higher mortality rate from heart diseases, and 8.54-higer mortality rates from infectious diseases compared to those with relatively long telomeres. Some other studies have shown a relationship between telomere shortening and the evolution of cardiac disease (24, 25). Studies on various diseases put together (Table 3) indicate accelerated telomere shortening in disease compared to the normal individuals. Accelerated telomere shortening leads to loss of tissue regeneration (34). The studies on mice deficient in the telomerase components or overexpression as discussed above, have been the direct evidence linking aging with telomere shortening (5, 34).
6. TELOMERE AND STEM CELL DYSFUNCTION
Dyskeratosis congenital in humans is widely considered to be due to defects in telomerase or telomere maintenance (113). Patients with DKC show three distinctive features, nail dystrophy, oral leukoplakia and abnormal skin pigmentation. The other complications are bone marrow failure, pulmonary fibrosis and cancer (114, 115). Mutations in DKC1 and homozygous mutations in TERT have been shown to cause Hoyeraal-Hreidarsson syndrome (HH), which is characterized by bone marrow failure, severe growth retardation, immunodeficiency and cerebrellar hypoplasia (116, 117). Heterozygous TERT and TERC have been implicated in 5-10% of aplastic anemia (AA) (118, 119) and pulmonary fibrosis (117, 120) leading to respiratory failure. The presence of shortened telomeres is suspected to be the cause of the abnormalities (121, 122). Mutations in DKC1, TERC, TERT, NOP10, NHP2 and TINF2 have been implicated in DKC. Mutation in DKC1 which codes for protein dyskerin causes X-linked form of the disease (123). During development, when the cells have to divide rapidly in the absence of telomerase, telomere would be shortened more than in healthy individuals. The bone marrow, gut and skin are the tissues where renewal and differentiation of stem cells are continuous processes, thus explaining the defect in stem cell leading to the disease symptom. Reduced telomerase and short telomeres might compromise the number as well as replicative potential of stem cells.
7. TELOMERE AND CANCER
Telomerase is upregulated in majority of human cancers (93, 124-126). The patients with DKC or mutations in telomerase gene develop leukemia (127). In DKC patients, the loss of stem cells by telomerase dysfunction could stimulate the growth of abnormal cells. A heritable hypomorphic mutation in the telomerase reverse transcriptase gene could predispose to acute myeloid leukaemia (AML) (128). The mutant telomerase showed a decrease in its enzymatic activity by 50%. The SNPs on the TERT locus could be correlated to the risk of developing lung cancer (129, 130). It seems that different mutations in TERT would lead to different levels of telomerase activity and also predispose to different kinds of cancers and disease symptoms.
8. CONCLUSION AND PERSPECTIVES
Studies from mouse indicate the presence of longer telomere in the stem cell compartment of the tissues, which also undergo telomere shortening with age. The mice mutants of the telomerase complex hTERT and hTERC, implied the importance of telomerase and telomere length in stem cells and their potency to differentiate. It has been shown that the differentiation potential for NSCs decline in telomerase deficient mice. Differentiation of cardiac stem cells to myocytes reduces with age. The human genetic disorder, dyskeratosis congenita is widely considered to be due to defects in telomerase or in telomere maintenance. Heterozygous TERT and TERC have been implicated in 5-10% of aplastic anemia (AA) and pulmonary fibrosis. The patients with DKC or mutations in telomerase gene develop leukemia. Mutations in TERT might lead to difference in telomerase activity and also predispose to different kinds of cancers and disease symptoms. Studies on the length of telomere and telomerase activity from tissue resident stem cells show that they possess low telomerase activity which can be induced during the disease state and that is important for the self renewal of stem cells and their differentiation ability. With age telomere length shorten in the stem cells, which are accelerated in diseases leading to reduced function of stem cells. All these studies with regard to telomere length and telomerase suggest that stem cells from young individuals have better capacity to regenerate the tissue.
9. ACKNOWLEDGEMENTS
We thank Mridula Nambiar and M. Nishana for critical reading of the manuscript and members of the SCR laboratory for discussions and help. This work was supported by IISc centenary fellowship, India for BC.
10. REFERENCES
1. E.H. Blackburn, Switching and signaling at the telomere, Cell 106 (2001) 661-673.
PMid:16131355
2. W.E. Wright, J.W. Shay, Telomere biology in aging and cancer, J Am Geriatr Soc 53 (2005) S292-294.
doi:10.1111/j.1532-5415.2005.53492.x
PMid:2342578
3. C.B. Harley, A.B. Futcher, C.W. Greider, Telomeres shorten during ageing of human fibroblasts, Nature 345 (1990) 458-460.
doi:10.1038/345458a0
PMid:11850781
4. K. Collins, J.R. Mitchell, Telomerase in the human organism, Oncogene 21 (2002) 564-579.
doi:10.1038/sj.onc.1205083
PMid:16136653
5. M.A. Blasco, Telomeres and human disease: ageing, cancer and beyond, Nat Rev Genet 6 (2005) 611-622.
doi:10.1038/nrg1656
6. T. de Lange, Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev 19 (2005) 2100-2110.
doi:10.1101/gad.1346005
PMid:15314656 PMCid:509302
7. J. Karlseder, K. Hoke, O.K. Mirzoeva, C. Bakkenist, M.B. Kastan, J.H. Petrini, T. de Lange, The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response, PLoS Biol 2 (2004) E240.
doi:10.1371/journal.pbio.0020240
PMid:15665826
8. P.S. Bradshaw, D.J. Stavropoulos, M.S. Meyn, Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage, Nat Genet 37 (2005) 193-197.
doi:10.1038/ng1506
PMid:11577237
9. S.M. Bailey, M.N. Cornforth, A. Kurimasa, D.J. Chen, E.H. Goodwin, Strand-specific postreplicative processing of mammalian telomeres, Science 293 (2001) 2462-2465.
doi:10.1126/science.1062560
PMid:11256607 PMCid:1083725
10. R.C. Wang, A. Smogorzewska, T. de Lange, Homologous recombination generates T-loop-sized deletions at human telomeres, Cell 119 (2004) 355-368.
PMid:12897131 PMCid:166323
11. E. Samper, F.A. Goytisolo, P. Slijepcevic, P.P. van Buul, M.A. Blasco, Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang, EMBO Rep 1 (2000) 244-252.
doi:10.1093/embo-reports/kvd051
PMid:2463488
12. M. Tarsounas, P. Munoz, A. Claas, P.G. Smiraldo, D.L. Pittman, M.A. Blasco, S.C. West, Telomere maintenance requires the RAD51D recombination/repair protein, Cell 117 (2004) 337-347.
