[Frontiers in Bioscience S4, 1275-1294, June 1, 2012]

Cell sources for cartilage repair: Contribution of the mesenchymal perivascular niche

Lucio Diaz-Flores Jr.1, Ricardo Gutierrez1, Juan Francisco Madrid2, Elisa Acosta3, Julio Avila3, Lucio Diaz-Flores1, Pablo Martin-Vasallo3

1Department of Pathology, Histology and Radiology, School of Medicine, La Laguna University, Canary Islands, Spain, 2Department of Cell Biology and Histology, School of Medicine, University of Murcia, Spain, 3Developmental Biology Laboratory, Department of Biochemistry and Molecular Biology, University of La Laguna, Tenerife, Spain

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Tissue based -repair. Cartilage and subchondral bone transplantation
4. Cell-based cartilage repair (cbcr). chondrocytes
5. CBCR. Adult mesenchymal stem cells
5.1. MSCs, ASCs and TACs
5.2. Differentiation and functional role of MSCs
5.3. Criteria for identification of MSCs
5.4. Location of MSCs (perivascular/pericytic niche for MSCs)
5.5. Use of MSCs in cartilage repair
5.5.1. MSC recruitment from neighbouring tissues (bone marrow stimulation. MSC-based "in situ" cartilage repair. MSC action after originating a granulation tissue next to the injured site)
5.5.2. Use of cultured and expanded MSCs
5.5.2.1. Tissue selected for obtaining MSCs
5.5.2.2. Culture of MSCs (growth/expansion and differentiation)
6. CBCR. Progenitor cells from perichondrium and periosteum
7. CBCR. Embryonic and prenatal stem cells
8. CBCR. Induced pluripotent stem cells (IPS cells)
9. CBCR. Genetically modified cells
10. Conclusion
11. Acknowledgments
12. References

1. ABSTRACT

Tissue and cell sources for cartilage repair are revised, including: 1) cartilage and subchondral bone (auto and allografts; single or multiple/mosaicplasty grafts), 2) cultured chondrocytes (autologous/ACI, characterized/CCI, matrix assisted/MAC, or allogenic), 3) adult mesenchymal stem cells (MSCs), 4) progenitor cells from perichondrium and periosteum, 5) embryonic and prenatal stem cells, 6) induced pluripotent stem cells, and 7) genetically modified cells. We consider the biological mechanisms that explain usage and possible complications, advantages and limitations, emerging technologies and possible modulations on extracellular matrix properties and on migration, proliferation, de-differentiation, re-differentiation, morphology, function and integration of the cells. The study of MSC role involve: a) identification, b) location (perivascular niche hypothesis, pericytes as progenitor cells), c) lineage (myoadipofibrogenic system: transit amplifying cells, fibroblast/myofibroblasts, chondrocytes, osteoblasts, odontoblasts, vascular smooth muscle cells and adipocytes), and d) use in cartilage repair, comprising: 1) MSCs recruited from neighbouring tissues (bone marrow stimulation, MSCs based "in situ" cartilage repair, microfracture) and 2) MSCs cultured and expanded from bone marrow, adipose tissue, synovial membrane or granulation tissue.

2. INTRODUCTION

Since spontaneous healing of the articular cartilage (an avascular tissue with very limited capacity for repair - 1) is practically non-existent, the treatment of cartilage damage (traumatic injuries or chondropathies) involves: 1) cartilage transplantation or 2) cell-based repair (stimulating new hyaline cartilage growth, in the main by tissue engineering procedures). The possible cell sources for cell-based cartilage repair (hyaline-like cartilage formation, providing durability and normal, pain-free articular function) include: a) chondrocytes, b) adult mesenchymal stem cells (MSCs), c) perichondrial and periosteal cells, d) embryonic and prenatal stem cells, e) induced pluripotent stem cells (IPS), and f) genetically modified cells. In any case, cartilage repair requires obtaining: a) the best possible tissue (hyaline-like cartilage formed by chondrocytes embedded within an extracellular matrix of collagens, non-collagenous proteins, and proteoglycans), which resists compression and shearing forces (the fibrocartilage mainly withstands tensile forces, while the hyaline cartilage resists compression forces), b) good tissue integration with the native cartilage, preventing additional cartilage deterioration, and c) smooth surfaces of the joint, allowing for movement of bones within the articulation, with the least possible friction. Our goal is to present potential tissue and cell sources in cartilage repair and the biological mechanisms that explain usage and possible complications.

3. TISSUE BASED -REPAIR. CARTILAGE AND SUBCHONDRAL BONE TRANSPLANTATION

When the graft only consists of cartilage, the results are ineffective, since the cartilage has very limited capacity for repair due to its avascular nature and its matrix encapsulated chondrocytes, which are unable to initiate an effective repair and to recruit local sources of progenitor cells. To avoid these difficulties, the graft must contain cartilage and subchondral bone (a firm carrier that allows revascularization), and must be implanted in an osteochondral defect (to reach a zone of vascularization). Indeed, as the receptor subchondral bone is penetrated, the healing response allows for revascularization of the osseous part of the graft, its overlying cartilage remaining viable and well attached. Therefore, the source of tissues in this procedure is the subchondral bone tissue and the four articular cartilage zones (superficial, transitional, radial, and the interphase calcified cartilage zone). These zones contain their respective collagen networks (Type II collagen, as principal component, and smaller amounts of collagen III, VI, IX, X, XI, XII, and XIV) and proteoglycans (aggrecan, syndecans, glypican, decorin, byglican, fibromodulin, lumican, perlecan, and epiphycan). This procedure includes autograft or allograft transplantation of cartilage and subchondral bone. In osteochondral autograft transplantation, the graft is transferred from one part of the joint (non-weight bearing so as to prevent weakening the joint, which limits the size of the graft) to another (only small focal chondral defects because of the limited availability of autologous osteochondral graft). Single or multiple (mosaicplasty) grafts may be undertaken. Osteochondral allograft (cadaver donor, with more osteochondral tissue available) transplantation may be considered when the cartilage defect is extensive, prior procedures have failed, or in the older patient population. Survival of more than 80% of allografts at 3-10 years has been demonstrated (2, 3), although there are concerns about histocompatibility.

4. CELL-BASED CARTILAGE REPAIR (CBCR). CHONDROCYTES

Although cartilage has poor intrinsic capacity for regeneration, its cells can be cultured and expanded "in vitro". Indeed, the chondrocytes may be arthroscopically harvested from the healthy articular cartilage (e.g. from a non-weight-bearing area of the medial trochlear groove of the knee or the superior ridge of the femoral condyles), cultured, and expanded to obtain a sufficient amount (over a 3-6 week period), and applied to the cartilage defect during a second arthroscopic procedure (4). At the recipient site, re-implantation takes place in "bioactive chambers", covered by autologous periosteum (currently replaced by other materials because of periosteum hypertrophy) or tissue-engineered membranes (e.g. collagen or hyaluronic acid-based membranes) sealed with fibrin glue. The cells thrive in their bioactive chambers (either with a simple membrane or with a matrix structure) forming a new cartilage. Growth factors may stimulate the implanted cells to proliferate, re-differentiate, and form specific matrix cartilage. Second-generation tissues in cartilage repair include matrix-assisted chondrocyte implantation to create a cartilage-like tissue in 3-D culture systems (5).

In this way, the most commonly used cell source in cartilage repair is the implantation of "ex vivo" expanded chondrocytes (4, 6-9), principally the autologous chondrocyte implantation (ACI) and the characterized chondrocyte implantation (CCI). Allogenic chondrocyte implantation has occasionally been used.

ACI does not always form hyaline cartilage, but does form fibrocartilage or mixed hyaline/fibrocartilage (10, 11). In CCI, expanded chondrocytes expressing molecular markers predictive of the ability to form hyaline-like cartilage "in vivo" are used, optimizing the hyaline cartilage-like formation (better structural repair, compared with microfracture) (12-14), with clinical improvement (15, 16). Indeed, CCI is associated with less fibrous tissue, more chondrocyte-like cells, and a higher content of the physiological extracellular matrix components (collagen type II, aggrecan and hyaluronic acid, and in minor concentration collagens types VI, IX, XI, fibromodulin, decorin, biglycan, and cartilage oligomeric matrix protein) (15). Autologous chondrocytes may be harvested from other regions (non articular cartilage, such as costal and auricular) with lower morbility and greater capacity of proliferation and chondrogenic potential.

Since chondrocytes are immunoprivileged when surrounded with extracellular matrix, allogenic chondrocyte implantation (alginate-based scaffolds containing human mature allogenic chondrocytes) has been used with clinical and histological outcomes that are equal but not superior to those of other cartilage repair techniques (17).

The advantages and limitations of these procedures have been widely reviewed (5, 18, 19). A major limitation of all the methods previously outlined is due to the fact that chondrocytes "in vitro" lose their differentiated phenotype and their chondrogenic potential (dedifferentiation to a fibroblast-like phenotype during expansion). However, culture techniques to preserve the expression of the transcription factor Sox9, which maintains the chondrogenic lineage (20), have shown good results. In monolayer cultures, chondrocytes lose their phenotypes (they dedifferentiate, change their morphology and surface receptors, and develop a non-specific synthesis profile with different expression of the matrix components, such as presence of collagen type I, III, and IV, and reduction of collagen type II, aggrecan, cartilage olygomeric matrix protein, chondromodulin, chondroadherin, and factor Sox-9) (9, 21-23). Chondrocyte de-differentiation is not observed in 3-D cultures (24) and re-differentiation (re-expression of cartilage-specific genes) of the de-differentiated chondrocytes occurs in 3D matrices (24-26), including those cultured in alginate beads (25, 27) or when adding chondrocytes to a 3D collagen matrix (28). In this regard, emerging technologies and new generation issues in cartilage repair have been considered and developed (5, 29), such as matrix-assisted autologous chondrocyte transplantation (MACT) in which autologous chondrocytes are implanted with their own pre-formed extracellular matrix after using biodegradable and biomechanically favourable biomaterials.

5. CBCR. ADULT MESENCHYMAL STEM CELLS

Adult mesenchymal stem/stromal cells (MSCs) may be used for cartilage repair. In this section we will briefly consider the following aspects of MSCs: a) MSCs, adult stem cells (ASCs), and transit amplifying cells (TACs), b) differentiation and functional role, c) criteria for identification, d) location, and e) use in cartilage repair.

