[Frontiers In Bioscience, Scholar, 9, 375-394, June 1, 2017]

Multi-omics and male infertility: status, integration and future prospects

Ashima Sinha1, Virendra Singh2, Savita Yadav1

1All India Institute of Medical Sciences (AIIMS), Department of Biophysics, New Delhi, India,2 Jawaharlal Nehru University (JNU), School of Life Sciences, New Delhi, India


1. Abstract
2. Introduction
3. Epigenomics
3.1. Outline of epigenetic mechanisms and their regulation
3.2. Epigenetic transformations in sperm chromatin during spermatogenesis
3.3. DNA methylation and male infertility
3.4. Global DNA methylation status in Oligozoospermic and Asthenozoospermic (AS) infertile males
4. Genomics and male infertility
5. Proteomics and male infertility
6. Metabolomics and male infertility
7. Integrative links among multi-omics approaches for male infertility
8. Future of integration of multi-omics data in male infertility
9. Acknowledgments
10. References


Within the cell, gene expression analysis is the key to gain information about different cellular and physiological events. The multifaceted route of fertilization is a combination of different processes, which include production, maturation and ejaculation of the sperm, its travel through the female genital tract, followed by the ultimate fusion of the fertile sperm with the egg. Early embryogenesis and gametogenesis as well as gene expression at tissue level and global gene silencing are under different levels of stringent epigenetic checks. Moreover, transcriptome (expressed segment of the genome in form of RNA) and the proteome (expressed set of genomic proteins) contribute uniformly to the overall cellular gene expression. In both normal and pathophysiological environments, this gene expression is altered across various levels viz., genome variations, post-transcriptional modifications, protein expression and post translational modifications. Consequently, more informative conclusions can be drawn through a new ‘omics’ approach of system biology, which takes into account all the genomics, epigenomics, proteomics, and metabolomics findings under one roof, thus computing the alterations in all the entities (genes, proteins, metabolites) concurrently.


1. MR Maduro, KC Lo, WW Chuang, DJ Lamb: Genes and male infertility: what can go wrong? J Androl 24, 485-493 (2003)
DOI: 10.1002/j.1939-4640.2003.tb02697.x

2. DT Carrell, KI Aston, R Oliva, BR Emery, CJ De Jonge: The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 363, 295-312 (2016)
DOI: 10.1007/s00441-015-2320-7

3. P Thonneau, S Marchand, A Tallec, ML Ferial, B Ducot, J Lansac, P Lopes, JM Tabaste, A Spira: Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod 6, 811-816 (1991)
DOI: 10.1093/oxfordjournals.humrep.a137433

4. J Boivin, L Bunting, JA Collins, KG Nygren: International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22, 1506-1512 (2007)
DOI: 10.1093/humrep/dem046

5. DM de Kretser: Male infertility. Lancet 349, 787-790 (1997)
DOI: 10.1016/S0140-6736(96)08341-9

6. KI Aston, DF Conrad: A review of genome-wide approaches to study the genetic basis for spermatogenic defects. Methods Mol Biol 927, 397-410 (2013)
DOI: 10.1007/978-1-62703-038-0_34

7. JM Hotaling: Genetics of male infertility. Urol Clin North Am 41, 1-17 (2014)
DOI: 10.1016/j.ucl.2013.08.009

8. N Gupta, S Gupta, M Dama, A David, G Khanna, A Khanna, S Rajender: Strong association of 677 C > T substitution in the MTHFR gene with male infertility—a study on an Indian population and a meta-analysis. PLoS One 6, 22277 (2011)
DOI: 10.1371/journal.pone.0022277

9. YN Teng, YP Chang, JT Tseng, PH Kuo, IW Lee, MS Lee, PL Kuo: A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod 27, 2857–2865 (2012)
DOI: 10.1093/humrep/des227

10. W Wu, J Lu, Q Tang, S Zhang, B Yuan, J Li, WU Di, H Sun, C Lu, Y Xia, D Chen, J Sha, X Wang: GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep 3, 2258 (2013)

11. S Gunes, M Al-Sadaan, A Agarwal: Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online 31, 309–319 (2015)
DOI: 10.1016/j.rbmo.2015.06.010

12. L Stuppia, M Franzago, P Ballerini, V Gatta, I Antonucci: Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 7, 120 (2015)
DOI: 10.1186/s13148-015-0155-4

