[Frontiers In Bioscience, Landmark, 22, 1427-1438, March 1, 2017]

TRPM2: a potential drug target to retard oxidative stress

Jun Li1, 4, †, Yunling Gao2, †, Xianying Bao1, 3, Fengna Li1, Wei Yao5, Zemeng Feng1, 6, *, Yulong Yin1

1Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, Peoples R China, 2Xiangyang Central Hospital, the Affliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Peoples R China, 3College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China, 4University of Chinese Academy of Sciences, Beijing 100049, Peoples R China,5 Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medial University, Tianjin 300052, China, 6Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Peoples R China


1. Abstract
2. Introduction
3. The gene location, tissues distribution of TRPM2
4. The basic structure of TRPM2
5. Variants of TRPM2
6. Activators for TRPM2
7. Inhibitors for TRPM2
8. TRPM2 will be activated during oxidative stress
9. Function and potential application in drug discovery of TRPM2
10. Discussion
11. Acknowledgement
12. References


The Transient Receptor Potential Melastatin 2 (TRPM2) is a member of G protein coupled receptor superfamily and a novel dual-function protein that possesses both ion channel and Adenosine 5’-DiphosPhatase Ribose (ADPR) hydrolase function. TRPM2 is involved in Ca2+ signaling in various cells as an endogenous redox sensor for oxidative stress and reactive oxygen species, and contributes to cytokine production, insulin release, motility, Ca2+ entry and Ca2+-dependent cellular reactions such as endothelial hyper-permeability and apoptosis. The wide expression of TRPM2 might render it as a potentially significant therapeutic target in pathological settings including cardiovascular and neurodegenerative diseases and of great relevance in drug design, feed additives and other industries. Here, we discuss the TRPM2 gene structure, function, its variants, as well as its activators and inhibitors and provide a peptide drug design for modulation of oxidative stress.


1. JM Phang, W Liu, O Zabirnyk: Proline metabolism and microenvironmental stress. Annu Rev Nutr 30, 441-463 (2010)
DOI: 10.1146/annurev.nutr.012809.104638

2. JHJ Hoeijmaker: DNA damage, aging, and cancer. N Engl J Med 361 (15), 1475-1485 (2009)
DOI: 10.1056/NEJMra0804615

3. KE Wellen, CB Thompson: Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40 (2),323-332 (2010)
DOI: 10.1016/j.molcel.2010.10.004

4. M Yanik, O Erel, M Kati: The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatrica 16 (4), 200-203 (2004)
DOI: 10.1111/j.0924-2708.2004.00090.x

5. M Fransen, M Nordgren, B Wang, O Apanasets: Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822 (9), 1363-1373 (2012)
DOI: 10.1016/j.bbadis.2011.12.001

6. EA Kosenko, IN Solomadin, LA Tikhonova, VP Reddy, G Aliev, YG Kaminsky: Pathogenesis of Alzheimer disease: Role of oxidative stress, amyloid-β peptides, systemic ammonia and erythrocyte energy metabolism. CNS Neurol Disord Drug Targets 13 (1), 112-119 (2014)
DOI: 10.2174/18715273113126660130

7. AL Perraud, A Fleig, CA Dunn, LA Bagley, P Launay, C Schmitz, AJ Stokes, Q Zhu, MJ Bessman, R Penner, JP Kinet, AM Scharenberg: ADPR gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411,595-599 (2001)
DOI: 10.1038/35079100

8. AL Perraud, B Shen, CA Dunn, K Rippe, MK Smith, MJ Bessman, BL Stoddard, AM Scharenberg: NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADPR pyrophosphatase. J Biol Chem 278,1794-1801 (2003)
DOI: 10.1074/jbc.M205601200

9. B Tóth, L Iordanov, L Csanády: Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating. Proc Natl Acad Sci U S A 111 (47),16949-16954 (2014)
DOI: 10.1073/pnas.1412449111

10. CH Tan, PA McNaughton: The TRPM2 ion channel is required for sensitivity to warmth. Nature 536 (7617), 460-463 (2016)
DOI: 10.1038/nature19074

11. K Song, H Wang, GB Kamm, J Pohle, F de Castro, Reis, P Heppenstall, H Wende, J Siemens: The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353 (6306),1393-1398 (2016)
DOI: 10.1126/science.aaf7537

