[Frontiers in Bioscience, Landmark, 20, 377-388, January 1, 2015]

Protein tyrosine phosphatases in pathological process

Alicja Kuban-Jankowska 1 , Magdalena Gorska 1 , Narcyz Knap 1 , Francesco Cappello 2, 3 , Michal Wozniak 1

1Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland, 2Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy, 3Euro-Mediterranean Institute of Science and Technology, Palermo, Italy


1. Abstract
2. Introduction
3. Importance of the reversible protein phosphorylation
    3.1. Classification of PTPs
4. Tumorigenesis
    4.1. Oxidative stress related regulation of PTPs
5. Protein tyrosine phosphatases and pathogenic microorganisms
6. Implication of PTPs in other human diseases
7. PTPs as therapeutical targets
    7.1. Inhibitors of protein tyrosine phosphatases
8. Summary and perspective
9. Acknowledgments
10. References


Protein tyrosine phosphatases (PTPs) modulate the cellular level of tyrosine phosphorylation under normal and pathological conditions, and thus exert either stimulatory or inhibitory effect on signal transduction. Hence, PTPs are potential pharmacological targets for novel drugs being developed in order to treat numerous pathologies including cancer. For example, PTPs have been found to play a key role in pathogenesis of autoimmune disorders, allergic response, cardiovascular or neurodegenerative diseases, among others Alzheimer’s disease. Moreover, since many PTPs fine-tune subtle regulation of microbial biochemistry controlling the viability and virulence, they can be candidates for new therapies of infection diseases. In this review, authors summarize the current knowledge on PTPs implication in etiopathogenesis of most common human diseases focusing on PTPs as potential therapeutical targets.


1. EB Fauman, MA Saper: Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21(11), 413-417 (1996).
Doi: 10.1016/S0968-0004(96)10059-1

2. A Alonso, J Sasin, I Bottini, I Friedberg, A Osterman, A Godzik, T Hunter, J Dixon, T Mustelin: Protein tyrosine phosphatases in the human genome. Cell 177, 699-711 (2004).
Doi: 10.1016/j.cell.2004.05.018

3. WJAJ Hendriks, A Elson, S Harroch, AW Stoker: Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 275, 816-830 (2008).
Doi: 10.1111/j.1742-4658.2008.06249.x

4. L Li, JE Dixon: Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Immunol 12, 75-84 (2000).

5. T Hatzihristidis, L Shaq, L Pryszcz, AP Hutchins, T Gabaldon, ML Tremblay, D Miranda-Saavedra: PTP-central: A comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods 65, 156-164 (2014).
Doi: 10.1016/j.ymeth.2013.07.031

6. T Hunter: Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2), 140-146 (2009).
Doi: 10.1016/j.ceb.2009.01.028

7. AW Stoker: Protein tyrosine phosphatases and signalling. J Endocrinol 185, 19-33 (2005).
Doi: 10.1677/joe.1.06069

8. J den Hertog, A Groen, T van der Wijk: Redox regulation of protein-tyrosine phosphatases. Arch Biochem Bioph 434, 11-15 (2005).
Doi: 10.1016/j.abb.2004.05.024

9. BG Neel, NK Tonks: Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 9(2), 193-204 (1997).
Doi: 10.1016/S0955-0674(97)80063-4

10. M Soulsby, AM Bennett: Physiological signaling specificity by protein tyrosine phosphatases. Physiol 24, 281-289 (2009).
Doi: 10.1152/physiol.00017.2009

11. JP Rayapureddi, C Kattamuri, BD Steinmetz, BJ Frankfort, EJ Ostrin, G Mardon, RS Hedge: Eyes absent represents a class of protein tyrosine phosphatases. Nature 426, 295-298 (2003).
Doi: 10.1038/nature02093

12. JN Andersen, OH Mortensen, GH Peters, PG Drake, LF Iversen, OH Olsen, PG Jansen, HS Andersen, NK Tonks, NP Moller: Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21, 7117 7136 (2001).
(doi not found)