13. D Kumar, G Bansal, A Narang, T Basak, T Abbas, D Dash: Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 16, 2533-2544 (2016)
DOI: 10.1002/pmic.201600140

14. AR Lima, L Bastos Mde, M Carballo, P Guedes de Pinho: Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 9, 357-370 (2016)
DOI: 10.1016/j.tranon.2016.05.004

15. AD Riggs, RA Martinssen, VEA Russo: Epigenetic mechanisms of gene regulation. In:. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1996

16. GI Egger, G Liang, A Aparicio, PA Jones: Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004)
DOI: 10.1038/nature02625

17. CH Waddington: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)
DOI: 10.1038/150563a0

18. A Santenard, ME Torres-Padilla: Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4, 80-84 (2009)
DOI: 10.4161/epi.4.2.7838

19. W An: Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41, 351–369 (2007)
DOI: 10.1007/1-4020-5466-1_16

20. T Kouzarides: Chromatin modifications and their function. Cell 128, 693–705 (2007)
DOI: 10.1016/j.cell.2007.02.005

21. RS Illingworth, AP Bird: CpG islands—‘‘a rough guide’’. FEBS Lett 83, 1713–1720 (2009)
DOI: 10.1016/j.febslet.2009.04.012

22. D Takai, PA Jones: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740–3745 (2002)
DOI: 10.1073/pnas.052410099

23. R Dada, M Kumar, R Jesudasan, JL Fernández, J Gosálvez, A Agarwal: Epigenetics and its role in male infertility. J Assist Reprod Genet 29, 213–223 (2012)
DOI: 10.1007/s10815-012-9715-0

24. PD Partensky, GJ Parrikar: Chromatin remodelers act globally sequence positions nucleosomes locally. J Mol Biol 391, 12–25 (2009)
DOI: 10.1016/j.jmb.2009.04.085

25. GJ Narlikar, HY Fan, RE Kingston: Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002)
DOI: 10.1016/S0092-8674(02)00654-2

26. FF Costa: Non-coding RNA: new players in eukaryotic biology. Gene 357, 83–94 (2005)
DOI: 10.1016/j.gene.2005.06.019

27. T Hamatani: Human spermatozoal RNAs. Fertil Steril 97, 275–281 (2012)
DOI: 10.1016/j.fertnstert.2011.12.035

28. J Ausio, JM Eirin-Lopez, LJ Frehlick: Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. Soc Re-prod Fertil Suppl 65, 63–79 (2007)

29. R Oliva: Protamines and male infertility. Hum Reprod Update 12, 417-35 (2006)
DOI: 10.1093/humupd/dml009

30. HJ van Roijen, MP Ooms, MC Spaargaren, WM Baarends, RF Weber, JA Grootegoed, JT Vreeburg: Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 3, 1559-1566 (1998)
DOI: 10.1093/humrep/13.6.1559

31. S Rousseaux, J Gaucher, J Thevenon, C Caron, ALVitte, S Curtet, C Derobertis, AK Faure, R Levy, I Aknin-Seifer, C Ravel, JP Siffroi, K Mc Elreavey, H Lejeune, C Jimenez, S Hennebicq, S Khochbin: Spermiogenesis: histone acetylation triggers male genome reprogramming. Gynecol Obstet Fertil 37, 519–522 (2009)
DOI: 10.1016/j.gyobfe.2009.04.003

32. WS Ward, DS Coffey: DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44, 569-574 (1991)
DOI: 10.1095/biolreprod44.4.569

33. SM Wykes, SA Krawetz: The structural organization of sperm chromatin. J Biol Chem 278, 29471-29477 (2003)
DOI: 10.1074/jbc.M304545200

34. SS Hammoud, DA Nix, H Zhang, J Purwar, DT Carrell, BR Cairns: Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473-478 (2009)
DOI: 10.1038/nature08162

35. TF Wu, DS Chu: Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod Biomed Online 16, 13-22 (2008)
DOI: 10.1016/S1472-6483(10)60552-4

36. F von Meyenn, W Reik : Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell 161, 1248-1251 (2015)
DOI: 10.1016/j.cell.2015.05.039

37. K Pfeifer: Mechanisms of Genomic Imprinting. Am J Hum Genet 672, 777–787 (2000)
DOI: 10.1086/303101

38. X Cui, X Jing, X Wu, M Yan, Q Li, Y Shen, Z Wang: DNA methylation in spermatogenesis and male infertility. Exp Ther Med 12, 1973-1979 (2016)
DOI: 10.3892/etm.2016.3569

