[Frontiers in Bioscience, Landmark, 22, 888-908, January 1, 2017]

Mitochondrial genome and epigenome: two sides of the same coin

Patrizia D’Aquila 1 , Alberto Montesanto 1 , Francesco Guarasci 1 , Giuseppe Passarino 1 , Dina Bellizzi1 1

1Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy


1. Abstract
2. Introduction
3. mtDNA features
    3.1. The mitochondrial genome: structure, replication and transcription
    3.2. Genetics of mtDNA
4. Mitochondrial DNA epigenetics
    4.1. Mitochondrial DNA methylation and hydroxymethylation
5. mtDNA methylation as biomarker of aging and diseases
    5.1. mtDNA methylation and environmental exposures
    5.2. mtDNA methylation and aging
    5.3. mtDNA methylation and diseases
6. Conclusions and future perspectives
7. Acknowledgement
8. References


The involvement of mitochondrial content, structure and function as well as of the mitochondrial genome (mtDNA) in cell biology, by participating in the main processes occurring in the cells, has been a topic of intense interest for many years. More specifically, the progressive accumulation of variations in mtDNA of post-mitotic tissues represents a major contributing factor to both physiological and pathological phenotypes. Recently, an epigenetic overlay on mtDNA genetics is emerging, as demonstrated by the implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape being itself object of epigenetic modifications. Indeed, in vitro and population studies strongly suggest that, similarly to nuclear DNA, also mtDNA is subject to methylation and hydroxymethylation. It follows that the mitochondrial-nucleus cross talk and mitochondrial retrograde signaling in cellular properties require a concerted functional cooperation between genetic and epigenetic changes. The present paper aims to review the current advances in mitochondrial epigenetics studies and the increasing indication of mtDNA methylation status as an attractive biomarker for peculiar pathological phenotypes and environmental exposure.


1. S. Anderson, A.T. Bankier, B.G. Barrell, M.H.L. De Bruijn, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden, I.G. Young: Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 (1981)
DOI: 10.1038/290457a0

2. J.W. Taanman: The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410, 103-123 (1999)
DOI: 10.1016/S0005-2728(98)00161-3

3. M. Lynch, B. Koskella, S. Schaack S: Mutation pressure and the evolution of organelle genomic architecture. Science 311, 1727-1730 (2006)
DOI: 10.1126/science.1118884

4. D. Mishmar, I. Zhidkov: Evolution and disease converge in the mitochondrion. Biochim Biophys Acta. 1797, 1099-1104 (2010)
DOI: 10.1016/j.bbabio.2010.01.003

5. D.C. Wallace, D. Chalkia D: Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5, a021220 (2013)
DOI: 10.1101/cshperspect.a021220

6. G. Cannino, C.M. Di Liegro, A.M. Rinaldi: Nuclear-mitochondrial interaction. Mitochondrion 7, 359-366 (2007)
DOI: 10.1016/j.mito.2007.07.001

7. D.J. Smiraglia, M. Kulawiec, G.L. Bistulfi, S.G. Gupta, K.K Singh: A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 7, 1182-1190 (2008)
DOI: 10.4161/cbt.7.8.6215

8. D. Bellizzi, P. D’Aquila, M. Giordano, A. Montesanto, G. Passarino: Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4:17-27 (2012)
DOI: 10.2217/epi.11.109

9. D.T. Shaughnessy, K. McAllister, L. Worth, A.C. Haugen, J.N. Meyer, F.E. Domann, B. Van Houten, R. Mostoslavsky, S.J. Bultman, A.A Baccarelli, T.J. Begley, R.W. Sobol, M.D. Hirschey, T. Ideker, J.H. Santos, W.C. Copeland, R.R. Tice, D.M. Balshaw, F.L. Tyson: Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122, 1271-1278 (2014)
DOI: 10.1289/ehp.1408418

10. P. D’Aquila, D. Bellizzi, G. Passarino: Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 16, 569-585 (2015)
DOI: 10.1007/s10522-015-9562-3

11. V. Iacobazzi, A. Castegna, V. Infantino, G. Andria: Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110, 25-34 (2013)
DOI: 10.1016/j.ymgme.2013.07.012

12. H.M. Byun, T. Panni, V. Motta, H. Hou, F. Nordio, P. Apostoli, P.A. Bertazzi, A.A Baccarelli: Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 8, 10:18 (2013)

13. D. Bellizzi, P. D’Aquila, T. Scafone, M. Giordano, V. Riso, A. Riccio, G. Passarino: The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20, 537-547 (2013)
DOI: 10.1093/dnares/dst029

14. C.J. Pirola, T.F. Gianotti, A.L. Burgueño, M. Rey-Funes, C.F. Loidl, P. Mallardi P, J-S. Martino, G.O. Castaño, S. Sookoian: Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62, 1356-1363 (2013)
DOI: 10.1136/gutjnl-2012-302962

15. S. Ghosh, S. Sengupta, V. Scaria: Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 18, 58-62 (2014)
DOI: 10.1016/j.mito.2014.07.007

16. H.M. Byun, E. Colicino, L. Trevisi, T. Fan, D.C. Christiani, A.A. Baccarelli: Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of Heart Rate Variability. J Am Heart Assoc 5, e003218 (2016)
DOI: 10.1161/JAHA.116.003218

17. S. Ghosh, S. Sengupta, V. Scaria: Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion 27, 25-31 (2016)
DOI: 10.1016/j.mito.2016.01.003

18. M. Blanch, J.L. Mosquera, B. Ansoleaga, I. Ferrer, M. Barrachina: Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease Am J Pathol 186, 385-397 (2016)

