[Frontiers In Bioscience, Landmark, 23, 1391-1406, March 1, 2018]

Electromagnetic fields and optomechanics in cancer diagnostics and treatment

Vahid Salari,1 Shabir Barzanjeh2, Michal Cifra3, Christoph Simon4,5, Felix Scholkmann6,7, Zahra Alirezaei8, Jack A. Tuszynski9, 10

1Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran, 2Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria, 3Institute of Photonics and Electronics, The Czech Academy of Sciences, Chabersk´a 57, 182 00 Prague, Czech Republic, 4Department of Physics and Astronomy, University of Calgary, Calgary T2N 1N4, Alberta, Canada, 5Institute for Quantum Science and Technology, University of Calgary, Calgary T2N 1N4, Alberta, Canada, 6Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland, 7Research Ofce for Complex Physical and Biological Systems (ROCoS), CH-8038 Zurich, Switzerland, 8Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran, 9Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 1Z2, Alberta, Canada 10Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada


1. Abstract
2. Introduction
3. Electromagnetic fields affect cancer cells
4. Microtubules
4.1. Monitoring mechanical vibrations of microtubules via optomechanical coupling
5. Summary
6. Acknowledgment
7. References


In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion, optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy.


1. B D Smith, G L Smith, A Hurria, G N Hortobagyi, and T A Buchholz. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J. Clin. Oncol 27(17), 2758– 2765 (2009)
DOI: 10.1200/JCO.2008.20.8983

2. A Jemal, M M Center, C DeSantis, and E M Ward: Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomarkers Prev 19(8), 1893–1907 (2010)
DOI: 10.1158/1055-9965.EPI-10-0437

3. C Sonnenschein and A M Soto. Why is it that despite signed capitulations, the war on cancer is still on? J Biol Sci (accepted) (2017)

4. D Hanahan. Rethinking the war on cancer. The Lancet 383(9916), 558–563 (2014)
DOI: 10.1016/S0140-6736(13)62226-6

5. L A Alpuente, A M Lopez, and R Y Tur. Glioblastoma: changing expectations? Clin Transl Oncol 13( 4), 240 (2011)
DOI: 10.1007/s12094-011-0648-3

6. M Levin. Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24(5), 295–315 (2003)
DOI: 10.1002/bem.10104

7. S Suresh. Biomechanics and biophysics of cancer cells. Acta Materialia, 55(12), 3989–4014 (2007)
DOI: 10.1016/j.actamat.2007.04.022

8. R H Funk. Endogenous electric fields as guiding cue for cell migration. Front Physiol, 6, (2015)
DOI: 10.3389/fphys.2015.00143

9. M Levin. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell. 25(24), 3835–3850 (2014)
DOI: 10.1091/mbc.E13-12-0708

10. M Levin. Molecular bioelectricity in developmental biology: new tools and recent discoveries. Bioessays, 34(3), 205–217 (2012)
DOI: 10.1002/bies.201100136

11. H S Burr and F S C Northrop. Evidence for the existence of an electro-dynamic field in living organisms. Proc. Natl. Acad. Sci. U.S.A., 25(6), 284–288 (1939)
DOI: 10.1073/pnas.25.6.284

12. H Berg, B GUnther, I Hilger, M Radeva, N Traitcheva, and L Wollweber. Bioelectromagnetic field effects on cancer cells and mice tumors. Electromagn Biol Med, 29(4), 132–143 (2010)
DOI: 10.3109/15368371003776725

13. S J Beebe, P F Blackmore, J White, R P Joshi, and K H Schoenbach. Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas, 25(4), 1077 (2004)
DOI: 10.1088/0967-3334/25/4/023

14. M Chan and C J Park. Effect of electromagnetic field exposure on the reproductive system. Clin Exp Reprod Med. 39(1), 1–9 (2012)
DOI: 10.5653/cerm.2012.39.1.1

15. E D Kirson, V Dbalý, F Tovaryš, J Vymazal, J F Soustiel, A Itzhaki, D Mordechovich, S Steinberg-Shapira, Z Gurvich, R Schneiderman, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. U.S.A., 104(24), 10152–10157 (2007)
DOI: 10.1073/pnas.0702916104

16. E D Kirson, Z Gurvich, R Schneiderman, E Dekel, A Itzhaki, Y Wasserman, R Schatzberger, and Y Palti. Disruption of cancer cell replication by alternating electric fields. Cancer Res., 64(9), 3288–3295 (2004)
DOI: 10.1158/0008-5472.CAN-04-0083