12. X Zeng, SC Sikka, L Huang, C Sun, C Xu, D Jia, AB Abdel-Mageed, JE Pottle, JT Taylor, M Li: Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 13,195-201 (2010)
DOI: 10.1038/pcan.2009.55

13. K Uchida, M Tominaga: The role of TRPM2 in pancreatic β-cells and the development of diabetes. Cell Calcium56 (5),332-339 (2014)
DOI: 10.1016/j.ceca.2014.07.001

14. Y Jang, SH Lee, B Lee, S Jung, A Khalid, K Uchida: TRPM2, a Susceptibility Gene for Bipolar Disorder, Regulates Glycogen Synthase Kinase-3 Activity in the Brain. J Neurosci 35 (34),11811–11823 (2015)
DOI: 10.1523/JNEUROSCI.5251-14.2015

15. VG Ostapchenko, M Chen, MS Guzman, YF Xie, N Lavine, J Fan, FH Beraldo, AC Martyn, JC Belrose, Y Mori, JF MacDonald, VF Prado, MA Prado, MF Jackson: The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci 35 (45),15157-15169 (2015)
DOI: 10.1523/JNEUROSCI.4081-14.2015

16. CS Tautermann, DE Gloriam: Editorial overview: New technologies: GPCR drug design and function-exploiting the current (of) structures. Curr Opin Pharmacol 30,vii-x (2016)
DOI: 10.1016/j.coph.2016.07.012

17. K Nagamine, J Kudoh, S Minoshima, K Kawasaki, S Asakawa, F Ito, N Shimizu: Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54,124-131 (1998)
DOI: 10.1006/geno.1998.5551

18. RE Straub, T Lehner, Y Luo, JE Loth, W Shao, L Sharpe, JR Alexander, K Das, R Simon, RR Fieve: A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Nat Genet 8,291-296 (1994)
DOI: 10.1038/ng1194-291

19. T Uemura, J Kudoh, S Noda, S Kanba, N Shimizu: Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem. Biophys Res Commun 328,1232-1243 (2005)
DOI: 10.1016/j.bbrc.2005.01.086

20. DR Rosen, T Siddique, D Patterson, DA Figlewicz, P Sapp, A Hentati, D Donaldson, J Goto, JP O’Regan, HX Deng: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362,59-62 (1993)
DOI: 10.1038/362059a0

21. JZ Bai, J Lipski: Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31 (2),204-214 (2010)
DOI: 10.1016/j.neuro.2010.01.001

22. E Fonfria, PR Murdock,FS Cusdin, CD Benham, RE Kelsell, S McNulty: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26, 159-178 (2006)
DOI: 10.1080/10799890600637506

23. XR Yang, MJ Lin, LS McIntosh, JS Sham: Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290,L1267-1276 (2006)
DOI: 10.1152/ajplung.00515.2005

24. FJ Kühn, G Knop, A Lückhoff: The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J Biol Chem 282,27598-27609 (2007)
DOI: 10.1074/jbc.M702247200

25. FJ Kühn, C Kühn, M Naziroglu, A Lückhoff: Role of an N-terminal splice segment in the activation of the cation channel TRPM2 by ADPR and hydrogen peroxide. Neurochem Res 34,227-233 (2009)
DOI: 10.1007/s11064-008-9755-0

26. R Xia, ZZ Mei, HJ Mao, W Yang, L Dong, H Bradley, DJ Beech, LH Jiang: Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J Biol Chem 283,27426-27432 (2008)
DOI: 10.1074/jbc.M801049200

27. ZZ Mei, LH Jiang: Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel. J Membr Biol 230,93-99 (2009)
DOI: 10.1007/s00232-009-9190-4

28. C Schmitz, AL Perraud: The TRPM cation channels in the immune context. Curr Pharm Des 11,2765-2778 (2005)
DOI: 10.2174/1381612054546851

29. ZZ Mei, LH Jiang: Conserved cysteine residues in the pore region are obligatory for human TRPM2 channel function. Am. J Physiol Cell Physiol 291,C1022-1028 (2006)
DOI: 10.1152/ajpcell.00606.2005