PMid:9110970
13. I. Jaco, P. Munoz, F. Goytisolo, J. Wesoly, S. Bailey, G. Taccioli, M.A. Blasco, Role of mammalian Rad54 in telomere length maintenance, Mol Cell Biol 23 (2003) 5572-5580.
doi:10.1128/MCB.23.16.5572-5580.2003
PMid:9252327
14. C.W. Greider, E.H. Blackburn, A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis, Nature 337 (1989) 331-337.
doi:10.1038/337331a0
PMid:19179534 PMCid:2728071
15. J. Lingner, T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, T.R. Cech, Reverse transcriptase motifs in the catalytic subunit of telomerase, Science 276 (1997) 561-567.
doi:10.1126/science.276.5312.561
PMid:19285445 PMCid:2700737
16. M. Meyerson, C.M. Counter, E.N. Eaton, L.W. Ellisen, P. Steiner, S.D. Caddle, L. Ziaugra, R.L. Beijersbergen, M.J. Davidoff, Q. Liu, S. Bacchetti, D.A. Haber, R.A. Weinberg, hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization, Cell 90 (1997) 785-795.
PMid:11841477
17. T.M. Nakamura, G.B. Morin, K.B. Chapman, S.L. Weinrich, W.H. Andrews, J. Lingner, C.B. Harley, T.R. Cech, Telomerase catalytic subunit homologs from fission yeast and human, Science 277 (1997) 955-959.
doi:10.1126/science.277.5328.955
PMid:11092831
18. A.S. Venteicher, E.B. Abreu, Z. Meng, K.E. McCann, R.M. Terns, T.D. Veenstra, M.P. Terns, S.E. Artandi, A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science 323 (2009) 644-648.
doi:10.1126/science.1165357
PMid:16574858
19. K.T. Tycowski, M.D. Shu, A. Kukoyi, J.A. Steitz, A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles, Mol Cell 34 (2009) 47-57.
doi:10.1016/j.molcel.2009.02.020
PMid:15011781
20. N.R. Forsyth, W.E. Wright, J.W. Shay, Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again, Differentiation 69 (2002) 188-197.
doi:10.1046/j.1432-0436.2002.690412.x
21. M.J. McEachern, A. Krauskopf, E.H. Blackburn, Telomeres and their control, Annu Rev Genet 34 (2000) 331-358.
doi:10.1146/annurev.genet.34.1.331
PMid:15775986 PMCid:556402
22. K.A. Moore, I.R. Lemischka, Stem cells and their niches, Science 311 (2006) 1880-1885.
doi:10.1126/science.1110542
PMid:9560153
23. E.J. Fuchs, K.A. Whartenby, Hematopoietic stem cell transplant as a platform for tumor immunotherapy, Curr Opin Mol Ther 6 (2004) 48-53.
PMid:11809709
24. E. Fuchs, T. Tumbar, G. Guasch, Socializing with the neighbors: stem cells and their niche, Cell 116 (2004) 769-778.
PMid:12505991 PMCid:140062
25. I. Flores, A. Canela, E. Vera, A. Tejera, G. Cotsarelis, M.A. Blasco, The longest telomeres: a general signature of adult stem cell compartments, Genes Dev 22 (2008) 654-667.
doi:10.1101/gad.451008
PMid:11929765
26. M.A. Blasco, H.W. Lee, M.P. Hande, E. Samper, P.M. Lansdorp, R.A. DePinho, C.W. Greider, Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell 91 (1997) 25-34.
PMid:16037417
27. M.A. Blasco, Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging, EMBO J 24 (2005) 1095-1103.
doi:10.1038/sj.emboj.7600598
PMid:17876321
28. H.W. Lee, M.A. Blasco, G.J. Gottlieb, J.W. Horner, 2nd, C.W. Greider, R.A. DePinho, Essential role of mouse telomerase in highly proliferative organs, Nature 392 (1998) 569-574.
doi:10.1038/33345
PMid:16142233
29. S. Franco, I. Segura, H.H. Riese, M.A. Blasco, Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres, Cancer Res 62 (2002) 552-559.
PMid:17353922 PMCid:2360127
30. A. Leri, S. Franco, A. Zacheo, L. Barlucchi, S. Chimenti, F. Limana, B. Nadal-Ginard, J. Kajstura, P. Anversa, M.A. Blasco, Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation, EMBO J 22 (2003) 131-139.
doi:10.1093/emboj/cdg013
PMid:14749784
31. E. Samper, P. Fernandez, R. Eguia, L. Martin-Rivera, A. Bernad, M.A. Blasco, M. Aracil, Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells, Blood 99 (2002) 2767-2775.
doi:10.1182/blood.V99.8.2767
PMid:8658199
32. A. Tomas-Loba, I. Flores, P.J. Fernandez-Marcos, M.L. Cayuela, A. Maraver, A. Tejera, C. Borras, A. Matheu, P. Klatt, J.M. Flores, J. Vina, M. Serrano, M.A. Blasco, Telomerase reverse transcriptase delays aging in cancer-resistant mice, Cell 135 (2008) 609-622.
33. I. Flores, M.L. Cayuela, M.A. Blasco, Effects of telomerase and telomere length on epidermal stem cell behavior, Science 309 (2005) 1253-1256.
doi:10.1126/science.1115025
34. M.A. Blasco, Telomere length, stem cells and aging, Nat Chem Biol 3 (2007) 640-649.
doi:10.1038/nchembio.2007.38
PMid:11572773
35. P. Munoz, R. Blanco, J.M. Flores, M.A. Blasco, XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer, Nat Genet 37 (2005) 1063-1071.
doi:10.1038/ng1633
PMid:15507207
36. E. Hiyama, K. Hiyama, Telomere and telomerase in stem cells, Br J Cancer 96 (2007) 1020-1024.
doi:10.1038/sj.bjc.6603671
PMid:15109494
37. P.J. Linton, K. Dorshkind, Age-related changes in lymphocyte development and function, Nat Immunol 5 (2004) 133-139.
doi:10.1038/ni1033
PMid:9288757
38. R.A. Miller, The aging immune system: primer and prospectus, Science 273 (1996) 70-74.
doi:10.1126/science.273.5271.70
PMid:15035980
39. A. Globerson, R.B. Effros, Ageing of lymphocytes and lymphocytes in the aged, Immunol Today 21 (2000) 515-521.
doi:10.1016/S0167-5699(00)01714-X
PMid:9335332
40. R. Notaro, A. Cimmino, D. Tabarini, B. Rotoli, L. Luzzatto, In vivo telomere dynamics of human hematopoietic stem cells, Proc Natl Acad Sci U S A 94 (1997) 13782-13785.
doi:10.1073/pnas.94.25.13782
PMid:19013273
41. R.F. Wynn, M.A. Cross, C. Hatton, A.M. Will, L.S. Lashford, T.M. Dexter, N.G. Testa, Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants, Lancet 351 (1998) 178-181.
doi:10.1016/S0140-6736(97)08256-1
42. R. Wynn, I. Thornley, M. Freedman, E.F. Saunders, Telomere shortening in leucocyte subsets of long-term survivors of allogeneic bone marrow transplantation, Br J Haematol 105 (1999) 997-1001.
doi:10.1046/j.1365-2141.1999.01450.x
PMid:10554813
43. H. Vaziri, W. Dragowska, R.C. Allsopp, T.E. Thomas, C.B. Harley, P.M. Lansdorp, Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age, Proc Natl Acad Sci U S A 91 (1994) 9857-9860.
doi:10.1073/pnas.91.21.9857
44. M. Engelhardt, R. Kumar, J. Albanell, R. Pettengell, W. Han, M.A. Moore, Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells, Blood 90 (1997) 182-193.