13. K Takakura, JS Beckman, LA MacMillan-Crow, JP Crow: Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45 and LAR by peroxynitrite. Arch Biochem Bioph 369, 197-207 (1999).
Doi: 10.1006/abbi.1999.1374

14. L Tabernero, AR Aricescu, EY Jones, E Szedlacsek: Protein tyrosine phosphatases: structure - function relationships. FEBS J 275, 867-882 (2008).
Doi: 10.1111/j.1742-4658.2008.06251.x

15. C Persson, T Sjoblom, A Groen, K Kappert, U Engstrom, U Hellman, CH Heldin, J den Hertog, A Ostman: Preferential oxidation of second phosphatase domain of receptor-like PTP-α revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci 101, 1886-1891 (2004).
Doi: 10.1073/pnas.0304403101

16. W Luo, RJ Slebos, S Hill, M Li, J Brabek, R Amanchy, R Chaerkady, A Pandey, AL Ham, SK Hanks: Global impact of oncogenic Src on a phosphotyrosine proteome. J Proteome Res 7(8), 3447-3460 (2008).
Doi: 10.1021/pr800187n

17. A Scott, Z Wang: Tumor suppressor function of protein tyrosine phosphatase receptor-T. Biosci Rep 31(5), 303-307 (2011).
Doi: 10.1042/BSR20100134

18. A Ostman, C Hellberg, FD Bohmer: Protein-tyrosine phosphatases and cancer. Nature Rev 6, 307-320 (2006).
Doi: 10.1038/nrc1837

19. L Lessard, M Stuible, ML Tremblay: The two faces of PTP1B in cancer. Biochim Biophys Acta 1804, 613-619 (2010).
Doi: 10.1016/j.bbapap.2009.09.018

20. WJAJ Hendriks, A Elson, S Harroch, R Pulido, A Stoker, J den Hertog: Protein tyrosine phosphatases in health and disease. FEBS J 280, 708-730 (2013).
Doi: 10.1111/febs.12000

21. AC Navis, M van den Eijnden, JTG Schepens, RH van Huijsduijnen, P Wesseling, WJAJ Hendriks: Protein tyrosine phosphatases in glioma biology. Acta Neropathol 119, 157-175 (2010).
Doi: 10.1007/s00401-009-0614-0

22. N Aceto, M Bentires-Alj: Targeting protein-tyrosine phosphatases in breast cancer. Oncotarget 3(5), 514-515 (2012).
(doi not found)

23. Z Wang, D Shen, DW Parsons, A Bardelli, J Sager, S Szabo, J Ptak, N Silliman, BA Peters, MS van der Heijden, G Parmigiani, H Yan, TL Wang, G Riggins, SM Powell, JK Willson, S Markowitz, KW Kinzler, B Vogelstein, VE Velsculescu: Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164-1166 (2004).
Doi: 10.1126/science.1096096

24. R Bataille, N Robillard, C Pellat-Deceunynck, M Amiot: A cellular model of myeloma cell growth and maturation based on an intraclonal CD45 hierarchy. Immunol Rev 194, 105-111 (2003).
Doi: 10.1034/j.1600-065X.2003.00039.x

25. R Dawes, S Petrova, Z Liu, D Wraith, PCL Beverley, EZ Tchilian: Combinations of CD45 isoforms are crucial for immune function and disease. J Immunol 176, 3417-3425 (2006).
(doi not found)

26. JP McKeigan, LO Murphy, J Blenis: Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7, 591-600 (2005).
Doi: 10.1038/ncb1258

27. LM Scott, HR Lawrence, SM Sebti, NJ Lawrence, J Wu: Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery. Curr Pharm Des 16, 1843-1862 (2010).
Doi: 10.2174/138161210791209027

28. GY Liou, P Storz: Reactive oxygen species in cancer. Free Radic Res 44, 479-496 (2010).
Doi: 10.3109/10715761003667554

