[Frontiers in Bioscience, Scholar, 7, 46-57, June 1, 2015]

Epigenetic crosstalk: a molecular language in human metabolic disorders

Celia P. Martinez-Jimenez 1 , Juan Sandoval 2

1Department of Biochemistry and Molecular Biology. University of Valencia. C/ Doctor Moliner 50, 46100-Burjassot, Valencia, Spain, 2Epigenetics and Cancer Biology, Institut d’Investigacio Biomedica de Bellvitge IDIBELL, Av. Gran Via n 199. 08907 - L’Hospitalet de Llobregat, Barcelona, Spain


1. Abstract
2. Introduction
3. The epigenetic language
4. Metabolic sensors and transcriptional coregulators
5. Epigenetic state and human metabolic diseases
6. Non-alcoholic fatty liver disease.
7. Perspective of somatic mosaicism
8. Acknowledgement
9. References


Technological breakthroughs are emphasizing the impact of epigenetic mechanisms in human health highlighting the importance of a fine-tune orchestration of DNA methylation, micro RNAs, histone modifications, and chromatin structure. Transcriptional regulators sense the concentration of intermediary metabolites associated to a wide variety of biological processes including the long-term imprinting and heritable DNA methylation. Recent epigenetic mechanisms associated with cholesterol and lipid homeostasis have a critical impact in the susceptibility, development and progression of complex diseases such as type 2 diabetes mellitus, non-alcoholic fatty liver, obesity and metabolic syndrome. The heritability of epigenetic states emerge as an additional level of complexity where the extension of somatic as well as inherited epigenetic modifications may require a thoughtful reconsideration in many human diseases related with metabolic disorders.


1. S. L. Berger, T. Kouzarides, R. Shiekhattar and A. Shilatifard: An operational definition of epigenetics. Genes Dev, 23(7), 781-3 (2009)
DOI: 10.1101/gad.1787609

2. A. Bird: Perceptions of epigenetics. Nature, 447(7143), 396-8 (2007)
DOI: 10.1038/nature05913

3. A. P. Feinberg: Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433-40 (2007)
DOI: 10.1038/nature05919

4. V. K. Cortessis, D. C. Thomas, A. J. Levine, C. V. Breton, T. M. Mack, K. D. Siegmund, R. W. Haile and P. W. Laird: Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet, 131(10), 1565-89 (2012)
DOI: 10.1007/s00439-012-1189-8

5. S. Katada, A. Imhof and P. Sassone-Corsi: Connecting threads: epigenetics and metabolism. Cell, 148(1-2), 24-8 (2012)
DOI: 10.1016/j.cell.2012.01.001

6. J. Sandoval and M. Esteller: Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 22(1), 50-5 (2012)
DOI: 10.1016/j.gde.2012.02.008

7. P. A. Jones and S. B. Baylin: The epigenomics of cancer. Cell, 128(4), 683-92 (2007)
DOI: 10.1016/j.cell.2007.01.029

8. R. A. Irizarry, C. Ladd-Acosta, B. Wen, Z. Wu, C. Montano, P. Onyango, H. Cui, K. Gabo, M. Rongione, M. Webster, H. Ji, J. B. Potash, S. Sabunciyan and A. P. Feinberg: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet, 41(2), 178-86 (2009)
DOI: 10.1038/ng.298

9. J. Sandoval, L. Peiro-Chova, F. V. Pallardo and J. L. Garcia-Gimenez: Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities.Expert Rev Mol Diagn, 13(5), 457-71 (2013)
DOI: 10.1586/erm.13.37

10. L. He and G. J. Hannon: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5(7), 522-31 (2004)
DOI: 10.1038/nrg1379

11. H. W. Hwang and J. T. Mendell: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 94(6), 776-80 (2006)
DOI: 10.1038/sj.bjc.6603023

12. M. Esteller: Non-coding RNAs in human disease. Nat Rev Genet, 12(12), 861-74 (2011)
DOI: 10.1038/nrg3074

13. A. Kozomara and S. Griffiths-Jones: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 42(Database issue), D68-73 (2014)
DOI: 10.1093/nar/gkt1181

14. R. S. Pillai, S. N. Bhattacharyya, C. G. Artus, T. Zoller, N. Cougot, E. Basyuk, E. Bertrand and W. Filipowicz: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 309(5740), 1573-6 (2005)
DOI: 10.1126/science.1115079

15. B. D. Strahl and C. D. Allis: The language of covalent histone modifications. Nature, 403(6765), 41-5 (2000)
DOI: 10.1038/47412