PMid:9207452
45. M. Engelhardt, J. Albanell, P. Drullinsky, W. Han, J. Guillem, H.I. Scher, V. Reuter, M.A. Moore, Relative contribution of normal and neoplastic cells determines telomerase activity and telomere length in primary cancers of the prostate, colon, and sarcoma, Clin Cancer Res 3 (1997) 1849-1857.
PMid:9815573
46. C.M. Counter, J. Gupta, C.B. Harley, B. Leber, S. Bacchetti, Telomerase activity in normal leukocytes and in hematologic malignancies, Blood 85 (1995) 2315-2320.
PMid:7727765
47. K. Hiyama, Y. Hirai, S. Kyoizumi, M. Akiyama, E. Hiyama, M.A. Piatyszek, J.W. Shay, S. Ishioka, M. Yamakido, Activation of telomerase in human lymphocytes and hematopoietic progenitor cells, J Immunol 155 (1995) 3711-3715.
PMid:7561072
48. C.P. Chiu, W. Dragowska, N.W. Kim, H. Vaziri, J. Yui, T.E. Thomas, C.B. Harley, P.M. Lansdorp, Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow, Stem Cells 14 (1996) 239-248.
doi:10.1002/stem.140239
PMid:8991544
49. W. Zhang, M.A. Piatyszek, T. Kobayashi, E. Estey, M. Andreeff, A.B. Deisseroth, W.E. Wright, J.W. Shay, Telomerase activity in human acute myelogenous leukemia: inhibition of telomerase activity by differentiation-inducing agents, Clin Cancer Res 2 (1996) 799-803.
PMid:9816233
50. H. Sakabe, N. Yahata, T. Kimura, Z.Z. Zeng, H. Minamiguchi, H. Kaneko, K.J. Mori, K. Ohyashiki, J.H. Ohyashiki, K. Toyama, T. Abe, Y. Sonoda, Human cord blood-derived primitive progenitors are enriched in CD34+c-kit- cells: correlation between long-term culture-initiating cells and telomerase expression, Leukemia 12 (1998) 728-734.
doi:10.1038/sj.leu.2401001
PMid:9593271
51. J. Yui, C.P. Chiu, P.M. Lansdorp, Telomerase activity in candidate stem cells from fetal liver and adult bone marrow, Blood 91 (1998) 3255-3262.
PMid:9558381
52. S.J. Morrison, K.R. Prowse, P. Ho, I.L. Weissman, Telomerase activity in hematopoietic cells is associated with self-renewal potential, Immunity 5 (1996) 207-216.
doi:10.1016/S1074-7613(00)80316-7
53. N.P. Weng, B.L. Levine, C.H. June, R.J. Hodes, Regulated expression of telomerase activity in human T lymphocyte development and activation, J Exp Med 183 (1996) 2471-2479.
doi:10.1084/jem.183.6.2471
PMid:8676067
54. N.P. Weng, B.L. Levine, C.H. June, R.J. Hodes, Human naive and memory T lymphocytes differ in telomeric length and replicative potential, Proc Natl Acad Sci U S A 92 (1995) 11091-11094.
doi:10.1073/pnas.92.24.11091
55. H. Vaziri, F. Schachter, I. Uchida, L. Wei, X. Zhu, R. Effros, D. Cohen, C.B. Harley, Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes, Am J Hum Genet 52 (1993) 661-667.
PMid:8460632 PMCid:1682068
56. N.H. Son, S. Murray, J. Yanovski, R.J. Hodes, N. Weng, Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age, J Immunol 165 (2000) 1191-1196.
PMid:10903716
57. H. Igarashi, N. Sakaguchi, Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor, Blood 89 (1997) 1299-1307.
PMid:9028953
58. J.H. Ohyashiki, K. Ohyashiki, T. Fujimura, K. Kawakubo, T. Shimamoto, A. Iwabuchi, K. Toyama, Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes, Cancer Res 54 (1994) 3557-3560.
PMid:8012981
59. K. Ohyashiki, J.H. Ohyashiki, H. Iwama, S. Hayashi, J.W. Shay, K. Toyama, Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression, Leukemia 11 (1997) 190-194.
doi:10.1038/sj.leu.2400560
PMid:9009079
60. H. Iwama, K. Ohyashiki, J.H. Ohyashiki, S. Hayashi, K. Kawakubo, J.W. Shay, K. Toyama, The relationship between telomere length and therapy-associated cytogenetic responses in patients with chronic myeloid leukemia, Cancer 79 (1997) 1552-1560.
doi:10.1002/(SICI)1097-0142(19970415)79:8<1552::AID-CNCR17>3.0.CO;2-X
61. J. Boultwood, A. Peniket, F. Watkins, P. Shepherd, P. McGale, S. Richards, C. Fidler, T.J. Littlewood, J.S. Wainscoat, Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase, Blood 96 (2000) 358-361.
PMid:10891474
62. T. Vulliamy, A. Marrone, F. Goldman, A. Dearlove, M. Bessler, P.J. Mason, I. Dokal, The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita, Nature 413 (2001) 432-435.
doi:10.1038/35096585
PMid:11574891
63. L.Y. Hao, M. Armanios, M.A. Strong, B. Karim, D.M. Feldser, D. Huso, C.W. Greider, Short telomeres, even in the presence of telomerase, limit tissue renewal capacity, Cell 123 (2005) 1121-1131.
PMid:6120850
64. A.J. Friedenstein, N.W. Latzinik, A.G. Grosheva, U.F. Gorskaya, Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges, Exp Hematol 10 (1982) 217-227.
PMid:9082988
65. D.J. Prockop, Marrow stromal cells as stem cells for nonhematopoietic tissues, Science 276 (1997) 71-74.
doi:10.1126/science.276.5309.71
PMid:16529651 PMCid:1435883
66. M.M. Bonab, K. Alimoghaddam, F. Talebian, S.H. Ghaffari, A. Ghavamzadeh, B. Nikbin, Aging of mesenchymal stem cell in vitro, BMC Cell Biol 7 (2006) 14.
doi:10.1186/1471-2121-7-14
PMid:18029083
67. N. Serakinci, J. Graakjaer, S. Kolvraa, Telomere stability and telomerase in mesenchymal stem cells, Biochimie 90 (2008) 33-40.
doi:10.1016/j.biochi.2007.09.005
PMid:15342932
68. K. Stenderup, J. Justesen, C. Clausen, M. Kassem, Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells, Bone 33 (2003) 919-926.
