[Frontiers In Bioscience, Landmark, 23, 2016-2027, June1, 2018]

Regulation of feeding behavior in Drosophila through the interplay of gustation, physiology and neuromodulation

Bhumika1, Arvind Kumar Singh1

1Genetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Peripheral perception of major macronutrients
3.1. Sugars
3.2. Proteins
3.3. Fatty acids
4. Modulation of plasticity in feeding behavior
5. Role of IIS pathway and DILPs in nutrient homeostasis and feeding
5.1. IIS signaling pathway and internal nutrient sensing
5.2. Interaction of DILPs with neuropeptides involved in feeding
6. Perspective
7. Acknowledgement
8. References

1. ABSTRACT

One of the most fundamental behaviors in all the organisms, in order to achieve a satiated state and internal energy homeostasis is feeding. The action of feeding in any being whether be it any vertebrate or an invertebrate involves the perception of the external environment along with the gamut of decision making processes to eat or to not eat. The feeding decision along with chemosensation through gustation and olfaction leads to intake of food with proper nutrient balance along with avoidance of bitter and toxic substances. The progressions in the understanding of the complexity of feeding behavior involving gustation, neuronal and physiological processes have been achieved through the use of unparalleled model organism Drosophila melanogaster. Here, in this review, we aim to discuss the studies about the taste perception of major macronutrients in Drosophila through gustatory receptors as well as how the involvement of neuropeptides and neuromodulators in feeding behavior modulate the plasticity in feeding decisions. This review also summarizes the involvement of insulin/insulin-like growth factor signaling pathway in nutrient sensing and how the interaction of Drosophila insulin-like peptides with neuromodulators regulate feeding decision process. The review provides an integrative approach towards a balanced metabolic state in Drosophila through the interplay of physiology, gustatory perception and neuromodulation.

8. REFERENCES

1. R. S. Edgecomb, C. E. Harth, A. M. Schneiderman: Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J. Exp. Biol, 197, 215-235 (1994)

2. A.H. Pool, K. Scott: Feeding regulation in Drosophila. Curr. Opin. Neurobiol, 29, 57-63 (2014)

3. G. M. Rubin, M. D. Yandell, J. R. Wortman, G. L. G. Miklos, C. R. Nelson, I. K. Hariharan, M. E. Fortini, P. W. Li, R. Apweiler, W. Fleischmann, J. M. Cherry, S. Henikoff, M.P. Skupski, S. Misra, M. Ashburner, E. Birney, M. S. Boguski, T. Brody, P.Brokstein, S. E. Celniker, S. A. Chervitz, D. Coates, A. Cravchik, A. Gabrielian, R. F. Galle, W. M. Gelbart, R. A. George, L. S. B. Goldstein, F. Gong, P. Guan, N. L. Harris, B. A. Hay, R. A. Hoskins, J. Li, Z. Li, R. O. Hynes, S. J. M. Jones, P. M. Kuehl, B. Lemaitre, J. T. Littleton, D. K. Morrison, C. Mungall, P. H. O’Farrell, O. K. Pickeral, C. Shue, L. B. Vosshall, J. Zhang, Q. Zhao, X.H. Zheng, F. Zhong, W. Zhong, R. Gibbs, J. C. Venter, M. D. Adams, and S. Lewis: Comparative genomics of the eukaryotes. Science, 287, 2204 -2215 (2000)
DOI: 10.1126/science.287.5461.2204
PMid:10731134 PMCid:PMC2754258

4. E. Bier: Drosophila, the golden bug, emerges as a tool for human genetics. Nature Rev. Genet, 6, 9 (2005)

5. F. Hirth: Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets, 9, 504-523 (2010)
DOI: 10.2174/187152710791556104
PMid:20522007 PMCid:PMC2992341

6. B. H. Jennings: Drosophila–a versatile model in biology & medicine. Mater. Today, 14, 190-195 (2011)

7. R. M. Joseph, J. R. Carlson: Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends. Genet, 31, 683-695 (2015)
DOI: 10.1016/j.tig.2015.09.005

8. C. Montell: A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol, 19, 345-353 (2009)

9. N. Meunier, F. Marion-Poll, J. P. Rospars, T. Tanimura: Peripheral coding of bitter taste in Drosophila. J. Neurobiol, 56,139-152 (2003)
DOI: 10.1002/neu.10235
PMid:12838579

10. H. M. Robertson, C. G. Warr, J. R. Carlson: Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci, 100, 14537-14542 (2003)

