[Frontiers in Bioscience, Landmark, 21, 20-30, January 1, 2016]

The progress of molecular diagnostics of osteosarcoma

Chengjun Li 1 , Yu Cong 1 , Xiaozhou Liu 1 , Xing Zhou 1 , Guangxin Zhou 1 , Meng Lu 1 , Xin Shi 1 , Sujia Wu 1

1Jinling Hosp, Dept Orthopedics, Nanjing Univ, Sch Med, Nanjing 210002, Peoples R China


1. Abstract
2. Introduction
3. Genetic regulation
4. Signaling regulation
5. miRNA regulation
6. Circulating tumor cell marker
7. Conclusions and perspectives
8. Acknowledgements
9. References


Despite significant advances in the diagnosis and treatment of osteosarcoma in recent years, overall survival has remained low for over 2 decades. The standard diagnosis of osteosarcoma requires a combination of clinical presentation, radiologic studies, and pathologic tissue evaluation. A typical “Codman’s triangle” in radiologic evaluation is vital in making correct diagnosis for middle or late stage of osteosarcoma. However, there is an actual demand for novel molecular markers with high sensitivity and stability for the diagnosis of early events of osteosarcoma and also the probability of recurrence and metastasis. Except that, some highly relevant gene mutations with these events could also provide valuable information regarding osteosarcoma protection. In this review, we will focus on the molecular markers which have been discovered in recent years with potential application of early stage and recurrence diagnosis and protection.


1. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol 8(10), 705-718 (2010)

2. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer; 125(1), 229-234 (2009)
DOI: 10.1002/ijc.24320

3. Cotterill SJ, Wright CM, Pearce MS. Stature of young people with malignant bone tumors. Pediatr Blood Cancer 42(1), 59-63 (2004)
DOI: 10.1002/pbc.10437

4. V. J. Vigorita, Orthopaedic Pathology, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, (2008)

5. Polednak AP. Bone cancer among female radium dial workers. Latency periods and incidence rates by time after exposure: brief communication. J Natl Cancer lnst 60(1), 77-82 (1978)

6. Paulino AC, Fowler BZ. Secondary neoplasms after radiotherapy for a childhood solid tumor. Pediatr Hematol Oncol 22(2), 89-101 (2005)
DOI: 10.1080/08880010590896459

7. A. Franchi A, Calzolari, and G. Zampi. Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Archiv 432, 515–519 (1998)
DOI: 10.1007/s004280050199

8. N. Marina M, Gebhardt L. Teot, and R. Gorlick. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 9, 422–441 (2004)
DOI: 10.1634/theoncologist.9-4-422

9. Motoyama T, Hotta T, Watanabe H. Differential production of interleukin 6 in human osteosarcoma cells and the possible effects on neoplastic bone metabolism. Virchows Arch B Cell Pathol Incl Mol Pathol 63(5), 277-281 (1993)
DOI: 10.1007/BF02899273

10. Elias JA, Tang W, Horowitz MC. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 136(2), 489-498 (1995)

11. Fromigue O, Hamidouche Z, Marie PJ. Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. J Biol Chem 283(45), 30549-30556 (2008)
DOI: 10.1074/jbc.M801436200

12. Kim SM, Lee H, Park YS. ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. J Orthop Res 30(7), 1040-1044 (2012)
DOI: 10.1002/jor.22025

13. Yang G, Yuan J, Li K. EMT transcription factors: implication in osteosarcoma. Med Oncol 30(4), 697 (2013)
DOI: 10.1007/s12032-013-0697-2

14. Martin JW1, Squire JA, Zielenska M. The genetics of osteosarcoma. Sarcoma 2012, 627254 (2012)

15. Overholtzer M, Rao PH, Favis R. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci USA 100(20), 11547-11552 (2003)
DOI: 10.1073/pnas.1934852100

16. Berman SD, Calo E, Landman AS. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA 105(33), 11851-11856 (2008)
DOI: 10.1073/pnas.0805462105

17. Tsuchiya T, Sekine K, Hinohara S. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120(2), 91-98 (2000)
DOI: 10.1016/S0165-4608(99)00255-1

18. Papai Z, Feja CN, Hanna EN. P53 overexpression as an indicator of overall survival and response to treatment in osteosarcomas. Pathol Oncol Res 3(1), 15-19 (1997)
DOI: 10.1007/BF02893346

19. Pakos EE, Kyzas PA, Ioannidis JP. Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysis. Clin Cancer Res 10(18 Pt 1), 6208-6214 (2004)
DOI: 10.1158/1078-0432.CCR-04-0246