30. TK Kim, JH Nam, WG Ahn, NH Kim, HY Ham, CW Hong, JS Nam, J Lee, SO Huh, L So, SJ Kim, DK Song: Lys1110 of TRPM2 is critical for channel activation. Biochem J 455 (3),319-327 (2013)
DOI: 10.1042/BJ20130303

31. Y Maruyama, T Ogura, K Mio, S Kiyonaka, K Kato, Y Mori, S Sato: Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282,36961-36970 (2007)
DOI: 10.1074/jbc.M705694200

32. W Zhang, X Chu, Q Tong, JY Cheung, K Conrad, K Masker, BA Miller: A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278,16222-16229 (2003)
DOI: 10.1074/jbc.M300298200

33. E Wehage, J Eisfeld, I Heiner, E Jüngling, C Zitt, A Lückhoff, A: Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277, 23150–23156 (2002)
DOI: 10.1074/jbc.M112096200

34. MC Hermosura, AM Cui, RC Go, B Davenport, CM Shetler, JW Heizer, C Schmitz, G Mocz, RM Garruto, AL Perraud: Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc. Natl. Acad. Sci. U S A. 105,18029-18034 (2008)
DOI: 10.1073/pnas.0808218105

35. C Xu, PP Li, RG Cooke, SV Parikh,K Wang, JL Kennedy, JJ Warsh: TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord 11,1-10 (2009)
DOI: 10.1111/j.1399-5618.2008.00655.x

36. H Knowles,Y Li, AL Perraud: The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55,241–248 (2013)
DOI: 10.1007/s12026-012-8373-8

37. Q Tong, W Zhang, K Conrad, K Mostoller, JY Cheung, BZ Peterson, BA Miller: Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281,9076-9085 (2006)
DOI: 10.1074/jbc.M510422200

38. J Starkus, A Beck, A Fleig, R Penner: Regulation of TRPM2 by extra- and intracellular calcium. J. Gen. Physiol 130,427-440 (2007)
DOI: 10.1085/jgp.200709836

39. FJ Kühn, C Kühn, M Winking, DC Hoffmann, A Lückhoff: ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of theNUDT9H Domain. PLoS One 11 (6),e0158060 (2016)
DOI: 10.1371/journal.pone.0158060

40. ME Olah, MF Jackson, H Li, Y Perez, HS Sun, S Kiyonaka, Y Mori, M Tymianski, JF MacDonald: Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587,965–979 (2009)
DOI: 10.1113/jphysiol.2008.162289

41. YF Xie, JC Belrose, G Lei, M Tymianski, Y Mori, JF Macdonald, MF Jackson: Dependence of NMDA/GSK-3beta mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain 4,44 (2011)
DOI: 10.1186/1756-6606-4-44

42. A Beck, M Kolisek, LA Bagley, A Fleig, R Penner: Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 20, 962–964 (2006)
DOI: 10.1096/fj.05-5538fje

43. M Kolisek, A Beck, A Fleig, R Penner: Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18, 61–69 (2005)
DOI: 10.1016/j.molcel.2005.02.033

44.O Grubisha, LA Rafty CL Takanishi, X Xu, L Tong, AL Perraud, AM Scharenberg, JM Denu: Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 281, 14057-14065 (2006)
DOI: 10.1074/jbc.M513741200

45. B Tóth, I Iordanov, L Csanády: Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2’-phosphate. J Gen Physiol 45 (5),419-430 (2015)
DOI: 10.1085/jgp.201511377

46. Y Hara, M Wakamori, M Ishii, E Maeno, M Nishida, T Yoshida, H Yamada, S Shimizu, E Mori, J Kudoh, N Shimizu, H Kurose, Y Okada, K Imoto, Y Mori: LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9, 163-173 (2002)
DOI: 10.1016/S1097-2765(01)00438-5

47. FJ Kühn, A Lückhoff: Sites of the NUDT9-H domain critical for ADPR activation of the cation channel TRPM2. J Biol Chem 279,46431-46437 (2004)
DOI: 10.1074/jbc.M407263200

48. AL Perraud, CL Takanishi, B Shen, S Kang, MK Smith, C Schmitz, HM Knowles, D Ferraris, W Li, J Zhang, BL Stoddard, AM Scharenberg: Accumulation of free ADPR from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280,6138-6148 (2005)
DOI: 10.1074/jbc.M411446200

