[Frontiers in Bioscience, Landmark, 20, 431-439, January 1, 2015]

Past and current topics on ADP-ribosylation reactions

Maria Rosaria Faraone Mennella 1, 2

1Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy, 2National Institute of Biostructures and Biosciences, 00136 Rome, Italy

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. History and Development of ADP-ribosylation reactions: from the earliest studies to the recent research targets
    3.1. Mono-ADPribosylation reactions
    3.2. Poly-ADPribosylation reactions
4. Conclusions
5. Acknowledgments
6. References

1. ABSTRACT

The milestone of Adenosine Diphosphate-ribosylation studies was the paper by Paul Mandel’s group in 1960s, first describing a “sort” of polyadenylic acid synthesized upon addition of nicotinamide mononucleotide in rat liver nuclear extracts. Nicotinic Acid or Niacin is the precursor of Nicotinamide Adenin Dinucleotide. In 1960s this compound was known mainly as coenzyme of most redox processes in metabolism. The discovery of enzymes that covalently transfer Adenosine Diphosphate-ribose moiety of Nicotinamide Adenin Dinucleotide to acceptor proteins, thereby altering their function, or are able to synthesize cyclic Adenosine Diphosphate-ribose, has given rise to the era of one of the most studied and still surprising reversible post – translational modification reactions. Over 50 years, developing the research on Adenosine Diphosphate-ribosylation has provided the basis to interconnect several processes thought to be very distant each other, opening new perspectives in their regulation and in therapeutic intervention. Here a synthesis of the history and the main and recent goals reached studying Adenosine Diphosphate-ribose in all its features are provided by a series of reviews including the most advanced research.

6. REFERENCES

1. Chambon P, JD Weill, P Mandel: Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun, 11(1), 39-43 (1963)
DOI: 10.1016/0006-291X(63)90024-X

2. Miwa M, M Tanaka, T Matsushima, T Sugimura: Purification and properties of glycohydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem, 249, 3475–3482 (1974)

3. O’Farrell M: ADPribosylation reactions in plants. Biochimie, 77, 486-491 (1995)
DOI: 10.1016/0300-9084(96)88165-X

4. Moss J, M Vaughan: Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem, 252(7), 2455-2457 (1977)

5. Vaughan M, J Moss: Mono (ADP-ribosyl)transferases and their effects on cellular metabolism. Curr Top Cell Regul, 20, 205-46 (1981)
DOI: 10.1016/B978-0-12-152820-1.50010-9

6. Mandel P, H Okazaki, C Niedergang: Poly(adenosine diphosphate ribose). Prog. Nucleic Acid Res Mol Biol, 27, 1-5 (1982)
DOI: 10.1016/S0079-6603(08)60596-6

7. Ueda K, O Hayaishi: ADP-ribosylation. Annu Rev Biochem, 54, 73-100 (1985)
DOI: 10.1146/annurev.bi.54.070185.000445

8. Althaus F R, C Richter: ADP-Ribosylation of Proteins: Enzymology and Biological Significance. Molecular Biology, Biochemistry and Biophysics, vol 37, Springer, New York (1987)
DOI: 10.1007/978-3-642-83077-8

9. Alvarez-Gonzalez R, MK Jacobson: Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry, 26, 3218–3224 (1987)
DOI: 10.1021/bi00385a042

10. Zocchi E, L Franco, L Guida, U Benfatti, A Bargellesi, F Malavasi, H C Lee, A de Flora: A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun, 196,1459–1465 (1993) 13 Shall S, G de Murcia: Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res, 460, 1–15 (2000)
DOI: 10.1016/S0921-8777(00)00016-1

11. Oliver FJ, J Menissier-de Murcia, G de Murcia: Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet, 64, 1282–1288 (1999)
DOI: 10.1086/302389