PMid:10404011
69. M.A. Baxter, R.F. Wynn, S.N. Jowitt, J.E. Wraith, L.J. Fairbairn, I. Bellantuono, Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion, Stem Cells 22 (2004) 675-682.
doi:10.1634/stemcells.22-5-675
PMid:16125890
70. G. D'Ippolito, P.C. Schiller, C. Ricordi, B.A. Roos, G.A. Howard, Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow, J Bone Miner Res 14 (1999) 1115-1122.
doi:10.1359/jbmr.1999.14.7.1115
PMid:18332228
71. C. Fehrer, G. Lepperdinger, Mesenchymal stem cell aging, Exp Gerontol 40 (2005) 926-930.
doi:10.1016/j.exger.2005.07.006
PMid:16150920
72. F. Ng, S. Boucher, S. Koh, K.S. Sastry, L. Chase, U. Lakshmipathy, C. Choong, Z. Yang, M.C. Vemuri, M.S. Rao, V. Tanavde, PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages, Blood 112 (2008) 295-307.
doi:10.1182/blood-2007-07-103697
PMid:17109640
73. K. Tamama, V.H. Fan, L.G. Griffith, H.C. Blair, A. Wells, Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells, Stem Cells 24 (2006) 686-695.
doi:10.1634/stemcells.2005-0176
PMid:17565702 PMCid:1906829
74. S. Yanada, M. Ochi, K. Kojima, P. Sharman, Y. Yasunaga, E. Hiyama, Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells, Cell Prolif 39 (2006) 575-584.
doi:10.1111/j.1365-2184.2006.00397.x
PMid:12042863
75. J. Graakjaer, R. Christensen, S. Kolvraa, N. Serakinci, Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation, BMC Mol Biol 8 (2007) 49.
doi:10.1186/1471-2199-8-49
76. J.L. Simonsen, C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S.I. Rattan, T.G. Jensen, M. Kassem, Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells, Nat Biotechnol 20 (2002) 592-596.
doi:10.1038/nbt0602-592
PMid:14980495
77. S. Meirelles Lda, N.B. Nardi, Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization, Br J Haematol 123 (2003) 702-711.
doi:10.1046/j.1365-2141.2003.04669.x
PMid:15269166
78. L. Liu, C.M. DiGirolamo, P.A. Navarro, M.A. Blasco, D.L. Keefe, Telomerase deficiency impairs differentiation of mesenchymal stem cells, Exp Cell Res 294 (2004) 1-8.
doi:10.1016/j.yexcr.2003.10.031
PMid:16360040
79. C. Zhao, W. Deng, F.H. Gage, Mechanisms and functional implications of adult neurogenesis, Cell 132 (2008) 645-660.
PMid:14678851
80. S. Ferron, H. Mira, S. Franco, M. Cano-Jaimez, E. Bellmunt, C. Ramirez, I. Farinas, M.A. Blasco, Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells, Development 131 (2004) 4059-4070.
doi:10.1242/dev.01215
PMid:18295581
81. P.A. Kruk, A.S. Balajee, K.S. Rao, V.A. Bohr, Telomere reduction and telomerase inactivation during neuronal cell differentiation, Biochem Biophys Res Commun 224 (1996) 487-492.
doi:10.1006/bbrc.1996.1054
PMid:8702416
82. A. Cheng, K. Shin-ya, R. Wan, S.C. Tang, T. Miura, H. Tang, R. Khatri, M. Gleichman, X. Ouyang, D. Liu, H.R. Park, J.Y. Chiang, M.P. Mattson, Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage, J Neurosci 27 (2007) 3722-3733.
doi:10.1523/JNEUROSCI.0590-07.2007
PMid:17409236
83. R.M. Richardson, B. Nguyen, S.E. Holt, W.C. Broaddus, H.L. Fillmore, Ectopic telomerase expression inhibits neuronal differentiation of NT2 neural progenitor cells, Neurosci Lett 421 (2007) 168-172.
doi:10.1016/j.neulet.2007.03.079
PMid:17566647
84. S.R. Ferron, M.A. Marques-Torrejon, H. Mira, I. Flores, K. Taylor, M.A. Blasco, I. Farinas, Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis, J Neurosci 29 (2009) 14394-14407.
doi:10.1523/JNEUROSCI.3836-09.2009
PMid:19923274
85. T. Ostenfeld, M.A. Caldwell, K.R. Prowse, M.H. Linskens, E. Jauniaux, C.N. Svendsen, Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation, Exp Neurol 164 (2000) 215-226.
doi:10.1006/exnr.2000.7427
PMid:10877932
86. A.L. Vescovi, E.A. Parati, A. Gritti, P. Poulin, M. Ferrario, E. Wanke, P. Frolichsthal-Schoeller, L. Cova, M. Arcellana-Panlilio, A. Colombo, R. Galli, Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation, Exp Neurol 156 (1999) 71-83.
doi:10.1006/exnr.1998.6998
PMid:10192778
87. M.K. Carpenter, X. Cui, Z.Y. Hu, J. Jackson, S. Sherman, A. Seiger, L.U. Wahlberg, In vitro expansion of a multipotent population of human neural progenitor cells, Exp Neurol 158 (1999) 265-278.
doi:10.1006/exnr.1999.7098
PMid:10415135
88. C. Chimenti, J. Kajstura, D. Torella, K. Urbanek, H. Heleniak, C. Colussi, F. Di Meglio, B. Nadal-Ginard, A. Frustaci, A. Leri, A. Maseri, P. Anversa, Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure, Circ Res 93 (2003) 604-613.
doi:10.1161/01.RES.0000093985.76901.AF
PMid:12958145
89. D. Torella, M. Rota, D. Nurzynska, E. Musso, A. Monsen, I. Shiraishi, E. Zias, K. Walsh, A. Rosenzweig, M.A. Sussman, K. Urbanek, B. Nadal-Ginard, J. Kajstura, P. Anversa, A. Leri, Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression, Circ Res 94 (2004) 514-524.
doi:10.1161/01.RES.0000117306.10142.50
PMid:14726476
90. K. Urbanek, D. Torella, F. Sheikh, A. De Angelis, D. Nurzynska, F. Silvestri, C.A. Beltrami, R. Bussani, A.P. Beltrami, F. Quaini, R. Bolli, A. Leri, J. Kajstura, P. Anversa, Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure, Proc Natl Acad Sci U S A 102 (2005) 8692-8697.
doi:10.1073/pnas.0500169102
PMid:15932947 PMCid:1150816
91. D.L. Wright, E.L. Jones, J.F. Mayer, S. Oehninger, W.E. Gibbons, S.E. Lanzendorf, Characterization of telomerase activity in the human oocyte and preimplantation embryo, Mol Hum Reprod 7 (2001) 947-955.
doi:10.1093/molehr/7.10.947
PMid:11574663
92. S. Dolci, L. Levati, M. Pellegrini, I. Faraoni, G. Graziani, A. Di Carlo, R. Geremia, Stem cell factor activates telomerase in mouse mitotic spermatogonia and in primordial germ cells, J Cell Sci 115 (2002) 1643-1649.
