[Frontiers In Bioscience, Landmark, 23, 512-534, January 1, 2018]

Histone deacetylase: A potential therapeutic target for ovarian dysfunction

Sunita1, Pankaj Kumar Singh1, Suneel Kumar Onteru1, Dheer Singh1

1Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001 India

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Ovarian dysfunction and its causes
3.1. Anestrus
3.2. Ovarian cyst
3.3. Post-parturient disorders and infection
4. Uterine infections lead to ovarian dysfunction
5. Microbial infections and infertility: Mechanism
6. Histone deacetylases (HDACs) and their basic mechanism of action
7. Classification of histone deacetylases (HDACs)
7.1. Classical: Class I
7.2. Classical: Class II
7.3. Classical: Class IV
7.4. Sirtuins: Class III
8. Functions of HDACs:
8.1. Control of gene expression
8.2. Regulation of TLRs signalling
8.3. Role of HDACs in inflammation
8.4. Role of HDACs in ovarian function
9. HDACi and its therapeutic application
10. Conclusion
11. Acknowledgements
12. References

1. ABSTRACT

Post-partum uterine disorders and reproductive tract infections cause ovarian dysfunction and infertility. Histone deacetylases (HDACs) prevent the relaxation of chromatin, and positively or negatively regulate transcription. Hence, HDACs play a pivotal role in altering the gene expression that impact different signalling pathways underling ovarian dysfunction. Thus, HDAC inhibitors (HDACi) may act as potential therapeutic targets in the treatment of an array of disorders impacting ovarian function.

12. REFERENCES

1. I. M. Sheldon, J. Cronin, L. Goetze, G. Donofrio, H. J. Schuberth: Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle 1. Biol Reprod 81, 1025-1032 (2009)
DOI: 10.1095/biolreprod.109.077370

2. I. M. Sheldon, G. S. Lewis, S. LeBlanc, R. O. Gilbert: Defining postpartum uterine disease in cattle. Theriogenology 65, 1516-1530 (2006)
DOI: 10.1016/j.theriogenology.2005.08.021

3. S. J. LeBlanc, T. F. Duffield, K. E. Leslie, K. G. Bateman, G. P. Keefe, J. S. Walton, W. H. Johnson: Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J Dairy Sci 85, 2223-2236 (2002)
DOI: 10.3168/jds.S0022-0302(02)74302-6

4. S. Borsberry, H. Dobson: Periparturient diseases and their effect on reproductive performance in five dairy herds. Vet Rec 124, 217-219 (1989)
DOI: 10.1136/vr.124.9.217

5. K. Onnureddy, Y. Vengalrao, T. K. Mohanty, D. Singh: Metagenomic Analysis of Uterine Microbiota in Postpartum Normal and Endometritic Water Buffaloes (Bubalus bubalis). J Buffal Sci 2, 124-134 (2013)
DOI: 10.3168/jds.2010-3668

6. V. R. Yenuganti, R. Ravinder, D. Singh: Conjugated linoleic acids attenuate LPS-induced proinflammatoy gene expression by inhibiting the NF-κB translocation through PPARĘ“ in buffalo granulosa cells. Am J Reprod Immunol 72, 296-304 (2014)
DOI: 10.1111/aji.12261

7. A. Mehta, R. Ravinder, S. K. Onteru, D. Singh: HDAC inhibitor prevents LPS mediated inhibition of CYP19A1 expression and 17β-estradiol production in granulosa cells. Mol Cell Endocrinol 414, 1-39 (2015)
DOI: 10.1016/j.mce.2015.07.002

8. M. R. Shakespear, M.A. Halili, K.M. Irvine, D.P. Fairlie, M.J. Sweet: Histone deacetylases as regulators of inflammation and immunity. Cell press 32, 335-343 (2011)
DOI: 10.1016/j.it.2011.04.001

9. G. Opsomer, J. Leroy, T. Vanholder, P. Bossaert, A.d. Kruif: High milk production and good fertility in modern dairy cows: the results of some recent research items. Slov Vet Res 43, 31-9 (2006)

10. A. T. Peter, P. L. Vos, D. J. Ambrose: Postpartum anestrus in dairy cattle. Theriogenology 71, 1333-1342 (2009)
DOI: 10.1016/j.theriogenology.2008.11.012

11. R. S. Youngquist: Cystic follicular degeneration in the cow. In: Morrow DA (Ed.). Curr Therapy Theriogenol. 2nd ed. Philadelphia: WB Saunders (1986)

12. N. Day: The treatment and prevention of cystic ovarian disease. Vet Med 86, 761-766 (1991)

13. M. C. López-Diaz, W. T. K. Bosu: A review and an update of cystic ovarian degeneration in ruminants. Theriogenology 37, 1163-1183 (1992)
DOI: 10.1016/0093-691X(92)90173-O

14. H. M. Laporte, H. Hogeveen, Y. H. Schukken, J. P. T. M. Noordhuizen: Cystic ovarian disease in Dutch dairy cattle, I. Incidence, risk-factors and consequences. Livest Prod Sci 38, 191-197 (1994)
DOI: 10.1016/0301-6226(94)90170-8

15. G. Opsomer, M. Coryn, H. Deluyker, A. de Kruif: An analysis of ovarian dysfunction in high yielding dairy cows after calving based on progesterone profiles. Reprod Domest Anim 33, 193-204 (1998)
DOI: 10.1111/j.1439-0531.1998.tb01342.x

16. K. Jeengar, V. Chaudhary, A. Kumar, S. Raiya, M. Gaur, G. N. Purohit: Ovarian cysts in dairy cows: old and new concepts for definition, diagnosis and therapy. Anim Reprod 11(2), 63-73 (2014)

17. T. Vanholder, G. Opsomer, A. de Kruif: Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: a review. Reprod Nutr Dev 46, 105-119 (2006)
DOI: 10.1051/rnd:2006003

18. S. J. Roberts: Veterinary Obstetrics and Genital Diseases. Theriogenology 2, 421-435 (1971)

19. D. J. Kesler, H. A. Garverick: Ovarian cysts in dairy cattle: a review. J Anim Sci 55, 1147-1159 (1982)
DOI: 10.2527/jas1982.5551147x