19. L. Yang, B. Xia, Y. Yang, H. Ding, D. Wu, H. Zhang, G. Jiang, J. Liu, Z. Zhuang: Mitochondrial DNA hypomethylation in chrome plating workers. Toxicol Lett 243, 1-6 (2016)
DOI: 10.1016/j.toxlet.2015.11.031

20. B. Ephrussi, P.P. Slonimski: Subcellular units involved in the synthesis of respiratory enzymes in yeast. Nature 176, 1207–1208 (1955)
DOI: 10.1038/1761207b0

21. W. Martin, M. Müller: The hydrogen hypothesis for the first eukaryote. Nature. 392, 37-41 (1998)
DOI: 10.1038/32096

22. J.C. Thrash, A. Boyd, M.J. Huggett, J. Grote, P. Carini, R.J. Yoder, B. Robbertse, J.W. Spatafora, M.S. Rappé, S.J. Giovannoni: Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 1,13 (2011)
DOI: 10.1038/srep00013

23. J.M. Archibald: Endosymbiosis and Eukaryotic Cell Evolution. Curr Biol. 25, R911-21 (2015)
DOI: 10.1016/j.cub.2015.07.055

24. D. Bogenhagen, D.A. Clayton: The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem 249, 7991-7995 (1974)

25. R.M. Andrews, I. Kubacka, P.F. Chinnery, R.N. Lightowlers, D.M. Turnbull, N. Howell: Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23, 147 (1999)
DOI: 10.1038/13779

26. N. Garrido, L. Griparic, E. Jokitalo, J. Wartiovaara, A.M. van der Bliek, J.N. Spelbrink: Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14, 1583-1596 (2003)
DOI: 10.1091/mbc.E02-07-0399

27. X.J. Chen, R.A. Butow: The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815-825 (2005)
DOI: 10.1038/nrg1708

28. C. Kukat, C.A. Wurm, H. Spåhr, M. Falkenberg, N.G. Larsson, S. Jakobs: Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108, 13534-13539 (2011)
DOI: 10.1073/pnas.1109263108

29. D.F. Bogenhagen: Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819, 914-920 (2012)
DOI: 10.1016/j.bbagrm.2011.11.005

30. V. Jayashankar, S.M. Rafelski: Integrating mitochondrial organization and dynamics with cellular architecture Curr Opin Cell Biol 26, 34-40 (2014)
DOI: 10.1016/j.ceb.2013.09.002

31. Y. Wang, D.F. Bogenhagen: Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281, 25791-25802 (2006)
DOI: 10.1074/jbc.M604501200

32. H.T. Jacobs, S.K. Lehtinen, J.N. Spelbrink: No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 22, 564-572 (2000)
DOI: 10.1002/(SICI)1521-1878 (200006) 22:6<564:AID-BIES9>3.0.CO;2-4

33. R.W. Gilkerson, E.A. Schon, E. Hernandez, M.M. Davidson: Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 181, 1117-1128 (2008)
DOI: 10.1083/jcb.200712101

34. S. Kutik, B. Guiard, H.E. Meyer, N. Wiedemann, N. Pfanner: Cooperation of translocase complexes in mitochondrial protein import. J Cell Biol 179, 585-591 (2007)
DOI: 10.1083/jcb.200708199

35. J. Dudek, P. Rehling, M. van der Laan: Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta 1833, 274-285 (2013)
DOI: 10.1016/j.bbamcr.2012.05.028

36. A.M. Sokol, M.E. Sztolsztener, M. Wasilewski, E. Heinz, A. Chacinska: Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 588, 2484-2495 (2014)
DOI: 10.1016/j.febslet.2014.05.028

37. L.S. Wenz, L. Opaliński, N. Wiedemann, T. Becker: Cooperation of protein machineries in mitochondrial protein sorting. Biochim Biophys Acta 1853, 1119-1129 (2015)
DOI: 10.1016/j.bbamcr.2015.01.012

38. D.A. Clayton: Transcription and replication of mitochondrial DNA. Hum Reprod 15 Suppl 2, 11-17 (2000)
DOI: 10.1093/humrep/15.suppl_2.11

39. M. Falkenberg, N.G. Larsson, C.M. Gustafsson: DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76, 679-699 (2007)
DOI: 10.1146/annurev.biochem.76.060305. 152028

40. T.J. Nicholls, M. Minczuk: In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 56, 175-181 (2014)
DOI: 10.1016/j.exger.2014.03.027

41. S. Crews, D. Ojala, J. Posakony, J. Nishiguchi, G. Attardi: Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature. 277, 192-198 (1979)
DOI: 10.1038/277192a0

42. D.P. Tapper, D.A. Clayton: Precise nucleotide location of the 5’ ends of RNA-primed nascent light strands of mouse mitochondrial DNA. J Mol Biol 162, 1-16 (1982)
DOI: 10.1016/0022-2836(82)90159-0

43. G.L. Ciesielski, M.T. Oliveira, L.S. Kaguni: Animal Mitochondrial DNA Replication. Enzymes. 39, 255-292 (2016)
DOI: 10.1016/bs.enz.2016.03.006

44. H. Kasamatsu, J. Vinograd: Unidirectionality of replication in mouse mitochondrial DNA. Nat New Biol 241, 103-105 (1973)
DOI: 10.1038/newbio241103a0

45. B. Xu, D.A. Clayton: RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBO J 15, 3135-3143 (1996)

46. J.N. Doda, C.T. Wright, D.A. Clayton: Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci U S A 78, 6116-6120 (1981)
DOI: 10.1073/pnas.78.10.6116