17. J A Tuszynski, C Wenger, D E Friesen, and J Preto. An overview of sub-cellular mechanisms involved in the action of TTfields. Int J Environ Res Public Health, 13(11), 1128 (2016)
DOI: 10.3390/ijerph13111128

18. M K Logani, I Szabo, V Makar, A Bhanushali, S Alekseev, and M C Ziskin. Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics, 27(4), 258–264 (2006)
DOI: 10.1002/bem.20208

19. E Elson. The little explored efficacy of magnetic fields in cancer treatment and postulation of the mechanism of action. Electromagn Biol Med, 28(3), 275–282 (2009)
DOI: 10.3109/15368370903114271
DOI: 10.1080/15368370903114271

20. R M Woodward, V P Wallace, R J Pye, B E Cole, D D Arnone, E H Linfield, M Pepper, Terahertz Pulse Imaging of ex vivo Basal Cell Carcinoma, J Invest Dermatol, 120(1), 72-78 (2003)
DOI: 10.1046/j.1523-1747.2003.12013.x

21. A Barbault, F P Costa, B Bottger, R F Munden, F Bomholt, N Kuster, and B Pasche. Amplitudemodulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Eep Clin Canc Res, 28(1), 51 (2009)
DOI: 10.1186/1756-9966-28-51

22. M Walther, F Mayer, W Kafka, and N Schutze. Effects of weak, low-frequency pulsed electromagnetic fields bemer type. on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study. Electromagn Biol Med, 26(3), 179–190 (2007)
DOI: 10.1080/15368370701580814

23. M Kanitz, F Witzmann, W Lotz, D Conover, and R Savage. Investigation of protein expression in magnetic field-treated human glioma cells. Bioelectromagnetics, 28(7), 546–552 (2007)
DOI: 10.1002/bem.20326

24. S Qutob, V Chauhan, P Bellier, C Yauk, G Douglas, L Berndt, A Williams, G Gajda, E Lemay, A Thansandote, et al. Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9. GHz pulse-modulated radiofrequency field. Radiat Res., 165( 6), 636–644 (2006)
DOI: 10.1667/RR3561.1

25. Y Omori, M L Z Dagli, K Yamakage, and H Yamasaki. Involvement of gap junctions in tumor suppression: analysis of genetically-manipulated mice. Mutat Res Fundam Mol Mech Mutagen., 477(1), 191–196 (2001)
DOI: 10.1016/S0027-5107(01)00120-8

26. M Mesnil, V Krutovskikh, Y Omori, and H Yamasaki. Role of blocked gap junctional intercellular communication in non-genotoxic carcinogenesis. Toxicol. Lett., 82, 701–706 (1995)
DOI: 10.1016/0378-4274(95)03588-5

27. H Yamasaki, V Krutovskikh, M Mesnil, T Tanaka, M L Zaidan-Dagli, and Y Omori. Role of connexin gap junction. genes in cell growth control and carcinogenesis. C. R. Acad. Sci., 322(2), 151– 159 (1999)
DOI: 10.1016/S0764-4469(99)80038-9

28. G Hu, H Chiang, Q Zeng, and Y Fu. ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin43 in nih3t3 cells. Bioelectromagnetics, 22(8), 568–573 (2001)
DOI: 10.1002/bem.85

29. D T Yamaguchi, J Huang, D Ma, and P K Wang. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol., 190(2), 180–188 (2002)
DOI: 10.1002/jcp.10047

30. X Huang, X Feng, C Zorman, M Mehregany, and M Roukes. VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7(1), 247 (2005)
DOI: 10.1088/1367-2630/7/1/247

31. G Andocs, H Renner, L Balogh, L Fonyad, C Jakab, and A Szasz. Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther Onkol., 185(2), 120–126 (2009)
DOI: 10.1007/s00066-009-1903-1

32. N Meggyeshazi, G Andocs, L Balogh, P Balla, G Kiszner, I Teleki, A Jeney, and T Krenacs. Dna fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol., 190(9), 815–822 (2014)
DOI: 10.1007/s00066-014-0617-1

33. G Andocs, N Meggyeshazi, L Balogh, S Spisak, M E Maros, P Balla, G Kiszner, I Teleki, C Kovago, and T Krenacs. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones, 20(1), 37–46 (2015)
DOI: 10.1007/s12192-014-0523-6

34. G Andocs, M Rehman, Q Zhao, Y Tabuchi, M Kanamori, and T Kondo. Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma u937 cells. Cell Death Discov., 2, (2016)
DOI: 10.1038/cddiscovery.2016.39