5.1. MSCs, ASCs and TACs

The ASCs are able to self renew, to intervene in maintaining the structural and functional integrity of their original tissue, and to adopt functional phenotypes and expression profiles of cells from other tissues, expressing greater plasticity than traditionally attributed to them (30-52). TACs are committed progenitors among the ASCs and their terminally differentiated daughter cells and, with more rapid though limited proliferation, increase the number of differentiated cells produced by one ASC division. These cells intervene in the replacement of damaged or dead cells with new healthy cells using repair mechanisms. Repair includes two types of processes: regeneration and repair through granulation tissue. Regeneration occurs when dead, degenerated, or damaged cells are replaced by other cells of the same type (e.g. chondrocyte transplantation). In repair through granulation tissue (a provisional tissue), MSC lineage develops, proliferates, and differentiates together with angiogenesis and recruitment of macrophages. At first, the MSC lineage shares findings between ASCs and TACs. Finally, the transition is between TACs and terminally differentiated cells.

5.2. Differentiation and functional role of MSCs

MSCs may differentiate into a complex myoadipofibrogenic line, an apparently heterogenous population (a number of mesenchymal phenotypes) that shows various activities and may predominantly express some of them, such as extracellular matrix synthesis/fibrogenesis (e.g. fibroblasts/myofibroblasts, pericytes, chondrocytes, osteoblasts, and odontoblasts), contractility (e.g. vascular smooth muscle cells and pericytes), or lipid storage (adipocytes). Indeed, the adult mesenchymal stem cells may differentiate phenotypically into adipose, cartilage, bone, vascular smooth muscle, skeletal and cardiac muscle, and hematopoietic-supportive stromal cells (MSCs may even lead to hepatocytes and neural elements) (30, 33, 39, 46, 53-62). Furthermore, MSCs secrete large quantities of bioactive factors that are both immunomodulatory (inhibit lymphocyte surveillance of the injured tissue, thus preventing autoimmunity) and trophic (inhibit apoptosis and stimulate angiogenesis and the mitosis of tissue-specific and tissue-intrinsic progenitors) (63). Therefore, MSCs can be used in tissue engineering therapies and as inductive or instructive delivery vehicles (64).

5.3. Criteria for identification of MSCs

The criteria for identification of human MSCs include the following: a) adherence to plastic in standard culture conditions, b) expression of at least CD-73, CD-90, and CD-105, while CD-11b, CD-14, CD-19, CD-34, CD-45, and CD-79a are negative, and c) "in vitro" differentiation into chondroblasts, adipocytes, and osteoblasts (65).

5.4. Location of MSCs (perivascular/pericytic niche for MSCs)

MSCs have been isolated from numerous locations, such as bone marrow, periosteum and trabecular bone, muscle, adipose tissue, tendon, brain, liver, spleen, kidney, thymus, lung, pancreas, heart, ovary, dermis, synovium, and deciduous teeth (66-68).

Pericytes are considered by some authors as progenitor cells with great mesenchymal potential and as a source of undifferentiated mesenchymal cells (52, 69-78). In postnatal life, retaining considerable mesenchymal potentiality, pericytes isolated from different tissues may have the capacity to differentiate into other cell types (69-79), such as fibroblasts/myofibroblasts (75, 80-82), chondroblasts (83), osteoblasts (72, 75, 81, 84-88), odontoblasts (89, 90), preadipocytes (82, 91), vascular smooth muscle cells (the reverse conversion, SMCs to pericytes, as also pointed out - 69, 92-), myointimal cells (69, 74, 92-96), and phagocytes (97). Ultrastructural findings demonstrating transitional cell forms between pericytes, myofibroblasts, and arterial myointimal cells have been known since 1985 (95).

It has therefore been demonstrated "in vivo" that pericytes are the target of cartilage and bone growth or induction factors, which switch on the development pathway of pericytes to prechondroblasts and preosteoblasts (70,72). Subsequently, it was confirmed that vascular pericytes undergo osteogenic differentiation "in vitro" and "in vivo" (76, 98).

In this way, a perivascular (periendothelial) niche for MSCs has been suggested, based on pericyte plasticity and on the demonstration that MSCs and pericytes share the expression of some molecular markers. Interest in this hypothesis has increased in recent years (68, 77, 79, 90, 99-113) and MSC expression of pericyte markers is among the complementary studies that suggest the perivascular niche hypothesis (114). These studies point out the following: a) stem cells expressing STRO1 display positivity for alpha SM actin and CD146, and variable expression for the pericyte marker 3G-5 (90), b) co-expression of RgS5 (a marker for pericytes) and Notch3 (Notch signalling pathways regulate stem cell fate specification and express in perivascular cells) (115), c) immunohistochemical expression of Sca-1+/Thy/1+/ CD31- (67), d) co-expression of annexin A5 gene (a marker for perivascular cells expressed during early stages of vasculogenesis) and NG2, SM actin protein, PDGFR beta, FLK-1 kit, Sca 1, CD-34 (77, 103), e) the isolated perivascular cells have the capacity to differentiate into mesenchymal stem cell lineages (adipose and osteoblastic cells) and also display phagocytic activity (77, 103), f) self-renewal capacity and osteogenic and adipogenic potentiality have been demonstrated using cultures originated from glomerular mesangial cells (which are considered specialized pericytes) (68), g) human infrapatellar fat pad-derived stem cells expressing the pericyte marker 3G5 show enhanced chondrogenesis after expansion in fibroblast growth factor 2 (110), h) mesenchymal stem cells STRO-1, CD-146, and 3G5, exhibit a perivascular phenotype (116), i) demonstration of a linear correlation between the numbers of adipose stem cells (obtained from both highly and poorly vascularised sites of equine adipose tissue) and vascular density (107, 117), and f) freshly isolated stromal vascular fraction cells, expressing CD34, separated from CD31+, CD144+ EC, co-express mesenchymal (CD10, CD13 and CD90), pericytic (chondroitinsulphate proteoglycan, CD140a and CD 140b), and smooth muscle (alpha actin, caldesmon and calponin) markers (114).

To check the possible relationship between pericytes and MSCs, we selectively labelled "in vivo" the postcapillary and capillary mural cells of the rat inguinal pad adipose tissue with an exogenous marker (Monastral Blue) (Figure 1). Subsequently, the pericyte cell lineage was followed to determine whether the marker was present in the expanded adherent cell population of MSCs (characterized by adherence to plastic in culture and expression of markers of MSCs.) (Figure 2). The fact that adipose-derived mesenchymal stromal cells, obtained from this labelled tissue, continue showing the exogenous marker confirms the perivascular (periendothelial) niche hypothesis for the MSCs in this tissue. After rat "in vivo" implantation some of the cells with the marker in their cytoplasms have characteristics of pericytes and myofibroblasts (Figure 3). Previously, we had shown that under certain conditions, labelled pericytes could be a source of new chondrocytes and osteoblasts (see below).

Given the above, MSCs (pericytes, a subset of pericytes, or pericyte-like cells) reside in most post-natal tissues and organs, and their specific and physical location is the abluminal side of the endothelial cells, constituting a three-dimensional microenvironment, including endothelial cells, extracellular matrix and basal membrane components, as well as transmigrating cells (perivascular/pericytic niche for MSCs). In resting tissues, complex regulatory mechanisms, such as intimate association and bidirectional interactions between pericytes and endothelial cells (ECs) (118, 119) and microenvironment influences, contribute to maintenance of vascular stability and therefore to a quiescent stage of the perivascular mesenchymal stem cell niche (review in 120). During postnatal life, the regulatory mechanisms that facilitate vessel instability, such as neovascularization (as occurs in repair through granulation tissue), could also activate the perivascular mesenchymal stem cell niche (113). Indeed, in these conditions, the relation between the cells is modified, and the ECs and pericytes change from an associated, quiescent and stable state to another dissociated, mobile and proliferative state in a modulated substrate (leakage of proteins and disintegration of vascular basal membrane and extracellular matrix). In this activated state, the resident mesenchymal stem cells and transit amplifying cells proliferate and migrate toward the interstitium wherein, depending on the appropriate stimuli, they differentiate into certain cells of the complex myoadipofibrogenic line (myoadipofibrogenic system) (Figure 4).

5.5. Use of MSCs in cartilage repair

In cartilage repair, MSCs may be involved in the following: a) when a granulation tissue is originated next to the injured site (bone marrow stimulation) and b) after being obtained, cultivated, and differentiated.

5.5.1. MSC recruitment from neighbouring tissues (bone marrow stimulation. MSC-based "in situ" cartilage repair. MSC action after originating a granulation tissue next to the injured site)

Depending on interpretation and techniques, different terms are used to describe this process (based on the penetration of the subchondral bone plate at the bottom of the cartilage defect -121). These terms include subchondral bone perforation, osteochondral lesion, bone marrow stimulation, drilling (122), abrasion (123), and microfracture (124). The steps in this procedure (125) are the following: a) MSC recruitment to the site of damage, b) cell adhesion and proliferation, and c) differentiation towards osteoblasts and chondrocytes, with corresponding matrix production, integration with neighbouring subchondral bone and cartilage tissues, and adaptation to biomechanical loading and tissue homeostasis.

Although the bone marrow is stimulated through this process, the principal action is to reach a zone of vascularization, creating a new blood supply and a healing response. The bone marrow microvasculature networks have been hypothesized as one possible niche for MSCs (76), coinciding with the concept that niches are highly vascularized sites (90, 111, 126). Indeed, in the bone marrow microvasculature there is a continuous layer of subendothelial pericytes (127), which acquires a reticular morphology (reticular cells) in the venous side. Therefore, the marrow pericytes may be the same entity as the bone marrow stromal cells, since they share features such as: a) similar location of pericytes and stromal cells, b) expression of similar markers, such as SMA, PDGFR beta, EGFR, and CD146, and c) similar response to growth factors (99). Generally, the authors consider that events triggered in the healing response after subchondral perforation consist of bleeding from the subchondral bone spaces, which yields a blood clot, stimulating recruitment, proliferation, and chondrogenic differentiation of MSCs and different precursor cell types from the bone marrow, from bone, and from adipose and vascular tissue (125, 128-130). In our opinion, the healing response includes granulation tissue formation. Thus, the resulting provisional tissue (granulation tissue) is similar to that which appears in other vascularized regions. Indeed, the regions with the capacity to repair through granulation tissue have a common characteristic: the presence, in or near, of an active preexisting pericytic microvasculature, where the repair phenomena develop (113). Therefore, the repair sequence includes stages of granulation tissue formation: hematoma (fibrin-deposition binding of platelets), macrophage recruitment, angiogenesis (neovascularization), recruitment and proliferation of multipotent mesenchymal stromal cells, re-absorption of the fibrin clot, and development of a vascularized scar-like tissue (113, 131). Both the origin of the participating cells and the growth factors and cytokines that intervene in the granulation tissue have been previously reviewed (113, 120). Subsequently (between days 10 and 14), new bone and overlying new cartilage are formed (in their appropriate location within the repair tissue). In the latter, the involution of the neovessels, the differentiation of the MSCs and their TACs into cartilage, and the regulation of the metabolism and homeostasis of cartilage are influenced by the local environment (mechanical and biological factors, including TGF-β family, FGFs, and Wnt - 132).