47. D.A. Clayton: Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res 255, 4-9 (2000)
DOI: 10.1006/excr.1999.4763

48. I.J Holt, A. Reyes: Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol 4, pii: a012971 (2012)
DOI: 10.1101/cshperspect.a012971

49. J.P. Uhler, M. Falkenberg: Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 34, 28-38 (2015)
DOI: 10.1016/j.dnarep.2015.07.003

50. E.A. McKinney, M.T. Oliveira: Replicating animal mitochondrial DNA. Genet Mol Biol 36, 308-315 (2013)
DOI: 10.1590/S1415-47572013000300002

51. Reyes, L. Kazak, S.R. Wood, T. Yasukawa, H.T. Jacobs, I.J. Holt: Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts. Nucleic Acids Res 41, 5837-5850 (2013)
DOI: 10.1093/nar/gkt196

52. N.D. Bonawitz, D.A. Clayton, and G.S. Shadel: Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24, 813–825 (2006)
DOI: 10.1016/j.molcel.2006.11.024

53. T. R. Mercer, S. Neph, M.E. Dinger, J. Crawford, M.A. Smith, A.M. Shearwood, E. Haugen, C.P. Bracken, O. Rackham, J.A. Stamatoyannopoulos, A. Filipovska, J.S. Mattick: The human mitochondrial transcriptome. Cell 146, 645-658 (2011)
DOI: 10.1016/j.cell.2011.06.051

54. Y.I. Morozov, D. Temiakov: Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters. J Biol Chem pii: jbc.C116.7.27966 (2016)

55. S. Leigh-Brown, J.A. Enriquez, D.T. Odom: Nuclear transcription factors in mammalian mitochondria. Genome Biol 11, 215 (2010)
DOI: 10.1186/gb-2010-11-7-215

56. A.P. Rebelo, L.M. Dillon, C.T. Moraes: Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis 34, 941-951 (2011)
DOI: 10.1007/s10545-011-9330-8

57. C.T. Campbell, J.E. Kolesar, B.A. Kaufman BA: Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819, 921-929 (2012)
DOI: 10.1016/j.bbagrm.2012.03.002

58. Picca A, A.M. Lezza: Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 25, 67-75 (2015)

59. D.P. Kelly, R.C. Scarpulla: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18, 357-368 (2004)
DOI: 10.1101/gad.1177604

60. E.S. Blomain, S.B. McMahon: Dynamic regulation of mitochondrial transcription as a mechanism of cellular adaptation. Biochim Biophys Acta 1819, 1075-1079 (2012)
DOI: 10.1016/j.bbagrm.2012.06.004

61. R.B. Vega, J.L. Horton, D.P. Kelly: Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res 116, 1820-1834 (2015)
DOI: 10.1161/CIRCRESAHA.116.305420

62. V.M. Pastukh, O.M. Gorodnya, M.N. Gillespie, M.V. Ruchko: Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radic Biol Med 96, 78-88 (2016)
DOI: 10.1016/j.freeradbiomed.2016.04.011

63. R.E. Giles, H. Blanc, H.M. Cann, D.C. Wallace: Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77, 6715-6719 (1980)
DOI: 10.1073/pnas.77.11.6715

64. W.E. Thompson, J. Ramalho-Santos, P. Sutovsky: Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69, 254-260 (2003)
DOI: 10.1095/biolreprod.102.010975

65. M. Sato, K. Sato: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta 1833, 1979-1984 (2013)
DOI: 10.1016/j.bbamcr.2013.03.010

66. R.J. Aitken, K.T. Jones, S.A. Robertson: Reactive oxygen species and sperm function--in sickness and in health. J Androl 33, 1096-1106 (2012)
DOI: 10.2164/jandrol.112.016535

67. N. Nakamura: Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells. 2, 732–750 (2013)
DOI: 10.3390/cells2040732

68. S. Breton, D.T. Stewart: Atypical mitochondrial inheritance patterns in eukaryotes. Genome. 58, 423-431 (2015)
DOI: 10.1139/gen-2015-0090

69. B. Thyagarajan, R.A. Padua, C. Campbell: Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 271, 27536-27543 (1996)
DOI: 10.1074/jbc.271.44.27536

70. C. Wiuf: Recombination in human mitochondrial DNA? Genetics 159, 749-56 (2001)

71. M. Schwartz, J. Vissing: Paternal inheritance of mitochondrial DNA. N Engl J Med 347, 576-580 (2002)
DOI: 10.1056/NEJMoa020350

72. E.D. Ladoukakis, A. Eyre-Walker: Evolutionary genetics: direct evidence of recombination in human mitochondrial DNA. Heredity (Edinb) 93, 321 (2004)
DOI: 10.1038/sj.hdy.6800572

73. Y. Kraytsberg, M. Schwartz, T.A. Brown, K. Ebralidse, W.S. Kunz, D.A. Clayton, J. Vissing, K. Khrapko: Recombination of human mitochondrial DNA. Science 304, 981 (2004)
DOI: 10.1126/science.1096342

74. E. Hazkani-Covo, R.M. Zeller, W. Martin: Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes. PLoS Genet 6, e1000834 (2010)
DOI: 10.1371/journal.pgen.1000834

75. M. Bernt, A. Braband, B. Schierwater, P.F. Stadler: Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69, 328-338 (2013)
DOI: 10.1016/j.ympev.2012.10.020

76. E. Hazkani-Covo, D. Graur: A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24, 13–18 (2007)
DOI: 10.1093/molbev/msl149

