[Frontiers in Bioscience, Landmark, 20, 1017-1028, June 1, 2015]

Critical role of miRNAs in pancreatic cancer

Bingyan Liu 1 , Xiaoping Zhang 2 , Aiwu Mao 1

1Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200050, PR China, 2Institute of Medical Intervention Engineering, Tongji University, North Zhongshan Road, Shanghai 200072, PR China


1. Abstract
2. Introduction
3. Epidemiology of pancreatic cancer
4. The characteristics of miRNAs
5. Aberrant Expression of miRNA in PC
6. Function of miRNAs in PC
    6.1. miRNAs modulate proliferation or apoptosis of PC cells
    6.2. miRNAs regulate migration and invasion of PC cells
      6.2.1. miRNAs act as inhibitors of PC cell migration and invasion
      6.2.2. miRNAs act as promoters of PC cell migration and invasion
    6.3. miRNAs affect PC cell sensitivity to radiotherapy or chemotherapy
7. miRNAs as diagnostic markers for pancreatic cancer
8. miRNAs as prognostic and predictive markers of pancreatic cancer
9. Conclusion
10. Acknowledgement
11. Reference


Pancreatic cancer (PC) is an aggressive malignancy with a high mortality rate and poor prognosis. Numerous investigations have shown that microRNA (miRNA) plays a vital role in PC. Thousands of miRNAs have been screened in PC and altered miRNAs, including circulating miRNAs, are associated with PC proliferation, apoptosis, metastasis, chemosensitivity, and radiosensitivity. Several studies have shown that miRNAs can act as potential diagnostic and prognostic markers. The present review focuses on recent advances regarding the roles of miRNAs in PC and their practical value.


1. A. T. Wild, K. Y. Fan and J. M. Herman: Management of pancreatic cancer. Curr Probl Cancer, 37(5), 259-61 (2013)
DOI: 10.1016/j.currproblcancer.2013.10.001

2. Y. Luo, Z. Qiu, L. Tian, G. Zhu, Y. Feng, M. Yi, X. Chen, L. Wang, C. Li and Q. Huang: Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma. Hum Pathol, 44(1), 69-76 (2012)
DOI: 10.1016/j.humpath.2012.04.014

3. S. Krug and P. Michl: New developments in pancreatic cancer treatment. Minerva Gastroenterol Dietol, 58(4), 427-43 (2012)
Doi not found.

4. J. Iglesias Garcia, J. Larino-Noia and J. E. Dominguez-Munoz: The actual management of early pancreatic cancer. Minerva Gastroenterol Dietol, 58(4), 321-30 (2012)
Doi not found.

5. S. Kaur, M. J. Baine, M. Jain, A. R. Sasson and S. K. Batra: Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med, 6(5), 597-612 (2012)
DOI: 10.2217/bmm.12.69

6. C. C. Chrystoja, E. P. Diamandis, R. Brand, F. Ruckert, R. Haun and R. Molina: Pancreatic cancer. Clin Chem, 59(1), 41-6 (2012)
DOI: 10.1373/clinchem.2012.196642

7. R. J. Slebos, J. A. Hoppin, P. E. Tolbert, E. A. Holly, J. W. Brock, R. H. Zhang, P. M. Bracci, J. Foley, P. Stockton, L. M. McGregor, G. P. Flake and J. A. Taylor: K-ras and p53 in pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study. Cancer Epidemiol Biomarkers Prev, 9(11), 1223-32 (2000)
Doi not found.

8. C. Salek, P. Minarikova, L. Benesova, V. Nosek, R. Strnad, M. Zavoral and M. Minarik: Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res, 29(5), 1803-10 (2009)
Doi not found.

9. H. E. Mulcahy, J. Lyautey, C. Lederrey, X. qi Chen, P. Anker, E. M. Alstead, A. Ballinger, M. J. Farthing and M. Stroun: A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res, 4(2), 271-5 (1998)
Doi not found.

10. N. S. Pellegata, F. Sessa, B. Renault, M. Bonato, B. E. Leone, E. Solcia and G. N. Ranzani: K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res, 54(6), 1556-60 (1994)
Doi not found.

11. C. Sun, T. Yamato, T. Furukawa, Y. Ohnishi, H. Kijima and A. Horii: Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep, 8(1), 89-92 (2001)
Doi not found.