20. Fu HL, Shao L, Wang Q. A systematic review of p53 as a biomarker of survival in patients with osteosarcoma. Tumour Biol 34(6), 3817-3821 (2013)
DOI: 10.1007/s13277-013-0966-x

21. Jiang L, Tao C, He A. Prognostic significance of p53 expression in malignant bone tumors: a meta-analysis. Tumour Biol 34(2), 1037-1043 (2013)
DOI: 10.1007/s13277-012-0643-5

22. Wunder JS, Gokgoz N, Parkes R. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 23(7), 1483-1490 (2005)
DOI: 10.1200/JCO.2005.04.074

23. Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 10(7), 699-703 (2001)
DOI: 10.1093/hmg/10.7.699

24. Gutierrez GM, Kong E, Sabbagh Y. Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1-/-mice. Proc Natl Acad Sci USA 105(47), 18402-18407 (2008)
DOI: 10.1073/pnas.0805925105

25. Gunduz V, Kong E, Bryan CD. Loss of the retinoblastoma tumor suppressor protein in murine calvaria facilitates immortalization of osteoblast-adipocyte bipotent progenitor cells characterized by low expression of N-cadherin. Mol Cell Biol 32(13), 2561-2569 (2012)
DOI: 10.1128/MCB.06453-11

26. Feugeas O, Guriec N, Babin-Boilletot A. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol 14(2), 467-472 (1996)

27. van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1:409-459 (2000)
DOI: 10.1146/annurev.genom.1.1.409

28. Wu L, Hickson ID. RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell Mol Life Sci 58(7), 894-901 (2001)
DOI: 10.1007/PL00000909

29. Wang LL, Gannavarapu A, Kozinetz CA. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95(9), 669-674 (2003)
DOI: 10.1093/jnci/95.9.669

30. Nishijo K, Nakayama T, Aoyama T. Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer 111(3), 367-372 (2004)
DOI: 10.1002/ijc.20269

31. Ladanyi M, Cha C, Lewis R. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 53(1), 16-18 (1993)

32. Yan T, Wunder JS, Gokgoz N. COPS3 amplification and clinical outcome in osteosarcoma. Cancer 109(9), 1870-1876 (2007)
DOI: 10.1002/cncr.22595

33. Henriksen J, Aagesen TH, Maelandsmo GM. Amplification and overexpression of COPS3 in osteosarcomas potentially target TP53 for proteasome-mediated degradation. Oncogene 22(34), 5358-5361 (2003)
DOI: 10.1038/sj.onc.1206671

34. Macsai CE, Foster BK, Xian CJ. Roles of Wnt signaling in bone growth, remodeling, skeletal disorders and fracture repair. J Cell Physiol 215(3), 578-587 (2008)
DOI: 10.1002/jcp.21342

35. Cai Y, Cai T, Chen Y. Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem 115(4), 625-631 (2014)
DOI: 10.1002/jcb.24708

36. Seto ES, Bellen HJ. The ins and outs of Wingless signaling. Treands Cell Biol 14(1), 45-53 (2004)
DOI: 10.1016/j.tcb.2003.11.004

37. Hoang BH, Kubo T, Healey JH. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109(1), 106-111 (2004)
DOI: 10.1002/ijc.11677

38. Guo Y, Zi X, Koontz Z. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25(7), 964-971 (2007)
DOI: 10.1002/jor.20356

39. Guo Y, Rubin EM, Xie J. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466(9), 2039-2045 (2008)
DOI: 10.1007/s11999-008-0344-y

40. Kansara M, Tsang M, Kodjabachian L. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119(4), 837-851 (2009)
DOI: 10.1172/JCI37175

41. Lee N, Smolarz AJ, Olson S. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagonostic and treatment strategies. Br J Cancer 97(11), 1552-1559 (2007)
DOI: 10.1038/sj.bjc.6604069

42. Hauer K, Calzada-Wack J, Steiger K. DKK2 mediates osteolysis, invasiveness, and metastatic spread in Ewing sarcoma. Cancer Res 73(2), 967-977 (2013)
DOI: 10.1158/0008-5472.CAN-12-1492

43. Lin CH, Guo Y, Ghaffar S. Dkk-3, a secreted wnt antagonist, suppresses tumorigenic potential and pulmonary metastasis in osteosarcoma. Sarcoma 147541 (2013)