77. L. Viljakainen, D.C. Oliveira, J.H. Werren, S.K. Behura: Transfers of mitochondrial DNA to the nuclear genome in the wasp Nasonia vitripennis. Insect Mol Biol 19 Suppl. 1, 27–35 (2010)
DOI: 10.1111/j.1365-2583.2009.00932.x

78. D. Mishmar, E. Ruiz-Pesini, M. Brandon, D.C.Wallace: Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat 23,125-133 (2004)
DOI: 10.1002/humu.10304

79. E. Hazkani-Covo: Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny. Mol Biol Evol 26, 2175–2179 (2009)
DOI: 10.1093/molbev/msp131

80. C. Turner, C. Killoran, N.S. Thomas, M. Rosenberg, N.A. Chuzhanova, J. Johnston, Y. Kemel, D.N. Cooper, L.G. Biesecker: Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet 112, 303-309 (2003)

81. R.X. Santos, S.C. Correia, X. Zhu, M.A. Smith, P.I Moreira, R.J. Castellani, A. Nunomur, G. Perry: Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 18, 2444-24457 (2013)
DOI: 10.1089/ars.2012.5039

82. C.Guo, L. Sun, X. Chen, D. Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 8, 2003-2014 (2013)

83. Y. Kong, S.E. Trabucco, H. Zhang: Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol 39, 86-107 (2014)
DOI: 10.1159/000358901

84. F. Bonomini, L.F. Rodella, R. Rezzani: Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6, 109-120 (2015)
DOI: 10.14336/AD.2014.0305

85. F. Bozzo, A. Mirra, M.T. Carrì: Oxidative stress and mitochondrial damage in the pathogenesis of ALS: New perspectives. Neurosci Lett S0304-3940, 30287-30287 (2016)

86. Y. He, J. Wu, D.C. Dressman, C. Iacobuzio-Donahue, S.D. Markowitz, V.E. Velculescu, L.A. Diaz Jr, K.W. Kinzler, B. Vogelstein, N. Papadopoulos: Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610-614 (2010)
DOI: 10.1038/nature08802

87. J.B. Stewart, P.F.Chinnery: The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16, 530-542 (2015)
DOI: 10.1038/nrg3966

88. F. Legros, F. Malka, P. Frachon, A. Lombès, M. Rojo: Organization and dynamics of human mitochondrial DNA. J Cell Sci 117(Pt 13), 2653-2662 (2004)
DOI: 10.1242/jcs.01134

89. S. Vidoni, C. Zanna, M. Rugolo, E. Sarzi, G. Lenaers: Why mitochondria must fuse to maintain their genome integrity. Antioxid Redox Signal 19, 379-388 (2013)
DOI: 10.1089/ars.2012.4800

90. Torroni, K. Huoponen, P. Francalacci, M. Petrozzi, L. Morelli, R. Scozzari, D. Obinu, M.L. Savontaus, D.C. Wallace: Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835-1850 (1996)

91. V. Macaulay, M. Richards, E. Hickey, E. Vega, F. Cruciani, V. Guida, R. Scozzari, B. Bonné-Tamir, B. Sykes, A. Torroni: The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am J Hum Genet 64, 232-249 (1999)
DOI: 10.1086/302204

92. Torroni, A. Achilli, V. Macaulay, M. Richards, H.J. Bandelt: Harvesting the fruit of the human mtDNA tree. Trends Genet 22, 339-345 (2006)
DOI: 10.1016/j.tig.2006.04.001

93. M. van Oven, M. Kayser: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30, E386-94 (2009)
DOI: 10.1002/humu.20921

94. Achilli, C. Rengo, C. Magri, V. Battaglia, A. Olivieri, R. Scozzari, F. Cruciani, M. Zeviani, E. Briem, V. Carelli, P. Moral, J.M. Dugoujon, U. Roostalu, E.L. Loogväli, T. Kivisild, H.J. Bandelt, M. Richards, R. Villems, A.S. Santachiara-Benerecetti, O. Semino, A. Torroni: The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool. Am J Hum Genet 75, 910-918 (2004)
DOI: 10.1086/425590

95. D.C. Wallace: Mitochondrial DNA variation in human radiation and disease. Cell 163, 33-38 (2015)
DOI: 10.1016/j.cell.2015.08.067

96. E. Ruiz-Pesini, A.C. Lapeña, C. Díez-Sánchez, A. Pérez-Martos, J. Montoya, E. Alvarez, M. Díaz, A. Urriés, L. Montoro, M.J. López-Pérez, J.A. Enríquez: Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67, 682-696 (2000)
DOI: 10.1086/303040

97. E.M. Byrne, A.F. McRae, D.L. Duffy, Z.Z. Zhao, N.G. Martin, M.J. Wright, G.W. Montgomery, P.M. Visscher: Association study of common mitochondrial variants and cognitive ability.Behav Genet 39, 504-512 (2009)
DOI: 10.1007/s10519-009-9276-x

98. G.J. Tranah, T.M. Manini, K.K. Lohman, M.A. Nalls, S. Kritchevsky, A.B. Newman, T.B. Harris, I. Miljkovic, A. Biffi, S.R. Cummings, Y. Liu: Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion 11, 855-861 (2011)
DOI: 10.1016/j.mito.2011.04.005

99. Chen, N. Raule, A. Chomyn, G. Attardi: Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS One 7, e46473 (2012)
DOI: 10.1371/journal.pone.0046473

100. T. Kato, N. Fuku, Y. Noguchi, H. Murakami, M. Miyachi, Y. Kimura, M. Tanaka, K. Kitamura: Mitochondrial DNA haplogroup associated with hereditary hearing loss in a Japanese population. Acta Otolaryngol 132, 1178-1182 (2102)
DOI: 10.3109/00016489.2012.693624