12. A. Mohamadkhani, E. Naderi, M. Sharafkhah, H. R. Fazli, M. Moradzadeh and A. Pourshams: Detection of TP53 R249 Mutation in Iranian Patients with Pancreatic Cancer. J Oncol, (2013)
DOI: 10.1155/2013/738915

13. M. Kanda, Y. Sadakari, M. Borges, M. Topazian, J. Farrell, S. Syngal, J. Lee, I. Kamel, A. M. Lennon, S. Knight, S. Fujiwara, R. H. Hruban, M. I. Canto and M. Goggins: Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol, 11(6), 719-30 e5 (2012)
Doi not found.

14. A. Blackford, O. K. Serrano, C. L. Wolfgang, G. Parmigiani, S. Jones, X. Zhang, D. W. Parsons, J. C. Lin, R. J. Leary, J. R. Eshleman, M. Goggins, E. M. Jaffee, C. A. Iacobuzio-Donahue, A. Maitra, J. L. Cameron, K. Olino, R. Schulick, J. Winter, J. M. Herman, D. Laheru, A. P. Klein, B. Vogelstein, K. W. Kinzler, V. E. Velculescu and R. H. Hruban: SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res, 15(14), 4674-9 (2009)
DOI: 10.1158/1078-0432.CCR-09-0227

15. B. Zhu, J. Tian, R. Zhong, Y. Tian, W. Chen, J. Qian, L. Zou, M. Xiao, N. Shen, H. Yang, J. Lou, Q. Qiu, J. Ke, X. Lu, W. Song, H. Li, L. Liu, L. Wang and X. Miao: Genetic variants in the SWI/SNF complex and smoking collaborate to modify the risk of pancreatic cancer in a Chinese population. Mol Carcinog (2014)
DOI: 10.1002/mc.22140

16. M. Numata, S. Morinaga, T. Watanabe, H. Tamagawa, N. Yamamoto, M. Shiozawa, Y. Nakamura, Y. Kameda, S. Okawa, Y. Rino, M. Akaike, M. Masuda and Y. Miyagi: The clinical significance of SWI/SNF complex in pancreatic cancer. Int J Oncol, 42(2), 403-10 (2012)
Doi not found.

17. A. Andren-Sandberg: Pancreatic cancer: chemotherapy and radiotherapy. N Am J Med Sci, 3(1), 1-12 (2011)
DOI: 10.4297/najms.2011.31

18. J. Furuse: [Frontier of chemotherapy of pancreatic cancer]. Nihon Naika Gakkai Zasshi, 99(4), 842-8 (2010)
DOI: 10.2169/naika.99.842

19. T. Sun, X. Kong, Y. Du and Z. Li: Aberrant MicroRNAs in Pancreatic Cancer: Researches and Clinical Implications. Gastroenterol Res Pract, (2014)
Doi not found.

20. M. Humeau, J. Torrisani and P. Cordelier: miRNA in clinical practice: pancreatic cancer. Clin Biochem, 46(10-11), 933-6 (2013)
DOI: 10.1016/j.clinbiochem.2013.03.019

21. L. Zhang, M. S. Jamaluddin, S. M. Weakley, Q. Yao and C. Chen: Roles and mechanisms of microRNAs in pancreatic cancer. World J Surg, 35(8), 1725-31 (2011)
DOI: 10.1007/s00268-010-0952-z

22. S. Mohammed, G. Van Buren Ii and W. E. Fisher: Pancreatic cancer: Advances in treatment. World J Gastroenterol, 20(28), 9354-9360 (2014)
Doi not found.

23. M. Vulfovich and C. Rocha-Lima: Novel advances in pancreatic cancer treatment. Expert Rev Anticancer Ther, 8(6), 993-1002 (2008)
DOI: 10.1586/14737140.8.6.993

24. T. Hackert and M. W. Buchler: Pancreatic cancer: advances in treatment, results and limitations. Dig Dis, 31(1), 51-6 (2013)
DOI: 10.1159/000347178

25. R. A. Fryer, C. Galustian and A. G. Dalgleish: Recent advances and developments in treatment strategies against pancreatic cancer. Curr Clin Pharmacol, 4(2), 102-12 (2009)
DOI: 10.2174/157488409788185007

26. Y. T. Kim: [Chemotherapy for pancreatic cancer]. Korean J Gastroenterol, 51(2), 111-8 (2008)
Doi not found.

27. R. A. Wolff: Chemotherapy for pancreatic cancer: from metastatic disease to adjuvant therapy. Cancer J, 13(3), 175-84 (2007)
DOI: 10.1097/PPO.0b013e318074e6c3

28. V. Ambros: The functions of animal microRNAs. Nature, 431(7006), 350-5 (2004)
DOI: 10.1038/nature02871

29. Y. Huang, X. J. Shen, Q. Zou, S. P. Wang, S. M. Tang and G. Z. Zhang: Biological functions of microRNAs: a review. J Physiol Biochem, 67(1), 129-39 (2011)
DOI: 10.1007/s13105-010-0050-6

