[Frontiers In Bioscience, Landmark, 24, 347-365, Jan 1, 2019]

The effects of silver nanoparticles on RAW 264.7. Macrophages and human whole blood cell cultures

Kim L Lategan1, Chavon R Walters2, Edmund J Pool1

1Department of Medical Bioscience, University of the Western Cape, Cape Town, 7535, South Africa, 2Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch, South Africa

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and methods
3.1. Characterization of silver nanoparticles
3.2. Preparation of silver nanoparticles
3.3. RAW 264.7. cells
3.3.1. Cell culture
3.3.2. Macrophage Assay
3.3.3. Cytotoxicity Assay
3.3.4. Nitric Oxide (NO) Assay
3.3.5. Mouse Interleukin 6 (IL-6) Double Antibody Sandwich Enzyme Linked Immunosorbent Assay (DAS ELISA)
3.3.6. Mouse Proteome Profiling Analysis
3.3.7. Quantification of pixel density for cytokine and chemokine membranes
3.3.8. Mouse MIP (MIP-1 α , MIP-1 β and MIP-2) DAS ELISAs
3.4. Whole Blood Cell Cultures (WBCs)
3.4.1. Blood collection
3.4.2. Effects of AgNPs on inflammation
3.4.3. Effects of AgNPs on Th cytokines
3.4.4. Lactate Dehydrogenase (LDH) Cytotoxicity Assay
3.4.5. Human IL-6, MIP-1 β , IL-10, and IFN γ DAS ELISA
3.4.6. Human Proteome Profile Analysis
3.5. Statistical Analysis
4. Results
4.1. The effects of AgNPs on RAW 264.7 cells
4.1.1. The effects of AgNPs on RAW 264.7 cells exposed to various FBS concentrations, monitoring the effects of AgNPs on RAW 264.7 cell viability, inflammatory biomarkers, NO and IL-6
4.1.2. The effects of AgNPs on RAW 264.7 cell viability, inflammatory biomarkers, NO and IL-6
4.1.3. The effects of AgNPs on the secretory cytokine and chemokine profile of RAW 264.7 cells not treated with LPS
4.1.4. The effects of AgNPs on the secretory cytokine and chemokine profile of LPS treated RAW 264.7 cells
4.1.5. The effects of AgNPs on RAW 264.7 cells not treated with LPS and the effect on the secretion of MIP family chemokines (MIP-1 α , MIP-1 β and MIP-2)
4.1.6. The effects of AgNPs on RAW 264.7 cells treated with LPS and the resultant effect on the secretion of MIP family chemokines (MIP-1 α , MIP-1 β and MIP-2)
4.2. The effects of AgNPs on WBCs
4.2.1. The effects of AgNPs on WBC viability
4.2.2. The effects of AgNPs on the inflammatory biomarkers IL-6 and MIP-1 β using WBCs
4.2.3. The effects of AgNPs on the acquired immune system biomarkers IL-10 and IFN γ using WBCs
4.2.4. The effects of AgNPs on the secretory cytokine and chemokine profile of WBCs not treated with LPS
4.2.5. The effects of AgNPs on the secretory cytokine and chemokine profile of LPS treated WBCs
5. Discussion and conclusion
6. Acknowledgements
7. References

1. ABSTRACT

Silver nanoparticles (AgNPs) are commonly found in consumer products due to their antimicrobial properties. This study evaluated the effects of AgNPs on the murine macrophage cell line RAW 264.7 and human whole blood cell cultures (WBCs). Effects of AgNPs on RAW cells were assessed in the presence or absence of lipopolysaccharide (LPS). Effects of AgNPs on WBCs were monitored under basal conditions and in the presence of either LPS or phytohaemmagglutinin (PHA). AgNPs were cytotoxic to WBCs at 250 μg/ml. Under basal conditions, RAW cells ≥ 62.5. μg/ml and WBCs > 25 μg/ml AgNPs induced biomarkers associated with inflammation. Under LPS stimulated conditions, 250 μg/ml AgNP inhibited biomarkers associated with inflammation for both cultures. Under basal conditions, and in the presence of 250 μg/ml AgNP, WBCs produced acquired immune system cytokines IL-10 and IFNγ. IL-10 synthesis by WBCs was partially inhibited by 250 μg/ml AgNP in the presence of PHA. Proteome profiles of RAW cell supernatants show that AgNPs modulate biomarkers associated with inflammation. WBCs proteome analysis shows modulation of biomarkers associated with anti-inflammatory effects.

7. REFERENCES

1. J. Pulit-Prociak, M. Banach: Silver nanoparticles–a material of the future…? Open Chemistry, 14(1), 76-91 (2016)
DOI: 10.1515/chem-2016-0005

2. S. H. Shin, M. K. Ye, H. S. Kim, H. S. Kang: The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol, 7(13), 1813-8 (2007)
DOI: 10.1.016/j.intimp.2007.0.8.0.25

3. M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briede, H. van Loveren, W. H. de Jong: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32(36), 9810-7 (2011)
DOI: 10.1.016/j.biomaterials.2011.0.8.0.85

4. F. Martínez-Gutierrez, E. P. Thi, J. M. Silverman, C. C. de Oliveira, S. L. Svensson, A. V. Hoek, E. M. Sánchez, N. E. Reiner, E. C. Gaynor, E. L. Pryzdial: Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(3), 328-336 (2012)
DOI: 10.1016/j.nano.2011.06.014

5. E. J. Yang, S. Kim, J. S. Kim, I. H. Choi: Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials, 33(28), 6858-67 (2012)
DOI: 10.1.016/j.biomaterials.2012.0.6.0.16