Some authors report good to excellent results in animals (in the absence of any specific treatment - 128) and in 60-80% of patients treated by these procedures (131, 133). However, spontaneous differentiation and remodelling mainly result in a fibrocartilaginous repair tissue, which may be subjected to excessive deformation with mechanical failure and degeneration (after 20-48 weeks - 128, 130). Furthermore, the new collagen does not project into or intermingle with the native cartilage, thus hampering the integration and adherence of the newly generated cartilage. Indeed, the results after microfracture in the knee and their comparison with ACI demonstrate problems regarding the durability of the repair tissue in major defects and in defects located in areas other than the femoral condyles. Covers that trap the cells in the initial stages of granulation tissue formation (preventing escape of cells and anabolic cell mediators from the site of repair, since fibrin deposition contains the highest percentage of migrating mesenchymal stem cells) have been developed (e.g. collagen matrix) (121, 134). Therefore, this procedure protects and stabilizes the blood clot and may enhance the chondrogenic differentiation of the MSCs (autologous matrix-induced chondrogenesis - AMIC). Likewise, scaffolds (e.g. poli (DL) lactide-coglycoide or alginate-gelatin biopolymer hydrogel), cell-free or seeded with autologous chondrocytes, with osteochondral regenerative potential, have been developed experimentally, with restoration of hyaline cartilage and bone (135-139), mainly in those seeded. Currently, a porous nano-composite multi-layered biomaterial has been used and evaluated with promising preliminary results. No differences in healing were found between seeded (with autologous chondrocytes) and empty scaffolds (140).

Thickening of the subchondral bone, formation of subchondral cysts, and presence of intralesional osteophytes have been demonstrated in patients treated with microfracture (133, 141). Likewise, the increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques has been described (three times more likely to fail than patients who had undergone marrow stimulation), limiting future treatment options (142).

5.5.2. Use of cultured and expanded MSCs

5.5.2.1. Tissue selected for obtaining MSCs

The most commonly used source of MSCs is the bone marrow. Indeed, MSCs are located in the complex system of the bone marrow stroma (bone marrow stromal cells)(See above). Bone marrow aspirate contains very few MSCs, which can be isolated by means of Stro-1+ antibody recognition (143, 144). These cells have the capacity to differentiate into mesenchymal lineage cells and, with appropriate environmental conditions, also into cells of different embryonic origin, such as cells with visceral mesoderm, neuroectoderm, and endoderm characteristics; in other words, with high capacity of transdifferentiation and plasticity (48, 54, 145-147).

The MSCs in adipose tissue have an important potential for use in tissue engineering, since adipose tissue is an abundant and easily procured source, enabling extraction of a voluminous quantity. Moreover, the frequency of these MSCs, after removing adipocytes, is far greater than in bone marrow. Indeed, adipose tissue contains MSCs and committed adipogenic and vascular cells (101, 148-158), with the capacity to differentiate into adipose (101, 151, 154, 159), cartilage (160-162), bone (101, 151, 163-165), endothelial (166), hematopoietic (167), skeletal (156, 168, 169) and cardiac (170-172) muscle, hepatic (173), pancreatic endocrine (174) and neuronal (175-177) cells. In this way, the biology, multilineage differentiation ability, growth kinetics, gene transduction efficiency, and cell senescence of multipotent adipose-derived stem cells are similar, although not identical to bone marrow MSCs, sharing the expression of Stro-1, CD90, CD44, SH3, and CD105.

MSCs have been enzymatically released from the human synovial membrane, and their ability to proliferate and to differentiate into the chondrocyte, osteocyte, and adipocyte lineage has been demonstrated (178).

Granulation tissue is rich in MSCs and TACs (120) and may be used as a source of these cells to repair and regenerate injured tissues (e.g. cultured and propagated cells obtained experimentally from granulation tissue that forms around perforated polivinyl tubes placed in the subcutaneous space) (179)

5.5.2.2. Culture of MSCs (growth/expansion and differentiation)

Although the MSCs isolated from various tissues and involved in cartilage repair are a therapeutic promise, their expansion and differentiation requires coordination and the maintenance of the regular chondrogenic capacity (a problem not fully resolved - paradox between "in vitro" promise and "in vivo" efficacy - 9, 19, 180). In this way, 3-D supports, such as collagen, alginate, fibrin, and biopolymers are required for the MSCs to undergo chondrogenesis (181-187). Bosnakovski and cols. 2006 (187), demonstrated that differentiation (expression levels of the chondrocyte specific genes Sox9, collagen type II, aggrecan, and cartilage olygomeric matrix protein) was more prominent in cells cultured in collagen type II hydrogel and that it increased in a time dependent manner. In this way, to induce and maintain chondrogenesis, transforming growth factors (TGF) b1 and b3, fibroblast growth factor, bone morphogenic proteins (BMPs)-2, -6, and -9, and insulin-like growth factors, may be used (188-190) (e.g. the combined use of bioreabsorbable scaffolds along with gels and incorporated growth factors for localized delivery therapies). Likewise, physical factors can also participate in the regulation of MSC differentiation (191). Among these are the mechanical properties of the supports, since rigid or soft scaffolds may be used. Thus, rigid scaffolds are more suitable for cartilage tissue engineering, while soft scaffolds facilitate adipose differentiation (192, 193). Thus, to demonstrate the importance of mechanical factors in cartilage tissue repair, we implanted perforated rigid tubes in the rat soft tissue, generating a peritubular granulation tissue, which progresses through the holes reaching tube light. The granulation tissue evolved into connective (Figure 5A) and adipose tissues, except in the intratubular zone near the tube wall close to the holes (in the angle formed between the inner surfaces of the hole and the tube wall), where, during contraction, the granulation tissue presses onto the rigid material, the cells differentiating into chondrocytes (Figure 5B, 5C, 5D, and 5E). Therefore, mechanostimulation along with appropriate biomolecules (e.g. growth factors) can promote chondrocyte differentiation.

6. CBCR. PROGENITOR CELLS FROM PERICHONDRIUM AND PERIOSTEUM

The perichondrium and periosteum share the same origin, regulatory mechanisms, and some morphological and functional characteristics. The perichondrium may differentiate into the periosteum (194, 195). Both perichondrium and periosteum produce multiple positive and negative factors regulating the differentiation of the underlying skeletal elements (196, 197) (e.g. regulating gene expression in the underlying chondrocytes - 198). Both structures have two distinct morphologic layers, an outer fibrous layer and the cambium or inner cellular layer. The inner cellular layer contains fibroblasts and chondroprogenitor / osteoprogenitor cells (Multipotent periosteum cells) (199-201). Therefore, the periosteum can promote new cartilage and its chondrogenic potential decreases with age (200).

In this way, the use of periosteum as a cell source for graft engineering in bone and articular cartilage repair is a therapeutic possibility. For instance, a rapid curing alginate gel system has shown periosteum-derived cartilage tissue (202) and the action of FGF-2 enhancing TGF- beta 1-induced periosteal chondrogenesis (203).

The study of perichondrial chondrogenesis "in vivo" and "in vitro" revealed that perichondrocytes of the inner layer of the perichondrium were relatively differentiated cells with the potential to develop cartilage (204, 205). Subsequently, the growth of two types of cartilage after implantation of free autogeneic perichondrial grafts has been demonstrated (83). The location and characteristics of both types of cartilage suggested that one of the types came from perichondrocytes of the inner perichondrial layer, whereas the other type originated from the undifferentiated perivascular mesenchymal cells. When the perichondrium or the periosteum were activated, and the pericytes of the local postcapillary venules were labelled with an exogenous marker, the process of cartilage and bone formation from chondrogenic and osteoprogenitor cells already present in the perichondrium and the periosteum was augmented by proliferation and differentiation of the labelled pericytes, which contributed a supplementary population of newly formed chondrocytes and osteoblasts (showing intracellular particles of the marker - Figure 6) (70, 72. Therefore, perichondrium and periosteum not only provide chondrogenic and osteoprogenitor cells but act as inducers of proliferation and differentiation of cells with mesenchymal capacity.

7. CBCR. EMBRYONIC AND PRENATAL STEM CELLS

Embryonic stem cells (ESCs) comprise the zygote, the descendents of the first two divisions, and those from the inner cell mass of blastocytes. The zygote (fertilized oocyte) and the descendents of the first two divisions are considered to be totipotent, able to give rise to the embryo, placenta, and supporting tissues. Those from the inner cell mass of blastocytes have been attributed with a pluripotent potential and therefore with the capacity to generate all or most cell lineages derived from the three embryonic germ layers: ectoderm (skin and neural lineages), mesoderm (blood, fat, cartilage, bone, and muscle), and endoderm (digestive and respiratory systems) (206, 207). During development, ESCs divide and originate distinct subpopulations, including non-self-regenerating progenitors that undergo terminal differentiation. In this way, ESCs isolated from human embryos (208) could have potential to be used in cartilage repair. However, ASCs, which may contribute to the differentiated adult lineages native to other tissues and organs, are more useful than ESCs in regenerative medicine and tissue engineering, since ASCs have no ethical problems and are not predisposed for teratoma formation.

Prenatal stem cells expressing MSC-related markers have been isolated from primitive tissue of the umbilical cord (Wharton's jelly) (human umbilical cord perivascular cells - HUCPV cells) (209, 210), cord blood (211-216), , umbilical cord vein (217, 218), and amniotic fluid (amniotic fluid stem cells - AFSCs) (219). Although experiments have mainly demonstrated differentiation towards osteogenic lineage, the capacity to differentiate into chondrogenic lineage has also been observed (210, 214, 215), including expression of collagen II (210)..

8. CBCR INDUCED PLURIPOTENT STEM CELLS (IPS CELLS)

Induced pluripotent stem cells (IPS cells) can be derived from somatic cells by introducing a small number of genes in these differentiated cells ("reprogramming"), expanded in culture, and differentiated for transplantation in cell therapy, without immunological rejection concerns. Therefore, IPS cells may lead to advances in regenerative medicine (220, 221). Indeed, for example, IPS cells can be generated from adult human fibroblasts (221, 223).

9. CBCR GENETICALLY MODIFIED CELLS

Genetically modified cells have promising potential in cartilage repair (221). Indeed, cells expressing bone formation cytokines, including over-expression of BMPs, have been developed (223, 224). Thus, genetically modified cells could act as cartilage-inducing components.