30. T. Kunej, I. Godnic, J. Ferdin, S. Horvat, P. Dovc and G. A. Calin: Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res, 717(1-2), 77-84 (2011)
DOI: 10.1016/j.mrfmmm.2011.03.008

31. N. Tetreault and V. De Guire: miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem, 46(10-11), 842-5 (2013)
DOI: 10.1016/j.clinbiochem.2013.02.009

32. M. Ul Hussain: Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res, 349(2), 405-13 (2012)
DOI: 10.1007/s00441-012-1438-0

33. G. Russo and A. Giordano: miRNAs: from biogenesis to networks. Methods Mol Biol, 563, 303-52 (2009)
DOI: 10.1007/978-1-60761-175-2_17

34. K. Sun and E. C. Lai: Adult-specific functions of animal microRNAs. Nat Rev Genet, 14(8), 535-48 (2013)
DOI: 10.1038/nrg3471

35. Y. Du, M. Liu, J. Gao and Z. Li: Aberrant microRNAs expression patterns in pancreatic cancer and their clinical translation. Cancer Biother Radiopharm, 28(5), 361-9 (2012)
DOI: 10.1089/cbr.2012.1389

36. M. N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P. E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman and M. Stoffel: A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226-30 (2004)
DOI: 10.1038/nature03076

37. J. Jiang, E. J. Lee, Y. Gusev and T. D. Schmittgen: Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 33(17), 5394-403 (2005)
DOI: 10.1093/nar/gki863

38. E. J. Lee, Y. Gusev, J. Jiang, G. J. Nuovo, M. R. Lerner, W. L. Frankel, D. L. Morgan, R. G. Postier, D. J. Brackett and T. D. Schmittgen: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer, 120(5), 1046-54 (2007)
DOI: 10.1002/ijc.22394

39. C. Roldo, E. Missiaglia, J. P. Hagan, M. Falconi, P. Capelli, S. Bersani, G. A. Calin, S. Volinia, C. G. Liu, A. Scarpa and C. M. Croce: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol, 24(29), 4677-84 (2006)
DOI: 10.1200/JCO.2005.05.5194

40. M. Bloomston, W. L. Frankel, F. Petrocca, S. Volinia, H. Alder, J. P. Hagan, C. G. Liu, D. Bhatt, C. Taccioli and C. M. Croce: MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA, 297(17), 1901-8 (2007)
DOI: 10.1001/jama.297.17.1901

41. A. E. Szafranska, T. S. Davison, J. John, T. Cannon, B. Sipos, A. Maghnouj, E. Labourier and S. A. Hahn: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene, 26(30), 4442-52 (2007)
DOI: 10.1038/sj.onc.1210228

42. T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai and M. Tanaka: MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther, 8(5), 1067-74 (2009)
DOI: 10.1158/1535-7163.MCT-08-0592

43. M. Dillhoff, J. Liu, W. Frankel, C. Croce and M. Bloomston: MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg, 12(12), 2171-6 (2008)
DOI: 10.1007/s11605-008-0584-x

44. P. Radhakrishnan, A. M. Mohr, P. M. Grandgenett, M. M. Steele, S. K. Batra and M. A. Hollingsworth: MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One, 8(10), e73356 (2013)
DOI: 10.1371/journal.pone.0073356

45. X. Kong, Y. Du, G. Wang, J. Gao, Y. Gong, L. Li, Z. Zhang, J. Zhu, Q. Jing, Y. Qin and Z. Li: Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig Dis Sci, 56(2), 602-9 (2010)
DOI: 10.1007/s10620-010-1285-3

46. J. Wang, J. Chen, P. Chang, A. LeBlanc, D. Li, J. L. Abbruzzesse, M. L. Frazier, A. M. Killary and S. Sen: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila), 2(9), 807-13 (2009)
DOI: 10.1158/1940-6207.CAPR-09-0094

47. C. M. Croce: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10(10), 704-14 (2009)
DOI: 10.1038/nrg2634

48. F. Sicard, M. Gayral, H. Lulka, L. Buscail and P. Cordelier: Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther, 21(5), 986-94 (2013)
DOI: 10.1038/mt.2013.35

49. J. K. Park, E. J. Lee, C. Esau and T. D. Schmittgen: Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas, 38(7), e190-9 (2009)
DOI: 10.1097/MPA.0b013e3181ba82e1

50. S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S. L. Kollepara, S. Sethi, P. A. Philip and Y. Li: Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am J Cancer Res, 3(5), 465-77 (2013)
Doi not found.