16. E. Smith and A. Shilatifard: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell, 40(5), 689-701 (2010)
DOI: 10.1016/j.molcel.2010.11.031

17. M. Tan, H. Luo, S. Lee, F. Jin, J. S. Yang, E. Montellier, T. Buchou, Z. Cheng, S. Rousseaux, N. Rajagopal, Z. Lu, Z. Ye, Q. Zhu, J. Wysocka, Y. Ye, S. Khochbin, B. Ren and Y. Zhao: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 146(6), 1016-28 (2011)
DOI: 10.1016/j.cell.2011.08.008

18. J. S. Lee, E. Smith and A. Shilatifard: The language of histone crosstalk. Cell, 142(5), 682-5 (2010)
DOI: 10.1016/j.cell.2010.08.011

19. S. A. Bert, M. D. Robinson, D. Strbenac, A. L. Statham, J. Z. Song, T. Hulf, R. L. Sutherland, M. W. Coolen, C. Stirzaker and S. J. Clark: Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell, 23(1), 9-22 (2013)
DOI: 10.1016/j.ccr.2012.11.006

20. P. Lopez-Serra and M. Esteller: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 31(13), 1609-22 (2012)
DOI: 10.1038/onc.2011.354

21. C. Kutter, S. Watt, K. Stefflova, M. D. Wilson, A. Goncalves, C. P. Ponting, D. T. Odom and A. C. Marques: Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet, 8(7), e1002841 (2012)
DOI: 10.1371/journal.pgen.1002841

22. C. P. Martinez-Jimenez, I. Kyrmizi, P. Cardot, F. J. Gonzalez and I. Talianidis: Hepatocyte nuclear factor 4alpha coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol Cell Biol, 30(3), 565-77 (2010)
DOI: 10.1128/MCB.00927-09

23. W. G. Kaelin, Jr. and S. L. McKnight: Influence of metabolism on epigenetics and disease. Cell, 153(1), 56-69 (2013)
DOI: 10.1016/j.cell.2013.03.004

24. C. Lu and C. B. Thompson: Metabolic regulation of epigenetics. Cell Metab, 16(1), 9-17 (2012)
DOI: 10.1016/j.cmet.2012.06.001

25. K. E. Wellen and C. B. Thompson: A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol, 13(4), 270-6 (2012)

26. L. Mouchiroud, L. J. Eichner, R. J. Shaw and J. Auwerx: Transcriptional Coregulators: Fine-Tuning Metabolism. Cell Metab, 20(1), 26-40 (2014)
DOI: 10.1016/j.cmet.2014.03.027

27. P. Gut and E. Verdin: The nexus of chromatin regulation and intermediary metabolism. Nature, 502(7472), 489-98 (2013)
DOI: 10.1038/nature12752

28. K. Kaasik, S. Kivimae, J. J. Allen, R. J. Chalkley, Y. Huang, K. Baer, H. Kissel, A. L. Burlingame, K. M. Shokat, L. J. Ptacek and Y. H. Fu: Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab, 17(2), 291-302 (2013)
DOI: 10.1016/j.cmet.2012.12.017

29. M. D. Li, H. B. Ruan, M. E. Hughes, J. S. Lee, J. P. Singh, S. P. Jones, M. N. Nitabach and X. Yang: O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab, 17(2), 303-10 (2013)
DOI: 10.1016/j.cmet.2012.12.015

30. L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger, E. M. Driggers, V. R. Fantin, H. G. Jang, S. Jin, M. C. Keenan, K. M. Marks, R. M. Prins, P. S. Ward, K. E. Yen, L. M. Liau, J. D. Rabinowitz, L. C. Cantley, C. B. Thompson, M. G. Vander Heiden and S. M. Su: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739-44 (2009)
DOI: 10.1038/nature08617

31. P. S. Ward, J. Patel, D. R. Wise, O. Abdel-Wahab, B. D. Bennett, H. A. Coller, J. R. Cross, V. R. Fantin, C. V. Hedvat, A. E. Perl, J. D. Rabinowitz, M. Carroll, S. M. Su, K. A. Sharp, R. L. Levine and C. B. Thompson: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 17(3), 225-34 (2010)
DOI: 10.1016/j.ccr.2010.01.020

32. F. Damiola, N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela and U. Schibler: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 14(23), 2950-61 (2000)
DOI: 10.1101/gad.183500