39. CC Oakes, S La Salle, DJ Smiraglia, B Robaire, JM Trasler: A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A 104, 228-233 (2007)
DOI: 10.1073/pnas.0607521104

40. U Schagdarsurengin, A Paradowska, K Steger: Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol 9, 609-619 (2012)

41. CJ Marques, F Carvalho, M Sousa, A Barros: Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702 (2004)
DOI: 10.1016/S0140-6736(04)16256-9

42. H Kobayashi, A Sato, E Otsu, H Hiura, C Tomatsu, H Sasaki, N Yaegashi, T Arima: Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16, 2542–2551 (2007)
DOI: 10.1093/hmg/ddm187

43. N El Hajj, U Zechner, E Schneider, A Tresch, J Gromoll, T Hahn, M Schorsch, T Haaf: Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev 5, 60– 69 (2011)
DOI: 10.1159/000323806

44. S Houshdaran, VK Cortessis, K Siegmund, A Yang, PW Laird, R Z Sokol: Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2, (2007)
DOI: 10.1371/journal.pone.0001289

45. Y Du, M Li, J Chen, Y Duan, X Wang, Y Qiu, Z Cai, Y Gui, H Jiang: Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod 31, 24-33 (2016)
DOI: 10.1093/humrep/dev283

46. RG Urdinguio, GF Bayón, M Dmitrijeva, EG Toraño, C Bravo, MF Fraga, L Bassas, S Larriba, AF Fernández: Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod 30, 1014–1028 (2015)
DOI: 10.1093/humrep/dev053

47. D Montjean, A Zini, C Ravel, S Belloc, A Dalleac, H Copin, P Boyer, K Mc Elreavey, M Benkhalifa: Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 3, 235-240 (2015)
DOI: 10.1111/andr.12001

48. RP Horgan, OH Clancy, JE Myers, PN Baker: An overview of proteomic and metabolomic technologies and their application to pregnancy research. BJOG 116, 173-181 (2009)
DOI: 10.1111/j.1471-0528.2008.01997.x

49. E Com, N Melaine, F Chalmel, C Pineau: Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteomic 31, 128-143 (2014)
DOI: 10.1016/j.jprot.2014.04.013

50. KI Aston, DT Carrell: Genome-Wide Study of Single-Nucleotide Polymorphisms Associated With Azoospermia and Severe Oligozoospermia. J Androl 30, 711–725 (2009)
DOI: 10.2164/jandrol.109.007971

51. KI Aston, C Krausz, I Laface, E Ruiz-Castané, DT Carrell: Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25, 1383-1397 (2010)
DOI: 10.1093/humrep/deq081

52. H Zhao, J Xu, H Zhang, J Sun, Y Sun, Z Wang, J Liu, Q Ding, S Lu, R Shi, L You, Y Qin, X Zhao, X Lin, X Li, J Feng, L Wang, JM Trent, C Xu, Y Gao, B Zhang, X Gao, J Hu, H Chen, G Li, J Zhao, S Zou, H Jiang, C Hao, Y Zhao, J Ma, SL Zheng, ZJ Chen. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am J Hum Genet 90, 900–906 (2012)
DOI: 10.1016/j.ajhg.2012.04.001

53. Z Hu, Y Xia, X Guo, J Dai, H Li, H Hu, Y Jiang, F Lu, Y Wu, X Yang, H Li, B Yao, C Lu, C Xiong, Z Li, Y Gui, J Liu, Z Zhou, H Shen, X Wang, J Sha: A genome-wide association study in Chinese men identifies three risk loci for non-obstructive Azoospermia. Nat Genet 44, 183-186 (2011)
DOI: 10.1038/ng.1040

54. Z Hu, Z Li, J Yu, C Tong, Y Lin, X Guo, F Lu, J Dong, Y Xia, Y Wen, H Wu, H Li, Y Zhu, P Ping, X Chen, J Dai, Y Jiang, S Pan, P Xu, K Luo, Q Du, B Yao, M Liang, Y Gui, N Weng, H Lu, Z Wang, F Zhang, X Zhu, X Yang, Z Zhang, H Zhao, C Xiong, H Ma, G Jin, F Chen, J Xu, X Wang, Z Zhou, Z Chen, J Liu, H Shen, J Sha: Association analysis identifies new risk loci for non-obstructive zoospermia in Chinese men. Nat Commun 5, 3857(2014)
DOI: 10.1038/ncomms4857