101. P.G. Ridge, T.J. Maxwell, S.J. Foutz, M.H. Bailey, C.D. Corcoran, J.T. Tschanz, M.C. Norton, R.G. Munger, E. O’Brien, R.A. Kerber, R.M. Cawthon, J.S. Kauwe: Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging. BMC Bioinformatics 15 Suppl 7, S6 (2014)
DOI: 10.1186/1471-2105-15-S7-S6

102. M.J. Keogh, P.F. Chinnery: Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847, 1401-1411 (2015)
DOI: 10.1016/j.bbabio.2015.05.015

103. S.R. Atilano, D. Malik, M. Chwa, J. Cáceres-Del-Carpio, A.B. Nesburn, D.S. Boyer, B.D. Kuppermann, S.M. Jazwinski, M.V. Miceli, D.C. Wallace, N. Udar, M.C. Kenney: Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet 24, 4491-4503 (2015)
DOI: 10.1093/hmg/ddv173

104. D. Mishmar, E. Ruiz-Pesini, P. Golik, V. Macaulay, A.G. Clark, S. Hosseini, M. Brandon, K. Easley, E. Chen, M.D. Brown, R.I. Sukernik, A. Olckers, D.C. Wallace: Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100, 171-176 (2003)
DOI: 10.1073/pnas.0136972100

105. D.C. Wallace, E. Ruiz-Pesini, D. Mishmar: mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb Symp Quant Biol 68, 479-486 (2003)
DOI: 10.1101/sqb.2003.68.471

106. P.E. Coskun, E. Ruiz-Pesini, D.C. Wallace: Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc Natl Acad Sci U S A 100, 2174-2176 (2003)
DOI: 10.1073/pnas.0630589100

107. Y.T. Cheng, J. Liu, L.Q. Yang, C. Sun, Q.P Kong: Mitochondrial DNA content contributes to climate adaptation using Chinese populations as a model. PLoS One 8, e79536 (2013)
DOI: 10.1371/journal.pone.0079536

108. U. Cagin, J.A. Enriquez: The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 63, 10-55 (2015)
DOI: 10.1016/j.biocel.2015.01.026

109. S.M. Jazwinski: The retrograde response: when mitochondrial quality control is not enough. Biochim Biophys Acta 1833, 400-409 (2013)
DOI: 10.1016/j.bbamcr.2012.02.010

110. M.P. King, G. Attardi: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500-503 (1989)
DOI: 10.1126/science.2814477

111. D. Pye, D.S. Kyriakouli, G.A. Taylor, R. Johnson, M. Elstner, B. Meunier, Z.M. Chrzanowska-Lightowlers, R.W. Taylor, D.M. Turnbull, R.N. Lightowlers RN: Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants. Nucleic Acids Res 34, e95 (2006)
DOI: 10.1093/nar/gkl516

112. H.M. Wilkins, S.M. Carl, R.H. Swerdlow: Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2C, 619-631 (2014)
DOI: 10.1016/j.redox.2014.03.006

113. Gómez-Durán, D. Pacheu-Grau, E. López-Gallardo, C. Díez-Sánchez, J. Montoya, M.J. López-Pérez, E. Ruiz-Pesini: Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet 19, 3343-3353 (2010)
DOI: 10.1093/hmg/ddq246

114. D. Bellizzi, P. Cavalcante, D. Taverna, G. Rose, G. Passarino, S. Salvioli, C. Franceschi, G. De Benedictis: Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes Cells 11, 883-891 (2006)
DOI: 10.1111/j.1365-2443.2006.00986.x

115. D. Bellizzi, D. Taverna, P. D’Aquila, S. De Blasi, G. De Benedictis: Mitochondrial DNA variability modulates mRNA and intra-mitochondrial protein levels of HSP60 and HSP75: experimental evidence from cybrid lines. Cell Stress Chaperones 14, 265-271 (2009)
DOI: 10.1007/s12192-008-0081-x

116. P. D’Aquila, G. Rose, M.L. Panno, G. Passarino, D. Bellizzi: SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene 497, 323-329 (2012)
DOI: 10.1016/j.gene.2012.01.042

117. L.R. Cardon, C. Burge, D.A. Clayton, S. Karlin: Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci U S A 91, 3799-3803 (1994)
DOI: 10.1073/pnas.91.9.3799

118. B.F. Vanyushin, G.I Kiryanov, I.B. Kudryashova, A.N. Belozersky: DNA-methylase in loach embryos (Misgurnus fossilis). FEBS Lett 15, 313-316 (1971)
DOI: 10.1016/0014-5793(71)80646-4

119. B.Vanyushin, M.D. Kirnos: The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett 39, 195-199 (1974)
DOI: 10.1016/0014-5793(74)80049-9

120. B.Vanyushin, M.D. Kirnos: Structure of animal mitochondrial DNA: nucleotide composition, pyrimidine clusters, and methylation character. Mol Biol (Mosk)10, 715-724 (1976)

121. B.Vanyushin, M.D. Kirnos: Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim Biophys Acta 475, 323-336 (1997)
DOI: 10.1016/0005-2787(77)90023-5

122. M.M. Nass: Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. J Mol Biol 80, 155-175 (1973)
DOI: 10.1016/0022-2836(73)90239-8

123. D.J. Cummings, A. Tait, J.M. Goddard: Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 374, 1-11 (1974)
DOI: 10.1016/0005-2787(74)90194-4

124. I.B. Dawid: 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 184, 80–81 (1974)
DOI: 10.1126/science.184.4132.80