10. CONCLUSION

We have reviewed one of the basic aspects in cartilage repair: its tissue and cell sources, considering advantages and limitations, as well as the biological mechanisms that explain usage, particularly to achieve the structure and durability of natural hyaline-like articular cartilage. Although this review concentrates on tissue and cell sources, in the sections where the cell-based cartilage repair was treated, we have briefly referred to other basic aspects, reviewed by several authors, highlighting interest in this area (See 9, 15, 125, 229, 132, 221, 225, 226, 227, 230) whose study covers: a) scaffolds that facilitate environment for chondrogenesis, including natural (collagen, fibrin, alginate, hyaluronan, agarose, chitosan) or synthetic materials that provide a biodegradable matrix with biochemical properties, supporting neomatrix deposition by chondrocytes, b) several signalling pathways and transcription factors (e.g.: Wnt, transforming growth factor β/bone morphogenetic protein signalling, PDGF, IGF-1, EGF, HGF), which act in migration (PDGF, IGF-1, EGF, HGF, TGF β), proliferation (EGF, PDG,F TGF β), and differentiation (dexamethasone, TGF β). Some may be locally introduced, modulating cell differentiation into cartilage, c) procedures to prevent escape of cells and anabolic cell mediators from the site of repair, d) strategies for cartilage integration, e) inhibition of cartilage degeneration and inflammation (TNF-x and IL-1 application), and f) gene transfer for optimization of cell chondrogenic capacity.

Further understanding of the cellular sources and their behaviour during proliferation and differentiation into cartilage open a promising new path in joint tissue engineering.

11. ACKNOWLEDGMENTS

We thank Dr. Ali Mobasheri, Division of Veterinary Medicine, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom for critical reading of the manuscript. This work was supported by grant 2010-11 Apoyo a Grupos Consolidados from Universidad de La Laguna, to P. M-V. Canary Islands, Sapin and grant PI090128 FIS, Spain, to J.A.

12. REFERENCES

1. G. P. Dowthwaite, J. C. Bishop, S. N. Redman, I. M. Khan, P. Rooney, D. J. Evans, L. Haughton, Z. Bayram, S. Boyer, B. Thomson, M. S. Wolfe and C. W. Archer: The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117, 889-897 (2004)
doi:10.1242/jcs.00912
PMid:14762107

2. J. C. Garrett: Fresh osteochondral allografts for treatment of articular defects in osteochondritis dissecans of the lateral femoral condyle in adults. Clin Orthop Relat Res 303, 33-37 (1994)
doi:10.1097/00003086-199406000-00005
PMid:8194251

3. M. T. Ghazavi, K. P. Pritzker, A. M. Davis and A. E. Gross: Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br 79, 1008-1013 (1997)
doi:10.1302/0301-620X.79B6.7534

4. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson and L. Peterson: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331, 889-895 (1994)
doi:10.1056/NEJM199410063311401
PMid:8078550

5. E. Kon, M. Delcogliano, G. Filardo, C. Montaperto and M. Marcacci: Second generation issues in cartilage repair. Sports Med Arthrosc 16, 221-229 (2008)
doi:10.1097/JSA.0b013e31818cdbc5
PMid:19011554

6. L Peterson, T Minas, M Brittberg, A Nilsson, E Sjögren-Jansson and A Lindahl: Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374, 212-234 (2000)
doi:10.1097/00003086-200005000-00020
PMid:10818982

7. G. Knutsen, L. Engebretsen, T. C. Ludvigsen, J. O. Drogset, T. Grøntvedt, E. Solheim, T. Strand, S. Roberts, V. Isaksen and O. Johansen: Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A, 455-64 (2004)
PMid:14996869

8. K. Hambly, V. Bobic, B. Wondrasch, D. Van Assche and S. Marlovits: Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 34, 1020-1038 (2006)
doi:10.1177/0363546505281918
PMid:16436540

9. G. Schulze-Tanzil: Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Ann Anat 191, 325-338 (2009)
doi:10.1016/j.aanat.2009.05.003
PMid:19541465

10. G. Bentley, L. C. Biant, R. W. Carrington, M. Akmal, A. Goldberg, A. M. Williams, J. A. Skinner and J. Pringle: A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg (Br) 85, 223-230 (2003)
doi:10.1302/0301-620X.85B2.13543

11. U. Horas, D. Pelinkovic, G. Herr, T. Aigner and R. Schnettler: Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg (Am) 85-A, 185-192 (2003)
PMid:12571292

12. F. Dell'Accio, C. De Bari and F. P. Luyten: Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44, 1608-1619 (2001)
doi:10.1002/1529-0131(200107)44:7<1608::AID-ART284>3.0.CO;2-T

13. F. Dell'Accio, J. Vanlauwe, J. Bellemans, J. Neys, C. De Bari and F. P.Luyten: Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 21, 123-131 (2003a)
doi:10.1016/S0736-0266(02)00090-6

14. F. Dell'Accio, C. De Bari, F. P. Luyten: Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res 287, 16-27 (2003b)
doi:10.1016/S0014-4827(03)00036-3

15. D. B. Saris, J. Vanlauewe, J. Victor, M, Haspl, M. Bohnsack, Y. Fortems, B. Vandekerckhove, K. F. Almqvist, T. Claes, F. Handelberg, K. Lagae, J. van der Bauwhede, H. Vandenneucker, K. G. Yang, M. Jelic, R. Verdonk, N. Veulemans, J. Bellemans, F. P. Luyten: Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36, 235-246 (2008)
doi:10.1177/0363546507311095
PMid:18202295

16. J.Vanlauwe: Characterized chondrocyte implantation: re-thinking current clinical standards. Annual Congress of the European Society for Sports Traumatology Knee Surgery and Arthroscopy, Porto, Portugal (2008)

17. K. F. Almqvist, A. A. Dhollander, P. C. Verdonk, R. Forsyth, R. Verdonk and G. Verbruggen: Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 37, 1920-1929 (2009)
doi:10.1177/0363546509335463
PMid:19542304

18. S. Marlovits, P. Zeller, P. Singer, C. Resinger and V. Vecsei: Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57, 24-31 (2006)
doi:10.1016/j.ejrad.2005.08.009
PMid:16188417

19. W. Richter: Cell-based cartilage repair: illusion or solution for osteoarthritis. Curr Opin Rheumatol 19, 451-456 (2007)
doi:10.1097/BOR.0b013e3282a95e4c
PMid:17762610

20. M. Malpeli, N. Randazzo, R. Cancedda and B. Dozin: Serum-free growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng 10, 145-155 (2004)
doi:10.1089/107632704322791790
PMid:15009940

21. P.D. Benya and J.D. Shaffer: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215-224 (1982)
doi:10.1016/0092-8674(82)90027-7

22. J. Diaz-Romero, D. Nesic, S. P. Grogan, P. Heini and P. Mainil-Varlet: Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells. J Cell Physiol 214, 75-83 (2008)
doi:10.1002/jcp.21161
PMid:17559082

23. G. Schulze-Tanzil, B. Kohl, R. D. Müller, N. Schneider, W. Ertel, O. Gemeinhardt, H. Hünigen, R. Stark, K. Ipaktchi and T. John: Differing in vitro biology of equine, ovine, porcine and human articular chondrocytes derived from the knee joint: an immunomorphological study. Histochem Cell Biol 131, 219-229 (2009a)
doi:10.1007/s00418-008-0516-6
PMid:18839203

24. Y. Sasazaki, B.B. Seedhom and R. Shore: Morphology of the bovine chondrocyte and of its cytoskeleton in isolation and in situ: are chondrocytes ubiquitously paired through the entire layer of articular cartilage? Rheumatology (Oxford) 47, 1641-1646 (2008)
doi:10.1093/rheumatology/ken341
PMid:18796530

25. J. Bonaventure, N. Kadholm, L. Cohen-Solal, K. H. Ng, J. Bourguignon, C. Lasselin and P. Freisinger: Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212, 97-104 (1994)
doi:10.1006/excr.1994.1123
PMid:8174647

26. F. Lemare, N. Steimberg, C. Le Griel, S. Demignot and M. Adolphe: Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1beta. J Cell Physiol 176, 303-313 (1998)
doi:10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S

27. C. Domm, M. Schünke, K. Christesen and B. Kurz: Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension, Osteoarthritis Cartilage 10, 13-22 (2002)
doi:10.1053/joca.2001.0477
PMid:11795979

28. R. Dorotka, U. Bindreiter, K. Macfelda, U. Windberger and S. Nehrer: Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 13, 655-664 (2005)
doi:10.1016/j.joca.2005.04.001
PMid:15905106

29. M. W. Kessler, G. Ackerman, J. S. Dines and D. Grande: Emerging technologies and fourth generation issues in cartilage repair. Sports Med Arthrosc 16, 246-254 (2008)
doi:10.1097/JSA.0b013e31818d56b3
PMid:19011557

30. G. Ferrari, G. Cusella-De Angelis, M. Coletta, E. Paolucci, A. Stornaiuoio, G. Cossu and F. Mavilio: Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530 (1998)
doi:10.1126/science.279.5356.1528
PMid:9488650

31. C. R. Bjornson, R. L. Rietze, B. A. Reynolds, M. C. Magli and A. L. Vescovi: Turning brain into blood: a hematopoietic late adopted by adult neural stem cells in vivo. Science 283, 534-537 (1999)
doi:10.1126/science.283.5401.534
PMid:9915700

32. K. A. Jackson and M. A. Goodell: Hematopoietic potential of stem cells isoiated from murine skeletal muscle. Proc Natl Acad Sci USA 96, 14482-14486 (1999)
doi:10.1073/pnas.96.25.14482

33. G. C. Kopen, D. J. Prockop and D. G. Phinney: Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96, 10711-10716 (1999)
doi:10.1073/pnas.96.19.10711

34. B. E. Petersen, W. C. Bowen, J. S. Greenberger and J. P. Goff: Bone marrow as a potential source of hepatic oval cells. Science 284, 287-298 (1999a)
doi:10.1126/science.284.5417.1168
PMid:10325227

35. B. E. Petersen, W C. Bowen, K. D. Patrene, W. M. Mars, A. K. Sullivan, N. Murase and S. S. Boggs: Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170 (1999b)
doi:10.1126/science.284.5417.1168
PMid:10325227

36. T. R. Brazelton, F. M. Rossi, G. I. Keshet and H. M. Blau: From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779 (2000)
doi:10.1126/science.290.5497.1775
PMid:11099418

37. D. L. Clarke, C. B. Johansson, J. Wilbertz, B. Veress, E. Nilsson, H. Karlstrom, U. Lendahl and J. Frisen: Generalized potential of adult neural stem cells. Science 288, 1660-1663 (2000)
doi:10.1126/science.288.5471.1660
PMid:10834848

38. R. Galli, U. Borello, A. Gritti, M. G. Minasi, C. Bjornson, M. Coletta, M. Mora, M. G. De Angelis, R. Fiocco, G. Cossu and A.L. Vescovi: Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3, 986-991 (2000)
doi:10.1038/79924
PMid:11017170