12. Affar EB, PJ Duriez, RG Shah, E Winstall, M Germain, C Boucher, S Bourassa, JB Kirkland, GG Poirier: Immunological determination and size characterization of poly(ADP-ribose) synthesized in vitro and in vivo. Biochim Biophys Acta. 1428, 137–146 (1999)
DOI: 10.1016/S0304-4165(99)00054-9

13 Shall S, G de Murcia: Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res, 460, 1–15 (2000)

14. Kun E: Covalent modification of proteins by metabolites of NAD+. Methods Enzymol, 66, 168-176 (1980)
DOI: 10.1016/0076-6879(80)66457-X

15. Huppi K, K Bhatia, D Siwarski, D Klinman, B Cherney, M Smulson: Sequence and organization of the mouse poly(ADP-ribose) polymerase gene. Nucleic Acids Res, 17(9), 3387-3401 (1989)
DOI: 10.1093/nar/17.9.3387

16. D’Amours D, S Desnoyers, I D’Silva, GG Poirier: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J, 342 (Pt 2), 249-268 (1999)
DOI: 10.1042/0264-6021:3420249

17. Bertazzoni U, A I Scovassi, S Shall: Fourth European meeting on ADP-ribosylation of proteins, Pavia (Italy), 20-23 April 1989. Mutat Res, 219(5-6), 303-307 (1989)
DOI: 10.1016/0921-8734(89)90032-5

18. Ziegler M: New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem, 267(6), 1550-1564 (2000)
DOI: 10.1046/j.1432-1327.2000.01187.x

19. Han S, JA Tainer: The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol, 291(6-7), 523-529 (2002)
DOI: 10.1078/1438-4221-00162

20. Corda D, M Di Girolamo: Functional aspects of protein mono-ADP-ribosylation. EMBO J, 22,1953–1958 (2003)
DOI: 10.1093/emboj/cdg209

21. Schreiber V, F Dantzer, J C Ame, G de Murcia: Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol, 7,517–528 (2006)
DOI: 10.1038/nrm1963

22. Scovassi AI: Mitochondrial poly(ADP-ribosylation): from old data to new perspectives. FASEB J, 18(13), 1487-1488 (2004)
DOI: 10.1096/fj.04-1841rev

23. Seman M, S Adriouch, F Haag, F Koch-Nolte: Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem, 11(7), 857-872 (2004)
DOI: 10.2174/0929867043455611

24. Gagné JP, MJ Hendzel, A Droit, GG Poirier : The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr Opin Cell Biol, 18(2),145-151 (2006)
DOI: 10.1016/j.ceb.2006.02.013

25. Pollak N, C Dölle, M Ziegler: The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J, 402(2), 205-218 (2007)
DOI: 10.1042/BJ20061638

26. Hassa PO, SS Haenni, M Elser, MO Hottiger: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev, 70(3), 789-829 (2006)
DOI: 10.1128/MMBR.00040-05

27. Dölle C, RH Skoge, MR Vanlinden, M Ziegler: NAD biosynthesis in humans--enzymes, metabolites and therapeutic aspects. Curr Top Med Chem, 13(23), 2907-2917 (2013)

28. Di Girolamo M, G Fabrizio, ES Scarpa, S Di Paola: NAD+-dependent enzymes at the endoplasmic reticulum. Curr Top Med Chem, 13(23), 3001-3010 (2013)

29. Dölle C, JG Rack, M Ziegler: NAD+ and ADP-ribose metabolism in mitochondria. FEBS J, 280(15), 3530-3541 (2013)
DOI: 10.1111/febs.12304

30. Scarpa ES, F Gaia, M Di Girolamo: A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J, 280(15), 3551-3562 (2013)
DOI: 10.1111/febs.12290

31. Abd Elmageed ZY, AS Naura, Y Errami, M Zerfaoui: The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell Signal, 24(1), 1-8 (2012)
DOI: 10.1016/j.cellsig.2011.07.019