33. E. S. Schernhammer, F. Laden, F. E. Speizer, W. C. Willett, D. J. Hunter, I. Kawachi and G. A. Colditz: Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst, 93(20), 1563-8 (2001)
DOI: 10.1093/jnci/93.20.1563

34. J. Hansen: Increased breast cancer risk among women who work predominantly at night. Epidemiology, 12(1), 74-7 (2001)
DOI: 10.1097/00001648-200101000-00013

35. G. Asher and U. Schibler: Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab, 13(2), 125-37 (2011)
DOI: 10.1016/j.cmet.2011.01.006

36. S. Sahar and P. Sassone-Corsi: Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab, 23(1), 1-8 (2012)
DOI: 10.1016/j.tem.2011.10.005

37. F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee-Olson, A. Easton, D. R. Jensen, R. H. Eckel, J. S. Takahashi and J. Bass: Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 308(5724), 1043-5 (2005)
DOI: 10.1126/science.1108750

38. M. K. Bunger, L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B. Hogenesch, M. C. Simon, J. S. Takahashi and C. A. Bradfield: Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 1009-17 (2000)
DOI: 10.1016/S0092-8674(00)00205-1

39. R. D. Rudic, P. McNamara, A. M. Curtis, R. C. Boston, S. Panda, J. B. Hogenesch and G. A. Fitzgerald: BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol, 2(11), e377 (2004)
DOI: 10.1371/journal.pbio.0020377

40. J. Bass and J. S. Takahashi: Circadian integration of metabolism and energetics. Science, 330(6009), 1349-54 (2010)
DOI: 10.1126/science.1195027

41. K. L. Eckel-Mahan, V. R. Patel, S. de Mateo, R. Orozco-Solis, N. J. Ceglia, S. Sahar, S. A. Dilag-Penilla, K. A. Dyar, P. Baldi and P. Sassone-Corsi: Reprogramming of the circadian clock by nutritional challenge. Cell, 155(7), 1464-78 (2013)
DOI: 10.1016/j.cell.2013.11.034

42. G. Asher, D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F. W. Alt and U. Schibler: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134(2), 317-28 (2008)
DOI: 10.1016/j.cell.2008.06.050

43. Y. Nakahata, M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L. P. Guarente and P. Sassone-Corsi: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 134(2), 329-40 (2008)
DOI: 10.1016/j.cell.2008.07.002

44. K. A. Lamia, U. M. Sachdeva, L. DiTacchio, E. C. Williams, J. G. Alvarez, D. F. Egan, D. S. Vasquez, H. Juguilon, S. Panda, R. J. Shaw, C. B. Thompson and R. M. Evans: AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 326(5951), 437-40 (2009)
DOI: 10.1126/science.1172156

45. X. Zheng and A. Sehgal: AKT and TOR signaling set the pace of the circadian pacemaker. Curr Biol, 20(13), 1203-8 (2010)
DOI: 10.1016/j.cub.2010.05.027

46. J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata and P. Sassone-Corsi: CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature, 450(7172), 1086-90 (2007)
DOI: 10.1038/nature06394

47. N. Preitner, F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht and U. Schibler: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110(2), 251-60 (2002)
DOI: 10.1016/S0092-8674(02)00825-5

48. H. R. Ueda, W. Chen, A. Adachi, H. Wakamatsu, S. Hayashi, T. Takasugi, M. Nagano, K. Nakahama, Y. Suzuki, S. Sugano, M. Iino, Y. Shigeyoshi and S. Hashimoto: A transcription factor response element for gene expression during circadian night. Nature, 418(6897), 534-9 (2002)
DOI: 10.1038/nature00906

49. R. Fujiki, T. Chikanishi, W. Hashiba, H. Ito, I. Takada, R. G. Roeder, H. Kitagawa and S. Kato: GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature, 459(7245), 455-9 (2009)
DOI: 10.1038/nature07954

50. R. J. Colman, R. M. Anderson, S. C. Johnson, E. K. Kastman, K. J. Kosmatka, T. M. Beasley, D. B. Allison, C. Cruzen, H. A. Simmons, J. W. Kemnitz and R. Weindruch: Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201-4 (2009)
DOI: 10.1126/science.1173635

51. R. J. Colman, T. M. Beasley, J. W. Kemnitz, S. C. Johnson, R. Weindruch and R. M. Anderson: Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun, 5, 3557 (2014)
DOI: 10.1038/ncomms4557