49. CW Hong, TK Kim, HY Ham, JS NamYH Kim, H Zheng, B Pang, TK Min, JS Jung, SN Lee,: Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine/GlyRα2/TRPM2/p38 MAPK signaling. J Immunol 184, 4401–4413 (2010)
DOI: 10.4049/jimmunol.0902814

50. K Hill, CD Benham, S McNulty, AD Randall: Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47,450-460 (2004)
DOI: 10.1016/j.neuropharm.2004.04.014

51. K Hill, S McNulty, AD Randa: Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn. Schmiedebergs. Arch Pharmacol 370, 227-237 (2004)
DOI: 10.1007/s00210-004-0981-y

52. R Kraft, C Grimm, H Frenzel, C Harteneck: Inhibition of TRPM2 cation channels by N- (p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148,264-273 (2006)
DOI: 10.1038/sj.bjp.0706739

53. MR Bari, S Akbar, M Eweida, FJP Kühn, AJ Gustafsson, A Lückhoff, MS Islam: H2O2-induced Ca2+ influx and its inhibition by N- (p-amylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med 13 (9B), 3260-3267 (2009)
DOI: 10.1111/j.1582-4934.2009.00737.x

54. E Kheradpezhouh, GJ Barritt, GY Rychkov: Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol 7,1-7 (2016)
DOI: 10.1016/j.redox.2015.11.001

55. E Sözbir, M Nazıroğlu: Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 31 (2),385-393 (2016)
DOI: 10.1007/s11011-015-9769-7

56. C Moreau, T Kirchberger, JM Swarbrick, SJ Bartlett, R Fliegert, T Yorgan, A Bauche, A Harneit, AH Guse, BV Potter: Structure-activity relationship of adenosine 5’-diphosphoribose at the transient receptor potential melastatin 2 (TRPM2) channel: rational design of antagonists. J Med Chem 56 (24),10079-10102 (2013)
DOI: 10.1021/jm401497a

57. K Togashi, H Inada, M Tominaga: Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB) Br J Pharmacol 153,1324-1330 (2008)
DOI: 10.1038/sj.bjp.0707675

58. W Yang, J Zou, R Xia, ML Vaal, VA Seymour, J Luo, DJ Beech, LH Jiang: State-dependent inhibition of TRPM2 channel by acidic pH. J Biol Chem 285, 30411–30418 (2010)
DOI: 10.1074/jbc.M110.139774

59. M Naziroğlu: New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADPR. Neurochem Res 32,1990-2001 (2007)
DOI: 10.1007/s11064-007-9386-x

60. F Schuber, FE Lund: Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4,249-261 (2004)
DOI: 10.2174/1566524043360708

61. CM Hecquet, GU Ahmmed, SM Vogel, AB Malik: Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102,347-355 (2008)
DOI: 10.1161/CIRCRESAHA.107.160176

62. W Zhang, Q Tong, K Conrad, J Wozney, JY Cheung, BA Miller: Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol 292,C1746-1758 (2007)
DOI: 10.1152/ajpcell.00569.2006

63. CM Hecquet, GU Ahmmed, AB Malik: TRPM2 channel regulates endothelial barrier function. Adv Exp Med Biol 661,155-167 (2010)
DOI: 10.1007/978-1-60761-500-2_10

64. F Qian, P Huang, L Ma, A Kuznetsov, N Tamarina, LH Philipson: TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51 Suppl 1,S183-189 (2002)
DOI: 10.2337/diabetes.51.2007.S183

65. Y Mizukami, WS Jo, EM Duerr, M Gala, J Li, X Zhang, MA Zimmer, O Iliopoulos, LR Zukerberg, Y Kohgo, MP Lynch, BR Rueda, DC Chung: Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11,992-997 (2005)
DOI: 10.1038/nm1294

66. S Yamamoto, N Takahashi, Y Mori: Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol 103,18-27 (2010)
DOI: 10.1016/j.pbiomolbio.2010.05.005

67. J Zhong, S Amina, M Liang, S Akther, T Yuhi, T Nishimura, C Tsuji, T Tsuji, HX Liu, M Hashii, F Furuhara, S Yokoyama, Y Yamamoto, H Okamoto, YJ Zhao, HC Lee, M Tominaga, O Lopatina, H Higashida: Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice. Front Neurosci 10,304 (2016)
DOI: 10.3389/fnins.2016.00304