20. K. Arbeiter, S. Aslan, F. Schwarzenberger: Untersuchungen über die Ovarzyste beim Rind oe Entstehung, Therapieerfolge, Fruchtbarkeit. Dtsch Tierärtl Wschr 97, 380-382 (1990)

21. D. L. Cook, J. R. Parfet, C. A. Smith, G. E. Moss, R. S. Youngquist, H. A. Garverick: Secretory patterns of LH and FSH during development and hypothalamic and hypophyseal characteristics following development of steroid induced ovarian follicular cysts in dairy cattle. J Reprod Fertil 91, 19-28 (1991)
DOI: 10.1530/jrf.0.0910019

22. Z. Boryczko, H. Bostedt, B. Hoffman: Comparison of the hormonal and chemical composition of the fluid from bovine ovarian follicles and cysts. Reprod Domest Anim 30, 36-38 (1995)
DOI: 10.1111/j.1439-0531.1995.tb01174.x

23. P. Fleischer, M. Metzner, M. Beyerbach, M. Hodemaker, W. Klee: The relationship between milk yield and the incidence of some diseases in dairy cows. J Dairy Sci 84, 2025-2035 (2001)
DOI: 10.3168/jds.S0022-0302(01)74646-2

24. W. J. Silvia, T. B. Hatler, A. M. Nugent: Ovarian follicular cysts in dairy cows: an abnormality in folliculogenesis. Domest Anim Endocrinol 23,167-177 (2002)
DOI: 10.1016/S0739-7240(02)00154-6

25. M. C. Wiltbank, A. Gümen, R. Sartori: Physiological classification of anovulatory conditions in cattle. Theriogenology 57, 21-52 (2002)
DOI: 10.1016/S0093-691X(01)00656-2

26. A. T. Peter, W. T. Bosu, R. J. Dedecker: Suppression of preovulatory luteinizing hormone surges in heifers after intrauterine infusions of Escherichia coli endotoxin. Am J Vet Res 50:368-373 (1989)

27. B. J. McLeod, M. E. Williams: Incidence of ovarian dysfunction in postpartum dairy cows and the effectiveness of its clinical diagnosis and treatment. Vet Rec 128, 121-124 (1991)
DOI: 10.1136/vr.128.6.121

28. I. A. Jeffcoate, T. R. Ayliffe: An ultrasonographic study of bovine cystic ovarian disease and its treatment. Vet Rec 136, 406-410 (1995)
DOI: 10.1136/vr.136.16.406

29. J. A. Bartolome, W. W. Thatcher, P. Melendez, C. A. Risco, L. F. Archbald: Strategies for the diagnosis and treatment of ovarian cysts in dairy cattle. J Am Vet Med Assoc 277, 1409-1414 (2005)
DOI: 10.2460/javma.2005.227.1409

30. J. Albrechtsen: Sterility of cattle and methods of treatment. Cornell Vet 7, 57-110 (1917)

31. W. L. Williams, W. W. Williams: Nymphomania of the cow. North Am Vet 4, 232-241 (1923)

32. J. F. D. Tutt: Nymphomania in the cow: observations on treatment by the injection of adrenalin chloride and by pituitary (posterior lobe) extract injections. Vet Rec 12, 521-523 (1932)

33. L. E. Casida, W. H. McShan, R. K. Meyer: Effects of an unfractionated pituitary extract upon cystic ovaries and nymphomania in cows. J Anim Sci 3, 273-282 (1944)
DOI: 10.2527/jas1944.33273x

34. A. Johnson, L. Ulberg: Influence of exogenous progesterone on follicular cysts in dairy cattle. J Dairy Sci 50, 758-761 (1967)
DOI: 10.3168/jds.S0022-0302(67)87507-6

35. C. J. Bierschwal: A clinical study of cystic conditions of the bovine ovary. J Am Vet Med Assoc 149, 1591-1595 (1966)

36. C. J. Bierschwal, H. A. Garverick, C. E. Martin, R. S. Youngquist, T. C. Cantley, M. D. Brown: Clinical response of dairy cows with ovarian cysts to GnRH. J Anim Sci 41, 1660-1665 (1975)
DOI: 10.2527/jas1975.4161660x

37. T. Nakao, Y. Numata, M. Kubo, S. Yamauchi: Treatment of cystic ovarian disease in dairy cattle. Cornell Vet 68, 161-178 (1978)

38. B. E. Seguin, E. M. Convey, W. D. Oxender: Effect of gonadotropin-releasing hormone and human chorionic gonadotropin on cows with ovarian follicular cysts. Am J Vet Res 37, 153-157 (1976)

39. D. J. Kesler, H. A. Garverick, A. B. Candle, C. J. Bierschwal, R. G. Elmore, R. S. Youngquist: Clinical and endocrine responses of dairy cows with ovarian cysts to GnRH and/or PGF2α. J Anim Sci 46, 719-725 (1978)
DOI: 10.2527/jas1978.463719x

40. A. S. Nanda, W. R. Ward, P. C. W. Williams, H. Dobson: Retrospective analysis of the efficacy of different hormone treatments of cystic ovarian disease in cattle. Vet Rec 12, 155-158 (1988)
DOI: 10.1136/vr.122.7.155

41. J. J. Bromfield and I. M. Sheldon: Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology, 152(12): 5029-5040 (2011)
DOI: 10.1210/en.2011-1124

42. P. C. Bartlett, J. H. Kirk, M. A. Wilke, J. B. Kaneene, E. C. Mather: Metritis complex in Michigan Holstein Frisian cattle: incidence, description, epidemiology and estimated economic impact. Prev Vet Med 4, 235-248 (1986)
DOI: 10.1016/0167-5877(86)90026-7

43. G. S. Lewis: Health problems of the postpartum cow, uterine health and disorders. J Dairy Sci 80, 984-994 (1997)
DOI: 10.3168/jds.S0022-0302(97)76024-7