39. E. Lagasse, H. Connors, M. Al-Dhalimy, M. Reitsma, M. Dohse, L. Osborne, X. Wang, M. Finegold, I.L. Weissman and M. Grompe: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6, 1229-1234 (2000)
doi:10.1038/81326
PMid:11062533

40. E. Mezey and K. J. Chandross: Bone marrow: a possible alternative source of cells in the adult nervous system. Eur J Pharmacol 405, 297-302 (2000)
doi:10.1016/S0014-2999(00)00561-6

41. S. H. Orkin: Stem cell alchemy. Nat Med 6, 1212-1213 (2000)
doi:10.1038/81303
PMid:11062526

42. H. M. Blau, T. R. Brazeltonand and J.M. Weimann: The evolving concept of a stem cell: entity or function? Cell 105, 829-841 (2001)
doi:10.1016/S0092-8674(01)00409-3

43. D. S. Krause, N. D. Theise, M. I. Collector, O. Henegariu, S. Hwang, R. Gardner, S. Neutzel and S. J. Sharkis: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369-377 (2001)
doi:10.1016/S0092-8674(01)00328-2

44. J. J. Minguell, A. Erices and P. Conget: Mesenchymal stem cells. Exp Biol Med 226, 507-520 (2001)

45. S.I. Morrison: Stem cell potential: can anything make anything? Curr Biol 11, R7-9 (2001)
doi:10.1016/S0960-9822(00)00033-6

46. D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li, J. Pickel, R. McKay, B. Nadal-Ginard, D. M. Bodine, A. Leri and P. Anversa: Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705 (2001)
doi:10.1038/35070587
PMid:11287958

47. M. Korbling, R. L. Katz, A. Khanna, A. C. Ruifrok, G. Rondon, M. Albitar, R. E. Champlin and Z. Estrov: Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 346, 738-746 (2002)
doi:10.1056/NEJMoa3461002
PMid:11882729

48. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D.A. Largaespada and C.M. Verfaillie: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49 (2002a)
doi:10.1038/nature00870
PMid:12077603

49. E.V. Badiavas, M. Abedi, J. Butmarc, V. Falanga and P. Quesenberry: Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196, 245-250 (2003)
doi:10.1002/jcp.10260
PMid:12811816

50. A. J. Wagers and I. L. Weissman: Plasticity of adult stem cells. Cell 116, 639-648 (2004)
doi:10.1016/S0092-8674(04)00208-9

51. G. D. Richardson, E. C. Arnott, C. J. Whitehouse, C. M. Lawrence, A. J. Reynolds, N. Hole and C. A. Johada: Plasticity of rodent and human hair follicle dermal cells: Implications for cell therapy and tissue engineering. J Invest Dermatol SP 10, 180-183 (2005)
doi:10.1111/j.1087-0024.2005.10101.x
PMid:16382659

52. L. Díaz-Flores Jr., J. F. Madrid, R. Gutiérrez, H. Varela, F. Valladares, H. Alvarez-Argüelles and L. Díaz-Flores: Adult stem and transit-amplifying cell location. Histol Histopathol 21, 995-1027 (2006)

53. T. Takahashi, C. Kalka, H. Masuda, D. Chen, M. Silver, M. Kearney, M. Magner, J. M. Isner and T. Asahara: Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5, 434-438 (1999)
doi:10.1038/8462
PMid:10229237

54. S. Ahdjoudj, O. Fromigue and P. J. Marie: Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol 19, 151-157 (2004)
PMid:14702183

55. J. H. Bennett, C. J. Joyner, J. T. Triffitt and M. E. Owen: Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99, 131-139 (1991)
doi:10.1016/8756-3282(91)90118-3
PMid:1757497

56. R. F. Pereira, M. D. O'Hara, A. V. Laptev, K. W. Halford, M. D. Pollard, R. Class, D. Simon, K. Livezey and D. J. Prockop: Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95, 1142-1147 (1998)
doi:10.1073/pnas.95.3.1142

57. J. E. Dennis, A. Merriam, A. Awadallah, J. U. Yoo, B. Johnstone and A. I. Caplan: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14, 700-709 (1999)
doi:10.1359/jbmr.1999.14.5.700
PMid:10320518

58. C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne and P. D. Kessler: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93-98 (2002)
doi:10.1161/hc0102.101442
PMid:11772882

59. Y. Jiang, B. Vaessen, T. Lenvik, M. Blackstad, M. Reyes and C. Verfaillie: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30, 896-904 (2002b)
doi:10.1016/S0301-472X(02)00869-X

60. M. F. Pittenger and B. J. Martin: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95, 9-20 (2004)
doi:10.1161/01.RES.0000135902.99383.6f
PMid:15242981

61. M. H. Mankani, S. A. Kuznetsov, R. M. Wolfe, G. W. Marshall and P.G. Robey: In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible. Stem Cells 24, 2140-2149 (2006a)
doi:10.1634/stemcells.2005-0567
PMid:16763200

62. M. H. Mankani, S. A. Kuznetsov, B. Shannon, R. K. Nalla, R. O. Ritchie, Y. Qin and P. G. Robey: Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol 168, 542-550 (2006b)
doi:10.2353/ajpath.2006.050407
PMid:16436668    PMCid:1606510

63. A. I. Caplan: New era of cell-based orthopedic therapies. Tissue Eng Part B Rev 15, 195-200 (2009)
doi:10.1089/ten.teb.2008.0515
PMid:19228082    PMCid:2817662

64. A. I. Caplan: Why are MSCs therapeutic? New data: new insight. J Pathol 217, 318-324 (2009)
doi:10.1002/path.2469
PMid:19023885

65. M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. J. Prockop and E. Horwitz: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006)
doi:10.1080/14653240600855905
PMid:16923606

66. F. P. Barry and J. M. Murphy: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36, 568-584 (2004)
doi:10.1016/j.biocel.2003.11.001

67. D. Blashki, B. Short, I. Bertoncello, P. J. Simmons and N. Brouard: Identification of stromal MSC candidates from multiple adult mouse tissues. Int Soc Stem Cell Res. 4th Annual Meeting 2006 (2006)

68. L. da Silva Meirelles, P. C. Chagastelles and N. B. Nardo: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119, 2204-2213 (2006)
doi:10.1242/jcs.02932
PMid:16684817

69. L. Díaz-Flores, R. Gutiérrez, H. Varela, N. Rancel and F. Valladares: Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 6, 269-286 (1991a)

70. L. Díaz-Flores, R. Gutiérrez, P. González and H. Varela: Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium. Anat Rec 229, 1-8 (1991b)
doi:10.1002/ar.1092290102
PMid:1996774

71. V. Nehls and D. Drenckhahn: Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113, 147-154 (1991)
doi:10.1083/jcb.113.1.147
PMid:2007619

72. L. Diaz-Flores, R. Gutiérrez, A. López-Alonso, R. González and H. Varela: Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 275, 280-286 (1992)
doi:10.1097/00003086-199202000-00042
PMid:1735226

73. V. Nehls, K. Denzer and D. Drenckhahn: Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270, 469-474 (1992)
doi:10.1007/BF00645048
PMid:1283113

74. V. Nehls and D. Drenckhahn: The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 99, 1-12 (1993)
doi:10.1007/BF00268014
PMid:8468190

75. C. Sundberg, M. Ivarsson, B. Gerdin and K. Rubin: Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest 74, 452-466 (1996)
PMid:8780163

76. M. J. Doherty, B. A. Ashton, S. Walsh, J. N. Beresford, M. E. Grant and A. E. Canfield: Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13, 828-838 (1998)
doi:10.1359/jbmr.1998.13.5.828
PMid:9610747

77. B. Brachvogel, H. Moch, F. Pausch, U. Schlotzer-Schrehardt, C. Hofmann, R. Hallmann, K. von der Mark, T. Winkler and E. Pöschl: Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 132, 2657-2668 (2005)
doi:10.1242/dev.01846
PMid:15857912

78. A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, E. Tagliafico, B. Sacchetti, L. Perani, A. Innocenzi, B. G. Galvez, G. Messina, R. Morosetti, S. Li, M. Belicchi, G. Peretti, J. S. Chamberlain, W. E. Wright, Y. Torrente, S. Ferrari, P. Bianco and G. Cossu: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9, 255-267 (2007)
doi:10.1038/ncb1542
PMid:17293855

79. A. C. Zannettino, S. Paton, A. Arthur, F. Khor, S. Itescu, J. M. Gimble and S. Gronthos: Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214, 413-421 (2008)
doi:10.1002/jcp.21210
PMid:17654479

80. R. Ross, N. B. Everett and R. Tyler: Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 44, 645-654 (1970)
doi:10.1083/jcb.44.3.645
PMid:5415241    PMCid:2107958

81. L. Ronnov-Jessen, O. W. Petersen, V. E. Koteliansky and M. J. Bissell: The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95, 859-873 (1995)
doi:10.1172/JCI117736
PMid:7532191    PMCid:295570

82. C. Farrington-Rock, N. J.Crofts, M. J. Doherty, B. A. Ashton, C. Griffin-Jones and A. E. Canfield: Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226-2232 (2004)
doi:10.1161/01.CIR.0000144457.55518.E5
PMid:15466630

83. L. Díaz-Flores, E. Rodríguez, M. J. Gayoso and R. Gutiérrez: Growth of two types of cartilage after implantation of free autogeneic perichondrial grafts. Clin Orthop Relat Res 234, 267-279 (1988)
doi: 10.1097/00003086-198809000-00046

84. S. Takahashi and M. R. Urist: Differentiation of cartilage on three substrata under the influence of an aggregate of morphogenetic protein and other bone tissue noncollagenous proteins (BMP/iNCP). Clin Orthop Relat Res 207, 227-234 (1986)
doi:10.1097/00003086-198606000-00040
PMid:3720090

85.A. M. Schor, T. D. Allen, A. E. Canfield, P. Sloan and S. L. Schor: Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97, 449-461 (1990)
PMid:2074265

86. A. M. Schor, A. E. Canfield, A. B. Sutton, E. Arciniegas and T. D. Allen: Pericyte differentiation. Clin Orthop Relat Res 81-91 (1995)
PMid:7543836

87. G. D. Collett and A. E. Canfield: Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96, 930-938 (2005)
doi:10.1161/01.RES.0000163634.51301.0d
PMid:15890980

88. A. P. Hall: Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol 34, 763-775 (2006)
doi:10.1080/01926230600936290
PMid:17162534

89. B. Alliot-Licht, D. Hurtrel and M. Gregoire: Characterization of alpha-smooth muscle actin positive cells in mineralized human dental pulp cultures. Arch Oral Biol 46, 221-228 (2001)
doi:10.1016/S0003-9969(00)00115-1