32. Kirkland JB: Poly ADP-ribose polymerase-1 and health. Exp Biol Med (Maywood), 235(5), 561-568 (2010)
DOI: 10.1258/ebm.2010.009280

33. Feijs KL, P Verheugd, B Lüscher: Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J, 280(15), 3519-3529 (2013)
DOI: 10.1111/febs.12315

34. Rosado MM, E Bennici, F Novelli, C Pioli: Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology, 139(4), 428-437 (2013)
DOI: 10.1111/imm.12099

35. Karlberg T, MF Langelier, JM Pascal, H Schüler: Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Mol Aspects Med, 34(6), 1088-1108 (2013)
DOI: 10.1016/j.mam.2013.02.002

36. Kraus WL, MO Hottiger: PARP-1 and gene regulation: progress and puzzles. Mol Aspects Med, 34(6), 1109-1123 (2013)
DOI: 10.1016/j.mam.2013.01.005

37. Hassler M, AG Ladurner: Towards a structural understanding of PARP1 activation and related signalling ADP-ribosyl-transferases. Curr Opin Struct Biol, 22(6), 721-729 (2012)
DOI: 10.1016/j.sbi.2012.08.005

38. Cantó C, AA Sauve, P Bai: Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med, 34(6):1168-1201 (2013)
DOI: 10.1016/j.mam.2013.01.004

39. Lee HC: Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization.J Biol Chem, 287(38), 31633-31640 (2012)
DOI: 10.1074/jbc.R112.349464

40. Domenighini M, R Rappuoli: Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol, 21, 667–674 (1996)
DOI: 10.1046/j.1365-2958.1996.321396.x

41. Otto H, PA Reche, F Bazan, K Dittmar, F Haag, F Koch-Nolte: In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics, 6, 139 (2005)
DOI: 10.1186/1471-2164-6-139

42. Citarelli M, S Teotia, RS Lamb: Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol, 10:308.
DOI: 10.1.186/1471-2148-10-308 (2010)

43. Aravind L, D Zhang, RF de Souza, S Anand, LM Iyer: The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System. Curr Top Microbiol Immunol. 2014
DOI: 10.1007/82_2014_414

44. Ferrero E M, N Lo Buono, A. L Horenstein, A Funaro, F Malavasi: The ADP-ribosyl cyclases - the current evolutionary state of the ARCs. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

45. Grimaldi G, D Corda, G Catara: From toxins to mammalian enzymes: the diverse facets of mono-ADP-ribosylation. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

46. Hottiger MO, PO Hassa, B Lüscher, H Schüler, F Koch-Nolte: Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci, 35(4), 208-219 (2010)
DOI: 10.1016/j.tibs.2009.12.003

47. Fabrizio G, ES Scarpa, M Di Girolamo: State of the art of protein mono-ADP-ribosylation: biological role and therapeutic potential. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

48. Faraone Mennella M R: A new facet of ADP-ribosylation reactions: SIRTs and PARPs Interplay. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

49. Cantó C, J Auwerx: Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol Rev, 64(1), 166-187 (2012)
DOI: 10.1124/pr.110.003905

50. Guarente L: Calorie restriction and sirtuins revisited. Cell Signal, 24(1), 1-8 (2012)

51. Lee HC, RM Graeff, TF Walseth: ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca+2 signaling. Adv Exp Med Biol, 419, 411-419 (1997)
DOI: 10.1007/978-1-4419-8632-0_53

52. Malavasi F, S Deaglio, A Funaro, E Ferrero, AL Horenstein, E Ortolan, T Vaisitti, S Aydin: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev, 88(3), 841-886 (2008)
DOI: 10.1152/physrev.00035.2007

53. Smith S: The world according to PARP. Trends Biochem Sci, 26(3), 174-179 (2001)
DOI: 10.1016/S0968-0004(00)01780-1

54. Mandel P: ADP-ribosylation: approach to molecular basis of aging. Adv Exp Med Biol, 296, 329-343 (1991)
DOI: 10.1007/978-1-4684-8047-4_30