125. G.S. Groot, A.M. Kroon: Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. Biochim Biophys Acta 564, 355–357 (1979)
DOI: 10.1016/0005-2787(79)90233-8

126. R.J. Shmookler Reis, S. Goldstein: Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 258, 9078-9085 (1983)

127. Y. Pollack, J. Kasir, R. Shemer, S. Metzger, M. Szyf: Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12, 4811-4824 (1984)
DOI: 10.1093/nar/12.12.4811

128. M. Maekawa, T. Taniguchi, H. Higashi, H. Sugimura, K. Sugano, T. Kanno: Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clin Chem 50, 1480-1481 (2004)
DOI: 10.1373/clinchem.2004.035139

129. D.C. Wallace, W. Fan: Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12-31 (2010)

130. L.S. Shock, P.V. Thakkar, E.J. Peterson, R.G. Moran, S.M. Taylor: DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 108, 3630-3635 (2011)
DOI: 10.1073/pnas.1012311108

131. B.A. Chestnut, Q. Chang, A. Price, C. Lesuisse, M. Wong, L.J. Martin: Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31, 16619-16636 (2011)
DOI: 10.1523/JNEUROSCI.1639-11.2011

132. M. Wong, B. Gertz, B.A. Chestnut, L.J. Martin: Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 7, 279 (2013)
DOI: 10.3389/fncel.2013.00279

133. Castegna, V. Iacobazzi, V. Infantino: The mitochondrial side of epigenetics. Physiol Genomics 47, 299-307 (2015)
DOI: 10.1152/physiolgenomics.00096.2014

134. M. Mishra, R.A. Kowluru: Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 56, 5133-5142 (2015)
DOI: 10.1167/iovs.15-16937

135. L.J. Martin, M. Wong: Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics 10, 722-733 (2013)
DOI: 10.1007/s13311-013-0205-6

136. S. Feng, L.Xiong, Z. Ji, W. Cheng, H. Yang: Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6, 125-130 (2012)

137. M.G. Van der Wijst, M.G. Rots: Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet 31, 353-356 (2015)
DOI: 10.1016/j.tig.2015.03.009

138. L. Davenport, R.H. Taylor, D.T. Dubin: Comparison of human and hamster mitochondrial transfer RNA. Physical properties and methylation status. Biochim Biophys Acta 447, 285-293 (1976)
DOI: 10.1016/0005-2787(76)90051-4

139. V. McCulloch, B.L. Seidel-Rogol, G.S.Shadel: A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 22, 1116-1125(2002)
DOI: 10.1128/MCB.22.4.1116-1125.2002

140. J. Cotney, S.E. McKay, G.S.Shadel: Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 18, 2670-2682 (2009)
DOI: 10.1093/hmg/ddp208

141. C. Sun, L.L. Reimers, R.D. Burk: Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121, 59-63 (2011)
DOI: 10.1016/j.ygyno.2011.01.013

142. R.D. Kelly, A. Mahmud, M. McKenzie, I.A. Trounce, J.C. St John: Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40, 10124-10138 (2012)
DOI: 10.1093/nar/gks770

143. P. D’Aquila, M. Giordano, A. Montesanto, F. De Rango, G. Passarino, D. Bellizzi. Age-and gender-related pattern of methylation in the MT-RNR1 gene. Epigenomics 7, 707-716 (2015)
DOI: 10.2217/epi.15.30

144. S.K. Mawlood, L. Dennany, N. Watson, J. Dempster, B.S. Pickard. Quantification of global mitochondrial DNA methylation levels and inverse correlation with age at two CpG sites. Aging (Albany NY) 8, 636-641(2016)
DOI: 10.18632/aging.100892

145. E.E. Hong, C.Y. Okitsu, Smith AD, Hsieh CL. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol. 2013 Jul;33(14):2683-90
DOI: 10.1128/MCB.00220-13

146. B. Liu, Q. Du, L. Chen, G. Fu, S. Li, L. Fu, X. Zhang, C. Ma, C. Bin: CpG methylation patterns of human mitochondrial DNA. Sci Rep (2016) 6, 23421
DOI: 10.1038/srep23421

147. N.W. Penn, R. Suwalski, C. O’Riley, K. Bojanowski, R. Yura: The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126, 781-790 (1972)
DOI: 10.1042/bj1260781

148. M. Tahiliani, K.P. Koh, Y. Shen, W.A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L.M. Iyer, D.R. Liu, L. Aravind, A.Rao: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009)
DOI: 10.1126/science.1170116

149. S. Kriaucionis, N.Heintz: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929-930 (2009)
DOI: 10.1126/science.1169786

150. S.G. Jin, X. Wu, A.X. Li, G.P. Pfeifer: Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39, 5015-5024 (2011)
DOI: 10.1093/nar/gkr120

151. S.M. Kinney, H.G. Chin, R. Vaisvila, J. Bitinaite, Y. Zheng, P.O. Estève, S. Feng, H. Stroud, S.E. Jacobsen, S.Pradhan: Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286, 24685-24693 (2011)
DOI: 10.1074/jbc.M110.217083

152. M. Kim, Y.K. Park, T.W. Kang, S.H. Lee, Y.H. Rhee, J.L. Park, H.J. Kim, D. Lee, D. Lee, S.Y. Kim, Y.S.Kim Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Hum Mol Genet (2014) 23, 657-667
DOI: 10.1093/hmg/ddt453

153. M. Münzel, D. Globisch, T. Brückl, M. Wagner, V. Welzmiller, S. Michalakis, M. Müller, M. Biel, T. Carell: Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49, 5375-5377 (2010)
DOI: 10.1002/anie.201002033