29. R Karisch, M Fernandez, P Taylor, C Virtanen, JR St-Germain, LL Jin, IS Harris, J Mori, TW Mak, YA Senis, A Ostman, MF Moran, BG Neel: Global proteomic assessment of the classical protein-tyrosine phosphatome and “redoxome”. Cell 146, 826-840 (2011).
Doi: 10.1016/j.cell.2011.07.020

30. D Trachootham, J Alexandre, P Huang: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579-591 (2009).
Doi: 10.1038/nrd2803

31. L Raj, T Ide, AU Gurkar, M Foley, M Schenone, X Li, NJ Tolliday, TR Golub, SA Carr, AF Shamji, AM Stern, A Mandinova, SL Schreiber, SW Lee: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231-234 (2011).
Doi: 10.1038/nature10167

32. KK Griendling, GA Fitzgerald: Oxidative stress and cardiovascular injury. Basic mechanism and in vivo monitoring of ROS. Circulation 108, 1912-1916 (2003).
Doi: 10.1161/01.CIR.0000093660.86242.BB

33. T Finkel: Oxidant signals and oxidative stress. Curr Opin Cell Biol 15, 247–254 (2003).
Doi: 10.1016/S0955-0674(03)00002-4

34. SG Rhee, YS Bae, SR Lee, J Kwon: Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000(53), pe1 (2000).
(doi not found)

35. BJ Goldstein, M Kalyankar, X Wu: Redox paradox: Insulin action is facilitated by insulin stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54, 311-321 (2005).
Doi: 10.2337/diabetes.54.2.311

36. P Chiarugi, P Cirri: Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28, 509-514 (2003).
Doi: 10.1016/S0968-0004(03)00174-9

37. NK Tonks: Protein tyrosine phosphatases: from genes, to function, to disease. Mol Cell Biol 7, 833-846 (2006).
(doi not found)

38. A Salmeen, JN Andersen, MP Myers, TC Meng, JA Hinks, NK Tonks, D Barford: Redox regulation of protein tyrosine phosphatase PTP1B involves a sulfenylamide intermediate. Nature 423, 769-773 (2003).
Doi: 10.1038/nature01680

39. B Biteau, J Labarre, MB Toledano: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984 (2003).
Doi: 10.1038/nature02075

40. HA Woo, SW Kang, HK Kim, KS Yang, HZ Chae, SG Rhee: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. J Biol Chem 278, 47361- 47364 (2003).
Doi: 10.1074/jbc.C300428200

41. DP Jones: Radical - free biology of oxidative stress. Am J Physiol Cell Physiol 295, C849-C868 (2008).
Doi: 10.1152/ajpcell.00283.2008

42. AJ Cozzone, C Grangeasse, P Doublet, B Duclos: Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181, 171-181 (2004).
Doi: 10.1007/s00203-003-0640-6

43. AC Koksal, JD Nardozzi, G Cingolani: Dimeric quaternary structure of the prototypical dual specificity phosphatase VH1. J Biol Chem 284, 10129-10137 (2009).
Doi: 10.1074/jbc.M808362200

44. F Bohmer, S Szedlacsek, L Tabernero, A Ostman, J den Hertog: Protein tyrosine phosphatases structure-function relationships in regulation and pathogenesis. FEBS J 280(2), 413-431 (2012).
Doi: 10.1111/j.1742-4658.2012.08655.x

45. M Bahta, TR Burke: Yersinia pestis and approaches to targeting its outer protein H protein-tyrosine phosphatase (YopH). Curr Med Chem 19(33), 5726-34 (2012).
Doi: 10.2174/092986712803988866

46. F Deleuil, L Mogemark, MS Francis, H Wolf-Watz, M Fällman: Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol 5(1), 53-64 (2003).
Doi: 10.1046/j.1462-5822.2003.00236.x

47. JE Trosky, ADB Liverman, K Orth: Yersinia outer proteins: Yops. Cell Microbiol 10(3), 557-565 (2008).
Doi: 10.1111/j.1462-5822.2007.01109.x

48. M Hatakeyama: Oncogenic mechanisms of the Helicobacter pyroli CagA protein. Nat Rev Cancer 4, 688-694 (2004).
Doi: 10.1038/nrc1433