35. M Converse, E J Bond, B Veen, and C Hagness. A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Trans Microw Theory Tech., 54(5), 2169–2180 (2006)
DOI: 10.1109/TMTT.2006.872790

36. P T Nguyen, A Abbosh, and S Crozier. Threedimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization. IEEE Trans. Biomed. Eng. 64(6), 1335–1344 (2017)
DOI: 10.1109/TBME.2016.2602233

37. J Mendecki, E Friedenthal, C Botstein, F Sterzer, R Paglione, M Nowogrodzki, and E Beck. Microwave-induced hyperthermia in cancer treatment: apparatus and preliminary results. Int. J. Radiat. Oncol. Biol. Phys. 4(11-12), 1095–1103 (1978)
DOI: 10.1016/0360-3016(78)90026-3

38. A Lerchl, M Klose, K Grote, A F Wilhelm, O Spathmann, T Fiedler, J Streckert, V Hansen, and M Clemens. Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochem. Biophys. Res. Commun., 459(4), 585–590 (2015)
DOI: 10.1016/j.bbrc.2015.02.151

39. L Hardell and M Carlberg. Increasing rates of brain tumours in the swedish national inpatient register and the causes of death register. Int J Env Res Pub He. 12(4), 3793–3813 (2015)
DOI: 10.3390/ijerph120403793

40. G Huang. 10 emerging technologies that will change your world. Technolo Rev, 107(1), 32 (2004)

41. A Fitzgerald, E Berry, N. Zinovev, G Walker, M Smith, and J Chamberlain. An introduction to medical imaging with coherent terahertz frequency radiation. Phys Med boil. 47(7), 67 (2002)

42. R M Woodward, V P Wallace, R J Pye, B E Cole. On Lasers Electro-Optics Europe International Quantum Electronics Conference CLEO EUROPE/IQEC, 1– 1 (2013)

43. P C Ashworth, E Pickwell-MacPherson, E Provenzano, S E Pinder, A D Purushotham, M Pepper, and V P Wallace. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt express. 17(15), 12444–12454 (2009)
DOI: 10.1364/OE.17.012444

44. A J Fitzgerald, V P Wallace, M Jimenez-Linan, L Bobrow, R J Pye, A D Purushotham, and D D Arnone. Terahertz pulsed imaging of human breast tu-mors, Radiol , 239(2), 533–540 (2006)
DOI: 10.1148/radiol.2392041315

45. H Chen, T H Chen, T F Tseng, J T Lu, C C Kuo, S C Fu, W J Lee, Y F Tsai, Y Y Huang, E Y Chuang, et al. High-sensitivity in vivo thz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model. Opt express, 19(22), 21552–21562 (2011)
DOI: 10.1364/OE.19.021552

46. G J Wilmink and J E Grundt. Invited review article: current state of research on biological effects of terahertz radiation, J Infrared Millim Te, 32(10), 1074–1122 (2011)
DOI: 10.1007/s10762-011-9794-5

47. L V Titova, A K Ayesheshim, A Golubov, R Rodriguez-Juarez, A Kovalchuk, F A Hegmann, and O Kovalchuk. Intense picosecond thz pulses alter gene expression in human skin tissue in vivo. SPIE BiOS, 85850Q–85850Q, International Society for Optics and Photonics, (2013)

48. J Bock, Y Fukuyo, S Kang, M L Phipps, L B Alexandrov, K O Rasmussen, A R Bishop, E D Rosen, J S Martinez, H T Chen, et al. Mammalian stem cells reprogramming in response to terahertz radiation. PloS one, 5(12), e15806 (2010)
DOI: 10.1371/journal.pone.0015806

49. B S Alexandrov, M L Phipps, L B Alexandrov, L G Booshehri, A Erat, J Zabolotny, C H Mielke, H T Chen, G Rodriguez, K O Rasmussen, et al. Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells. Sci Rep. 3, 1184 (2013)
DOI: 10.1038/srep01184

50. A Doria, G Gallerano, E Giovenale, G Messina, A Lai, A Ramundo-Orlando, V Sposato, M D’Arienzo, A Perrotta, M Romano, et al. Thz radiation studies on biological systems at the enea fel facility. Infrared Phys Techn, 45(5), 339–347 (2004)
DOI: 10.1016/j.infrared.2004.01.014

51. R J Falconer and A G Markelz. Terahertz spectroscopic analysis of peptides and proteins. J Infrared Millim Te, 33(10), 973–988 (2012)
DOI: 10.1007/s10762-012-9915-9

52. B Alexandrov, V Gelev, A Bishop, A Usheva, and K Rasmussen. DNA breathing dynamics in the presence of a terahertz field. Phys Lett A 374(10), 1214–1217 (2010)
DOI: 10.1016/j.physleta.2009.12.077