44. Ma Y, Ren Y, Han EQ. Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem Biophys Res Commun 431(2), 274-279 (2013)
DOI: 10.1016/j.bbrc.2012.12.118

45. Lu BJ, Wang YQ, Wei XJ. Expression of WNT-5a and ROR2 correlates with disease severity in osteosarcoma. Mol Med Rep 5(4), 1033-1036 (2012)

46. Jin Z, Zhao C, Han X. Wnt5a promotes ewing sarcoma cell migration through upregulating CXCR4 expression. BMC Cancer 12:480 (2012)
DOI: 10.1186/1471-2407-12-480

47. Yamagata K, Li X, Ikegaki S. Dissection of Wnt5a-Ror2 signaling leading to matrix metalloproteinase (MMP-13) expression. J Biol Chem 287(2), 1588-1599 (2012)
DOI: 10.1074/jbc.M111.315127

48. Ren D, Miniami Y, Nishita M. Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells 16(3), 304-315 (2011)
DOI: 10.1111/j.1365-2443.2011.01487.x

49. Hughes DP. How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479-496 (2009)
DOI: 10.1007/978-1-4419-0284-9_28

50. Engin F, Bertin T, Ma O. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18(8), 1464-1470 (2009)
DOI: 10.1093/hmg/ddp057

51. Tanaka M, Setoguchi T, Hirotsu M. Inhibtion of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100(12), 1957-1965 (2009)
DOI: 10.1038/sj.bjc.6605060

52. Lo WW, Pinnaduwage D, Gokgoz N. Aberrant hedgehog signaling and clinical outcome in osteosarcoma. Sarcoma 2014:261804 (2014)
DOI: 10.1155/2014/261804

53. Nagao H, Ijiri K, Hirotsu M. Role of GLI2 in the growth of human osteosarcoma. J Pathol 224(2), 169-179 (2011)
DOI: 10.1002/path.2880

54. Warzecha J, Dinges D, Kaszap B. Effect of the Hedgehog-inhibitor cyclopamine on mice with osteosarcoma pulmonary metastases. Int J Mol Med 29(3), 423-427 (2012)

55. Nakamura S, Nagano S, Nagao H. Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. Plos One 8(7), e69466 (2013)
DOI: 10.1371/journal.pone.0069466

56. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843-854 (1993)
DOI: 10.1016/0092-8674(93)90529-Y

57. Li PF, Chen SC, Xia T. Non-coding RNAs and gastric cancer. World J Gastroenterol 20(18), 5411-5419 (2014)
DOI: 10.3748/wjg.v20.i18.5411

58. Shah NR, Chen H. MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World J Clin Oncol 5(2), 48-60 (2014)

59. Banno K, Yanokura M, lida M. Application of MicroRNA in Diagnosis and Treatment of Ovarian Cancer. Biomed Res Int 2014:232817 (2014)
DOI: 10.1155/2014/232817

60. Ye JJ, Cao J. MicroRNAs in colorectal cancer as markers and targets: Recent advances. World J Gastroenterol 20(15), 4288-4299 (2014)
DOI: 10.3748/wjg.v20.i15.4288

61. Zhou G, Shi X, Zhang J. MicroRNAs in osteosarcoma: from biological players to clinical contributors, a review. J Int Med Res 41(1), 1-12 (2013)
DOI: 10.1177/0300060513475959

62. Jones KB, Salah Z, Del Mae S. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 72(7), 1865-1877 (2012)
DOI: 10.1158/0008-5472.CAN-11-2663

63. Xu Z, Wang T. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1. Biochem Biophys Res Commun 449(2):190-5 (2014)
DOI: 10.1016/j.bbrc.2014.04.140

64. Pan W, Wang H, Jianwei R. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells. Cell Physiol Biochem 33(2), 402-412 (2014)
DOI: 10.1159/000356679

65. Cao ZQ, Shen Z, Huang WY. MicroRNA-802 promotes osteosarcoma cell proliferation by targeting p27. Asian Pac J Cancer Prev 14(12), 7081-7084 (2013)
DOI: 10.7314/APJCP.2013.14.12.7081

66. Shen L, Chen XD, Zhang YH. MicroRNA-128 promotes proliferation in osteosarcoma cells by downregulating PTEN. Tumour Biol 35(3), 2069-2074 (2014)
DOI: 10.1007/s13277-013-1274-1

67. Xu H, Liu X, Zhao J. Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem 33(5), 1547-1556 (2014)
DOI: 10.1159/000358718

68. Li E1, Zhang J, Yuan T, Ma B. miR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1. Tumour Biol (Epub ahead of print) (2014)