154. L. Wen, X. Li, L. Yan, Y. Tan, R. Li, Y. Zhao, Y. Wang, J. Xie, Y. Zhang, C. Song, M. Yu, X. Liu, P. Zhu, X. Li, Y. Hou, H. Guo, X. Wu, C. He, R. Li, F. Tang, J. Qiao: Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol 15, R49 (2014)
DOI: 10.1186/gb-2014-15-3-r49

155. R.M. Kohli, Y. Zhang: TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472-479 (2013)
DOI: 10.1038/nature12750

156. C.E. Nestor, R. Ottaviano, J. Reddington, D. Sproul, D. Reinhardt, D. Dunican, E. Katz, J.M. Dixon, D.J. Harrison, R.R. Meehan: Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22, 467-477 (2012)
DOI: 10.1101/gr.126417.111

157. W. Li, M. Liu: Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011, 870726 (2011)
DOI: 10.4061/2011/870726

158. C.G. Chapman, C.J. Mariani, F. Wu, K. Meckel, F. Butun, A. Chuang, J. Madzo, M.B. Bissonette, J.H. Kwon, L.A.Godley: TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci Rep 5:17568 (2015)
DOI: 10.1038/srep17568

159. M. Zhao, J. Wang, W. Liao, D. Li, M. Li, H. Wu, Y. Zhang, M.E. Gershwin, Q. Lu: Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus. J Autoimmun 69, 64-73(2016)
DOI: 10.1016/j.jaut.2016.03.001

160. S. Dzitoyeva, H. Chen, H. Manev: Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33, 2881-2891 (2012)
DOI: 10.1016/j.neurobiolaging.2012.02.006

161. Z. Sun, J. Terragni, J.G. Borgaro, Y. Liu, L. Yu, S. Guan, H. Wang, D. Sun, X. Cheng, Z. Zhu, S. Pradhan, Y. Zheng: High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 3, 567-576 (2013)
DOI: 10.1016/j.celrep.2013.01.001

162. H. Chen, S. Dzitoyeva, H. Manev: Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690, 51-59 (2012)
DOI: 10.1016/j.ejphar.2012.06.019

163. J.C. Mathers, G. Strathdee, CL. Relton: Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71, 3-39 (2010)
DOI: 10.1016/b978-0-12-380864-6.00001-8

164. D. Hala, D.B. Huggett, W.W. Burggren: Environmental stressors and the epigenome. Drug Discov Today Technol 12, e3-8. (2014)
DOI: 10.1016/j.ddtec.2012.05.004

165. S. Ghosh, K.K. Singh, S. Sengupta, V. Scaria: Mitoepigenetics: The different shades of grey. Mitochondrion 25, 60-66 (2015)
DOI: 10.1016/j.mito.2015.09.003

166. F. Pacchierotti, M. Spanò: Environmental Impact on DNA Methylation in the Germline: State of the Art and Gaps of Knowledge. Biomed Res Int 2015, 123484(2015)
DOI: 10.1155/2015/123484

167. N.P. Evans, M. Bellingham, J.E. Robinson: Prenatal programming of neuroendocrine reproductive function. Theriogenology 86, 340-348 (2016)
DOI: 10.1016/j.theriogenology.2016.04.047

168. D.M. Silberman, G.B. Acosta, M.A. Zorrilla Zubilete: Long-term effects of early life stress exposure: Role of epigenetic mechanisms. Pharmacol Res109, 64-73 (2016)
DOI: 10.1016/j.phrs.2015.12.033

169. Constantinof, V.G. Moisiadis, S.G. Matthews: Programming of stress pathways: A transgenerational perspective. J Steroid Biochem Mol Biol160, 175-180 (2016)
DOI: 10.1016/j.jsbmb.2015.10.008

170. B.G. Janssen, H.M. Byun, W. Gyselaers, W. Lefebvre, A.A. Baccarelli, T.S. Nawrot: Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics 10, 536-544 (2015)
DOI: 10.1080/15592294.2015.1048412

171. H.M. Byun, N. Benachour, D. Zalko, M.C. Frisardi, E. Colicino, L. Takser, A.A. Baccarelli: Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology328, 152-159 (2015)

172. Sadakierska-Chudy, M. Frankowska, M. Filip: Mitoepigenetics and drug addiction. Pharmacol Ther 144, 226-233 (2014)
DOI: 10.1016/j.pharmthera.2014.06.002

173. J.B. Dietrich, R. Poirier, D. Aunis,J. Zwiller: Cocaine downregulates the expression of the mitochondrial genome in rat brain. Ann N Y Acad Sci 1025, 345-350 (2004)
DOI: 10.1196/annals.1316.042

174. Q. LaPlant, V. Vialou, H.E. 3rd Covington, D. Dumitriu, J. Feng, B.L. Warren, I. Maze, D.M. Dietz, E.L. Watts, S.D. Iñiguez, J.W. Koo, E. Mouzon, W. Renthal, F. Hollis, H. Wang, M.A. Noonan, Y. Ren, A.J. Eisch, C.A. Bolaños, M. Kabbaj, G. Xiao, R.L. Neve, Y.L. Hurd, R.S. Oosting, G. Fan, J.H. Morrison, E.J. Nestler: Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13, 1137-1143 (2010)
DOI: 10.1038/nn.2619

175. K. Anier, K. Malinovskaja, A. Aonurm-Helm, A. Zharkovsky, A. Kalda: DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35, 2450-2461 (2010)
DOI: 10.1038/npp.2010.128