53. B Fischer, M Walther, and P U Jepsen. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med biol, 47(21), 3807 (2002)
DOI: 10.1088/0031-9155/47/21/319

54. B M Fischer, M Hoffmann, H Helm, R Wilk, F Rutz, T Kleine-Ostmann, M Koch, and P U Jepsen. Terahertz time-domain spectroscopy and imaging of artificial rna. Opt Express, 13(14), 5205–5215 (2005)
DOI: 10.1364/OPEX.13.005205

55. L V Titova, A K Ayesheshim, A Golubov, D Fogen, R Rodriguez-Juarez, F A Hegmann, and O Kovalchuk. Intense THz pulses cause h2ax phosphorylation and activate dna damage response in human skin tissue. Biomed Opt Express, 4(4), 559– 568 (2013)
DOI: 10.1364/BOE.4.000559

56. L V Titova, A K Ayesheshim, A Golubov, R Rodriguez-Juarez, A Kovalchuk, F A Hegmann, and O Kovalchuk. Intense picosecond thz pulses alter gene expression in human skin tissue in vivo. SPIE BiOS, 85850Q–85850Q, International Society for Optics and Photonics, (2013)

57. L V Titova, A K Ayesheshim, A Golubov, R Rodriguez-Juarez, R Woycicki, F A Hegmann, and O Kovalchuk. Intense thz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci Rep. 3 (2013)

58. L V Titova, A K Ayesheshim, D Purschke, A Golubov, R Rodriguez-Juarez, R Woycicki, F A Hegmann, and O Kovalchuk. Effect of intense thz pulses on expression of genes associated with skin cancer and inflammatory skin conditions. SPIE BiOS, 89411G-89411G, International Society for Optics and Photonics, (2014)

59. M L Lucas and R Heller. Il-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol, 22(12), 755–763 (2003)
DOI: 10.1089/104454903322624966

60. Y Kubota, Y Tomita, M Tsukigi, H Kurachi, T Motoyama, and L M Mir. A case of perineal malignant melanoma successfully treated with Electrochemotherapy. Melanoma Res, 15(2), 133–134 (2005)
DOI: 10.1097/00008390-200504000-00008

61. A Gothelf, L M Mir, and J Gehl. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev, 29(5), 371–387 (2003)
DOI: 10.1016/S0305-7372(03)00073-2

62. B Alberts. Vesicular trafc in the secretory and endocytic pathways. Mol Biol Cell, 599– 651 (1994)

63. O Civalek and C Demir. Bending analysis of microtubules using nonlocal euler–bernoulli beam theory. Appl Math Model, 35(5), 2053–2067 (2011)
DOI: 10.1016/j.apm.2010.11.004

64. P Venier, A C Maggs, M F Carlier, and D Pantaloni. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biol Chem, 269(18), 13353–13360 (1994)

65. T L Hawkins, D Sept, B Mogessie, A Straube, and J L Ross. Mechanical properties of doubly stabilized microtubule filaments. Biophys J, 104(7), 1517–1528 (2013)
DOI: 10.1016/j.bpj.2013.02.026

66. M Kurachi, M Hoshi, and H Tashiro. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cytoskeleton, 30(3), 221–228 (1995)
DOI: 10.1002/cm.970300306

67. A Vinckier, C Dumortier, Y Engelborghs, and L Hellemans. Dynamical and mechanical study of immobilized microtubules with atomic force microscopy. J Vac Sci Technol B, 14(2), 1427–1431 (1996)
DOI: 10.1116/1.589113

68. A Kis, S Kasas, B Babic, A Kulik, W Benoit, G Briggs, C Schonenberger, S Catsicas, and L Forro. Nanomechanics of microtubules. Phys Rev E, 89(24), 248101 (2002)
DOI: 10.1103/PhysRevLett.89.248101

69. J Mizushima-Sugano, T Maeda, and T Miki-Noumura. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. BBA-Gen Subjects, 755(2), 257– 262 (1983)
DOI: 10.1016/0304-4165(83)90212-X

70. J Tuszynski, T Luchko, S Portet, and J Dixon. Anisotropic elastic properties of microtubules. Eur. Phys. J. E , 17(1), 29–35 (2005)
DOI: 10.1140/epje/i2004-10102-5

71. S Kasas, A Kis, B M. Riederer, L Forro, G Dietler, and S Catsicas. Mechanical properties of microtubules explored using the finite elements method. ChemPhysChem, 5(2), 252–257 (2004)
DOI: 10.1002/cphc.200300799