55. S Zou, Z Li, Y Wang, T Chen, P Song, J Chen, X He, P Xu, M Liang, K Luo, X Zhu, E Tian, Q Du, Z Wen, Z Li, M Wang, Y Sha, Y Cao, Y Shi, H Hu: Association study between polymorphisms of PRMT6, PEX10, SOX5, and nonobstructive azoospermia in the Han Chinese population. Biol Reprod 90, 96 (2014)
DOI: 10.1095/biolreprod.113.116541

56. G Kosova, NM Scott, C Niederberger, GS Prins, C Ober: Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 90, 950-961 (2012)
DOI: 10.1016/j.ajhg.2012.04.016

57. Y Sato, A Tajima, K Tsunematsu, S Nozawa, M Yoshiike, E Koh, J Kanaya, M Namiki, K Matsumiya, A Tsujimura, K Komatsu, N Itoh, J Eguchi, I Imoto, A Yamauchi, T Iwamoto: An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 30, 1510–1514 (2015)
DOI: 10.1093/humrep/dev088

58. M Chihara, K Yoshihara, T Ishiguro, Y Yokota, S Adachi, H Okada, K Kashima, T Sato, A Tanaka, K Tanaka, T Enomoto: Susceptibility to male infertility: replication study in Japanese men looking for an association with four GWAS-derived loci identified in European men. J Assist Reprod Genet 32, 903-908 (2015)
DOI: 10.1007/s10815-015-0468-4

59. Y Dong, Y Pan, R Wang, Z Zhang, Q Xi, RZ Liu: Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 14, 16041-16049 (2015)
DOI: 10.4238/2015.December.7.17

60. F Tüttelmann, M Simoni, S Kliesch, S Ledig, B Dworniczak, P Wieacker, A Röpke: Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One 6, (2011)
DOI: 10.1371/journal.pone.0019426

61. S Eggers, KD De Boer, J van den Bergen, L Gordon, SJ White, D Jamsai, RI McLachlan, AH Sinclair, MK O‘Bryan: Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril 103, 214-219 (2015)
DOI: 10.1016/j.fertnstert.2014.09.030

62. C Krausz, C Giachini, D Lo Giacco, F Daguin, C Chianese, E Ars, E Ruiz- Castane, G Forti, E Rossi: High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 7, (2012)

63. AM Lopes, KI Aston, E Thompson, F Carvalho, J Gonçalves, N Huang, R Matthiesen, MJ Noordam, I Quintela, A Ramu, C Seabra, AB Wilfert, J Dai, JM Downie, S Fernandes, X Guo, J Sha, A Amorim, A Barros, A Carracedo, Z Hu, ME Hurles, S Moskovtsev, C Ober, DA Paduch, JD Schiffman, PN Schlegel, M Sousa, DT Carrell, DF Conrad: Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes including the gene DMRT1. PLoS Genet 9, (2013)
DOI: 10.1371/journal.pgen.1003349

64. SK Bansal, N Gupta, SN Sankhwar, S Rajender: Differential Genes Expression between Fertile and Infertile Spermatozoa Revealed by Transcriptome Analysis. PLoS One 10, (2015)
DOI: 10.1371/journal.pone.0127007

65. D Montjean, P De La Grange, D Gentien, A Rapinat, S Belloc, P Cohen-Bacrie, Y Menezo, M Benkhalifa: Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 29, 3-10 (2012)
DOI: 10.1007/s10815-011-9644-3

66. SE Pacheco, EA Houseman, BC Christensen, CJ Marsit, KT Kelsey, M Sigman, K Boekelheide: Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6, (2011)
DOI: 10.1371/journal.pone.0020280

67. SS Hammoud, DH Low, C Yi, DT Carrell, E Guccione, BR Cairns: Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 14, 239-253 (2014)
DOI: 10.1016/j.stem.2014.04.006

68. A Salas-Huetos, J Blanco, F Vidal, A Godo, M Grossmann, MC Pons, S F-Fernández, N Garrido, E Anton: Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 104, 591-601 (2015)
DOI: 10.1016/j.fertnstert.2015.06.015

69. A Abhari, N Zarghami, V Shahnazi, A Barzegar, L Farzadi, H Karami, S Zununi Vahed, M Nouri: Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci 17, 81-86 (2014)