11. P. J. Clyne, C. G. Warr, J. R. Carlson: Candidate taste receptors in Drosophila. Science, 287, 1830-1834 (2000)
DOI: 10.1126/science.287.5459.1830
PMid:10710312

12. K. Scott: Taste recognition: food for thought. Neuron, 48, 455-464 (2005)
DOI: 10.1016/j.neuron.2005.10.015
PMid:16269362

13. L.B. Vosshall, R.F. Stocker: Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci, 30, 505–533 (2007)

14. E. R. Liman, Y. V. Zhang, C. Montell: Peripheral coding of taste. Neuron, 81, 984–1000 (2014)
DOI: 10.1016/j.neuron.2014.02.022
PMid:24607224 PMCid:PMC3994536

15. C. H. Yang, P. Belawat, E. Hafen, L. Y. Jan, Y. N. Jan: Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 319, 1679-1683 (2008)
DOI: 10.1126/science.1151842
PMid:18356529 PMCid:PMC2581776

16. S. Bray, H. Amrein: A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron, 39, 1019-1029 (2003)
DOI: 10.1016/S0896-6273(03)00542-7

17. J. H. Park, J. Y. Kwon: Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PloS One, 6, e29022 (2011).

18. A. Dahanukar, Y. T. Lei, J. Y. Kwon, J. R. Carlson: Two Gr genes underlie sugar reception in Drosophila. Neuron, 56, 503-516 (2007)
DOI: 10.1016/j.neuron.2007.10.024
PMid:17988633 PMCid:PMC2096712

19. J. Slone, J. Daniels, H. Amrein: Sugar receptors in Drosophila. Curr.Biol, 17, 1809-1816 (2007).

20. Y. Jiao, S. J. Moon, X. Wang, Q. Ren, C. Montell: Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol., 18, 1797-1801(2008)

21. Y. Jiao, S.J. Moon, C. Montell: Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci U S A, 104, 14110-5 (2007)
DOI: 10.1073/pnas.0702421104
PMid:17715294 PMCid:PMC1955822

22. A. Dahanukar, K. Foster, J. R. Carlson: A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat. Neurosci, 4, 1182-1186 (2001)

23. M. Fujita, T. Tanimura: Drosophila evaluates and learns the nutritional value of sugars. Curr. Biol, 21, 751-755 (2011)

24. T. Miyamoto, J. Slone, X. Song, H. Amrein: A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 151, 1113-1125 (2012)
DOI: 10.1016/j.cell.2012.10.024
PMid:23178127 PMCid:PMC3509419

25. N. Toshima, T. Tanimura: Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J. Exp. Biol, 215, 2827-2832 (2012)

26. V. Croset, M. Schleyer, J. R. Arguello, B. Gerber, R. Benton: A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci. Rep, 6, 34871 (2016)

27. L. Abuin, B. Bargeton, M. H. Ulbrich, E. Y. Isacoff, S. Kellenberger, R. Benton: Functional architecture of olfactory ionotropic glutamate receptors. Neuron, 69, 44-60 (2011)
DOI: 10.1016/j.neuron.2010.11.042
PMid:21220098 PMCid:PMC3050028

28. Y. V. Zhang, J. Ni, C. Montell: The molecular basis for attractive salt-taste coding in Drosophila. Science, 340, 1334-1338 (2013)
DOI: 10.1126/science.1234133
PMid:23766326 PMCid:PMC4091975

29. A. Hussain, M. Zhang, H. K. Üçpunar, T.Svensson , E. Quillery , N. Gompel , R. Ignell , I. C. G. Kadow : Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol, 14, e1002454 (2016)

30. P. Masek, A. C. Keene: Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet, 9, e1003710 (2013)

31. R. Bader, J. Colomb, B. Pankratz, A. Schröck, R. F. Stocker, M. J. Pankratz: Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: Distinct classes of hugin‐expressing neurons. J. Com. Neurol, 502, 848-856 (2007)

32. C. Melcher, R. Bader, M. J. Pankratz: Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J. Endocrinol, 192, 467-472 (2007)
DOI: 10.1677/JOE-06-0066
PMid:17332516

33. C. Melcher, M.J. Pankratz: Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol, 3,305 (2005)

34. M. R. Brown, J. W. Crim, R. C. Arata, H. N. Cai, C. Chun, P. Shen: Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides, 20, 1035-1042 (1999)
DOI: 10.1016/S0196-9781(99)00097-2

35. Q. Wu, T. Wen, G. Lee, J. H. Park, H. N. Cai, P. Shen: Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron, 39, 147-161(2003)
DOI: 10.1016/S0896-6273(03)00396-9