90. S. Shi and S. Gronthos: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18, 696-704 (2003)
doi:10.1359/jbmr.2003.18.4.696
PMid:12674330

91. R. L. Richardson, G. J. Hausman and D. R. Campion: Response of pericytes to thermal lesíon in the inguinal fat pad of 10-day-old rats. Acta Anat 114, 41-57 (1982)
doi:10.1159/000145577

92. R. F. Nicosia and S. Villaschi: Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73, 658-666 (1995)
PMid:7474939

93. H. Z. Movat and N. V. P. Fernando: The fine structure of the terminal vascular bed. IV. the venules and their perivascular cells (pericytes, adventitial cells). Exp Molec Pathol 34, 98-114 (1964)
doi:10.1016/0014-4800(64)90044-9

94. B. Meyrick and L. Reid: Ultrastructural features of the distended pulmonary arteries of the normal rat. Anat Rec 193, 71-97 (1979)
doi:10.1002/ar.1091930106
PMid:104638

95. L. Díaz-Flores and C. Domínguez: Relation between arterial intimal thickening and the vasa-vasorum. Virchows Arch (A) 406, 165-177 (1985)
doi:10.1007/BF00737083

96. K. K. Hirschi, S. A. Rohovsky and P. A. D'Amore: PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141, 805-814 (1998)
doi:10.1083/jcb.141.3.805
PMid:9566978    PMCid:2132737

97. W. E. Thomas: Brain macrophages: On the role of pericytes and perivascular cells. Brain Res Rev 31, 42-57 (1999)
doi:10.1016/S0165-0173(99)00024-7

98. M. J. Doherty and A. E. Canfield: Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr 9, 1-17 (1999)
PMid:10200908

99. P. Bianco, M. Riminucci, S. Gronthos and P.G. Robey: Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180-192 (2001)
doi:10.1634/stemcells.19-3-180
PMid:11359943

100. P. Helmbold, R. C. Nayak, W. C. Marsch and I. M. Herman: Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res 61, 160-165 (2001)
doi:10.1006/mvre.2000.2292
PMid:11254395

101. P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz and M.H. Hedrick: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tis Eng 7, 211-228 (2001)
doi:10.1089/107632701300062859
PMid:11304456

102. S. Gronthos, A. C. Zannettino, S. J. Hay, S. Shi, S. E.Graves, A. Kortesidis, and P. J. Simmons: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116, 1827-1835 (2003)
doi:10.1242/jcs.00369
PMid:12665563

103. B. Brachvogel, F. Pausch, P. Farlie, U. Gaipl, J. Etich, Z. Zhou, T. Cameron, K. von der Mark, J. F. Bateman and E. Pöschl: Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Experimental Cell Research 313, 2730-2743 (2007)
doi:10.1016/j.yexcr.2007.04.031
PMid:17543301

104. F. Djouad, B. Delorme, M. Maurice, C. Bony, F. Apparailly, P. Louis-Plence, F. Canovas, P. Charbord, D. Noël, and C. Jorgensen: Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Sports Med Arthrosc 9, R33 (2007)
doi:10.1186/ar2153

105. C. M. Kolf, E. Cho and R. S. Tuan: Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthr Res Therap 9, 204 (2007)
doi:10.1186/ar2116

106. B. Sacchetti, A. Funari, S. Michienzi, S. Di Cesare, S. Piersanti, I. Saggio, E. Tagliafico, S. Ferrari, P. G. Robey, M. Riminucci, and P. Bianco: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324-336, (2007)
doi:10.1016/j.cell.2007.08.025
PMid:17956733

107. L. da Silva Meirelles, A.I. Caplan and N.B. Nardi: In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287-2299 (2008)
doi:10.1634/stemcells.2007-1122
PMid:18566331

108. D. T. Covas, R. A. Panepucci, A. M. Fontes, W. A. Jr. Silva, M. D. Orellana, M. C. Freitas, L. Neder, A. R. Santos, L. C. Peres, M. C. Jamur and M. A. Zago: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36, 642-654 (2008)
doi:10.1016/j.exphem.2007.12.015
PMid:18295964

109. M. Crisan, S. Yap, L. Casteilla, C. W. Chen, M. Corselli, T. S. Park, G. Andriolo, B. Sun, B. Zheng, L. Zhang, C. Norotte, P. N. Teng, J. Traas, R. Schugar, B. M. Deasy, S. Badylak, H. J. Buhring, J. P. Giacobino, L. Lazzari, J. Huard and B. Péault: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313 (2008)
doi:10.1016/j.stem.2008.07.003
PMid:18786417

110. W. S. Khan, S. R. Tew, A. B. Adesida, and T. E. Hardingham: Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthr Res Therap 10, R74 (2008)
doi:10.1186/ar2448

111. R. S. Tare, J. C. Babister, J. Kanczler and R. O. Oreffo: Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol. Cell Endocrinol 88, 11-21, (2008)
doi:10.1016/j.mce.2008.02.017
PMid:18395331

112. A. Arthur, A. Zannettino and S. Gronthos: The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218, 237-245 (2009)
doi:10.1002/jcp.21592
PMid:18792913

113. L. Díaz-Flores Jr., R. Gutiérrez, J. F. Madrid, H. Varela, F. Valladares and L. Díaz-Flores: Adult stem cells and repair through granulation tissue. Front Biosc 14, 1433-1470. (2009a)
doi:10.2741/3317

114. D. O. Traktuev, S. Merfeld-Clauss, J. Li, M. Kolonin, W. Arap, R. Pasqualini, B. H. Johnstone and K. L. A March: population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102, 77-85 (2008)
doi:10.1161/CIRCRESAHA.107.159475
PMid:17967785

115. H. Lovschall, T. A. Mitsiadis, K. Poulsen, K. H. Jensen and A. L. Kjeldsen: Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol 51, 715-721 (2007)
doi:10.1387/ijdb.072393hl
PMid:17939118

116. A. C. Zannettino, S. Paton, A. Kortesidis, F. Khor, S. Itescu and S.Gronthos: Human mulipotential mesenchymal/stromal stem cells are derived from a discrete subpopulation of STRO-1bright/CD34 /CD45(-)/glycophorin-A-bone marrow cells. Haematologica 92, 1707-1708 (2007)
doi:10.3324/haematol.11691
PMid:18055998

117. A. I. Caplan: Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213, 341-347 (2007)
doi:10.1002/jcp.21200
PMid:17620285

118. R. K. Jain: Molecular regulation of vessel maturation. Nat Med 9, 685-693 (2003)
doi:10.1038/nm0603-685
PMid:12778167

119. A. Armulik, A. Abramsson and C.Betsholtz: Endothelial/pericyte interactions. Circ Res 97, 512-523 (2005)
doi:10.1161/01.RES.0000182903.16652.d7
PMid:16166562

120. L. Díaz-Flores, R. Gutiérrez, J. F. Madrid, H. Varela, F. Valladares, E. Acosta, P. Martín-Vasallo and L. Díaz-Flores Jr.: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24, 909-969 (2009b)

121. M. R. Steinwachs, T. Guggi, P. C. Kreuz: Marrow stimulation techniques. Injury 39: S26-S31. (2008)
doi:10.1016/j.injury.2008.01.042
PMid:18313469

122. E. Pridie: A method of resurfacing knee joints. J Bone Joint Surg Br 41, 618-619 (1959)

123. L. L. Johnson: Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res 391, S306-S317 (2001)
doi:10.1097/00003086-200110001-00028
PMid:11603714

124. J. R. Steadman, W. G. Rodkey, J. J. Rodrigo: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391, S362-S369 (2001)
doi:10.1097/00003086-200110001-00033
PMid:11603719

125. W. Richter: Mesenchymal stem cells and cartilage in situ regeneration J Int Med 266, 390-405 (2009)
doi:10.1111/j.1365-2796.2009.02153.x
PMid:19765182

126. A. Spradling, D. Drummond-Barbosa and T. Kai: Stem cells find their niche. Nature 414, 98-104 (2001)
doi:10.1038/35102160
PMid:11689954

127. E. R. Andreeva, I. M. Pugach, D. Gordon and A. N. Orekhov: Continuous sub-endothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30, 127-135 (1998)
doi:10.1016/S0040-8166(98)80014-1

128. F. Shapiro, S. Koide and M. J. Glimcher: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75, 532-553 (1993)
PMid:8478382

129. D. W. Jackson, M. J. Scheer and T. M. Simon: Cartilage substitutes: overview of basic science and treatment options. J Am Acad Orthop Surg 9, 37-52 (2001)
PMid:11174162

130. E. B. Hunziker, T. M. Quinn and H. J. Häuselmann: Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564-572 (2002)
doi:10.1053/joca.2002.0814
PMid:12127837

131. J. R. Steadman, W. G. Rodkey and J. J. Rodrigo: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391, S362- S369 (2001)
doi:10.1097/00003086-200110001-00033
PMid:11603719

132. D. Umlauf, S. Frank, T. Pap and J. Bertrand: Cartilage biology, pathology, and repair. Cell Mol Life Sci 67, 4197-4211 (2010)
doi:10.1007/s00018-010-0498-0
PMid:20734104

133. K. Mithoefer, R. J. Williams 3rd, R. F. Warren, H. G. Potter, C. R. Spock, E. C. Jones, T. L. Wickiewicz and R. G. Marx: The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87, 1911-1920 (2005)
doi:10.2106/JBJS.D.02846
PMid:16140804

134. J. Kramer, F. Böhrnsen, U. Lindner, P. Behrens, P. Schlenke and J. Rohwedel: In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 63, 616-626 (2006)
doi:10.1007/s00018-005-5527-z
PMid:16482398

135. G. G. Niederauer, M. A. Slivka, N. C. Leatherbury, D. L. Korvick, H. H. Harroff, W. C. Ehler, C. J. Dunn and K. Kieswetter: Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21, 2561-2574 (2000)
doi:10.1016/S0142-9612(00)00124-1

136. C. C. Jiang, H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, Y. Y. Huang and R. S. Tuan: Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25, 1277-1290 (2007)
doi:10.1002/jor.20442
PMid:17576624

137. I. Nagura, H. Fujioka, T. Kokubu, T. Makino, Y. Sumi and M. Kurosaka: Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Joint Surg Br 89, 258-264 (2007)
doi:10.1302/0301-620X.89B2.17754
PMid:17322449

138. K. Schlichting, H. Schell, R. U. Kleemann, A. Schill, A. Weiler, G. N. Duda, D. R. Epari: Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36, 2379-2391 (2008)
doi:10.1177/0363546508322899
PMid:18952905

139. J. C. Schagemann, C. Erggelet, H. W. Chung, A. Lahm, H. Kurz and E. H. Mrosek: Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part A 15, 75-82 (2009)
doi:10.1089/ten.tea.2008.0087
PMid:18783325