51. T. Kawaguchi, S. Komatsu, D. Ichikawa, R. Morimura, M. Tsujiura, H. Konishi, H. Takeshita, H. Nagata, T. Arita, S. Hirajima, A. Shiozaki, H. Ikoma, K. Okamoto, T. Ochiai, H. Taniguchi and E. Otsuji: Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer, 108(2), 361-9 (2012)
DOI: 10.1038/bjc.2012.546

52. T. C. Chang, E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra and J. T. Mendell: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5), 745-52 (2007)
DOI: 10.1016/j.molcel.2007.05.010

53. Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J. T. Desano, G. T. Bommer, D. Fan, E. R. Fearon, T. S. Lawrence and L. Xu: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One, 4(8), e6816 (2009)
DOI: 10.1371/journal.pone.0006816

54. S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu and J. Chen: miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res, 70(14), 6015-25 (2010)
DOI: 10.1158/0008-5472.CAN-09-4531

55. J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang and Z. Xu: HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget, 5(14), 5832-44 (2014)
Doi not found.

56. Y. Li, T. G. Vandenboom, 2nd, Z. Wang, D. Kong, S. Ali, P. A. Philip and F. H. Sarkar: miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res, 70(4), 1486-95 (2010)
DOI: 10.1158/0008-5472.CAN-09-2792

57. F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang and Y. Yu: Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J Huazhong Univ Sci Technolog Med Sci, 31(4), 509-14 (2011)
DOI: 10.1007/s11596-011-0481-5

58. H. Yan, J. Wu, W. Liu, Y. Zuo, S. Chen, S. Zhang, M. Zeng and W. Huang: MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther, 21(12), 1723-34 (2010)
DOI: 10.1089/hum.2010.061

59. F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu and Y. Miao: hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer, 103(4), 567-74 (2010)
DOI: 10.1038/sj.bjc.6605724

60. K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume and M. Tanaka: MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol, 19(7), 2394-402 (2012)
DOI: 10.1245/s10434-012-2252-3

61. S. T. Mees, W. A. Mardin, S. Sielker, E. Willscher, N. Senninger, C. Schleicher, M. Colombo-Benkmann and J. Haier: Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol, 16(8), 2339-50 (2009)
DOI: 10.1245/s10434-009-0531-4

62. T. Unek, I. T. Unek, A. A. Agalar, O. Sagol, H. Ellidokuz, O. Ertener, I. Oztop, S. Karademir, U. Yilmaz and I. Astarcioglu: CD40 expression in pancreatic cancer. Hepatogastroenterology, 60(128), 2085-93 (2014)
Doi not found.

63. S. B. Hassan, J. F. Sorensen, B. N. Olsen and A. E. Pedersen: Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol, 36(2), 96-104 (2014)
DOI: 10.3109/08923973.2014.890626

64. T. T. Zhang, Y. Sun, C. W. Jia, S. N. Yu, Z. H. Lu and J. Chen: [Target prediction and verification of miR-27a in pancreatic cancer]. Zhonghua Bing Li Xue Za Zhi, 42(6), 392-6 (2013)
Doi not found.

65. Y. Ma, S. Yu, W. Zhao, Z. Lu and J. Chen: miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett, 298(2), 150-8 (2010)
DOI: 10.1016/j.canlet.2010.06.012

66. H. Wu, H. Li and J. Guo: Spry2-mediated inhibition of the Ras/ERK pathway through interaction with Src kinase following cerebral ischemia. Brain Inj, 22(3), 275-81 (2008)
DOI: 10.1080/02699050801911295

67. B. Cai, Y. An, N. Lv, J. Chen, M. Tu, J. Sun, P. Wu, J. Wei, K. Jiang and Y. Miao: miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2. Oncol Rep, 29(5), 1769-76 (2013)
Doi not found.

68. J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. M. Rahman, L. Miele, F. H. Sarkar and Z. Wang: Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr Drug Targets, 13(14), 1750-6 (2012)
DOI: 10.2174/138945012804545597

69. D. Nalls, S. N. Tang, M. Rodova, R. K. Srivastava and S. Shankar: Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One, 6(8), e24099 (2011)
DOI: 10.1371/journal.pone.0024099

70. E. Giovannetti, N. Funel, G. J. Peters, M. Del Chiaro, L. A. Erozenci, E. Vasile, L. G. Leon, L. E. Pollina, A. Groen, A. Falcone, R. Danesi, D. Campani, H. M. Verheul and U. Boggi: MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res, 70(11), 4528-38 (2010)
DOI: 10.1158/0008-5472.CAN-09-4467