52. J. A. Mattison, G. S. Roth, T. M. Beasley, E. M. Tilmont, A. M. Handy, R. L. Herbert, D. L. Longo, D. B. Allison, J. E. Young, M. Bryant, D. Barnard, W. F. Ward, W. Qi, D. K. Ingram and R. de Cabo: Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318-21 (2012)
DOI: 10.1038/nature11432

53. M. Hatori, C. Vollmers, A. Zarrinpar, L. DiTacchio, E. A. Bushong, S. Gill, M. Leblanc, A. Chaix, M. Joens, J. A. Fitzpatrick, M. H. Ellisman and S. Panda: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab, 15(6), 848-60 (2012)
DOI: 10.1016/j.cmet.2012.04.019

54. B. R. Carone, L. Fauquier, N. Habib, J. M. Shea, C. E. Hart, R. Li, C. Bock, C. Li, H. Gu, P. D. Zamore, A. Meissner, Z. Weng, H. A. Hofmann, N. Friedman and O. J. Rando: Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell, 143(7), 1084-96 (2010)
DOI: 10.1016/j.cell.2010.12.008

55. S. F. Ng, R. C. Lin, D. R. Laybutt, R. Barres, J. A. Owens and M. J. Morris: Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature, 467(7318), 963-6 (2010)
DOI: 10.1038/nature09491

56. C. Canto, L. Q. Jiang, A. S. Deshmukh, C. Mataki, A. Coste, M. Lagouge, J. R. Zierath and J. Auwerx: Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab, 11(3), 213-9 (2010)
DOI: 10.1016/j.cmet.2010.02.006

57. R. Barres, J. Yan, B. Egan, J. T. Treebak, M. Rasmussen, T. Fritz, K. Caidahl, A. Krook, D. J. O’Gorman and J. R. Zierath: Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab, 15(3), 405-11 (2012)
DOI: 10.1016/j.cmet.2012.01.001

58. B. Egan and J. R. Zierath: Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab, 17(2), 162-84 (2013)
DOI: 10.1016/j.cmet.2012.12.012

59. H. Kirchner, M. E. Osler, A. Krook and J. R. Zierath: Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol, 23(5), 203-9 (2013)
DOI: 10.1016/j.cmet.2012.12.012

60. C. C. Li, P. E. Young, C. A. Maloney, S. A. Eaton, M. J. Cowley, M. E. Buckland, T. Preiss, D. C. Henstridge, G. J. Cooney, M. A. Febbraio, D. I. Martin, J. E. Cropley and C. M. Suter: Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics, 8(6), 602-11 (2013)
DOI: 10.4161/epi.24656

61. V. Kameswaran, N. C. Bramswig, L. B. McKenna, M. Penn, J. Schug, N. J. Hand, Y. Chen, I. Choi, A. Vourekas, K. J. Won, C. Liu, K. Vivek, A. Naji, J. R. Friedman and K. H. Kaestner: Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab, 19(1), 135-45 (2014)
DOI: 10.1016/j.cmet.2013.11.016

62. Y. Wei, C. R. Yang, Y. P. Wei, Z. A. Zhao, Y. Hou, H. Schatten and Q. Y. Sun: Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A, 111(5), 1873-8 (2014)
DOI: 10.1073/pnas.1321195111

63. G. P. Ravelli, Z. A. Stein and M. W. Susser: Obesity in young men after famine exposure in utero and early infancy. N Engl J Med, 295(7), 349-53 (1976)
DOI: 10.1056/NEJM197608122950701

64. R. A. Simmons, L. J. Templeton and S. J. Gertz: Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes, 50(10), 2279-86 (2001)
DOI: 10.2337/diabetes.50.10.2279

65. J. H. Park, D. A. Stoffers, R. D. Nicholls and R. A. Simmons: Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest, 118(6), 2316-24 (2008)

66. R. C. Laker, T. S. Lillard, M. Okutsu, M. Zhang, K. L. Hoehn, J. J. Connelly and Z. Yan: Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring. Diabetes, 63(5), 1605-11 (2014)
DOI: 10.2337/db13-1614

67. J. S. Lim, M. Mietus-Snyder, A. Valente, J. M. Schwarz and R. H. Lustig: The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol, 7(5), 251-64 (2010)
DOI: 10.1038/nrgastro.2010.41

68. R. H. Eckel, S. M. Grundy and P. Z. Zimmet: The metabolic syndrome. Lancet, 365(9468), 1415-28 (2005)
DOI: 10.1016/S0140-6736(05)66378-7