70. M Abu-Halima, M Hammadeh, C Backes, U Fischer, P Leidinger, AM Lubbad, A Keller, E Meese: Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 102, 989-997 (2014)
DOI: 10.1016/j.fertnstert.2014.07.001

71. MS Rahman, JS Lee, WS Kwon, MG Pang: Sperm proteomics: road to male fertility and contraception. Int J Endocrinol 2013 (2013)
DOI: 10.1155/2013/360986

72. NL Anderson, NG Anderson: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853-1861 (1998)
DOI: 10.1002/elps.1150191103

73. MS Zangbar, S Keshtgar, J Zolghadri, B Gharesi-Fard: Antisperm protein targets in azoospermia men. J Hum Reprod Sci 9, 47-52 (2016)
DOI: 10.4103/0974-1208.178629

74. MI Hashemitabar, S Sabbagh, M Orazizadeh, A Ghadiri, MA Bahmanzadeh: A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet 32, 853-863 (2015)
DOI: 10.1007/s10815-015-0465-7

75. FJ Liu, X Liu, JL Han, YW Wang, SH Jin, XX Liu, J Liu, WT Wang, WJ Wang: Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Hum Reprod 30, 861-869 (2015)
DOI: 10.1093/humrep/dev003

76. A Agarwal, R Sharma, D Durairajanayagam, A Ayaz, Z Cui, B Willard, B Gopalan, E Sabanegh: Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 13, 8 (2015)
DOI: 10.1186/s12958-015-0007-2

77. SI Shen, J Wang, J Liang, D He: Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 31, 1395-1401 (2013)
DOI: 10.1007/s00345-013-1023-5

78. TT Liao, Z Xiang, WB Zhu, LQ Fan: Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 11, 683-693 (2009)
DOI: 10.1038/aja.2009.59

79. S Thacker, SP Yadav, RK Sharma, A Kashou, B Willard, D Zhang, A Agarwal: Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril 95, 2745-2748 (2011)
DOI: 10.1016/j.fertnstert.2011.03.112

80. PP Parte, P Rao, S Redij, V Lobo, SJ D‘Souza, R Gajbhiye, V Kulkarni: Sperm phosphoproteome profiling by ultra-performance liquid chromatography followed by data independent analysis (LC-MS (E)) reveals altered proteomic signatures in asthenozoospermia. J Proteomics 75, 5861-5867 (2012)
DOI: 10.1016/j.jprot.2012.07.003

81. AB Siva, DB Kameshwari, V Singh, K Pavani, CS Sundaram, N Rangaraj, M Deenadayal, S Shivaji. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 16, 452-462 (2010)
DOI: 10.1093/molehr/gaq009

82. YI Liu, Y Guo, N Song, Y Fan, K Li, X Teng, Q Guo, Z Ding: Proteomic pattern changes with obesity-induced asthenozoospermia. Andrology 3, 247-259 (2015)
DOI: 10.1111/andr.289

83. R Azpiazu, A Amaral, J Castillo, JM Estanyol, M Guimerà, JL Ballescà, J Balasch, R Oliva: High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 29, 1225-1237 (2014)
DOI: 10.1093/humrep/deu073

84. A Amaral, C Paiva, C Attardo Parrinello, JM Estanyol, JL Ballescà, J Ramalho-Santos, R Oliva: Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res 13, 5670-1584 (2014)
DOI: 10.1021/pr500652y

85. M Saraswat, S Joenväärä, T Jain, AK Tomar, A Sinha, S Singh, S Yadav, R Renkonen: Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia. Mol Cell Proteomics 16, 57-72 (2017)
DOI: 10.1074/mcp.M116.061028

86. Y Vandenbrouck, L Lane, C Carapito, P Duek, K Rondel, C Bruley, C Macron, A Gonzalez de Peredo, Y Couté, K Chaoui, E Com, A Gateau, AM Hesse, M Marcellin, L Méar, E Mouton-Barbosa, T Robin, O Burlet-Schiltz, S Cianferani, M Ferro, T Fréour, C Lindskog, J Garin, C Pineau: Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. J Proteome Res 15, 3998-4019 (2016)
DOI: 10.1021/acs.jproteome.6b00400

87. JV Silva, S Yoon, PJ De Bock, AV Goltsev, K Gevaert, JF Mendes, M Fardilha: Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim Biophys Acta 1861, 375-385 (2017)
DOI: 10.1016/j.bbagen.2016.11.041