PMid:11950883
93. N.W. Kim, M.A. Piatyszek, K.R. Prowse, C.B. Harley, M.D. West, P.L. Ho, G.M. Coviello, W.E. Wright, S.L. Weinrich, J.W. Shay, Specific association of human telomerase activity with immortal cells and cancer, Science 266 (1994) 2011-2015.
doi:10.1126/science.7605428
PMid:7605428
94. Y. Yamamoto, N. Sofikitis, K. Ono, T. Kaki, T. Isoyama, N. Suzuki, I. Miyagawa, Postmeiotic modifications of spermatogenic cells are accompanied by inhibition of telomerase activity, Urol Res 27 (1999) 336-345.
doi:10.1007/s002400050160
PMid:10550521
95. W.E. Wright, M.A. Piatyszek, W.E. Rainey, W. Byrd, J.W. Shay, Telomerase activity in human germline and embryonic tissues and cells, Dev Genet 18 (1996) 173-179.
doi:10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3
doi:10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.3.CO;2-5
96. J.E. Morgan, T.A. Partridge, Muscle satellite cells, Int J Biochem Cell Biol 35 (2003) 1151-1156.
doi:10.1016/S1357-2725(03)00042-6
97. M.S. O'Connor, M.E. Carlson, I.M. Conboy, Differentiation rather than aging of muscle stem cells abolishes their telomerase activity, Biotechnol Prog 25 (2009) 1130-1137.
doi:10.1002/btpr.223
PMid:19455648 PMCid:2746102
98. V. Renault, L.E. Thornell, P.O. Eriksson, G. Butler-Browne, V. Mouly, Regenerative potential of human skeletal muscle during aging, Aging Cell 1 (2002) 132-139.
doi:10.1046/j.1474-9728.2002.00017.x
PMid:12882343
99. S. Decary, C.B. Hamida, V. Mouly, J.P. Barbet, F. Hentati, G.S. Butler-Browne, Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children, Neuromuscul Disord 10 (2000) 113-120.
doi:10.1016/S0960-8966(99)00093-0
100. T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B. Paterson, M.A. Caligiuri, J.E. Dick, A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature 367 (1994) 645-648.
doi:10.1038/367645a0
PMid:7509044
101. A. Shervington, C. Lu, R. Patel, L. Shervington, Telomerase downregulation in cancer brain stem cell, Mol Cell Biochem 331 (2009) 153-159.
doi:10.1007/s11010-009-0153-y
PMid:19430894
102. D. Ponti, A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini, S. Pilotti, M.A. Pierotti, M.G. Daidone, Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties, Cancer Res 65 (2005) 5506-5511.
doi:10.1158/0008-5472.CAN-05-0626
PMid:15994920
103. J.W. Shay, W.E. Wright, Telomeres and telomerase in normal and cancer stem cells, FEBS Lett 584 3819-3825.
doi:10.1016/j.febslet.2010.05.026
PMid:20493857
104. L. Armstrong, G. Saretzki, H. Peters, I. Wappler, J. Evans, N. Hole, T. von Zglinicki, M. Lako, Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage, Stem Cells 23 (2005) 516-529.
doi:10.1634/stemcells.2004-0269
PMid:15790773
105. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131 (2007) 861-872.
PMid:18079707
106. K. Takahashi, K. Okita, M. Nakagawa, S. Yamanaka, Induction of pluripotent stem cells from fibroblast cultures, Nat Protoc 2 (2007) 3081-3089.
doi:10.1038/nprot.2007.418
PMid:19200803
107. R.M. Marion, K. Strati, H. Li, A. Tejera, S. Schoeftner, S. Ortega, M. Serrano, M.A. Blasco, Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells, Cell Stem Cell 4 (2009) 141-154.
doi:10.1016/j.stem.2008.12.010
PMid:12803478
108. M.W. Djojosubroto, Y.S. Choi, H.W. Lee, K.L. Rudolph, Telomeres and telomerase in aging, regeneration and cancer, Mol Cells 15 (2003) 164-175.
PMid:15974871
109. S. Zimmermann, U.M. Martens, Telomere dynamics in hematopoietic stem cells, Curr Mol Med 5 (2005) 179-185.
doi:10.2174/1566524053586608
PMid:17943234
110. H. Jiang, Z. Ju, K.L. Rudolph, Telomere shortening and ageing, Z Gerontol Geriatr 40 (2007) 314-324.
doi:10.1007/s00391-007-0480-0
PMid:15814878
111. H. Yamaguchi, R.T. Calado, H. Ly, S. Kajigaya, G.M. Baerlocher, S.J. Chanock, P.M. Lansdorp, N.S. Young, Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia, N Engl J Med 352 (2005) 1413-1424.
doi:10.1056/NEJMoa042980
PMid:15319288
112. A. Marrone, D. Stevens, T. Vulliamy, I. Dokal, P.J. Mason, Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency, Blood 104 (2004) 3936-3942.
doi:10.1182/blood-2004-05-1829
PMid:19419704 PMCid:2686081
113. M. Kirwan, I. Dokal, Dyskeratosis congenita, stem cells and telomeres, Biochim Biophys Acta 1792 (2009) 371-379.
PMid:18054794
114. A.J. Walne, I. Dokal, Dyskeratosis Congenita: a historical perspective, Mech Ageing Dev 129 (2008) 48-59.
doi:10.1016/j.mad.2007.10.006
PMid:19327580 PMCid:2702847
115. S.A. Savage, B.P. Alter, Dyskeratosis congenita, Hematol Oncol Clin North Am 23 (2009) 215-231.
doi:10.1016/j.hoc.2009.01.003
PMid:10583221
116. S.W. Knight, N.S. Heiss, T.J. Vulliamy, C.M. Aalfs, C. McMahon, P. Richmond, A. Jones, R.C. Hennekam, A. Poustka, P.J. Mason, I. Dokal, Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1, Br J Haematol 107 (1999) 335-339.
doi:10.1046/j.1365-2141.1999.01690.x
PMid:17640862 PMCid:2892775
117. A. Marrone, P. Sokhal, A. Walne, R. Beswick, M. Kirwan, S. Killick, M. Williams, J. Marsh, T. Vulliamy, I. Dokal, Functional characterization of novel telomerase RNA (TERC) mutations in patients with diverse clinical and pathological presentations, Haematologica 92 (2007) 1013-1020.
doi:10.3324/haematol.11407
118. T. Vulliamy, A. Marrone, I. Dokal, P.J. Mason, Association between aplastic anaemia and mutations in telomerase RNA, Lancet 359 (2002) 2168-2170.
doi:10.1016/S0140-6736(02)09087-6
PMid:16990594
119. Z.T. Xin, A.D. Beauchamp, R.T. Calado, J.W. Bradford, J.A. Regal, A. Shenoy, Y. Liang, P.M. Lansdorp, N.S. Young, H. Ly, Functional characterization of natural telomerase mutations found in patients with hematologic disorders, Blood 109 (2007) 524-532.
doi:10.1182/blood-2006-07-035089
PMid:17392301
120. M.Y. Armanios, J.J. Chen, J.D. Cogan, J.K. Alder, R.G. Ingersoll, C. Markin, W.E. Lawson, M. Xie, I. Vulto, J.A. Phillips, 3rd, P.M. Lansdorp, C.W. Greider, J.E. Loyd, Telomerase mutations in families with idiopathic pulmonary fibrosis, N Engl J Med 356 (2007) 1317-1326.