69. J. P. Molleston, F. White, J. Teckman and J. F. Fitzgerald: Obese children with steatohepatitis can develop cirrhosis in childhood. Am J Gastroenterol, 97(9), 2460-2 (2002)
DOI: 10.1111/j.1572-0241.2002.06003.x

70. E. S. Ford, W. H. Giles and W. H. Dietz: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA, 287(3), 356-9 (2002)
DOI: 10.1001/jama.287.3.356

71. J. Y. Lee, K. M. Kim, S. G. Lee, E. Yu, Y. S. Lim, H. C. Lee, Y. H. Chung, Y. S. Lee and D. J. Suh: Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: a review of 589 consecutive liver biopsies in a single center. J Hepatol, 47(2), 239-44 (2007)
DOI: 10.1016/j.jhep.2007.02.007

72. D. Amarapurkar, P. Kamani, N. Patel, P. Gupte, P. Kumar, S. Agal, R. Baijal, S. Lala, D. Chaudhary and A. Deshpande: Prevalence of non-alcoholic fatty liver disease: population based study. Ann Hepatol, 6(3), 161-3 (2007)

73. S. K. Satapathy and A. J. Sanyal: Novel treatment modalities for nonalcoholic steatohepatitis. Trends Endocrinol Metab, 21(11), 668-75 (2010)
DOI: 10.1016/j.tem.2010.08.003

74. M. M. Bellet and P. Sassone-Corsi: Mammalian circadian clock and metabolism - the epigenetic link. J Cell Sci, 123(Pt 22), 3837-48 (2010)
DOI: 10.1242/jcs.051649

75. X. Yang, M. Downes, R. T. Yu, A. L. Bookout, W. He, M. Straume, D. J. Mangelsdorf and R. M. Evans: Nuclear receptor expression links the circadian clock to metabolism. Cell, 126(4), 801-10 (2006)
DOI: 10.1016/j.cell.2006.06.050

76. S. Sookoian, M. S. Rosselli, C. Gemma, A. L. Burgueno, T. Fernandez Gianotti, G. O. Castano and C. J. Pirola: Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology, 52(6), 1992-2000 (2010)
DOI: 10.1002/hep.23927

77. A. K. Petersen, S. Zeilinger, G. Kastenmuller, W. Romisch-Margl, M. Brugger, A. Peters, C. Meisinger, K. Strauch, C. Hengstenberg, P. Pagel, F. Huber, R. P. Mohney, H. Grallert, T. Illig, J. Adamski, M. Waldenberger, C. Gieger and K. Suhre: Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet, 23(2), 534-45 (2014)
DOI: 10.1093/hmg/ddt430

78. H. Liu, T. Wang, Y. Wei, G. Zhao, J. Su, Q. Wu, H. Qiao and Y. Zhang: Detection of type 2 diabetes related modules and genes based on epigenetic networks. BMC Syst Biol, 8 Suppl 1, S5 (2014)

79. S. Vella, D. Gnani, A. Crudele, S. Ceccarelli, C. De Stefanis, S. Gaspari, V. Nobili, F. Locatelli, V. E. Marquez, R. Rota and A. Alisi: EZH2 down-regulation exacerbates lipid accumulation and inflammation in in vitro and in vivo NAFLD. Int J Mol Sci, 14(12), 24154-68 (2013)
DOI: 10.3390/ijms141224154

80. W. Xie, C. L. Barr, A. Kim, F. Yue, A. Y. Lee, J. Eubanks, E. L. Dempster and B. Ren: Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4), 816-31 (2012)
DOI: 10.1016/j.cell.2011.12.035

81. Z. D. Smith, M. M. Chan, T. S. Mikkelsen, H. Gu, A. Gnirke, A. Regev and A. Meissner: A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 484(7394), 339-44 (2012)
DOI: 10.1038/nature10960

82. L. Wang, J. Zhang, J. Duan, X. Gao, W. Zhu, X. Lu, L. Yang, G. Li, W. Ci, W. Li, Q. Zhou, N. Aluru, F. Tang, C. He, X. Huang and J. Liu: Programming and inheritance of parental DNA methylomes in mammals. Cell, 157(4), 979-91 (2014)
DOI: 10.1016/j.cell.2014.04.017

83. D. J. Barker and K. L. Thornburg: The obstetric origins of health for a lifetime. Clin Obstet Gynecol, 56(3), 511-9 (2013)
DOI: 10.1097/GRF.0b013e31829cb9ca