72. Y M Sirenko, M A Stroscio, and K Kim. Elastic vibrations of microtubules in a fluid. Phys Rev E, 53(1), 1003 (1996)
DOI: 10.1103/PhysRevE.53.1003

73. S Portet, J Tuszynski, C Hogue, and J Dixon. Elastic vibrations in seamless microtubules. Eur Biophys J, 34(7), 912–920 (2005)
DOI: 10.1007/s00249-005-0461-4

74. A Farajpour, A Rastgoo, and M Mohammadi. Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech Res Commun, 57, 18–26 (2014)
DOI: 10.1016/j.mechrescom.2014.01.005

75. A G Arani, A Shirali, M N Farahani, S Amir, and A Loghman. Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method. Proceedings of the Institution of Mechanical Engineers, Part C. Proc Inst Mech Eng C J Mech Eng Sci, 227(1), 137–145 (2013)
DOI: 10.1177/0954406212445151

76. K B Mustapha and B T Wong. Torsional frequency analyses of microtubules with end attachments. Zamm-Z Angew Math Me, 96(7), 824–842 (2016)
DOI: 10.1002/zamm.201500007

77. C Wang, C Ru, and A Mioduchowski. Vibration of microtubules as orthotropic elastic shells. Physica E, 35(1), 48–56 (2006)
DOI: 10.1016/j.physe.2006.05.008

78. C Wang, C Li, and S Adhikari. Dynamic behaviors of microtubules in cytosol. J Biomech, 42(9), 1270–1274 (2009)
DOI: 10.1016/j.jbiomech.2009.03.027

79. F Daneshmand and M Amabili. Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling. J Biol phys, 38(3), 429–448 (2012)
DOI: 10.1007/s10867-012-9263-y

80. J Pokorny, F Jelınek, V Trkal, I Lamprecht, and R Holzel. Vibrations in microtubules. J Biol Phys, 23, 171–179 (1997)
DOI: 10.1023/A:1005092601078

81. M A Deriu, M Soncini, M Orsi, M Patel, J W Essex, F M Montevecchi, and A Redaelli. Anisotropic elastic network modeling of entire microtubules. Biophys J, 99(7), 2190–2199 (2010)
DOI: 10.1016/j.bpj.2010.06.070

82. D Havelka, M A Deriu, M Cifra, and O Kucera. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach. Sci Rep, 7 (2017)
DOI: 10.1038/s41598-017-04272-w

83. P Xiang and K M Liew. Dynamic behaviors of long and curved microtubules based on an atomisticcontinuum model. Comput Methods Appl M, 223, 123–132 (2012)

84. K Liew, P Xiang, and L Zhang. Mechanical properties and characteristics of microtubules: a review. Compos Struct, 123, 98–108 (2015)
DOI: 10.1016/j.compstruct.2014.12.020

85. X Qian, J Zhang, and C Ru. Wave propagation in orthotropic microtubules. J Appl Phys, 101(8), 084702 (2007)
DOI: 10.1063/1.2717573

86. O Kucera, D Havelka, M Cifra. Vibrations of microtubules: Physics that has not met biology yet. Wave Motion. 72, 13-22 (2017)
DOI: 10.1016/j.wavemoti.2016.12.006

87. G Dubost, A Holland, J Bare, and F Bellossi. Morphological transformations of human cancer cells and microtubules caused by frequency specific pulsed electric fields broadcast by an enclosed gas plasma antenna. Proceedings-7th International Workshop on Biological Effects of EMF–October, (2012)

88. J Pokorny, C Vedruccio, O. Kucera. Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Euro Biophys J Biophy, 40(6), 747–759 (2011)
DOI: 10.1007/s00249-011-0688-1

89. J Howard et al., Mechanics of motor proteins and the cytoskeleton. In: Physics of bio-molecules and cells. 75, 69-94 (2001)

90. J A Tuszynski, E J Carpenter, J T Huzil, W Malinski, T Luchko, and R F Luduena. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int J Dev Biol, 50(2-3), 341–358 (2003)
DOI: 10.1387/ijdb.052063jt

91. J Pokorny, F Jelınek, and V Trkal. Electric field around microtubules. Bioelectrochem Bioenerg, 45(2), 239–245 (1998)
DOI: 10.1016/S0302-4598(98)00100-7

92. M Cifra, J Pokorn, D Havelka, and O Kucera. Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems, 100, 122– 131 (2010)
DOI: 10.1016/j.biosystems.2010.02.007