69. Lei P, Xie J, Wang J. Micro-145 inhibits osteosarcoma cell proliferation and invasino by targeting ROCK1. Mol Med Rep 10(1), 155-160 (2014)

70. Zhao H, Li M, Li L. MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. Plos One 8(12), e83571 (2013)
DOI: 10.1371/journal.pone.0083571

71. Yang J, Gao T, Tang J. Loss of microRNA-132 predicts poor prognosis in patients with primary osteosarcoma. Mol Cell Biochem 381(1-2), 9-15 (2013)
DOI: 10.1007/s11010-013-1677-8

72. Wang J, Xu G, Shen F. miR-132 targeting cyclin E1 suppresses cell proliferation in osteosarcoma cells. Tumour Biol 35(5), 4859-4865 (2014)
DOI: 10.1007/s13277-014-1637-2

73. Osaki M, Takeshita F, Sugimoto Y. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther 19(6), 1123-1130 (2011)
DOI: 10.1038/mt.2011.53

74. Shimbo K, Miyaki S, Ishitobi H. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 445(2), 381-387 (2014)
DOI: 10.1016/j.bbrc.2014.02.007

75. Jin J, Cai L, Liu ZM. miRNA-218 inhibits osteosarcoma cell migration and invasion by down-regulating of TIAM1, MMP2 and MMP9. Asian Pac J Cancer Prev 14(6), 3681-3684 (2013)
DOI: 10.7314/APJCP.2013.14.6.3681

76. Strillacci A, Valerii MC, Sansone P. Loss of miR-101 expression promotes Wnt/b-catenin signaling pathway activation and malignancy in colon cancer cells. J Pathol 229(3), 379-389 (2013)
DOI: 10.1002/path.4097

77. Cai J, Guan H, Fang L. MicroRNA-374a activates Wnt/b-catenin signaling to promote breast cancer metastasis. J Clin Invest 123(2), 566-579 (2013)

78. Zhou Y, Huang Z, Wu S. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res 33, 12 (2014)

79. Song B, Wang Y, Xi Y. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28(46), 4065-4074 (2009)
DOI: 10.1038/onc.2009.274

80. Song B, Wang Y, Titmus MA. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 9, 96 (2010)
DOI: 10.1186/1476-4598-9-96

81. Ouyang L, Liu P, Yang S. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol 30(1), 340 (2013)
DOI: 10.1007/s12032-012-0340-7

82. Tian Q, Jia J, Ling S. A causal role for circulating miR-34b in osteosarcoma. Eur J Surg Oncol 40(1), 67-72 (2014)
DOI: 10.1016/j.ejso.2013.08.024

83. Satelli A1, Mitra A, Cutrera JJ, Devarie M, Xia X, Ingram DR et al. Universal marker and detection tool for human sarcoma circulating tumor cells. Cancer Res 74(6), 1645-50 (2014)
DOI: 10.1158/0008-5472.CAN-13-1739

84. Arun Satelli, Abhisek Mitra, Jeffry J. Cutrera. Specific detection tool for mesenchymal and epithelial-mesenchymal transformed circulating tumor cells. Cancer Res 73(8 Suppl) (2013)

85. Wong IH, Chan AT, Johnson PJ. Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific messenger RNA markers: a pilot study. Clin Cancer Res 6(6), 2183-8 (2000)

Abbreviations: Rb: retinoblastoma; EMT, mesenchymal; CIN: chromosomal instability; N-CIN: numerical CIN; CDK4: cyclin dependent kinase 4; RTS: Rothmund-Thomson syndrome; MDM2: Mouse double minute 2 homolog; Wnt/PKA: Wnt/protein kinase A; Dvl: Dishevelled; TCF/LEF: T cell factor/lymphoid enhancer factor; MMP 2: metalloproteinase 2; Wif-1: Wnt inhibitory factor 1; SFRP: secreted frizzled-related protein; Dkk: Dickkopf; DN-MAML: dominant negative Mastermind-like protein; miRNA: MicroRNA; LZTS1: leucine zipper putative tumors suppressor 1; ROCK1: Rho-associated protein kinase 1; CSV: cell-surface vimentin

Key Words: Retinoblastoma, Mesenchymal, MicroRNA, Review

Send correspondence to: Xin Shi, Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan Road, Xuanwu Area, Nanjing 210002, China, Tel: 86-13851652046, Fax: 86-25-80860114, E-mail: shixin2k@163.com