36. P. Shen, H. N. Cai: Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. Dev. Neurobiol, 47, 16-25 (2001).
DOI: 10.1002/neu.1012
PMid:11257610

37. K.S. Lee, O.Y. Kwon, J.H. Lee, K. Kwon, K.J. Min, S.A. Jung, A.K. Kim, K.H. You, M. Tatar, K. Yu: Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signaling. Nat. Cell Biol, 10, 468-475 (2008)

38. K. S. Lee, K. H. You, J. K. Choo, Y. M. Han, K. Yu: Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem, 279, 50781-50789 (2004)

39. Y. Zhao, C. A. Bretz, S. A. Hawksworth, J. Hirsh, E. C. Johnson: Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One, 5, e9141 (2010)

40. A. C. Hergarden, T. D. Tayler, D. J. Anderson: Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci, 109, 3967-3972 (2012)

41. S. Terhzaz, F.C. O’Connell, V.P. Pollock, L. Kean, S.A. Davies, J.A. Veenstra, J.A. Dow. Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. J. Exp. Biol, 202, 3667–3676 (1999)

42. B. Al-Anzi, E. Armand, P. Nagamei, M. Olszewski, V. Sapin, C. Waters, K. Zinn, R.J. Wyman, S. Benzer: The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol, 20, 969-978 (2010)

43. B. Lopez-Arias, B. Dorado, P. Herrero: Blockade of the release of the neuropeptide leucokinin to determine its possible functions in fly behavior: chemoreception assays. Peptides, 32,545–552 (2011)
DOI: 10.1016/j.peptides.2010.07.002
PMid:20621142

44. Y. Liu, J. Luo, M. A. Carlsson, D. R. Nässel: Serotonin and insulin‐like peptides modulate leucokinin‐producing neurons that affect feeding and water homeostasis in Drosophila. J Comp Neurol, 523, 1840-1863 (2015)
DOI: 10.1002/cne.23768
PMid:25732325

45. J. Chen,W. Reiher, C. Hermann-Luibl, A. Sellami, P. Cognigni, S. Kondo, C. Helfrich-Förster, J. A. Veenstra, C. Wegener: Allatostatin a signalling in Drosophila regulates feeding and sleep and is modulated by pdf. PLoS genetics, 12, e1006346 (2016)

46. R. Nichols, I. A. Lim: Spatial and temporal immunocytochemical analysis of drosulfakinin (Dsk) gene products in the Drosophila melanogaster central nervous system. Cell Tissue Res, 283, 107-116 (1995)
DOI: 10.1007/s004410050518

47. J. A. Söderberg, M. A. Carlsson, D. R. Nässel: Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front Endocrinol, 3 (2012)

48. E.L. Arrese, J.L. Soulages: Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol, 55: 207-225(2010)

49. C. Y. Su, J. W. Wang: Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila. Curr Opin Neurobiol, 29, 9-16 (2014)
DOI: 10.1016/j.conb.2014.04.008
PMid:24801064 PMCid:PMC4219929

50. K.N. Bharucha, P. Tarr, S.L. Zipursky: A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol., 211, 3103-3110 (2008)

51. K. Kannan, Y. W. C. Fridell: Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front.Physiol, 4 (2013)

52. T. Koyama, C. C. Mendes, C. K. Mirth: Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front Physiol, 4 (2013)

53. W. Brogiolo, H. Stocker, T. Ikeya, F. Rintelen, R. Fernandez, E. Hafen: An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol, 11, 213-221(2001)

54. T. Ikeya, M. Galic, P. Belawat, K. Nairz, E. Hafen: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol, 12, 1293–1300 (2002)

55. C. Cao, M.R. Brown: Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res., 304:317–321(2001)

56. Y. Liu, S. Liao, J. A. Veenstra, D. R. Nässel: Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci. Rep, 6 (2016)

57. E.J. Rulifson, S.K. Kim, R. Nusse: Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 296:1118–1120 (2002)

58. R. Bohni, J. Riesgo-Escovar, S. Oldham, W. Brogiolo, H. Stocker, B. F. Andruss, K. Beckingham, E. Hafen: Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell, 97, 865-875 (1999)
DOI: 10.1016/S0092-8674(00)80799-0

59. O. Puig, M. T. Marr, M. L. Ruhf, R. Tjian: Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev, 17, 2006-2020 (2003)
DOI: 10.1101/gad.1098703
PMid:12893776 PMCid:PMC196255