44. O. I. Azawi, A. J. Ali, E. H. Lazim: Pathological and anatomical abnormalities affecting buffalo cows’ reproductive tracts in Mosul. Iraqi J Vet Sci 22, 59-67 (2008)

45. K. Bretzlaff: Rationale for treatment of endometritis in dairy cows. Vet Clin North Am Food Anim Prac 3, 593-598 (1987)
DOI: 10.1016/S0749-0720(15)31132-4

46. B. N. Bonnett, R. B. Miller, W. G. Etherington, S. W. Martin, W. H. Johnson: Endometrial biopsy in Holstein- Friesian dairy cows. I. Technique, histological criteria and results. Can j vet res 55,155-161 (1991)

47. M. T. Correa, H. Erb, I. Scarlet: Path analysis for seven postpartum disorders of Holstein cows. J Dairy Sci 76, 1305-1312 (1993)
DOI: 10.3168/jds.S0022-0302(93)77461-5

48. R. H. Bondurant: Inflammation in the bovine female reproductive tract. J Anim Sci 77, 101-110 (1999)
DOI: 10.2527/1999.77suppl_2101x

49. I. M. Sheldon, D. E. Noakes, A. N. Rycroft, D. U. Pfeiffer, H. Dobson: Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123, 837-845 (2002)
DOI: 10.1530/rep.0.1230837

50. Y. Lavon, G. Leitner, E. Klipper, U. Moallem, R. Meidan, D. Wolfenson: Subclinical, chronic intramammary infection lowers steroid concentrations and gene expression in bovine preovulatory follicles. Domest Anim Endocrinol 40, 98-109 (2011)
DOI: 10.1016/j.domaniend.2010.09.004

51. E. J. Williams, K. Sibley, A. N. Miller, E. A. Lane, J. Fishwick, D. M. Nash, S. Herath, G. C. England, H. Dobson, I. M. Sheldon: The effect of Escherichia coli lipopolysaccharide and tumor necrosis factor on ovarian function. Am J Reprod Immunol 60, 462-473 (2008)
DOI: 10.1111/j.1600-0897.2008.00645.x

52. S. Herath, E. J. Williams, S. T. Lilly, R. O. Gilbert, H. Dobson, C. E. Bryant, I. M. Sheldon: Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134, 683-693 (2007)
DOI: 10.1530/REP-07-0229

53. S. Herath, S. T. Lilly, D. P. Fischer, E. J. Williams, H. Dobson, C. E. Bryant, I. M. Sheldon: Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2a to prostaglandin E2 in bovine endometrium. Endocrinology 150, 1912-1920 (2009)
DOI: 10.1210/en.2008-1379

54. B. U. Wakayo, P. S. Brar, S. Prabhakar, S. P. S. Ghuman, A. K. Arora: Study on Persistent Uterine Infection, Ovarian Activity and Reproduction in Postpartum in Murrah Buffaloes. Int J Livest Res 4, 32-39 (2014)
DOI: 10.5455/ijlr.20140910052449

55. O. I. Azawi: Uterine infection in buffalo cows. Buffalo Bull 29, 154-171 (2010)

56. W. M. Ahmed, J. A. El-Jakee, F. R. El-Seedy, K. I. El-Ekhnawy, S. I. Abd El-Moez: Vaginal bacterial profile of buffalo cows in relation to ovarian activity. Glob Vet 1, 01-08 (2007)

57. E. M. Hanafi, W. M. Ahmed, S. I. Abd El Moez, H. H. El Khadrawy, A. R. Abd El Hameed: Effect of clinical endometritis on ovarian activity and oxidative stress status in egyptian buffalo-cows. Amer-Eurasian J Agri & Environ Sciences 4, 530-536 (2008)

58. L. C. Carneiro, J. G. Cronin, I. M. Sheldon: Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod Bio 16, 1-7 (2016)
DOI: 10.1016/j.repbio.2015.12.002

59. K. N. Galvao, M. J. Flaminio, S. B. Brittin, R. Sper, M. Fraga, L. Caixeta, A. Ricci, C. L. Guard, W. R. Butler, R. O. Gilbert: Association between uterine disease and indicators of neutrophil and systemic energy status in lactating Holstein cows. J Dairy Sci 93, 2926-2937 (2010)
DOI: 10.3168/jds.2009-2551

60. K. Onnureddy, R. Ravinder, S. K. Onteru, D. Singh: IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells. Mol Immunol 64, 136-143 (2015)
DOI: 10.1016/j.molimm.2014.11.008

61. M. H. Kuo, C. D. Allis: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-26 (1998)
DOI: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H

62. P. A. Wade: Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 10, 693-698 (2001)
DOI: 10.1093/hmg/10.7.693

63. R. D. Kornberg: Chromatin structure: a repeating unit of histones and DNA. Science184, 868-71(1974)

64. B. D. Strahl, C. D. Allis: The language of covalent histone modifications. Nature (London) 403, 41-45 (2000)
DOI: 10.1038/47412

65. K. Ito, P. J. Barnes, I. M. Adcock: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20, 6891-6903 (2000)
DOI: 10.1128/MCB.20.18.6891-6903.2000

66. P. Cheung, C. D. Allis, P. Sassone-Corsi: Signaling to chromatin through histone modifications. Cell 103, 263-71 (2000)
DOI: 10.1016/S0092-8674(00)00118-5

67. M. Grunstein: Histone acetylation in chromatin structure and transcription. Nature 389, 349-352 (1997)
DOI: 10.1038/38664

68. E. I. Campos, D. Reinberg: Histones: annotating chromatin. Annu Rev Genet 43, 559-99 (2009)
DOI: 10.1146/annurev.genet.032608.103928

69. X. Cheng, R. M. Blumenthal: Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49, 2999-3008 (2010)
DOI: 10.1021/bi100213t

70. E. C. Forsberg, E. H. Bresnick: Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 23, 820-830 (2001)
DOI: 10.1002/bies.1117

71. P. Bjerling, R.A. Silverstein, G. Thon, A. Caudy, S. Grewal, K. Ekwall: Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol 22, 2170-2181 (2002)
DOI: 10.1128/MCB.22.7.2170-2181.2002