84. A. C. Ferguson-Smith and M. E. Patti: You are what your dad ate. Cell Metab, 13(2), 115-7 (2011)
DOI: 10.1016/j.cmet.2011.01.011

85. E. Ivanova, J. H. Chen, A. Segonds-Pichon, S. E. Ozanne and G. Kelsey: DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics, 7(10), 1200-10 (2012)
DOI: 10.4161/epi.22141

86. J. C. Jimenez-Chillaron, E. Isganaitis, M. Charalambous, S. Gesta, T. Pentinat-Pelegrin, R. R. Faucette, J. P. Otis, A. Chow, R. Diaz, A. Ferguson-Smith and M. E. Patti: Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes, 58(2), 460-8 (2009)
DOI: 10.2337/db08-0490

87. D. Martinez, T. Pentinat, S. Ribo, C. Daviaud, V. W. Bloks, J. Cebria, N. Villalmanzo, S. G. Kalko, M. Ramon-Krauel, R. Diaz, T. Plosch, J. Tost and J. C. Jimenez-Chillaron: In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell Metab, 19(6), 941-51 (2014)
DOI: 10.1016/j.cmet.2014.03.026

88. S. Cortijo, R. Wardenaar, M. Colome-Tatche, F. Johannes and V. Colot: Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. Methods Mol Biol, 1112, 125-49 (2014)
DOI: 10.1007/978-1-62703-773-0_9

89. M. V. Cannon, D. A. Buchner, J. Hester, H. Miller, E. Sehayek, J. H. Nadeau and D. Serre: Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring. PLoS One, 9(3), e90335 (2014)
DOI: 10.1371/journal.pone.0090335

90. S. F. Kingsmore, I. E. Lindquist, J. Mudge, D. D. Gessler and W. D. Beavis: Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov, 7(3), 221-30 (2008)
DOI: 10.1038/nrd2519

91. T. Voet, P. Kumar, P. Van Loo, S. L. Cooke, J. Marshall, M. L. Lin, M. Zamani Esteki, N. Van der Aa, L. Mateiu, D. J. McBride, G. R. Bignell, S. McLaren, J. Teague, A. Butler, K. Raine, L. A. Stebbings, M. A. Quail, T. D’Hooghe, Y. Moreau, P. A. Futreal, M. R. Stratton, J. R. Vermeesch and P. J. Campbell: Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res, 41(12), 6119-38 (2013)
DOI: 10.1093/nar/gkt345

92. E. A. Houseman, J. Molitor and C. J. Marsit: Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics, 30(10), 1431-9 (2014)
DOI: 10.1093/bioinformatics/btu029

93. E. A. Houseman, W. P. Accomando, D. C. Koestler, B. C. Christensen, C. J. Marsit, H. H. Nelson, J. K. Wiencke and K. T. Kelsey: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86 (2012)
DOI: 10.1186/1471-2105-13-86

94. J. Mill and B. T. Heijmans: From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet, 14(8), 585-94 (2013)
DOI: 10.1038/nrg3405

95. M. Kacevska, M. Ivanov, A. Wyss, S. Kasela, L. Milani, A. Rane and M. Ingelman-Sundberg: DNA methylation dynamics in the hepatic CYP3A4 gene promoter. Biochimie, 94(11), 2338-44 (2012)
DOI: 10.1016/j.biochi.2012.07.013

96. X. Chai, S. Zeng and W. Xie: Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol, 9(3), 253-66 (2013)
DOI: 10.1517/17425255.2013.754010

97. X. B. Zhong and J. S. Leeder: Epigenetic regulation of ADME-related genes: focus on drug metabolism and transport. Drug Metab Dispos, 41(10), 1721-4 (2013)
DOI: 10.1124/dmd.113.053942

98. M. Ivanov, I. Barragan and M. Ingelman-Sundberg: Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci (2014)
DOI: 10.1016/j.tips.2014.05.004

Key Words: Epigenetics, Transgenerational Inheritance, Metabolism, Transcriptional Regulation, Lipid Homeostasis, Fatty Liver, obesity, DNA methylation, histones, microRNA, Review

Send correspondence to: Juan Sandoval, Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital, Duran i Reynals, Av. Gran Via de L’Hospitalet 199, 203, 08908 L’Hospitalet, de Llobregat, Barcelona, Catalonia, Spain, Tel:0034 93 260 72 46, Fax: 0034 93 260 72 19, E-mail:jsandoval@idibell.cat