55. Althaus FR: Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J Cell Sci, 102 (Pt 4), 663-70 (1992)

56. Shall S: The function of poly (ADP-ribosylation) in DNA breakage and rejoining. Mol Cell Biochem, 138(1-2)71-75 (1994)
DOI: 10.1007/BF00928445

57. Dantzer F, V Schreiber, C Niedergang, C Trucco, E Flatter, G De La Rubia, J Oliver, V Rolli, J Ménissier-de Murcia, G de Murcia: Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie, 81(1-2), 69-75 (1999)
DOI: 10.1016/S0300-9084(99)80040-6

58. Scovassi AI, GG Poirier: Poly(ADP-ribosylation) and apoptosis. Mol Cell Biochem, 199(1-2), 125-137 (1999)
DOI: 10.1023/A:1006962716377

59. Mangerich A, A Bürkle. Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxid Med Cell Longev, 321653 (2012)

60. Miwa M, M Masutani: PolyADP-ribosylation and cancer. Cancer Sci, 98(10), 1528-1535 (2007)
DOI: 10.1111/j.1349-7006.2007.00567.x

61. Andrabi S A, N S Kim, SW Yu, H Wang, D W Koh, M Sasaki, J A Klaus, T Otsuka, Z Zhang, R C Koehler, P D Hurn, G G Poirier, V L Dawson, T M Dawson: Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A, 103(48), 18308–18313 (2006)
DOI: 10.1073/pnas.0606526103

62. Golia B, H R Singh, G Timinszky: Poly-ADP-Ribosylation signaling during DNA damage repair. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

63. Aredia F, A I Scovassi: Involvement of PARPs in cell death. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

64. Bianchi A R, A De Maio: Synthesis and degradation of poly-ADP-ribose in plants. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

65. Rosenthal F, and MO Hottiger: Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. In: Front Biosc, Special Issue on “The evolution of ADP-ribosylating enzymes and the wide spectrum of their biological significance”, Ed: MR Faraone Mennella, in press (2014)

66. Ueda K, J Oka, S Naruniya, N Miyakawa, O Hayaishi: Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem. Biophys Res Commun, 46, 516–523 (1972)
DOI: 10.1016/S0006-291X(72)80169-4

67. Niere M, M Mashimo, L Agledal, C Dölle, A Kasamatsu, J Kato, J Moss, M Ziegler: ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem, 287(20), 16088-16102 (2012)
DOI: 10.1074/jbc.M112.349183

68. Davidovic L., Vodenicharov M., Affar E. B., Poirier G. G. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 2001;268:7–13.
DOI: 10.1006/excr.2001.5263

69. Wang Z, JP Gagné, G G Poirier, W Xul: Crystallographic and Biochemical Analysis of the Mouse Poly(ADP-Ribose) Glycohydrolase. PlosOne (2014)

70. Patel C N, D W. Koh, M K Jacobson, M A Oliveira: Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain. Biochem. J, 388, 493–500 (2005)
DOI: 10.1042/BJ20040942

71. Barkauskaite E, G Jankevicius, AG Ladurner, I Ahel, G Timinszky: The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J, 280(15), 3491-507 (2013)
DOI: 10.1111/febs.12358

72. Perina D, A Mikoč, J Ahel, H Cetković, R Zaja, I Ahel: Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst),
DOI: 10.1.016/j.dnarep.2014.0.5.0.03 (2014)

73. Daugherty MD, JM Young, JA Kerns, HS Malik: Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet,
DOI: 10.1.371/journal.pgen.1004403 (2014)

Key Words: ART, PARP, PARG, ARH3, ADP-ribosylation, Review

Send correspondence to: Maria Rosaria Faraone Mennella, Department of Biology, University “Federico II” of Naples, Via Cinthia - 80126 Naples, Italy, Tel: 39081679136, Fax:39081679233, E-mail: faraone@unina.it