68. JA Wilkinson, JL Scragg, JP Boyle, B Nilius, C Peers: H2O2-stimulated Ca2+ influx via TRPM2 is not the sole determinant of subsequent cell death. Pflugers Arch 455,1141-1151 (2008)
DOI: 10.1007/s00424-007-0384-2

69. CR Dass, PF Choong: Biophysical delivery of peptides: applicability for cancer therapy. Peptides 27,3479-3488 (2006)
DOI: 10.1016/j.peptides.2006.08.016

70. RC Ladner, AK Sato, J Gorzelany, M de Souza: Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov oday 9,525-529 (2004)
DOI: 10.1016/S1359-6446(04)03104-6

71. ML Tan, PF Choong, CR Dass: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31,184-193 (2010)
DOI: 10.1016/j.peptides.2009.10.002

72. J Audie, C Boyd: The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right. Cur Pharm Des 16, 567-582 (2010)
DOI: 10.2174/138161210790361425

73. P Järver, I Mäger, U Langel: In vivo bio-distribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci 31,528-35 (2010)
DOI: 10.1016/j.tips.2010.07.006

74. P Pechon, A Tartar, MK Dunn: Peptide Report – Development and Trends for Peptide Therapeutics (2010) [doi not found]

75. T Pawson, P Nash: Assembly of cell regulatory systems through protein interaction domains. Science 300,445-452 (2003)
DOI: 10.1126/science.1083653

76. L Parthasarathi, F Casey, A Stein, P Aloy, DC Shields: Approved drug mimics of short peptide ligands from protein interaction motifs. J Chem Inf Model 48,1943-1948 (2008)
DOI: 10.1021/ci800174c

77. P Molek, B Strukelj, T Bratkovic: Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 16,857-87 (2011)
DOI: 10.3390/molecules16010857

78. K Sonmez, NT Zaveri, IA Kerman, S Burke, CR Neal, X Xie, SJ Watson, L Toll: Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 5,e1000258 (2009)
DOI: 10.1371/journal.pcbi.1000258

79. N London, D Movshovitz-Attias, O Schueler-Furman: The structural basis of peptide-protein binding strategies. Structure 18,188-199 (2010)
DOI: 10.1016/j.str.2009.11.012

80. E Petsalaki, A Stark, E García-Urdiales, RB Russell: Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 5,e1000335 (2009)
DOI: 10.1371/journal.pcbi.1000335

81. D Vicari, KC Foy, EM Liotta, PT Kaumaya: Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways. J Biol Chem 286,13612-13625 (2011)
DOI: 10.1074/jbc.M110.216812

Abbreviations: 2-APB: 2-aminoethoxydiphenyl borate; 6TM: Six trans-membrane; ACA: N- (p-amylcinnamoyl) anthranilic acid; ADPR: Adenosine diphospho-ribose; AMP: adenosine monophosphate; BD: Bipolar disorder; FFA: flufenamic acid; H2O2: hydrogen peroxide; NAD: nicotinamide adenine dinucleotide; NADases: NAD+ glycohydrolases; NUDT9-H: Nucleoside diphosphate linked moiety X-type motif 9 homology; O2: Oxygen; PARP: poly-adenine dinucleotide phosphate-ribose polymerase; ROS: Reactive oxygen species; SNP: single nucleotide polymorphisms; SOD: superoxide dismutase ; SSF-TRPM2: striatum short form transient receptor potential (melastatin) 2; TNFα: tumor necrosis factor α; TRP: The transient receptor potential channel; TRPC7: Transient receptor potential-related channel 7; TRPM2: The transient receptor potential (melastatin) 2; TRPM2-WT:The transient receptor potential (melastatin) 2 wild type.

Key Words: Transient receptor potential melastatin 2, Oxidative stress, Calcium-permeable channel, Drug design, Review

Send correspondence to: Zemeng Feng, Address: Mapoling of Changsha City, Hunan province, P. R. China, Tel: +86-731-84619706, Fax: 86-731-84612685, E-mail: zemengfeng2006@163.com