72. W. Fischle, F. Dequiedt, M. J. Hendzel, M. G. Guenther, M. A. Lazar, W. Voelter, E. Verdin: Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9, 45-57 (2002)
DOI: 10.1016/S1097-2765(01)00429-4

73. B. Li, M. I. Greene: Special regulatory T-cell review: FOXP3 biochemistry in regulatory T cells--how diverse signals regulate suppression. Immunology 123, 17-19 (2008)
DOI: 10.1111/j.1365-2567.2007.02774.x

74. R. W. Johnstone: Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discovery 1, 287-299 (2002)
DOI: 10.1038/nrd772

75. W. M. Yang, S. C. Tsai, Y. D. Wen,G. Fejér, E. Seto: Functional domains of histone deacetylase-3. J Biol Chem 277, 9447-9454 (2002)
DOI: 10.1074/jbc.M105993200

76. X. J. Yang, E. Seto: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9, 206-218 (2008)
DOI: 10.1038/nrm2346

77. L. Gao, M. A. Cueto, F. Asselbergs, P. Atadja: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277, 25748-25755 (2002)
DOI: 10.1074/jbc.M111871200

78. B. J. Morris: Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56, 133-171 (2013)
DOI: 10.1016/j.freeradbiomed.2012.10.525

79. V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, E.J. Calabrese, M.P. Mattson: Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13, 1763-1811 (2010)
DOI: 10.1089/ars.2009.3074

80. B. Pucci, L. Villanova, L. Sansone, L. Pellegrini, M. Tafani, A. Carpi, M. Fini, M. A. Russo: Sirtuins: the molecular basis of beneficial effects of physical activity. Intern Emerg Med 8, 23-25 (2013)
DOI: 10.1007/s11739-013-0920-3

81. S. I. Imai, L. Guarente: Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31, 212-220 (2010)
DOI: 10.1016/j.tips.2010.02.003

82. T. Finkel, C. X. Deng, R. Mostoslavsky: Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591 (2009)
DOI: 10.1038/nature08197

83. M. A. Halili, M. R. Andrews, L. I. Labzin, K. Schroder, G. Matthias, C. Cao, E. Lovelace, R. C. Reid, G. T. Le, D. A. Hume, K. M. Irvine, P. Matthias, D. P. Fairlie, M. J.Sweet: Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. J Leukoc Biol 87, 1103-1114 (2010)
DOI: 10.1189/jlb.0509363

84. J. L. Brogdon, Y. Xu, S. J. Szabo, S. An, F. Buxton, D. Cohen, Q. Huang: Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 109, 1123-1130 (2007)
DOI: 10.1182/blood-2006-04-019711

85. K. A. Bode, K. Schroder, D. A. Hume, T. Ravasi, K. Heeg, M. J. Sweet, A. H. Dalpke: Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 122, 596-606 (2007)
DOI: 10.1111/j.1365-2567.2007.02678.x

86. T. Roger, J. Lugrin, D. R. Le, G Goy, M. Mombelli, T. Koessler, X. C. Ding, A. L. Chanson, M. K. Reymond, I. Miconnet, J. Schrenzel, P. François, T. Calandra: Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117, 1205-1217 (2010)
DOI: 10.1182/blood-2010-05-284711

87. W. Cao, C. Bao, E. Padalko, C.J. Lowenstein: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signalling. J Exp Med 205, 1491-1503 (2008)
DOI: 10.1084/jem.20071728

88. L. Gabriele, K. Ozato: The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine Growth Factor Rev 18, 503-510 (2007)
DOI: 10.1016/j.cytogfr.2007.06.008

89. V. Salvi, D. Bosisio, S. Mitola, L. Andreoli, A. Tincani, S. Sozzani: Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology 215, 756-761(2010)
DOI: 10.1016/j.imbio.2010.05.023

90. C. Peyssonnaux, P. Cejudo-Martin, A. Doedens, A. S. Zinkernagel, R. S. Johnson, V. Nizet: Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178, 7516-7519 (2007)
DOI: 10.4049/jimmunol.178.12.7516

91. T. Cramer, Y. Yamanishi, B. E. Clausen, I. Förster, R. Pawlinski, N. Mackman, V. H. R. Haase, Jaenisch, M. Corr, V. Nizet, G. S. Firestein, H. P. Gerber, N. Ferrara, R. S. Johnson: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657 (2003)
DOI: 10.1016/S0092-8674(03)00154-5

92. S. H. Kim, J. W. Jeong, J. A. Park, J. W. Lee, J. H. Seo, B. K. Jung, M. K. Bae, K. W. Kim: Regulation of the HIF-1alpha stability by histone deacetylases. Oncol Rep 17, 647-651 (2007)

93. D. Z. Qian, S. K. Kachhap, S. J. Collis, H. M. Verheul, M. A. Carducci, P. Atadja, R. Pili: Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res 66, 8814-8821 (2006)
DOI: 10.1158/0008-5472.CAN-05-4598

94. H. Kato, S. Tamamizu-Kato, F. Shibasaki: Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279, 41966-41974 (2004)
DOI: 10.1074/jbc.M406320200

95. S. L. Foster, D. C. Hargreaves, R. Medzhitov: Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972-928 (2007)
DOI: 10.1038/nature05836

96. J. Lu, H. Sun, X. Wang, C. Liu, X. Xu, F. Li, B. Huang: Interleukin-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300. Cytokine 31, 46-51(2005)
DOI: 10.1016/j.cyto.2005.03.001

97. W. G. Deng, Y. Zhu, K. K. Wu: Role of p300 and PCAF in regulating cyclooxygenase-2 promoter activation by inflammatory mediators. Blood 103, 2135-2142 (2004)
DOI: 10.1182/blood-2003-09-3131

98. I. Nusinzon, C. M. Horvath: Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26, 3106-3113 (2006)
DOI: 10.1128/MCB.26.8.3106-3113.2006