88. V Kumar, MI Hassan, T Kashav, TP Singh, S Yadav: Heparin-binding proteins of human seminal plasma: purification and characterization. Mol Reprod Dev 75, 1767-1774 (2008)
DOI: 10.1002/mrd.20910

89. AK Tomar, BS Sooch, I Raj, S Singh, TP Singh, S Yadav: Isolation and identification of Concanavalin A binding glycoproteins from human seminal plasma: a step towards identification of male infertility marker proteins. Dis Markers 31, 379-386 (2011)
DOI: 10.1155/2011/798072

90. M Saraswat, S Joenväärä, AK Tomar, S Singh, S Yadav, R Renkonen: N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J Proteome Res 15, 991-1001 (2016)
DOI: 10.1021/acs.jproteome.5b01069

91. A Minai-Tehrani, N Jafarzadeh, K Gilany: Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia 48, 609-616 (2016)
DOI: 10.1111/and.12496

92. A Asghari, SA Marashi, N Ansari-Pour: A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst Biol Reprod Med, 1-13(2017)
DOI: 10.1080/19396368.2016.1263367

93. J Zhang, Z Huang, M Chen, Y Xia, FL Martin, W Hang, H Shen: Urinary metabolome identifies signatures of oligozoospermic infertile men. Fertil Steril 102, 44–53 (2014)
DOI: 10.1016/j.fertnstert.2014.03.033

94. V Jayaraman, S Ghosh, A Sengupta, S Srivastava, HM Sonawat, PK Narayan: Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 31, 1195-1204 (2014)
DOI: 10.1007/s10815-014-0282-4

95. X Zhang, R Diao, X Zhu, Z Li, Z Cai: Metabolic characterization of asthenozoospermia using non targeted seminal plasma metabolomics. Clin Chim Acta 450, 254-261 (2015)
DOI: 10.1016/j.cca.2015.09.001

96. BF da Silva, PT Del Giudice, DM Spaine, FC Gozzo, EG Lo Turco, RP Bertolla: Metabolomics of male infertility: characterization of seminal plasma lipid fingerprints in men with spinal cord injury. Fertil Steril 96, S233-S233 (2011)
DOI: 10.1016/j.fertnstert.2011.07.893

97. N Jafarzadeh, A Mani-Varnosfaderani, A Minai-Tehrani, E Savadi-Shiraz, MR Sadeghi, K Gilany: Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev 82, 150 (2015)
DOI: 10.1002/mrd.22457

98. K Gilany, RS Moazeni-Pourasil, N Jafarzadeh, E Savadi-Shiraz: Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev 81, 84–86 (2014)
DOI: 10.1002/mrd.22284

99. AD Rolland, R Lavigne, C Dauly, P Calvel, C Kervarrec, T Freour, B Evrard, N Rioux-Leclercq, J Auger, C Pineau: Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod 28, 199-209 (2016)
DOI: 10.1093/humrep/des360

100. R Ramasamy, A Ridgeway, LI Lipshultz, DJ Lamb: Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 102, 968-973 (2014)
DOI: 10.1016/j.fertnstert.2014.06.028

101. H Ge, AJ Walhout, M Vidal: Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19, 551-560 (2003)
DOI: 10.1016/j.tig.2003.08.009

102. V Singh, LC Singh, M Vasudevan, I Chattopadhyay, BB Borthakar, AK Rai, RK Phukan, J Sharma, J Mahanta, AC Kataki, S Kapur, S Saxena: Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS 19, 688-699 (2015)
DOI: 10.1089/omi.2015.0121

103. S Pineda, P Gomez-Rubio, A Picornell, K Bessonov, M Márquez, M Kogevinas, FX Real, K Van Steen, N Malats: Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum Hered 79, 124-36 (2015)
DOI: 10.1159/000381184

104. A Rai, K Saito, M Yamazaki: Integrated omics analysis of specialized metabolism in medicinal plants. Plant J (2017)
DOI: 10.1111/tpj.13485

105. A Wippermann, O. Rupp, K. Brinkrolf, R. Hoffrogge, T. Noll: Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol (2016)
DOI: 10.1016/j.jbiotec.2016.11.020

Key Words: Male Infertility, Integrome analysis, Multi-omics, Proteomics, Genomics, Metabolomics, Review

Send correspondence to: Savita Yadav, All India Institute of Medical Sciences (AIIMS), Department of Biophysics, New Delhi, India, Tel: 112-654-6445, Fax: 112-658-8641, E-mail: savita11@gmail.com