71. J. H. Hwang, J. Voortman, E. Giovannetti, S. M. Steinberg, L. G. Leon, Y. T. Kim, N. Funel, J. K. Park, M. A. Kim, G. H. Kang, S. W. Kim, M. Del Chiaro, G. J. Peters and G. Giaccone: Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One, 5(5), e10630 (2010)
DOI: 10.1371/journal.pone.0010630

72. S. Hamada, A. Masamune, S. Miura, K. Satoh and T. Shimosegawa: MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal, 26(2), 179-85 (2013)
DOI: 10.1016/j.cellsig.2013.11.003

73. S. Ali, A. Ahmad, S. Banerjee, S. Padhye, K. Dominiak, J. M. Schaffert, Z. Wang, P. A. Philip and F. H. Sarkar: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res, 70(9), 3606-17 (2010)
DOI: 10.1158/0008-5472.CAN-09-4598

74. A. E. Szafranska, M. Doleshal, H. S. Edmunds, S. Gordon, J. Luttges, J. B. Munding, R. J. Barth, Jr., E. J. Gutmann, A. A. Suriawinata, J. Marc Pipas, A. Tannapfel, M. Korc, S. A. Hahn, E. Labourier and G. J. Tsongalis: Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem, 54(10), 1716-24 (2008)
DOI: 10.1373/clinchem.2008.109603

75. W. Y. Chen, W. J. Liu, Y. P. Zhao, L. Zhou, T. P. Zhang, G. Chen and H. Shu: Induction, modulation and potential targets of miR-210 in pancreatic cancer cells. Hepatobiliary Pancreat Dis Int, 11(3), 319-24 (2012)
DOI: 10.1016/S1499-3872(12)60168-4

76. A. S. Ho, X. Huang, H. Cao, C. Christman-Skieller, K. Bennewith, Q. T. Le and A. C. Koong: Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Transl Oncol, 3(2), 109-13 (2010)
DOI: 10.1593/tlo.09256

77. A. Li, J. Yu, H. Kim, C. L. Wolfgang, M. I. Canto, R. H. Hruban and M. Goggins: Serum miR-1290 as a marker of pancreatic cancer--response. Clin Cancer Res, 19(18), 5252-3 (2013)
DOI: 10.1158/1078-0432.CCR-13-1899

78. A. Li, J. Yu, H. Kim, C. L. Wolfgang, M. I. Canto, R. H. Hruban and M. Goggins: MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res, 19(13), 3600-10 (2013)
DOI: 10.1158/1078-0432.CCR-12-3092

79. M. Goggins: Identifying molecular markers for the early detection of pancreatic neoplasia. Semin Oncol, 34(4), 303-10 (2007)
DOI: 10.1053/j.seminoncol.2007.05.003

80. F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere and I. Van Seuningen: miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene, 0, 1-9 (2014)
DOI: 10.1038/onc.2014.11

81. J. Yuan, L. Chen, X. Chen, W. Sun and X. Zhou: Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma. J Int Med Res, 40(6), 2090-7 (2013)
DOI: 10.1177/030006051204000606

82. N. B. Jamieson, D. C. Morran, J. P. Morton, A. Ali, E. J. Dickson, C. R. Carter, O. J. Sansom, T. R. Evans, C. J. McKay and K. A. Oien: MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res, 18(2), 534-45 (2011)
DOI: 10.1158/1078-0432.CCR-11-0679

83. N. A. Schultz, K. K. Andersen, A. Roslind, H. Willenbrock, M. Wojdemann and J. S. Johansen: Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer--five microRNAs in a prognostic index. World J Surg, 36(11), 2699-707 (2012)
DOI: 10.1007/s00268-012-1705-y

Abbreviations: 3′UTR, 3′untranslated region; BAX, BCL2-associated X protein; BCL, B-cell lymphoma; CD, cluster of differentiation; KRAS, kirsten rat sarcoma viral oncogene; miRNA, microRNA; PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; pre-miRNA, precursor miRNA; pri-miRNAs, primary miRNAs; PTEN, phosphatase and tensin homologue 2; PUMA, p53 upregulated modulator of apoptosis; RISC, RNA-induced silencing complex; SHC1, homology 2 domain containing 1; Spry, sprouty homolog; TPM1, tropomyosin 1; TIMP3, tissue inhibitor of metalloproteinase 3

Key Words: Pancreatic Cancer; miRNA, Clinical Application, Review

Send correspondence to: Aiwu Mao, Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine786 Yuyuan Road, Shanghai 200050, P. R. China, Tel: 86-1370114247, Fax: 86-021-62524259, E-mail: maoaiwu@yeah.net