99. M. Gilchrist, V. Thorsson, B. Li, A.G. Rust, M. Korb, J. C. Roach, K. Kennedy, T. Hai, H. Bolouri, A. Aderem: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173-178 (2006)
DOI: 10.1038/nature04768

100. B. P. Ashburner, S. D. Westerheide, A. S. Baldwin Jr.: The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21, 7065-7077 (2001)
DOI: 10.1128/MCB.21.20.7065-7077.2001

101. Y. S. Choi, S. Jeong: PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-κB. Mol Cells 20, 241-246 (2005)

102. A. M. Elsharkawy, F. Oakley, F. Lin, G. Packham, D. A. Mann, J.Mann: The NF-κB p50:p50: HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol 53, 519-527 (2010)
DOI: 10.1016/j.jhep.2010.03.025

103. L. Chen, W. Fischle, E. Verdin, W. C. Greene: Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653-1657 (2001)
DOI: 10.1126/science.1062374

104. S. B. Pakala, T. M. Bui-Nguyen, S. D. Reddy, D. Q. Li, S. Peng, S. K. Rayala, R. R. Behringer, R. Kumar: Regulation of NF-κB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. J Biol Chem 285, 23590-23597 (2010)
DOI: 10.1074/jbc.M110.139469

105. S. Ghisletti: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25, 57-70 (2007)
DOI: 10.1016/j.molcel.2006.11.022

106. R. Medzhitov, T.Horng: Transcriptional control of the inflammatory response. Nat Rev Immunol 9, 692-703 (2009)
DOI: 10.1038/nri2634

107. R. Medzhitov: Origin and physiological roles of inflammation. Nature 454, 428-35 (2008)
DOI: 10.1038/nature07201

108. N. Khansari, Y. Shakiba, M. Mahmoudi: Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3, 73-80 (2009)
DOI: 10.2174/187221309787158371

109. A. Villagra, E.M. Sotomayor, E. Seto: Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 29, 157-173 (2010)
DOI: 10.1038/onc.2009.334

110. S. Ghosh, M. Karin: Missing pieces in the NF-κB puzzle. Cell 109, 81-96 (2002)
DOI: 10.1016/S0092-8674(02)00703-1

111. X. J. Yang, E. Seto: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9, 206-218 (2008)
DOI: 10.1038/nrm2346

112. V. Anest, J. L. Hanson, P.C. Cogswell, K.A. Steinbrecher, B.D. Strahl, A.S. Baldwin. A nucleosomal function for IκB kinase-alpha in NF-κB-dependent gene expression. Nature 423, 659-663(2003)
DOI: 10.1038/nature01648

113. Y. Yamamoto, U. N. Verma , S. Prajapati , Y. T. Kwak , R. B. Gaynor: Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423, 655-9 (2003)
DOI: 10.1038/nature01576

114. P. J. Barnes: Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 6, 693-696 (2009)
DOI: 10.1513/pats.200907-071DP

115. B. Yan, S. Xie, Z. Liu, J. Ran, Y. Li, J. Wang, Y. Yang, J. Zhou, D. Li, M. Liu: HDAC6 Deacetylase Activity Is Critical for Lipopolysaccharide-Induced Activation of Macrophages. PLOS ONE 9, 110718 (2014)
DOI: 10.1371/journal.pone.0110718

116. J. D. Smith: New role for histone deacetlyase 9 in atherosclerosis and Inflammation. Arterioscler Thromb Vasc Biol 34, 1798-1799 (2014)
DOI: 10.1161/ATVBAHA.114.304295

117. A. Villagra, F. Cheng, HW Wang, I. Suarez, M. Glozak, M. Maurin, D. Nguyen, K. L. Wright, P. W. Atadja, K. Bhalla, J. Pinilla-Ibarz, E. Seto, E. M. Sotomayor: The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nature Immunol 10, 92-100 (2009)
DOI: 10.1038/ni.1673

118. L. Zhou, A. A. Nazarian, S. T. Smale: Interleukin-10 inhibits interleukin-12 p40 gene transcription by targeting a late event in the activation pathway. Mol Cell Biol 24, 2385-2396 (2004)
DOI: 10.1128/MCB.24.6.2385-2396.2004

119. X. Chen, I. Barozzi, A. Termanini, E. Prosperini, A. Recchiuti, J. Dalli, F. Mietton, G. Matteoli, S. Hiebert, G. Natoli: Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109, E2865-74 (2012)
DOI: 10.1073/pnas.1121131109

120. E. Ziesche, D. Kettner-Buhrow, A.Weber, T. Wittwer, L. Jurida, J. Soelch, H. Muller, D. Newel, P. Kronich, H. Schneider, O. Dittrich-Breiholz, S. Bhaskara, S.W. Hiebert, M.O. Hottiger, H. Li, E. Burstein, M. L. Schmitz, M. Krach: The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-KB. Nucleic Acids Res 41, 90-109 (2012)
DOI: 10.1093/nar/gks916

121. U. Mahlknecht, J. Will, A. Varin, D. Hoelzer, G. Herbein: Histone Deacetylase 3, a Class I Histone Deacetylase, Suppresses MAPK11-Mediated Activating Transcription Factor-2 Activation and Represses TNF Gene Expression. J Immunol 173, 3979-3990 (2004)
DOI: 10.4049/jimmunol.173.6.3979

122. C. Angiolilli, P. Kabala, A. M. Grabiec, B. Malvar-Fernández, D. L. Baeten, K. A. Reedquist: HDAC3 is required for the inflammatory gene expression program in fibroblast-like synoviocytes. Ann Rheum Dis 74, A23 (2015)
DOI: 10.1136/annrheumdis-2015-207259.54

123. J. H. Duarte: Inflammation feeds inflammation—HDAC5 downregulation leads to activation of fibroblast-like synoviocytes in RA. Nat Rev Rheumatol 11, 64 (2015)
DOI: 10.1038/nrrheum.2014.213

124. S. Li , G. Fossati , C. Marchetti , D. Modena , P. Pozzi , L. L. Reznikov , M. L. Moras , T. Azam , A. Abbate , P. Mascagni , C. A. Dinarello: Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J Biol Chem 290, 2368-78 (2015)
DOI: 10.1074/jbc.M114.618454