doi:10.1056/NEJMoa066157
PMid:16332973
121. T.J. Vulliamy, A. Marrone, S.W. Knight, A. Walne, P.J. Mason, I. Dokal, Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation, Blood 107 (2006) 2680-2685.
doi:10.1182/blood-2005-07-2622
PMid:17468339 PMCid:1975834
122. B.P. Alter, G.M. Baerlocher, S.A. Savage, S.J. Chanock, B.B. Weksler, J.P. Willner, J.A. Peters, N. Giri, P.M. Lansdorp, Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita, Blood 110 (2007) 1439-1447.
doi:10.1182/blood-2007-02-075598
PMid:9590285
123. N.S. Heiss, S.W. Knight, T.J. Vulliamy, S.M. Klauck, S. Wiemann, P.J. Mason, A. Poustka, I. Dokal, X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions, Nat Genet 19 (1998) 32-38.
doi:10.1038/ng0598-32
PMid:19887512
124. S.E. Artandi, R.A. DePinho, Telomeres and telomerase in cancer, Carcinogenesis 31 9-18.
doi:10.1093/carcin/bgp268
PMid:19629041 PMCid:2722246
125. P.M. Lansdorp, Telomeres and disease, EMBO J 28 (2009) 2532-2540.
doi:10.1038/emboj.2009.172
PMid:18482052
126. Y. Cao, T.M. Bryan, R.R. Reddel, Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells, Cancer Sci 99 (2008) 1092-1099.
doi:10.1111/j.1349-7006.2008.00815.x
PMid:19282459 PMCid:2710915
127. B.P. Alter, N. Giri, S.A. Savage, P.S. Rosenberg, Cancer in dyskeratosis congenita, Blood 113 (2009) 6549-6557.
doi:10.1182/blood-2008-12-192880
PMid:19147845 PMCid:2627806
128. R.T. Calado, J.A. Regal, M. Hills, W.T. Yewdell, L.F. Dalmazzo, M.A. Zago, P.M. Lansdorp, D. Hogge, S.J. Chanock, E.H. Estey, R.P. Falcao, N.S. Young, Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia, Proc Natl Acad Sci U S A 106 (2009) 1187-1192.
doi:10.1073/pnas.0807057106
PMid:18978790 PMCid:2748187
129. J.D. McKay, R.J. Hung, V. Gaborieau, P. Boffetta, A. Chabrier, G. Byrnes, D. Zaridze, A. Mukeria, N. Szeszenia-Dabrowska, J. Lissowska, P. Rudnai, E. Fabianova, D. Mates, V. Bencko, L. Foretova, V. Janout, J. McLaughlin, F. Shepherd, A. Montpetit, S. Narod, H.E. Krokan, F. Skorpen, M.B. Elvestad, L. Vatten, I. Njolstad, T. Axelsson, C. Chen, G. Goodman, M. Barnett, M.M. Loomis, J. Lubinski, J. Matyjasik, M. Lener, D. Oszutowska, J. Field, T. Liloglou, G. Xinarianos, A. Cassidy, P. Vineis, F. Clavel-Chapelon, D. Palli, R. Tumino, V. Krogh, S. Panico, C.A. Gonzalez, J. Ramon Quiros, C. Martinez, C. Navarro, E. Ardanaz, N. Larranaga, K.T. Kham, T. Key, H.B. Bueno-de-Mesquita, P.H. Peeters, A. Trichopoulou, J. Linseisen, H. Boeing, G. Hallmans, K. Overvad, A. Tjonneland, M. Kumle, E. Riboli, D. Zelenika, A. Boland, M. Delepine, M. Foglio, D. Lechner, F. Matsuda, H. Blanche, I. Gut, S. Heath, M. Lathrop, P. Brennan, Lung cancer susceptibility locus at 5p15.33, Nat Genet 40 (2008) 1404-1406.
doi:10.1038/ng.254
PMid:18978787 PMCid:2695928
130. Y. Wang, P. Broderick, E. Webb, X. Wu, J. Vijayakrishnan, A. Matakidou, M. Qureshi, Q. Dong, X. Gu, W.V. Chen, M.R. Spitz, T. Eisen, C.I. Amos, R.S. Houlston, Common 5p15.33 and 6p21.33 variants influence lung cancer risk, Nat Genet 40 (2008) 1407-1409.
doi:10.1038/ng.273
PMid:18035408
131. M.K. Carpenter, E.S. Rosler, G.J. Fisk, R. Brandenberger, X. Ares, T. Miura, M. Lucero, M.S. Rao, Properties of four human embryonic stem cell lines maintained in a feeder-free culture system, Dev Dyn 229 (2004) 243-258.
doi:10.1002/dvdy.10431
PMid:14745950
132. T.H. Brummendorf, S. Balabanov, Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover, Leukemia 20 (2006) 1706-1716.
doi:10.1038/sj.leu.2404339
PMid:16888616
133. R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Dufour, J.M. Gimble, B.A. Bunnell, Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue, J Cell Biochem 99 (2006) 1285-1297.
doi:10.1002/jcb.20904
PMid:16795045
134. S. Zimmermann, M. Voss, S. Kaiser, U. Kapp, C.F. Waller, U.M. Martens, Lack of telomerase activity in human mesenchymal stem cells, Leukemia 17 (2003) 1146-1149.
doi:10.1038/sj.leu.2402962
PMid:12764382
135. M. Sugihara, K. Ohshima, H. Nakamura, J. Suzumiya, Y. Nakayama, M. Kanda, S. Haraoka, M. Kikuchi, Decreased expression of telomerase-associated RNAs in the proliferation of stem cells in comparison with continuous expression in malignant tumors, Int J Oncol 15 (1999) 1075-1080.
PMid:10568811
136. K.Y. Sarin, P. Cheung, D. Gilison, E. Lee, R.I. Tennen, E. Wang, M.K. Artandi, A.E. Oro, S.E. Artandi, Conditional telomerase induction causes proliferation of hair follicle stem cells, Nature 436 (2005) 1048-1052.
doi:10.1038/nature03836
PMid:16107853 PMCid:1361120
137. E. Hiyama, L. Gollahon, T. Kataoka, K. Kuroi, T. Yokoyama, A.F. Gazdar, K. Hiyama, M.A. Piatyszek, J.W. Shay, Telomerase activity in human breast tumors, J Natl Cancer Inst 88 (1996) 116-122.
doi:10.1093/jnci/88.2.116
doi:10.1093/jnci/88.12.839-a
138. L.S. Wright, K.R. Prowse, K. Wallace, M.H. Linskens, C.N. Svendsen, Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro, Exp Cell Res 312 (2006) 2107-2120.
doi:10.1016/j.yexcr.2006.03.012
PMid:16631163
139. C. Moriscot, F. de Fraipont, M.J. Richard, M. Marchand, P. Savatier, D. Bosco, M. Favrot, P.Y. Benhamou, Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro, Stem Cells 23 (2005) 594-603.