93. O Kucera and D Havelka. Mechano-electrical vibrations of microtubulesLink to subcellular morphology. Biosystems, 109(3), 346–355 (2012)
DOI: 10.1016/j.biosystems.2012.04.009

94. D Havelka, M Cifra, O Kucera, J Pokorn, and J Vrba. High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol, 286, 31–40 (2011)
DOI: 10.1016/j.jtbi.2011.07.007

95. D Havelka, O Kucera, M A Deriu, and M Cifra. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model. PLoS ONE, 9, e86501 (2014)
DOI: 10.1371/journal.pone.0086501

96. D Havelka, M Cifra, and O Kucera. Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule. Appl Phys Lett, 104, 243702 (2014)
DOI: 10.1063/1.4884118

97. O Krivosudsky and M Cifra. Microwave absorption by nanoresonator vibrations tuned with surface modification. EPL-Europhys Lett, 115(4), 44003 (2016)
DOI: 10.1209/0295-5075/115/44003

98. M Karplus, J A McCammon, and W L Peticolas. The internal dynamics of globular protein. Crit Rev Biochem Mol, 9(4), 293–349 (1981)
DOI: 10.3109/10409238109105437

99. D A Turton, H M Senn, T Harwood, A J Lapthorn, E M Ellis, and K Wynne. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat commun, 5, 3999 (2014)
DOI: 10.1038/ncomms4999

100. S Wheaton, R M Gelfand, and R Gordon. Probing the raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nat Photonics, 9(1), 68–72 (2015)
DOI: 10.1038/nphoton.2014.283

101. J Pokorny, J Pokorny, and J Kobilkova. Postulates on electromagnetic activity in biological systems and cancer. Integr Biol-UK, 5(12), 1439– 1446 (2013)
DOI: 10.1039/c3ib40166a

102. H Frohlich. Coherent electric vibrations in biological systems and the cancer problem. IEEE T Microw Theory, 26(8), 613–618 (1978)
DOI: 10.1109/TMTT.1978.1129446

103. C Vedruccio and A Meessen. Em cancer detection by means of non-linear resonance interaction. Proc. and Extended Papers book. PIERS, 28–31 (2004)

104. R Holzel. Electric activity of non-excitable biological cells radio frequencies. Electromagn Biol Med, 20(1), 1–13 (2001)

105. F Jelinek, J Saroch, O Kucera, J Hasek, J Pokorny, N Jaffrezic-Renault, and L Ponsonnet. Measurement of electromagnetic activity of yeast cells at 42 GHz. RADIOENGINEERING, 16(1), 36 (2007)

106. F Jelnek, M Cifra, J Pokorny, J Vani, J ima, J Haek, and I Frdlov. Measurement of Electrical Oscillations and Mechanical Vibrations of Yeast Cells Membrane Around 1 kHz. Electromagn Biol Med, 28, 223–232 (2009)
DOI: 10.1080/15368370802710807

107. O Kucera, K Cervinkova, M Nerudova, and M Cifra. Spectral perspective on the electromagnetic activity of cells. Curr Top Med Chem, 15(6), 513–522 (2015)
DOI: 10.2174/1568026615666150225103105

108. L Carr, S M Bardet, R C Burke, D Arnaud-Cormos, P Leveque, and R P Oconnor. Calciumindependent disruption of microtubule dynamics by nanosecond pulsed electric fields in u87 human glioblastoma cells. Sci Rep, 7 (2017)

109. C Genes, D Vitali, P Tombesi, S Gigan, and M Aspelmeyer. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys Rev A, 77(3), 033804 (2008)
DOI: 10.1103/PhysRevA.77.033804

110. J D Teufel, T Donner, D Li, JW Harlow, MS Allman, K Cicak, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature. 475(7356), 359-63 (2011)
DOI: 10.1038/nature10261

111. S De Liberato, N Lambert, and F Nori. Quantum noise in photothermal cooling. Phys Rev A, 83(3), 033809 (2011)
DOI: 10.1103/PhysRevA.83.033809

112. C Metzger, M Ludwig, C Neuenhahn, A Ortlieb, I Favero, K Karrai, and F Marquardt. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys Rev Lett, 101(13), 133903 (2008)
DOI: 10.1103/PhysRevLett.101.133903

113. S Barzanjeh, M Naderi, and M Soltanolkotabi. Backaction ground-state cooling of a micromechanical membrane via intensity-dependent interaction. Phys Rev A, 84, 2, 023803 (2011)
DOI: 10.1103/PhysRevA.84.023803