176. Z. Zhou, Q. Yuan, D.C. Mash, D. Goldman: Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci U S A 108, 6626-6631 (2011)
DOI: 10.1073/pnas.1018514108

177. K. Liao, J. Yan, K. Mai, Q. Ai: Dietary Olive and Perilla Oils Affect Liver Mitochondrial DNA Methylation in Large Yellow Croakers. J Nutr 145, 2479-2485 (2015)
DOI: 10.3945/jn.115.216481

178. K. Liao, J. Yan, K. Mai, Q. Ai: Dietary lipid concentration affects liver mitochondrial DNA copy number, gene expression and DNA methylation in large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 193, 25-32 (2016)
DOI: 10.1016/j.cbpb.2015.11.012

179. M.B. Terry, L. Delgado-Cruzata, N. Vin-Raviv, H.C. Wu, R.M. Santella: DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 6, 828-837(2011)
DOI: 10.4161/epi.6.7.16500

180. L. Delgado-Cruzata, N. Vin-Raviv, P. Tehranifar, J. Flom, D. Reynolds, K. Gonzalez, R.M. Santella, M.B. Terry: Correlations in global DNA methylation measures in peripheral blood mononuclear cells and granulocytes. Epigenetics 9, 1504-1510 (2014)
DOI: 10.4161/15592294.2014.983364

181. V. Infantino, A. Castegna, F. Iacobazzi, I. Spera, I. Scala, G. Andria, V. Iacobazzi: Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102, 378-382 (2011)
DOI: 10.1016/j.ymgme.2010.11.166

182. L.D. Zheng, L.E. Linarelli, L. Liu, S.S. Wall, M.H. Greenawald, R.W. Seidel, P.A. Estabrooks, F.A. Almeida, Z. Cheng: Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin Epigenetics 7, 60 (2015)
DOI: 10.1186/s13148-015-0093-1

183. L. Jia, J. Li, B. He, Y. Jia, Y. Niu, C. Wang, R. Zhao: Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries. Sci Rep 6, 19436 (2016)
DOI: 10.1038/srep19436

184. A.A. Baccarelli, H.M. Byun: Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 7, 44(2015)
DOI: 10.1186/s13148-015-0078-0

185. F. Shen, W. Huang, J.H. Qi, B.F. Yuan, J.T. Huang, X. Zhou, Y.Q. Feng, Y.J. Liu, S.M. Liu: Association of 5-methylcytosine and 5-hydroxymethylcytosine with mitochondrial DNA content and clinical and biochemical parameters in hepatocellular carcinoma. PLoS One 8, e76967 (2013)
DOI: 10.1371/journal.pone.0076967

186. J. Gao, S. Wen, H. Zhou, S. Feng: De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 12, 7033-7038 (2015)

Abbreviations: 5-hmC: Cytosine hydroxymethylation, 5-mC: Cytosine methylation, AD: Alzheimer Disease, ALS: Amyotrophic Lateral Sclerosis, COI-III: Cytochrome c oxidase subunits I-III, CSBI-III: Conserved Sequence Blocks I-III, CVD: CardioVascular Disease, Cytb: Cytochrome b, DNMT: DNA MethylTransferase, DS: Down Syndrome, ES cells: Embryonic Stem cells, GSS: Gene Start Site, hMe-DIP: h5-mC immunoprecipitation, HSP: Heavy-Strand Promoter, HVRI-II: Hyper Variable Region I and II, LC-ESI-MS: Liquid chromatography-electrospray ionization tandem mass spectrometry, LSP: Light-Strand Promoter, Me-DIP: 5-mC immunoprecipitation, MT-ATP6: ATP synthase F0 subunit6, MT-ATP8: ATP synthase F0 subunit8, mtDNA: Mitochondrial DNA, mTERF: Mitochondrial Transcription Termination Factor 1, MT-ND1: NADH dehydrogenase subunit1, MT-ND4: NADH dehydrogenase subunit4, MT-ND4L: NADH dehydrogenase subunit4L, MT-ND5: NADH dehydrogenase subunit5, MT-ND6: NADH dehydrogenase subunit6, MT-RNR1:12S Ribosomal RNA, MT-RNR2:16S ribosomal RNA, mtSSB: Mitochondrial Single-Stranded Binding proteins, MT-TF: tRNA Phenylalanine, mitochondrial-encoded, MT-TL1: tRNA Leucine 1, mitochondrial-encoded, NASH: Nonalcoholic fatty liver disease, NGS: Next Generation Sequencing, OXPHOS: Oxidative Phosphorylation, PCOS: PolyCystic Ovarian Syndrome, PD: Parkinson Disease, PM: Particulate Matter, POLG: Mitochondrial DNA Polymerase Gamma, POLRMT: Mitochondrial RNA Polymerase, RFLP: Restriction Fragment Length Polymorphism, RITOLS: RNA Incorporated Throughout the Lagging Strand, ROS: Reactive Oxidative Species, rRNA: Ribosomal RNA, SDM: Strand-Displacement Model, SS: Simple Steatosis, TET:Ten-Eleven Traslocation (TET) enzyme, TFAM: Mitochondrial Transcription Factor A, TFB1M: Mitochondrial Transcription Factor B1, TFB2M: Mitochondrial Transcription Factor B2, tRNA: Trasfer RNA, VPA: Sodium Valproate

Key Words: mtDNA Genetics, mtDNA Epigenetics, mtDNA Methylation, mtDNA Hydroxymethylation, Aging, Diseases, Environmental Factors, Review

Send correspondence to: Dina Bellizzi, Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy, Tel: 390984492930, Fax: 39098493601, E-mail: dina.bellizzi@unical.it