doi:10.1634/stemcells.2004-0123
PMid:15790780
140. Y.Y. Dan, K.J. Riehle, C. Lazaro, N. Teoh, J. Haque, J.S. Campbell, N. Fausto, Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages, Proc Natl Acad Sci U S A 103 (2006) 9912-9917.
doi:10.1073/pnas.0603824103
PMid:16782807 PMCid:1502553
141. R.G. Hertzog, Ancestral telomere shortening: a countdown that will increase mean life span?, Med Hypotheses 67 (2006) 157-160.
doi:10.1016/j.mehy.2006.01.034
PMid:16530337
142. A. Benetos, J.P. Gardner, M. Zureik, C. Labat, L. Xiaobin, C. Adamopoulos, M. Temmar, K.E. Bean, F. Thomas, A. Aviv, Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects, Hypertension 43 (2004) 182-185.
doi:10.1161/01.HYP.0000113081.42868.f4
PMid:14732735
143. T. Minamino, H. Miyauchi, T. Yoshida, Y. Ishida, H. Yoshida, I. Komuro, Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction, Circulation 105 (2002) 1541-1544.
doi:10.1161/01.CIR.0000013836.85741.17
PMid:11927518
144. H. Oh, S.C. Wang, A. Prahash, M. Sano, C.S. Moravec, G.E. Taffet, L.H. Michael, K.A. Youker, M.L. Entman, M.D. Schneider, Telomere attrition and Chk2 activation in human heart failure, Proc Natl Acad Sci U S A 100 (2003) 5378-5383.
doi:10.1073/pnas.0836098100
PMid:12702777 PMCid:154353
145. S.U. Wiemann, A. Satyanarayana, M. Tsahuridu, H.L. Tillmann, L. Zender, J. Klempnauer, P. Flemming, S. Franco, M.A. Blasco, M.P. Manns, K.L. Rudolph, Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis, FASEB J 16 (2002) 935-942.
doi:10.1096/fj.01-0977com
PMid:12087054
146. K.C. Wolthers, G. Bea, A. Wisman, S.A. Otto, A.M. de Roda Husman, N. Schaft, F. de Wolf, J. Goudsmit, R.A. Coutinho, A.G. van der Zee, L. Meyaard, F. Miedema, T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover, Science 274 (1996) 1543-1547.
doi:10.1126/science.274.5292.1543
PMid:8929418
147. J.N. O'Sullivan, M.P. Bronner, T.A. Brentnall, J.C. Finley, W.T. Shen, S. Emerson, M.J. Emond, K.A. Gollahon, A.H. Moskovitz, D.A. Crispin, J.D. Potter, P.S. Rabinovitch, Chromosomal instability in ulcerative colitis is related to telomere shortening, Nat Genet 32 (2002) 280-284.
doi:10.1038/ng989
PMid:12355086
148. J.R. Mitchell, E. Wood, K. Collins, A telomerase component is defective in the human disease dyskeratosis congenita, Nature 402 (1999) 551-555.
doi:10.1038/990141
PMid:10591218
149. T. Vulliamy, A. Marrone, R. Szydlo, A. Walne, P.J. Mason, I. Dokal, Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC, Nat Genet 36 (2004) 447-449.
doi:10.1038/ng1346
PMid:15098033
150. D.R. Bell, G. Van Zant, Stem cells, aging, and cancer: inevitabilities and outcomes, Oncogene 23 (2004) 7290-7296.
doi:10.1038/sj.onc.1207949
PMid:15378089
151. S.E. Ball, F.M. Gibson, S. Rizzo, J.A. Tooze, J.C. Marsh, E.C. Gordon-Smith, Progressive telomere shortening in aplastic anemia, Blood 91 (1998) 3582-3592.
PMid:9572992
152. T.H. Brummendorf, J.P. Maciejewski, J. Mak, N.S. Young, P.M. Lansdorp, Telomere length in leukocyte subpopulations of patients with aplastic anemia, Blood 97 (2001) 895-900.
doi:10.1182/blood.V97.4.895
PMid:11159514
153. R.T. Calado, S.A. Graf, K.L. Wilkerson, S. Kajigaya, P.J. Ancliff, Y. Dror, S.J. Chanock, P.M. Lansdorp, N.S. Young, Mutations in the SBDS gene in acquired aplastic anemia, Blood 110 (2007) 1141-1146.
doi:10.1182/blood-2007-03-080044
PMid:17478638 PMCid:1939897
154. K.D. Tsakiri, J.T. Cronkhite, P.J. Kuan, C. Xing, G. Raghu, J.C. Weissler, R.L. Rosenblatt, J.W. Shay, C.K. Garcia, Adult-onset pulmonary fibrosis caused by mutations in telomerase, Proc Natl Acad Sci U S A 104 (2007) 7552-7557.
doi:10.1073/pnas.0701009104
PMid:17460043 PMCid:1855917
155. S. Chang, A.S. Multani, N.G. Cabrera, M.L. Naylor, P. Laud, D. Lombard, S. Pathak, L. Guarente, R.A. DePinho, Essential role of limiting telomeres in the pathogenesis of Werner syndrome, Nat Genet 36 (2004) 877-882.
doi:10.1038/ng1389
PMid:15235603
156. X. Du, J. Shen, N. Kugan, E.E. Furth, D.B. Lombard, C. Cheung, S. Pak, G. Luo, R.J. Pignolo, R.A. DePinho, L. Guarente, F.B. Johnson, Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes, Mol Cell Biol 24 (2004) 8437-8446.
doi:10.1128/MCB.24.19.8437-8446.2004
PMid:15367665 PMCid:516757
157. H. Ly, R.T. Calado, P. Allard, G.M. Baerlocher, P.M. Lansdorp, N.S. Young, T.G. Parslow, Functional characterization of telomerase RNA variants found in patients with hematologic disorders, Blood 105 (2005) 2332-2339.
doi:10.1182/blood-2004-09-3659
PMid:15550482
158. K. Ohyashiki, J.W. Shay, J.H. Ohyashiki, Lack of mutations of the human telomerase RNA gene (hTERC) in myelodysplastic syndrome, Haematologica 90 (2005) 691.
PMid:15921388
159. A. Zhang, C. Zheng, M. Hou, C. Lindvall, K.J. Li, F. Erlandsson, M. Bjorkholm, A. Gruber, E. Blennow, D. Xu, Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome, Am J Hum Genet 72 (2003) 940-948.
doi:10.1086/374565
PMid:12629597
160. Y. Matsubara, M. Murata, K. Watanabe, I. Saito, K. Miyaki, K. Omae, M. Ishikawa, K. Matsushita, S. Iwanaga, S. Ogawa, Y. Ikeda, Coronary artery disease and a functional polymorphism of hTERT, Biochem Biophys Res Commun 348 (2006) 669-672.
doi:10.1016/j.bbrc.2006.07.103
PMid:16890917
161. M. Balasubramanyam, A. Adaikalakoteswari, S.F. Monickaraj, V. Mohan, Telomere shortening & metabolic/vascular diseases, Indian J Med Res 125 (2007) 441-450.