114. C Bradaschia, R Del Fabbro, A Di Virgilio, A. Giazotto, H Kautzky, V Montelatici, D Passuello, A Brillet, O Cregut, P Hello, et al. The virgo project: a wide band antenna for gravitational wave detection: Nucl. Instr. Meth. Phys. Res. A, 289(3), 518–525 (1990)
DOI: 10.1016/0168-9002(90)91525-G

115. M LaHaye, O Buu, B Camarota, and K Schwab. Approaching the quantum limit of a nanomechanical resonator. Science, 304(5667), 74–77 (2004)
DOI: 10.1126/science.1094419

116. T J Kippenberg and K J Vahala. Cavity optomechanics. Opt Express, 15(25), 17172– 17205 (2007)
DOI: 10.1364/OE.15.017172

117. A D OConnell, M Hofheinz, M Ansmann, R C Bialczak, M Lenander, E Lucero, M Neeley, D Sank, H Wang, M Weides, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464(7289), 697–703 (2010)

118. M Poot and H S van der Zant. Mechanical systems in the quantum regime. Phys Rep, 511(5), 273–335 (2012)
DOI: 10.1016/j.physrep.2011.12.004

119. I Pikovski, MR Vanner, M Aspelmeyer, MS Kim, C Brukner. Probing Planck-scale physics with quantum optics. Nat Phys. 8(5), 393-7 (2012)
DOI: 10.1038/nphys2262

120. M Bawaj, C Biancofiore, M Bonaldi, F Bonfigli, A Borrielli, G Di Giuseppe, L Marconi, F Marino, R Natali, A Pontin, et al. Probing deformed commutators with macroscopic harmonic oscillators. Nat commun, 6 (2015)

121. A Belenchia, D M Benincasa, S Liberati, F Marin, F Marino, and A Ortolan. Testing quantum gravity induced nonlocality via optomechanical quantum oscillators. Phys Rev Lett, 116(16), 161303 (2016)
DOI: 10.1103/PhysRevLett.116.161303

122. S Barzanjeh, S Pirandola, and C Weedbrook. Continuous-variable dense coding by optomechanical cavities. Phys Rev A, 88(4), 042331 (2013)
DOI: 10.1103/PhysRevA.88.042331

123. D Rugar, R Budakian, H J Mamin, B W Chui. Single spin detection by magnetic resonance force microscopy. Nature, 430(6997), 329-32 (2004)
DOI: 10.1038/nature02658

124. R Budakian, H Mamin, and D Rugar. Spin manipulation using fast cantilever phase reversals. Appl Phys Lett, 89, 11, 113113 (2006)
DOI: 10.1063/1.2349311

125. Y Yang, C Callegari, X Feng, K Ekinci, and M Roukes. Zeptogram-scale nanomechanical mass sensing. Nano Lett, 6(4), 583–586 (2006)
DOI: 10.1021/nl052134m

126. M Li, H X Tang, and M L Roukes. Ultra-sensitive nems-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat nanotechnol, 2(2), 114–120 (2007)
DOI: 10.1038/nnano.2006.208

127. K Jensen, K Kim, and A Zettl. An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol, 3(9), 533–537 (2008)
DOI: 10.1038/nnano.2008.200

128. F Huber, H Lang, N Backmann, D Rimoldi, and C Gerber. Direct detection of a braf mutation in total rna from melanoma cells using cantilever arrays. Nat Nanotechnol, 8(2), 125–129 (2013)
DOI: 10.1038/nnano.2012.263

129. R L Badzey, P Mohanty. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature, 437(7061), 995-998 (2005)
DOI: 10.1038/nature04124

130. M Paul, M Clark, and M Cross. The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation. Nanotechnol, 17(17), 4502 (2006)
DOI: 10.1088/0957-4484/17/17/037

131. J Tamayo, M Calleja, D Ramos, and J Mertens. Underlying mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid. Phys Rev B, 76(18), 180201 (2007)
DOI: 10.1103/PhysRevB.76.180201

132. S Barzanjeh, D Vitali, P Tombesi, and G Milburn. Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys Rev A, 84(4), 042342 (2011)
DOI: 10.1103/PhysRevA.84.042342

133. S Barzanjeh, M Abdi, G J Milburn, P Tombesi, and D Vitali. Reversible optical-to-microwave quantum interface. Phys Rev Lett, 109(13), 130503 (2012)
DOI: 10.1103/PhysRevLett.109.130503

134. R W Andrews, R W Peterson, T P Purdy, K Cicak, R W Simmonds, C A Regal, et al. Bidirectional and efficient conversion between microwave and optical light. Nat Phys, 10(4), 321-326 (2014)