125. L. Poralla, T. Stroh, U. Erben, M. Sittig, S. Liebig, B. Siegmund, R. Glauben: Histone deacetylase 5 regulates the inflammatory response of macrophages. J Cell Mol 19, 2162-2171 (2015)
DOI: 10.1111/jcmm.12595

126. P. Ma, R. M. Schultz: Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev Biol 319, 110-120 (2008)
DOI: 10.1016/j.ydbio.2008.04.011

127. P. Ma, H. Pan, R. L. Montgomery, E. N. Olson, R. M. Schultz: Compensatory functions of histone deacetylase 1(HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. PNAS 109, E481-E489 (2012)
DOI: 10.1073/pnas.1118403109

128. K. Tan, A. L. Shaw, B. Madsen, K. Jensen, J. Taylor-Papadimitriou, P. S. Freemont: Human PLU-1 Has transcriptional repression properties and interacts with the developmental transcription factors BF-1 and PAX9. J Biol Chem 278, 20507-20513 (2003)
DOI: 10.1074/jbc.M301994200

129. A. G Scibetta: Functional analysis of the transcription repressor PLU-1/ JARID1B. Mol Cell Biol 27, 7220-7235 (2007)
DOI: 10.1128/MCB.00274-07

130. K. L. Jin, J. H. Pak, J. Y. Park, W. H. Choi, J. Y. Lee, J. H. Kim, J. H. Nam: Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues. J Gynecol Oncol 19, 185-190 (2008)
DOI: 10.3802/jgo.2008.19.3.185

131. A. Hayashi, A. Horiuchi, N. Kikuchi, T. Hayashi, C. Fuseya, A. Suzuki, I. Konishi, T. Shiozawa: Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Cancer Cell Biology, 127, 1332-1346 (2010)
DOI: 10.1002/ijc.25151

132. M. Colón-Díaz, P. Báez-Vega, M. García, A. Ruiz, J. B. Monteiro, J. Fourquet, M. Bayona, C. Alvarez-Garriga, A. Achille, E. Seto, I. Flores: HDAC1 and HDAC2 are Differentially Expressed in Endometriosis. Reproductive Sciences, 19(5) 483-492 (2012)
DOI: 10.1177/1933719111432870

133. M. Shimada, I. Hernandez-Gonzalez, I. Gonzalez-Robanya, J.S. Richards: Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol Endocrinol 20, 3228-3239 (2006)
DOI: 10.1210/me.2006-0194

134. S. Ghersevich, V. Isomaa, P. Vihko: Cytokine regulation of the expression of estrogenic biosynthetic enzymes in cultured rat granulosa cells. Mol Cell Endocrinol 172:21-30 (2001)
DOI: 10.1016/S0303-7207(00)00396-8

135. Z. Yan, V. Hunter, J. Weed, S. Hutchison, R. Lyles, P. Terranova: Tumor necrosis factor-alpha alters steroidogenesis and stimulates proliferation of human ovarian granulosal cells in vitro. Fertil Steril 59, 332-338 (1993)
DOI: 10.1016/S0015-0282(16)55676-3

136. W. C. Gorospe, F. W. Hughes Jr, B. L. Spangelo: Interleukin-6: effects on and production by rat granulosa cells in vitro. Endocrinology 130, 1750-1752 (1992)
DOI: 10.1210/endo.130.3.1537322

137. L. J. Spicer: Tumor necrosis factor-alpha (TNF-alpha) inhibits steroidogenesis of bovine ovarian granulosa and theca cells in vitro. Involvement of TNF-alpha receptors. Endocrine 8, 109-115 (1998)
DOI: 10.1385/ENDO:8:2:109

138. R. Sakumoto, B. Berisha, N. Kawate, D. Schams, K. Okuda: Tumor necrosis factor-a and its receptors in bovine corpus luteum throughout the estrous cycle. Biol Reprod 62, 192-199 (2000)
DOI: 10.1095/biolreprod62.1.192

139. A. Salmassi, S. Lu, J. Hedderich, C. Oettinghaus, W. Jonat, L. Mettler: Interaction of interleukin-6 on human cell steroid secretion. J Endocrinol 170, 471-478 (2001)
DOI: 10.1677/joe.0.1700471

140. B. Conley and M. Hinshelwood: Mammalian aromatases. Reproduction 121,685-695 (2001)
DOI: 10.1530/rep.0.1210685

141. J. F. Arnal, C. Fontaine, A. Billon-Gales, J. Favre, H. Laurell, F. Lenfant, P. Gourdy: Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol 1506-1512 (2010)
DOI: 10.1161/ATVBAHA.109.191221

142. R. Monga, S. Ghai, T. K. Datta, D. Singh: Tissue-specific promoter methylation and histone modification regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. Gen Comp Endocrinol 173, 205-215 (2011a)
DOI: 10.1016/j.ygcen.2011.05.016

143. F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones, R. A. Frye, M. W. Mayo: Modulation of NF-κ B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO Journal 23, 2369-2380 (2004)
DOI: 10.1038/sj.emboj.7600244

144. Kauppinen, T. Suuronen, J. Ojala, K. Kaarniranta, A. Salminen: Antagonistic crosstalk between NF-κ B and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25, 1939-1948 (2013)
DOI: 10.1016/j.cellsig.2013.06.007

145. L. Pacella-Ince, D. L. Zander-Fox, M. Lan: Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advancedmaternal age. Hum Reprod 29, 1490-1499 (2014)
DOI: 10.1093/humrep/deu071

146. H. Fu, O.W. Hiraike, M. Hirano, Y. Kawamura, A. Sakurabashi, A. Shirane, Y. Morita, W. Isono, H. Oishi, K. Koga, K. Oda, K. Kawana, T. Yano, H. Kurihara, Y. Osuga, T. Fujii: SIRT3 positively regulates the expression of folliculogenesis and luteinisation related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology 155, 3079-3087 (2014)
DOI: 10.1210/en.2014-1025