60. J. M. Kramer, J. D. Slade, B. E. Staveley: foxo is required for resistance to amino acid starvation in Drosophila. Genome, 51, 668-672 (2008)
DOI: 10.1139/G08-047
PMid:18650956

61. A. A. Teleman, Y. W. Chen, S. M. Cohen: 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev, 19, 1844-1848 (2005)
DOI: 10.1101/gad.341505
PMid:16103212 PMCid:PMC1186183

62. A. C. Gingras, B. Raught, N. Sonenberg: eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem, 68, 913-963 (1999)
DOI: 10.1146/annurev.biochem.68.1.913
PMid:10872469

63. V. Hietakangas, S. M. Cohen: Regulation of tissue growth through nutrient sensing. Annu. Rev. Genet, 43, 389-410 (2009)
DOI: 10.1146/annurev-genet-102108-134815
PMid:19694515

64. Q. Wu, Y. Zhang, J. Xu, P. Shen: Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc. Natl. Acad. Sci. U.S.A., 102, 13289-13294 (2005)

65. J, Luo: Regulation of insulin signaling and its developmental and functional roles on peptidergic neurons in the Drosophila brain [Doctoral thesis]. Stockholm: Stockholm University (2013)

66. X. L. Zhao, A. R. Campos: Insulin signalling in mushroom body neurons regulates feeding behaviour in Drosophila larvae. J. Exp. Biol, 215, 2696-2702 (2012)

67. J. L. Hentze, M. A. Carlsson, S. Kondo, D. R. Nässel, K. F. Rewitz: The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Sci. Rep, 5, 11680 (2015)

68. V.G. Dethier: The hungry fly: a physiological study of the behavior associated with feeding. Cambridge, Mass: Harvard University Press; 1976.

69. M. A. Carlsson, M. Diesner, J. Schachtner, D. R. Nässel: Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J. Comp. Neurol, 518, 3359-3380 (2010)

70. C. M. Root, K. I. Ko, A. Jafari, J. W. Wang: Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145, 133-144 (2011)
DOI: 10.1016/j.cell.2011.02.008
PMid:21458672 PMCid:PMC3073827

71. W.W. Ja, G.B. Carvalho, E.M. Mak, N.N. de la Rosa, A.Y. Fang, J.C. Liong, T. Brummel, S. Benzer: Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA, 104, 8253–8256 (2007)
DOI: 10.1073/pnas.0702726104
PMid:17494737 PMCid:PMC1899109

72. P.M. Itskov, C. Ribeiro: The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front. Neurosci, 7 (2013)

73. S. A. Deshpande, G. B. Carvalho, A. Amador, A. M. Phillips, S. Hoxha, K. J. Lizotte, W. J. William: Quantifying Drosophila food intake: comparative analysis of current methodology. Nat. Methods, 11, 535-540 (2014)
DOI: 10.1038/nmeth.2899

74. T. Tanimura, K. Isono, T. Takamura, I. Shimada: Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J. Comp. Physiol, 147: 433-437(1982)

Abbreviations: Insulin /Insulin - like growth factor signaling pathway (IIS); GRs: Gustatory receptors; GRN’s: Gustatory receptor neurons; FA’s: Fatty acids; PLC: Phospholipase C; dNPF: Drosophila Neuropeptide F; sNPF:Structurally related neuropeptide F; LK: Leucokinin; DSK: Drosulfakinin; AstA: Allatostatin A; SOG: Subesophageal ganglion; AKH: Adipokinetic hormone ;IPCs: Insulin producing cells ; DILPs: Drosophila Insulin like peptides; CC:corpus cardiacum ; InR; insulin like receptors; TOR: Target of rapamycin; PI3K: Phosphatidylinositide 3-Kinase; PIP2: Phosphatidylinositol 4, 5 bisphosphate; PIP3: Phosphatidylinositol (3, 4, 5) - triphosphate; PKB: Protein kinase B; PTEN: phosphatase and tensin homolog ; dFoxo : Forkhead Box class O; 4E-BP : 4E- Binding Protein; TSC 1 and 2: Tuberous Sclerosis Complex 1 and 2; Rheb: Ras homolog enriched in brain ; dS6K: Drosophila S6 kinase; TIF-1A: Transcription intermediary factor 1A

Key Words: Feeding, Drosophila, Gustation, Neuromodulators, Insulin-like peptides, Nutrition, Review

Send correspondence to: Arvind Kumar Singh, Genetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India, Tel: 09415877997, E-mail: aksbhu23@rediffmail.com