PMid:17496367
162. E.C. Jenkins, M.T. Velinov, L. Ye, H. Gu, S. Li, E.C. Jenkins, Jr., S.S. Brooks, D. Pang, D.A. Devenny, W.B. Zigman, N. Schupf, W.P. Silverman, Telomere shortening in T lymphocytes of older individuals with Down syndrome and dementia, Neurobiol Aging 27 (2006) 941-945.
doi:10.1016/j.neurobiolaging.2005.05.021
PMid:16046031
163. B. Meresse, S. Dubucquoi, B. Tourvieille, P. Desreumaux, J.F. Colombel, J.P. Dessaint, CD28+ intraepithelial lymphocytes with long telomeres are recruited within the inflamed ileal mucosa in Crohn disease, Hum Immunol 62 (2001) 694-700.
doi:10.1016/S0198-8859(01)00258-0
164. U. Tabori, S. Nanda, H. Druker, J. Lees, D. Malkin, Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome, Cancer Res 67 (2007) 1415-1418.
doi:10.1158/0008-5472.CAN-06-3682
PMid:17308077
165. L.A. Panossian, V.R. Porter, H.F. Valenzuela, X. Zhu, E. Reback, D. Masterman, J.L. Cummings, R.B. Effros, Telomere shortening in T cells correlates with Alzheimer's disease status, Neurobiol Aging 24 (2003) 77-84.
doi:10.1016/S0197-4580(02)00043-X
166. B.E. Flanary, N.W. Sammons, C. Nguyen, D. Walker, W.J. Streit, Evidence that aging and amyloid promote microglial cell senescence, Rejuvenation Res 10 (2007) 61-74.
doi:10.1089/rej.2006.9096
PMid:17378753
167. S. Ferlicot, N. Youssef, D. Feneux, F. Delhommeau, V. Paradis, P. Bedossa, Measurement of telomere length on tissue sections using quantitative fluorescence in situ hybridization (Q-FISH), J Pathol 200 (2003) 661-666.
doi:10.1002/path.1392
PMid:12898604
168. K. Takubo, N. Izumiyama-Shimomura, N. Honma, M. Sawabe, T. Arai, M. Kato, M. Oshimura, K. Nakamura, Telomere lengths are characteristic in each human individual, Exp Gerontol 37 (2002) 523-531.
doi:10.1016/S0531-5565(01)00218-2
169. A. Melk, V. Ramassar, L.M. Helms, R. Moore, D. Rayner, K. Solez, P.F. Halloran, Telomere shortening in kidneys with age, J Am Soc Nephrol 11 (2000) 444-453.
PMid:10703668
170. J.P. Gardner, M. Kimura, W. Chai, J.F. Durrani, L. Tchakmakjian, X. Cao, X. Lu, G. Li, A.P. Peppas, J. Skurnick, W.E. Wright, J.W. Shay, A. Aviv, Telomere dynamics in macaques and humans, J Gerontol A Biol Sci Med Sci 62 (2007) 367-374.
PMid:17452729
171. L. Tchakmakjian, J.P. Gardner, P.D. Wilson, M. Kimura, J. Skurnick, H.R. Zielke, A. Aviv, Age-dependent telomere attrition as a potential indicator of racial differences in renal growth patterns, Nephron Exp Nephrol 98 (2004) e82-88.
doi:10.1159/000080683
PMid:15528948
172. K. Okuda, M.Y. Khan, J. Skurnick, M. Kimura, H. Aviv, A. Aviv, Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis, Atherosclerosis 152 (2000) 391-398.
doi:10.1016/S0021-9150(99)00482-7
173. K. Furumoto, E. Inoue, N. Nagao, E. Hiyama, N. Miwa, Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress, Life Sci 63 (1998) 935-948.
doi:10.1016/S0024-3205(98)00351-8
174. K. Takubo, K. Nakamura, N. Izumiyama, E. Furugori, M. Sawabe, T. Arai, Y. Esaki, K. Mafune, M. Kammori, M. Fujiwara, M. Kato, M. Oshimura, K. Sasajima, Telomere shortening with aging in human liver, J Gerontol A Biol Sci Med Sci 55 (2000) B533-536.
175. V. Paradis, N. Youssef, D. Dargere, N. Ba, F. Bonvoust, J. Deschatrette, P. Bedossa, Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas, Hum Pathol 32 (2001) 327-332.
doi:10.1053/hupa.2001.22747
PMid:11274643
176. H. Aikata, H. Takaishi, Y. Kawakami, S. Takahashi, M. Kitamoto, T. Nakanishi, Y. Nakamura, F. Shimamoto, G. Kajiyama, T. Ide, Telomere reduction in human liver tissues with age and chronic inflammation, Exp Cell Res 256 (2000) 578-582.
doi:10.1006/excr.2000.4862
PMid:10772830
177. J.N. O'Sullivan, J.C. Finley, R.A. Risques, W.T. Shen, K.A. Gollahon, A.H. Moskovitz, S. Gryaznov, C.B. Harley, P.S. Rabinovitch, Telomere length assessment in tissue sections by quantitative FISH: image analysis algorithms, Cytometry A 58 (2004) 120-131.
doi:10.1002/cyto.a.20006
PMid:15057965
178. N.D. Hastie, M. Dempster, M.G. Dunlop, A.M. Thompson, D.K. Green, R.C. Allshire, Telomere reduction in human colorectal carcinoma and with ageing, Nature 346 (1990) 866-868.
doi:10.1038/346866a0
PMid:2392154
179. E. Furugori, R. Hirayama, K.I. Nakamura, M. Kammori, Y. Esaki, K. Takubo, Telomere shortening in gastric carcinoma with aging despite telomerase activation, J Cancer Res Clin Oncol 126 (2000) 481-485.
doi:10.1007/s004320000137
PMid:10961392
180. P.E. Slagboom, S. Droog, D.I. Boomsma, Genetic determination of telomere size in humans: a twin study of three age groups, Am J Hum Genet 55 (1994) 876-882.
PMid:7977349 PMCid:1918314
181. M. Sugimoto, R. Yamashita, M. Ueda, Telomere length of the skin in association with chronological aging and photoaging, J Dermatol Sci 43 (2006) 43-47.
doi:10.1016/j.jdermsci.2006.02.004
PMid:16524700
182. M. Kammori, K. Nakamura, M. Kawahara, Y. Mimura, M. Kaminishi, K. Takubo, Telomere shortening with aging in human thyroid and parathyroid tissue, Exp Gerontol 37 (2002) 513-521.
doi:10.1016/S0531-5565(01)00178-4
Key Words: Embryonic stem cells, Double-strand break repair, G-quartets, Telomere maintenance, Review
Send correspondence to: Bibha Choudhary, Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India,Tel: 91 80 2293 2674, Fax: 080 2360 0814, E-mail:vibhachou@gmail.com