140. E. Kon, P. Verdonk, V. Condello, M. Delcogliano, A. Dhollander, G. Filardo, E. Pignotti and M. Marcacci: Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37, 156S-166S (2009)
doi:10.1177/0363546509351649
PMid:19861700

141. P. C. Kreuz, M. R. Steinwachs, C. Erggelet, S. J. Krause, G. Konrad, M. Uhl and N. Südkamp: Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14, 1119-1125 (2006)
doi:10.1016/j.joca.2006.05.003
PMid:16815714

142. T. Minas, A. H. Gomoll, R. Rosenberger, R. O. Royce and T. Bryant: Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37, 902-908 (2009)
doi:10.1177/0363546508330137
PMid:19261905

143. K. Stewart, S. Walsh, J. Screen, C. M. Jefferiss, J. Chainey, G. R. Jordan and J. N. Beresford: Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res 14, 1345-1356 (1999)
doi:10.1359/jbmr.1999.14.8.1345
PMid:10457267

144. S. Walsh, C. Jefferiss, K. Stewart, G. R. Jordan, J. Screen and J. N. Beresford: Expression of the developmental markers STRO-1 and alkaline phosphatase incultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone 27, 185-195 (2000)
doi:10.1016/S8756-3282(00)00319-7

145. P. Bianco and P. Gehron Robey: Marrow stromal stem cells. J Clin Invest 105, 1663-1668 (2000)
doi:10.1172/JCI10413
PMid:10862779    PMCid:378520

146. H. Tao and D. D. Ma: Evidence for transdifferentiation of human bone marrow-derived stem cells: recent progress and controversies. Pathology 35, 6-13 (2003)
doi:10.1097/01268031-200335010-00002
PMid:12701678

147. A. Abderrahim-Ferkoune, O. Bezy, S. Astri-Roques, C. Elabd, G. Ailhaud and E. Z. Amri: Trans-differentiation of preadipose cells into smooth muscle-like cells: role of aortic carboxypeptidase-like protein. Exp Cell Res 293, 219-228 (2004)
doi:10.1016/j.yexcr.2003.10.020
PMid:14729459

148. D. Dixon-Shanies, J. Rudick and J. L. Knittle: Observations on the growth and metabolic functions of cultured cells derived from human adipose tissue. Proc Soc Exp Biol Med 149, 541-545 (1975)
PMid:1153432

149. G. J. Hausman and R. J. Martin: The influence of human growth hormone on preadipocyte development in serum-supplemented and serum-free cultures of stromal-vascular cells from pig adipose tissue. Domest Anim Endocrinol 6, 331-337 (1989)
doi:10.1016/0739-7240(89)90027-1

150. G. Ailhaud, P. Grimaldi and R. Negrel: Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12, 207-233 (1992)
doi:10.1146/annurev.nu.12.070192.001231
PMid:1503804

151. P.A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim and M. H. Hedrick: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-4295 (2002)
doi:10.1091/mbc.E02-02-0105
PMid:12475952    PMCid:138633

152. D. A. De Ugarte, Z. Alfonso, P. A. Zuk, A. Elbarbary, M. Zhu, P. Ashjian, P. Benhaim, M. H. Hedrick and J. K. Fraser: Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89, 267-270 (2003)
doi:10.1016/S0165-2478(03)00108-1

153. M. Q. Wickham, G. R. Erickson, J. M. Gimble, T. P. Vail and F. Guilak: Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res 412, 196-212 (2003)
doi:10.1097/01.blo.0000072467.53786.ca
PMid:12838072

154. A. M. Rodriguez, C. Elabd, F. Delteil, J. Astier, C. Vernochet, P. Saint-Marc, J. Guesnet, A. Guezennec, E. Z. Amri, C. Dani and G. Ailhaud: Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 315, 255-263 (2004)
doi:10.1016/j.bbrc.2004.01.053
PMid:14766202

155. A. M. Rodriguez, C. Elabd, E. Z. Amri, G. Ailhaud and C. Dani: The human adipose tissue is a source of multipotent stem cells. Biochimie 87, 125-128 (2005a)
doi:10.1016/j.biochi.2004.11.007
PMid:15733747

156. A. M. Rodriguez, D. Pisani, C. A. Dechesne, C. Turc-Carel, J. Y. Kurzenne, B. Wdziekonski, A. Villageois, C. Bagnis, J. P. Breittmayer, H. Groux, G. Ailhaud and C. Dani: Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201, 1397-1405 (2005b)
doi:10.1084/jem.20042224
PMid:15867092    PMCid:2213197

157. J. K. Fraser, I. Wulur, Z. Alfonso and M. H. Hedrick: Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24, 150-154 (2006)
doi:10.1016/j.tibtech.2006.01.010
PMid:16488036

158. H. H. Cho, Y. J. Kim, S. J. Kim, J. H. Kim, Y. C. Bae, B. Ba and J. S. Jung: Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12, 111-121 (2006)
doi:10.1089/ten.2006.12.111
PMid:16499448

159. S. Deslex, R. Negrel, C. Vannier, J. Etienne and G. Ailhaud: Differentiation of human adipocyte precursors in a chemically defined serum-free medium. Int J Obes 11, 19-27 (1987)
doi:10.1016/0014-4827(87)90412-5
PMid:3570635

160. G.R. Erickson, J.M. Gimble, D.M. Franklin, H.E. Rice, H. Awad and F. Guilak: Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 290, 763-769 (2002)
doi:10.1006/bbrc.2001.6270
PMid:11785965

161. J. L. Dragoo, B. Samimi, M. Zhu, S. L. Hame, B. J. Thomas, J. R. Lieberman, M. H. Hedrick and P. Benhaim: Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br 85, 740-747 (2003)
doi: 10.1302/0301-620X.85B5.13587
PMid:12892203

162. H. A. Awad, M. Q. Wickham, H. A. Leddy, J. M. Gimble and F. Guilak: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate and gelatin scaffolds. Biomaterials 25, 3211-3222 (2004)
doi:10.1016/j.biomaterials.2003.10.045
PMid:14980416

163. J. I. Huang, S. R. Beanes, M. Zhu, H. P. Lorenz, M. H. Hedrick and P. Benhaim: Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg 109, 1033-1041 (2002)
doi:10.1097/00006534-200203000-00037
PMid:11884830

164. C. M. Cowan, Y. Y. Shi, O. O. Aalami, Y. F. Chou, C. Mari, R. Thomas, N. Quarto, C. H. Contag, B. Wu and M. T. Longaker: Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol 22, 560-567 (2004)
doi:10.1038/nbt958
PMid:15077117

165. K. C. Hicok, T. V. Du Laney, Y. S. Zhou, Y. D. Halvorsen, D. C. Hitt, L. F. Cooper and J. M. Gimble: Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10, 371-380 (2004)
doi:10.1089/107632704323061735
PMid:15165454

166. A. Miranville, C. Heeschen, C. Sengenes, C. A. Curat, R. Busse and A. Bouloumie: Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110, 349-355 (2004)
doi:10.1161/01.CIR.0000135466.16823.D0
PMid:15238461

167. B. Cousin, M. Andre, E. Arnaud, L. Penicaud and L. Casteilla: Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301, 1016-1022 (2003)
doi:10.1016/S0006-291X(03)00061-5

168. H. Mizuno, P. A. Zuk, M. Zhu, H. P. Lorenz, P. Benhaim and M. H. Hedrick: Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109, 199-209 (2002)
doi:10.1097/00006534-200201000-00030
PMid:11786812

169. F. Bacou, R. B. el Andalousi, P. A. Daussin, J. P. Micallef, J. M. Levin, M. Chammas, L. Casteilla, Y. Reyne and J. Nougues: Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant 13, 103-111 (2004)
PMid:15129756

170. S. Rangappa, C. Fen, E. H. Lee, A. Bongso and E. K. Sim: Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75, 775-779 (2003)
doi:10.1016/S0003-4975(02)04568-X

171. K. G. Gaustad, A. C. Boquest, B. E. Anderson, A. M. Gerdes and P. Collas: Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314, 420-427 (2004)
doi:10.1016/j.bbrc.2003.12.109
PMid:14733922

172. V. Planat-Benard, C. Menard, M. Andre, M. Puceat, A. Perez, J. M. Garcia-Verdugo, L. Penicaud and L. Casteilla: Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94, 223-229 (2004)
doi:10.1161/01.RES.0000109792.43271.47
PMid:14656930

173. M. J. Seo, S. Y. Suh, Y. C. Bae and J. S. Jung: Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328, 258-264 (2005)
doi:10.1016/j.bbrc.2004.12.158
PMid:15670778

174. K. Timper, D. Seboek, M. Eberhardt, P. Linscheid, M. Christ-Crain, U. Keller, B. Muller and H. Zulewski: Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341, 1135-1140 (2006)
doi:10.1016/j.bbrc.2006.01.072
PMid:16460677

175. K. M. Safford, K. C. Hicok, S. D. Safford, Y. D. Halvorsen, W. O. Wilkison, J. M. Gimble and H. E. Rice: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294, 371-379 (2002)
doi:10.1016/S0006-291X(02)00469-2

176. P. H. Ashjian, A. S. Elbarbary, B. Edmonds, D. De Ugarte, M. Zhu, P. A. Zuk, H. P., Lorenz, P. Benhaim and M. H. Hedrick: In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111, 1922-1931 (2003)
doi:10.1097/01.PRS.0000055043.62589.05
PMid:12711954

177. S. K. Kang, D. H. Lee, Y. C. Bae, H. K. Kim, S. Y. Baik and J. S. Jung: Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183, 355-366 (2003)
doi:10.1016/S0014-4886(03)00089-X

178. C. De Bari, F. Dell'Accio, P. Tylzanowski and F.P. Luyten: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44, 1928-1942 (2001)
doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P

179. J. Patel, K. P. Gudehithlu, G. Dunea, J. A. Arrudav and A. K. Singh: Foreign body-induced granulation tissue is a source of adult stem cells. Transl Res 155, 191-199 (2010)
doi:10.1016/j.trsl.2009.08.010
PMid:20303468

180. E. H. Javazon, K. J. Beggs and A. W. Flake: Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32, 414-425 (2004)
doi:10.1016/j.exphem.2004.02.004
PMid:15145209

181. M. S. Ponticiello, R. M. Schinagl, S. Kadiyala and F. P. Barry: Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52, 246-255 (2000)
doi:10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W

182. S. M. Mueller and J. Glowacki: Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82, 583-590 (2001)
doi:10.1002/jcb.1174
PMid:11500936

183. K. W. Kavalkovich, R. E. Boynton, J. M. Murphy and F. Barry: Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev Biol Anim 38, 457-466 (2002)
doi:10.1290/1071-2690(2002)038<0457:CDOHMS>2.0.CO;2