135. S Barzanjeh, M Abdi, G J Milburn, P Tombesi, and D Vitali. Quantum interface between optics and microwaves with optomechanics,” in 2013 Conference Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 5814–5817, IEEE (2007)

136. S Barzanjeh, S Guha, C Weedbrook, D Vitali, J H Shapiro, and S Pirandola. Microwave quantum illumination. Phys Rev Lett, 114(8), 080503 (2015)
DOI: 10.1103/PhysRevLett.114.080503

137. H Peng, C Chang, S Aloni, T Yuzvinsky, and A Zettl. Ultrahigh frequency nanotube resonators. Phys Rev Lett, 97(8), 087203 (2006)
DOI: 10.1103/PhysRevLett.97.087203

138. J Chan, T P M Alegre, A H Safavi-Naeini, J T Hill, A Krause, S Groblacher, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92 (2011)
DOI: 10.1038/nature10461

139. S M Meenehan, J D Cohen, G S MacCabe, F Marsili, M D Shaw, and O Painter. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys Rev X, 5(4), 041002 (2015)
DOI: 10.1103/PhysRevX.5.041002

140. R Lifshitz and M Cross. Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys Rev B, 67(13), 134302 (2003)
DOI: 10.1103/PhysRevB.67.134302

141. M Cross, A Zumdieck, R Lifshitz, and J Rogers. Synchronization by nonlinear frequency pulling. Phys Rev Lett, 93(22), 224101 (2004)
DOI: 10.1103/PhysRevLett.93.224101

142. I Katz, A Retzker, R Straub, and R Lifshitz. Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Phys Rev Letters, 99(4), 040404 (2007)
DOI: 10.1103/PhysRevLett.99.040404

143. S. Barzanjeh, M. Naderi, and M. Soltanolkotabi: Generation of motional nonlinear coherent states and their superpositions via an intensity-dependent coupling of a cavity field to a micromechanical membrane. J Phys B: Atomic, Molecular and Optical Physics, 44(10), 105504 (2011)
DOI: 10.1088/0953-4075/44/10/105504

144. S Rips, M Kiffner, I Wilson-Rae, and M J Hartmann. Steady-state negative wigner functions of nonlinear nanomechanical oscillators. New J Phys, 14(2), 023042 (2012)
DOI: 10.1088/1367-2630/14/2/023042

145. S Rips, I Wilson-Rae, and M Hartmann. Nonlinear nanomechanical resonators for quantum optoelectromechanics. Phys Rev A, 89(1), 013854 (2014)
DOI: 10.1103/PhysRevA.89.013854

146. S Shahidani, M Naderi, M Soltanolkotabi, and S Barzanjeh. Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. JOSA B, 31(5), 1087–1095 (2014)
DOI: 10.1364/JOSAB.31.001087

147. S Barzanjeh and D Vitali. Phonon josephson junction with nanomechanical resonators. Phys Rev A, 93(3), 033846 (2016)
DOI: 10.1103/PhysRevA.93.033846

148. M F Yu, G J Wagner, R S Ruoff, and M J Dyer. Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Phys Rev B, 66(7), 073406 (2002)
DOI: 10.1103/PhysRevB.66.073406

149. J Aldridge and A Cleland. Noise-enabled precision measurements of a dufng nanomechanical resonator. Phys Rev Lett, 94(15), 156403 (2005)
DOI: 10.1103/PhysRevLett.94.156403

150. I Kozinsky, H C Postma, I Bargatin, and M Roukes. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl Phys Lett, 88(25), 253101 (2006)
DOI: 10.1063/1.2209211

151. A Lupascu, E Driessen, L Roschier, C Harmans, and J Mooij. High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator. Phys Rev Lett, 96(12), 127003 (2006)
DOI: 10.1103/PhysRevLett.96.127003

152. M Woolley, A Doherty, G Milburn, and K Schwab. Nanomechanical squeezing with detection via a microwave cavity. Phys Rev A, 78(6), 062303 (2008)
DOI: 10.1103/PhysRevA.78.062303

153. S Barzanjeh, V Salari, J Tuszynski, M Cifra, and C Simon. Optomechanical proposal for monitoring microtubule mechanical vibrations. Phys Rev E, 96(1), 012404 (2017)
DOI: 10.1103/PhysRevE.96.012404

Key Words: Electromagnetic Fields, Microtubule, Optomechanics, Cancer, Diagnostic, Treatment, Review

Send correspondence to: Jack A Tuszynski, Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada, Tel: 780-432 8906, Fax: 780-432 9906, E-mail: jackt@ualberta.ca