147. L. Zhang, X. Hou, R. Ma, K. Moley, T. Schedl, Q. Wang: Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J 28, 1435-1445 (2014)
DOI: 10.1096/fj.13-244111

148. L. L. Luo, X. C. Chen, Y. C. Fu: The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats. Aging Clin Exp Res 24, 125-133 (2012)
DOI: 10.3275/7660

149. X. M. Zhang, L. Li, J. J. Xu: Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene 523, 82-87 (2013)
DOI: 10.1016/j.gene.2013.03.039

150. N. Wang, L. L. Luo, J. J. Xu: Obesity accelerates ovarian follicle development and follicle loss in rats. MetabClin Exp 63, 94-103 (2014)
DOI: 10.1016/j.metabol.2013.09.001

151. Y. Kawamura, Y. Uchijima, N. Horike, K. Tonami, K. Nishiyama, T. Asano, Y. Kurihara, H. Kurihara: Sirt3 protects in vitro—fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. J Clin Invest 120, 2817-2828 (2010)
DOI: 10.1172/JCI42020

152. S. S. Kwak, S. A. Cheong, J. D. Yoon, Y. Jeon, S. H. Hyun: Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 1597-1610 (2012)
DOI: 10.1016/j.theriogenology.2012.07.006

153. B. W. Bridle, L. Chen, C. G. Lemay, J. S. Diallo, J. Pol, A. Nguyen, A. Capretta, R. He, J. L. Bramson, J. C. Bell, B. D. Lichty, Y. Wan: HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther 21(4), 887-894 (2013)
DOI: 10.1038/mt.2012.265

154. R. E. Edens, S. Dagtas, K. M. Gilbert: Histone deacetylase inhibitors induce antigen specific anergy in lymphocytes: a comparative study. Int Immunopharmacol 6(11), 1673-1681(2006)
DOI: 10.1016/j.intimp.2006.07.001

155. A. S. Dagtas, R. E. Edens, K. M. Gilbert: Histone deacetylase inhibitor uses p21 (Cip1) to maintain anergy in CD4+ T cells. Int Immunopharmacol 9(11), 1289-1297 (2009)
DOI: 10.1016/j.intimp.2009.07.012

156. M. J. Kelly-Sell, Y. H. Kim, S. Straus, B. Benoit, C. Harrison, K. Sutherland, R. Armstrong, W. K. Weng, L. C. Showe, M. Wysocka, A. H. Rook: The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients. Am J Hematol 87(4), 354-360 (2012)
DOI: 10.1002/ajh.23112

157. D. Wang, C. Iclozan, C. Liu, C. Xia, C. Anasetti, X. Z. Yu: LBH589 enhances T cell activation in vivo and accelerates graft-versus-host disease in mice. Biol Blood Marrow Transplant 18(8), 1182-1190 e1181 (2012)
DOI: 10.1016/j.bbmt.2012.06.002

158. D. D. Vo, R. M. Prins, J. L. Begley, T. R. Donahue, L. F. Morris, K. W. Bruhn, P. de la Rocha, M. Y. Yang, S. Mok, H. J. Garban, N. Craft, J.S. Economou, F. M. Marincola, E. Wang, A. Ribas: Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 69, 8693-8699 (2009)
DOI: 10.1158/0008-5472.CAN-09-1456

159. P. Agarwal, A. Raghavan, S. L. Nandiwada, J. M. Curtsinger, P. R. Bohjanen, D. L. Mueller, M. F. Mescher: Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183(3), 1695-1704 (2009)
DOI: 10.4049/jimmunol.0900592

160. H. Ogbomo, M. Michaelis, J. Kreuter, H. W. Doerr, J. Cinatl, Jr.: Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 581, 1317-1322 (2007)
DOI: 10.1016/j.febslet.2007.02.045

161. S. Zhu, C.J. Denman, Z. S. Cobanoglu, S. Kiany, C. C. Lau, S. M. Gottschalk, D. P. Hughes, E. S. Kleinerman, D. A. Lee: The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm Res 32(3), 779-792 (2013)
DOI: 10.1007/s11095-013-1231-0

162. A. M. Grabiec, S. Krausz, W. de Jager, T. Burakowski, D. Groot, M. E. Sanders, B. J. Prakken, W. Maslinski, E. Eldering, P. P. Tak, K. A. Reedquist: Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184, 2718-2728 (2010)
DOI: 10.4049/jimmunol.0901467

163. D. Bosisio, M. Vulcano, A. Del Prete, M. Sironi, V. Salvi, L. Salogni, E. Riboldi, F. Leoni, C. A. Dinarello, G. Girolomoni, S. Sozzani: Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo. J Leukoc Biol 84, 1540-1548 (2008)
DOI: 10.1189/jlb.0708401

164. V. Salvi, D. Bosisio, S. Mitola, L. Andreoli, A. Tincani, S. Sozzani: Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology 215, 756-761 (2010)
DOI: 10.1016/j.imbio.2010.05.023

165. A. Nencioni, J. Beck, D. Werth, F. Grünebach, F. Patrone, A. Ballestrero, P. Brossart: Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 13, 3933-3941 (2007)
DOI: 10.1158/1078-0432.CCR-06-2903

166. W. Song, Y.T. Tai, Z. Tian, T. Hideshima, D. Chauhan, P. Nanjappa, M.A. Exley, K.C. Anderson, N.C. Munshi: HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 25, 161-168 (2011)
DOI: 10.1038/leu.2010.244

167. F. Leoni, A. Zaliani, G. Bertolini, G. Porro, P. Pagani, P. Pozzi, G. Dona, G. Fossati, S. Sozzani, T. Azam, P. Bufler, G. Fantuzzi, I. Goncharov, S. H. Kim, B. J. Pomerantz, L. L. Reznikov: The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A 99, 2995-3000 (2002)
DOI: 10.1073/pnas.052702999

168. F. Leoni, G. Fossati, E. C. Lewis, J. K. Lee, G. Porro, P. Pagani, D. Modena, M. L. Moras, P. Pozzi, L. L. Reznikov, B. Siegmund, G. Fantuzzi, C. A. Dinarello, P. Mascagni: The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11, 1-15 (2005)
DOI: 10.2119/2006-00005.Dinarello