184. Y. Huang, P. M. Reuben, G. D'Ippolito, P. C. Schiller and H. S. Cheung: Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec 278, 428-436 (2004)
doi:10.1002/ar.a.20010
PMid:15103737

185. A. Batorsky, J. Liao, A. W. Lund, G. E. Plopper, J.P. and J. P. Stegemann: Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng 92, 492-500 (2005)
doi:10.1002/bit.20614
PMid:16080186

186. J. S. Wayne, C. L. McDowell, K. J. Shields and R. S. Tuan: In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11, 953-963 (2005)
doi:10.1089/ten.2005.11.953
PMid:15998234

187. D. Bosnakovski, M. Mizuno, G Kim, S Takagi, M. Okumura and T. Fujinaga: Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis Biotech Bioeng 93: 1152-1163 2006
doi:10.1002/bit.20828
PMid:16470881

188. A. Muraglia, R. Cancedda, R. Quarto: Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113:1161-1166 (2000)
PMid:10704367

189. I. Sekiya, J. T. Vuoristo, B. L. Larson and D. J. Prockop: In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99, 4397-4402 (2002)
doi:10.1073/pnas.052716199
PMid:11917104    PMCid:123659

190. N. Indrawattana, G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka and A. Bunyaratvej: Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 30, 914-919 (2004)
doi:10.1016/j.bbrc.2004.06.029
PMid:15240135

191. A. Augello, T. B. Kurth and C. De Bari: Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 20:121-133 (2010)
PMid:21249629

192. C.W. Patrick, P.B. Chauvin, J. Hobley and G.P. Reece: Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng 5, 139-51 (1999)
doi:10.1089/ten.1999.5.139
PMid:10358221

193. C.W. Patrick Jr, B. Zheng, C. Johnston and G.P. Reece: Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng 8, 283-293 (2002)
doi:10.1089/107632702753725049
PMid:12031117

194. P. Scott-Savage and B. K. Hall: Differentiative ability of the tibial periosteum for the embryonic chick. Acta Anat (Basel) 106, 129-140 (1980)
doi:10.1159/000145174

195. A. Bairati, M. Comazzi and M. Gioria: An ultrastructural study of the perichondrium in cartilages of the chick embryo. Anat Embryol (Berl) 194, 155-167 (1996)
doi:10.1007/BF00195009
PMid:8827324

196. D. L. Di Nino, M. L. Crochiere and T. F. Linsenmayer: Multiple mechanisms of perichondrial regulation of cartilage growth. Dev Dyn 225, 250-259 (2002)
doi:10.1002/dvdy.10160
PMid:12412007

197. D.L. Di Nino and T.F. Linsenmayer: Positive regulation of endochondral cartilage growth by perichondrial and periosteal calcitonin. Endocrinology 144, 1979-1983 (2003)
doi:10.1210/en.2002-220905
PMid:12697705

198. A. Bandyopadhyay, J. K. Kubilus, M. L. Crochiere, T. F. Linsenmayer and C. J. Tabin: Identification of unique molecular subdomains in the perichondrium and periosteum and their role in regulating gene expression in the underlying chondrocytes. Dev Biol 321, 162-174 (2008)
doi:10.1016/j.ydbio.2008.06.012
PMid:18602913    PMCid:2575053

199. H. Nakahara, V. M. Goldberg and A. I. Caplan: Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop Relat Res 276, 291-298 (1992)
doi:10.1097/00003086-199203000-00041
PMid:1537169

200. S. W. O'Driscoll, R. G. Marx, J. S. Fitzsimmons and D. E. Beaton: Method for automated cartilage histomorphometry. Tissue Eng 5, 13-23 (1999)
doi:10.1089/ten.1999.5.13
PMid:10207186

201. R. Schmelzeisen, R. Schimming and M. Sittinger: Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg 31, 34-39 (2003)
doi:10.1016/S1010-5182(02)00163-4

202. M. M. Stevens, H. F. Qanadilo, R. Langer and V. Prasad Shastri: A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887-894 (2004)
doi:10.1016/j.biomaterials.2003.07.002
PMid:14609677

203. M. M. Stevens, R. P. Marini, I. Martin, R. Langer and V. Prasad Shastri: FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res 22, 1114-1119 (2004)
doi:10.1016/j.orthres.2003.12.021
PMid:15304287

204. O. Engkvist, V. Skoog, P. Pastacaldi, E. Yormuk and R. Juhlin: The cartilaginous potential of the perichondrium in rabbit ear and rib. A comparative study in vivo and in vitro. Scand J Plast Reconstr Surg 13, 275-280 (1979)
doi:10.3109/02844317909013070

205. J. Upton, S. A. Sohn and J. Glowacki: Neocartilage derived from transplanted perichondrium: what is it? Plast Reconstr Surg 68, 166-174 (1981)
doi:10.1097/00006534-198108000-00007

206. R. L. Gardner and R. S. Beddington: Multi-lineage "stem" cells in the mammalian embryo. J Cell Sci 10, 11-27 (1988)

207. A. Smith: Embryonic stem cells. In: Stem Cell Biology. Eds: D. R. Marshak, R. L. Gardner and D. Gottlieb. Cold Spring Harbor Laboratory Press. New York. 205-230 (2001)
doi: 10.1101/087969673.40.

208. J. A. Thomson, J. Itskovitz, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall and J. M. Jones: Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147 (1998)
doi:10.1126/science.282.5391.1145
PMid:9804556

209. R. Sarugaser, D. Lickorish, D. Baksh, M.M. Hosseini and J. E. Davies: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23: 220-229 (2005)
doi:10.1634/stemcells.2004-0166
PMid:15671145

210. H. S. Wang, S. C. Hung, S. T. Peng, C. C. Huang, H. M. Wei, Y. J. Guo, Y. S. Fu, M. C. Lai and C. C. Chen: Mesenchymsal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22, 130-137 (2004)
doi:10.1634/stemcells.2004-0013
PMid:15579650

211. A. Erices, P. Conget and J. J. Minguel: Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109, 235-242 (2000)
doi:10.1046/j.1365-2141.2000.01986.x
PMid:10848804

212. C. Rosada, J. Justesen, D. Melsvik, P. Ebbesen and M. Kassem: The human umbilical cord blood: a potential source of osteoblast progenitor cells. Calcif Tissue Int 72: 135-142 (2003)
doi:10.1007/s00223-002-2002-9
PMid:12457262

213. E. J. Gang, S. H. Hong, J. A. Jeong, S. H. Hwang, S. W. Kim, I. H. Yang, C. Ahn, H. Han and H. Kim: In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophy Res Commun 321, 102-108 (2004)
doi:10.1016/j.bbrc.2004.06.111
PMid:15358221

214. C. Kögler, S. Sensken, J. A. Airey, T. Trapp, M. Müschen, N. Feldhahn, S. Liedtke, R. V. Sorg, J. Fischer, C. Rosenbaum, S. Greschat, A. Knipper, J. Bender, O. Degistirici, J. Gao, A. I. Caplan, E. J. Colletti, G. Almeida-Porada, H. W. Müller, E. Zanjani and P.Wernet: A new human somatic stem cells from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200: 123-135 (2004)
doi:10.1084/jem.20040440
PMid:15263023    PMCid:2212008

215. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh and T. H. Chen: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, 1669-1675 (2004)
doi:10.1182/blood-2003-05-1670
PMid:14576065

216. T. Tondreau, N. Meuleman, A. Delforge, M. Dejeneffe, R. Leroy, M. Massy, C. Mortier, D. Bron and L.Lagneaux: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, oct4 expression and plasticity. Stem Cells 23, 1105-1112 (2005)
doi:10.1634/stemcells.2004-0330
PMid:15955825

217. Y. A. Romanov, A. Svintsitskaya and V. N. Smirnov: Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21, 105-110 (2003)
doi:10.1634/stemcells.21-1-105
PMid:12529557

218. J. W. Kim, S. Y. Kim, S. Y. Park, Y. M. Kim, J. M. Kim, M. H. Lee and H. M. Ryu: Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 83, 733-738 (2004)
doi:10.1007/s00277-004-0918-z
PMid:15372203

219. P. De Coppi, G. Bartsch Jr, M. Minhaj Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker and A. Atala: Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25, 100-106 (2007)
doi:10.1038/nbt1274
PMid:17206138

220. S. Yamanaka: Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41 Suppl 1, 51-56 (2008)
doi:10.1111/j.1365-2184.2008.00493.x
PMid:18181945

221. M. K. El Tamer and R. L. Reis: Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med 3, 327-337 (2009)
doi:10.1002/term.173
PMid:19418440

222. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. Yamanaka: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 (2007a)
doi:10.1016/j.cell.2007.11.019
PMid:18035408

223. K. Takahashi, K. Okita, M. Nakagawa and S. Yamanaka: Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081-3089 (2007b)
doi:10.1038/nprot.2007.418
PMid:18079707

224. D. Gazit, G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman and I. Moutsatsos: Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1, 121-133 (1999)
doi:10.1002/(SICI)1521-2254(199903/04)1:2<121::AID-JGM26>3.0.CO;2-J

225. D. A. Lauffenburger and D. V. Schaffer: The matrix delivers. Nat Med 5, 733-734 (1999)
doi:10.1038/10451
PMid:10395312

226. I. M. Khan, S. J. Gilbert, S. K. Singhrao, V. C. Duance and C. W. Archer: Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater 316, 26-39 (2008)

227. C. H. Evans, S. C. Ghivizzani and P. D. Robbins: Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 16, 944-952 (2009)
doi:10.1038/gt.2009.73
PMid:19675584

228. A. Getgood, R. Brooks, L. Fortier and N.Rushton: Articular cartilage tissue engineering: today's research, tomorrow's practice?. J Bone Joint Surg Br 91, 565-576 (2009)
doi:10.1302/0301-620X.91B5.21832
PMid:19407287

229. A. H. Gomoll, H. Madry, G. Knutsen, N. van Dijk, R. Seil, M. Brittberg and E. Kon: The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18, 434-447 (2010)
doi:10.1007/s00167-010-1072-x
PMid:20130833    PMCid:2839476

230. J. P. Schroeppel, J. D. Crist, H. C. Anderson and J. Wang: Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol Histopathol 26, 377-394 (2011)
PMid:21210351

Key Words: Cartilage healing, Chondrocyte implantation, Microfracture, Stem cells, Progenitor cells, Mesenchymal stem cells, Review

Send correspondence to: Lucio Diaz-Flores, Universidad de La Laguna. Facultad de Medicina, Departamento de Anatomia, Anatomia Patologica e Histologia, Ofra-La Cuesta, s/n, La Laguna, 38071 Tenerife, Islas Canarias. Spain, Tel: 34 922 319317, Fax: 34 922 319279, E-mail:kayto54@gmail.com