49. H Higashi, R Tsutsumi, S Muto, T Sugiyama, T Azuma, M Asaka, M Hatakeyama: SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pyroli CagA protein. Science 295, 683-686 (2002).
Doi: 10.1126/science.1067147

50. CV Ferreira, GZ Justo, ACS Souza, KCS Queiroz, WF Zambuzzi, H Aoyama, MP Peppelenbosch: Natural compounds as a source of protein tyrosine phosphatase inhibitors: Application to the rational design of small-molecule derivatives. Biochimie 88, 1859-1873 (2006).
Doi: 10.1016/j.biochi.2006.08.007

51. LD Klaman, O Boss, OD Peroni, JK Kim, JL Martino, JM Zabolotny, N Moghal, M Lubkin, YB Kim, AH Sharpe, A Stricker-Krongrad, GI Shulman, BG Neel, BB Kahn: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20, 5479-5489 (2000).
Doi: 10.1128/MCB.20.15.5479-5489.2000

52. A Gonzalez-Rodriguez, JA Más-Gutierrez, M Mirasierra, A Fernandez-Pérez, YJ Lee, HJ Ko, JK Kim, E Romanos, JM Carrascosa, M Ros, M Vallejo, CM Rondinone, AM Valverde: Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell 11(2), 284-96 (2012).
Doi: 10.1111/j.1474-9726.2011.00786.x

53. EZ Tchilian, DL Wallace, RS Wells, DR Flower, G Morgan, PCL Beverley: A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166, 1308- 1313 (2001).
(doi not found)

54. C Kung, JT Pingel, M Heikinheimo, T Klemola, K Varkila, LI Yoo, K Vuopala, M Poyhonen, M Uhari, M Rogers, SH Speck, T Chatila, ML Thomas: Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 6(3), 343-345 (2000).
Doi: 10.1038/73208

55. H Zheng, S Alter, C Qu: SHP-2 tyrosine phosphatase in human diseases. Int J Clin Exp Med 2, 17-25 (2009).
(doi not found)

56. T Mustelin, T Van, N Bottini: Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5, 43-57 (2005).
Doi: 10.1038/nri1530

57. ZY Zhang: Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol 5, 416-423 (2001).
Doi: 10.1016/S1367-5931(00)00223-4

58. L Bialy, H Waldmann: Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew Chem Int Ed 44, 3814-3839 (2005).
Doi: 10.1002/anie.200461517

59. J Tan, T Town, T Mori, YJ Wu, M Saxe, F Crawford, J Mullan: CD45 opposes betaamyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20, 7587-7594 (2000).
(doi not found)

60. KE Jenkins, AP Higson, PH Seeberger, MH Caruthers: Solid-phase synthesis and biochemical studies of O-boranophosphopeptides and O-dithiophosphopeptides. J Am Chem Soc 124(23), 6584-93 (2002).
Doi: 10.1021/ja0126576

61. AJ Barr, E Ugochukwu, WH Lee, ONF King, P Filippakopoulos, I Alfano, P Savitsky, NA Burgess-Brown, S Muller, S Knapp: Large-scale structural analysis of the human protein tyrosine phosphatome. Cell 136, 352-363 (2009).
Doi: 10.1016/j.cell.2008.11.038

62. Y He, LF Zeng, ZH Yu, R He, S Liu, ZY Zhang: Bicyclic benzofuran and indole-based salicylic acids as protein tyrosine phosphatase inhibitors. Bioorg Med Chem 20, 1940-1946 (2012).
Doi: 10.1016/j.bmc.2011.11.004

Key Words: Protein tyrosine phosphatases, Tumor supressors, Oncogenes, Virulence effectors, Immune disorders, Review

Send correspondence to: Alicja Kuban-Jankowska, Department of Medical Chemistry, Medical University of Gdansk, Debinki Street 1, 80210 Gdansk, Poland, Tel: 48-58-3491450, Fax: 48-58-3491456, E-mail: alicjakuban@gumed.edu.pl