169. P. Reddy, Y. Maeda, K. Hotary, C. Liu, L.L. Reznikov, C.A. Dinarello, J. L. Ferrara: Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versushost disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci U S A 101, 3921-3926 (2004)
DOI: 10.1073/pnas.0400380101

170. P. Reddy, Y. Sun, T. Toubai, R. Duran-Struuck, S.G. Clouthier, E. Weisiger, Y. Maeda, I. Tawara, O. Krijanovski, E. Gatza, C. Liu, C. Malter, P. Mascagni, C. A. Dinarello, J.L. Ferrara: Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Invest 118, 2562-2573 (2008)
DOI: 10.1172/jci34712

171. G. O. Osoata, S. Yamamura, M. Ito, C. Vuppusetty, I. M. Adcock, P. J. Barnes, K. Ito: Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun 384, 366-371 (2009)
DOI: 10.1016/j.bbrc.2009.04.128

172. K. Ito, S. Yamamura, S. Essilfie-Quaye, B. Cosio, M. Ito, P. J. Barnes, I. M. Adcock: Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med 203, 7-13(2006)
DOI: 10.1084/jem.20050466

173. T. Kobayashi, K. Matsuoka, S. Z. Sheikh, S. M. Russo, Y. Mishima, C. Collins, E. F. deZoeten, C. L. Karp, J. P. Y. Ting, R. B. Sartor, S. E. Plevy: IL-10 regulates Il12b expression via histone deacetylation: Implications for intestinal macrophage homeostasis. J Immunol 189, 1792-1799 (2012)
DOI: 10.4049/jimmunol.1200042

174. A. Angiolilli, P. A Kabala, A. M. Grabiec, I. M. V. Baarsen, B. S. Ferguson, S. García, B. M. Fernandez, T. A. McKinsey, P. P. Tak, G. Fossati, P. Mascagni, D. L. Baeten:Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann Rheum Dis (2015)
DOI: 10.1136/annrheumdis-2015-207259.54

175. Y. S. Baek, S. Haas, H. Hackstein, G. Bein, M. Hernandez-Santana, H. Lehrach, S. Sauer, H. Seitz: Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol 10, 18 (2009)
DOI: 10.1186/1471-2172-10-18

176. M. R. Shakespear, D. M. Hohenhaus, G. M. Kelly, N. A. Kamal, P. Gupta, L. I. Labzin, K. Schroder, V. Garceau, S. Barbero, A. Iyer, D.A. Hume, R. C. Reid, K. M. Irvine, D. P. Fairlie, M. J. Sweet: Histone deacetylase 7 promotes Toll-like Receptor 4-dependent pro-inflammatory gene expression in macrophages. JBC 1-27 (2013)
DOI: 10.1074/jbc.M113.496281

177. J. J. Kovacs, P. J. Murphy, S. Gaillard, X. Zhao, J. T. Wu, C. V. Nicchitta, M. Yoshida, D. O. Toft, W. B. Pratt, T. P. Yao: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18, 601-607(2005)
DOI: 10.1016/j.molcel.2005.04.021

178. S. Dahiya, L. Wang, U. H Beier, A. Angelin, R. Han, D. C Wallace, W. W Hancock: Deletion of a class IIb histone/protein deacetylase (HDAC), HDAC10, Enhances FoxP3+ T-regulatory (T-reg) cell suppressive function, gene expression and metabolism, and promotes allograft survival. J Immunol, 196 (1) 140.5 (2016)

179. M. Reverchon,M. Cornuau, L. Cloix: Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mole Hum Reprod 19, 313-326, (2013)
DOI: 10.1093/molehr/gat002

180. S. Pavlov’a, K. Klucska, D. Vǎs’ǐcek: The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci 140, 180-188 (2013)
DOI: 10.1016/j.anireprosci.2013.06.013

181. A. V. Sirotkin, P. Dekanov’a, A. H. Harrath, S. H. Alwasel, D. Vǎs’ǐcek: Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res 358, 627-632 (2014)
DOI: 10.1007/s00441-014-1940-7

182. Y. Morita, O. Wada-Hiraike, T. Yano: Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reprod Biol Endocrinol 10, (2012)
DOI: 10.1186/1477-7827-10-14

183. A. Benayoun, A. B. Georges, D. L’H^oTel: Transcription factor FOXl2 protects granulosa cells fromstress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Hum Mol Gen 20, 1673-1686, (2011)
DOI: 10.1093/hmg/ddr042

184. C. Cant’o, Z. Gerhart-Hines, J. N. Feige: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 (2009)
DOI: 10.1038/nature07813

185. P. W. Caton, N. K. Nayuni, J. Kieswich, N. Q. Khan, M. M. Yaqoob, R. Corder: Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 205, 97-106 (2010)
DOI: 10.1677/JOE-09-0345

186. I. Manosalva, A. Gonz’alez: Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 74, 1539-1547, (2010)
DOI: 10.1016/j.theriogenology.2010.06.024

187. G. Di Emidio, S. Falone, M. Vitti: SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod 29, 2006-2017 (2014)
DOI: 10.1093/humrep/deu160

188. Y. S. Kim, Y. M. Lee, J. S. Park, S. K. Lee, E. C. Kim: SIRT1 modulates high mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells. J Cell Biochem111, 1310-20 (2010)
DOI: 10.1002/jcb.22858

189. A. Tatone, G.D. Emidio, M. Vitti, M. D. Carlo, S. Santini Jr., A. M. Alessandro, S. Falone, F. Amicarelli: Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxid Med Cell Longev 1-11 (2015)
DOI: 10.1155/2015/659687

Key Words: Histone deacetylase, infertility, ovarian dysfunction, microbial infection, HDACi, Review

Send correspondence to: Dheer Singh, Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute (Deemed University), Karnal 132001 India, Tel:  91-184-2259135, Fax: 91-184-2250042, E-mail: drdheer.singh@gmail.com