6. C. Carlson, S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, J. J. Schlager: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The journal of physical chemistry B, 112(43), 13608-13619 (2008)
DOI: 10.1021/jp712087m

7. C. Greulich, J. Diendorf, J. Gessmann, T. Simon, T. Habijan, G. Eggeler, T. Schildhauer, M. Epple, M. Köller: Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta biomaterialia, 7(9), 3505-3514 (2011)
DOI: 10.1016/j.actbio.2011.05.030

8. J. Kaur, K. Tikoo: Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol, 51, 1-14 (2013)
DOI: 10.1016/j.fct.2012.08.044

9. C. M. Lacerda, K. F. Reardon: Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Briefings in functional genomics & proteomics, 8(1), 75-87 (2009)
DOI: 10.1093/bfgp/elp005

10. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji: Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 4(3), 707-716 (2008)
DOI: 10.1016/j.actbio.2007.11.006

11. A. Ivask, O. Bondarenko, N. Jepihhina, A. Kahru: Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and bioanalytical chemistry, 398(2), 701-716 (2010)
DOI: 10.1007/s00216-010-3962-7

12. H. H. Gustafson, D. Holt-Casper, D. W. Grainger, H. Ghandehari: Nanoparticle uptake: The phagocyte problem. Nano today, 10(4), 487-510 (2015)
DOI: 10.1016/j.nantod.2015.06.006

13. C. Walters, E. Pool, V. Somerset: Aggregation and dissolution of silver nanoparticles in a laboratory-based freshwater microcosm under simulated environmental conditions. Toxicological & Environmental Chemistry, 95(10), 1690-1701 (2013)
DOI: 10.1080/02772248.2014.904141

14. X. Chen, H. J. Schluesener: Nanosilver: a nanoproduct in medical application. Toxicol Lett, 176(1), 1-12 (2008)
DOI: 10.1.016/j.toxlet.2007.1.0.0.04

15. X. Chen, H. Schluesener: Nanosilver: a nanoproduct in medical application. Toxicology letters, 176(1), 1-12 (2008)
DOI: 10.1016/j.toxlet.2007.10.004

16. V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner: Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment, 408(7), 1745-1754 (2010)
DOI: 10.1016/j.scitotenv.2009.10.035

17. J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, J. R. Lead: Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int, 37(2), 517-31 (2011)
DOI: 10.1.016/j.envint.2010.1.0.0.12

18. W. Liu, Q. Zhou, J. Liu, J. Fu, S. Liu, G. Jiang: Environmental and biological influences on the stability of silver nanoparticles. Chinese Science Bulletin, 56(19), 2009-2015 (2011)
DOI: 10.1.007/s11434-010-4332-8

19. P. Asharani, S. Sethu, H. K. Lim, G. Balaji, S. Valiyaveettil, M. P. Hande: Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr, 3(1), 2 (2012)
DOI: 10.1186/2041-9414-3-2

20. R. P. Singh, P. Ramarao: Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett, 213(2), 249-59 (2012)
DOI: 10.1.016/j.toxlet.2012.0.7.0.09

21. E. J. Park, J. Yi, Y. Kim, K. Choi, K. Park: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In vitro, 24(3), 872-8 (2010)
DOI: 10.1.016/j.tiv.2009.1.2.0.01

22. M. Giovanni, J. Yue, L. Zhang, J. Xie, C. N. Ong, D. T. Leong: Pro-inflammatory responses of RAW264. 7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. Journal of hazardous materials, 297, 146-152 (2015)
DOI: 10.1016/j.jhazmat.2015.04.081

23. F. Martinez-Gutierrez, E. P. Thi, J. M. Silverman, C. C. de Oliveira, S. L. Svensson, A. Vanden Hoek, E. M. Sanchez, N. E. Reiner, E. C. Gaynor, E. L. Pryzdial, E. M. Conway, E. Orrantia, F. Ruiz, Y. Av-Gay, H. Bach: Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 8(3), 328-36 (2012)
DOI: 10.1.016/j.nano.2011.0.6.0.14

24. H. Wajant, K. Pfizenmaier, P. Scheurich: Tumor necrosis factor signaling. Cell Death & Differentiation, 10(1), 45-65 (2003)
DOI: 10.1038/sj.cdd.4401189

25. A. Zlotnik, O. Yoshie, H. Nomiyama: The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome biology, 7(12), 1 (2006)
DOI: 10.1186/gb-2006-7-12-243

26. S. L. Deshmane, S. Kremlev, S. Amini, B. E. Sawaya: Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research, 29(6), 313-326 (2009)
DOI: 10.1089/jir.2008.0027

27. B. L. Hoh, K. Hosaka, D. P. Downes, K. W. Nowicki, C. E. Fernandez, C. D. Batich, E. W. Scott: Monocyte chemotactic protein-1 promotes inflammatory vascular repair of murine carotid aneurysms via a macrophage inflammatory protein-1α and macrophage inflammatory protein-2–dependent pathway. Circulation, 124(20), 2243-2252 (2011)
DOI: 10.1161/CIRCULATIONAHA.111.036061

28. Q.-S. Wang, Y.-L. Cui, Y.-F. Wang, W. Chi: Effects of compounds from Bi-Qi Capsule on the expression of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7. macrophages. Journal of ethnopharmacology, 136(3), 480-487 (2011)
DOI: 10.1016/j.jep.2010.06.008

29. H. Capiralla, V. Vingtdeux, H. Zhao, R. Sankowski, Y. Al-Abed, P. Davies, P. Marambaud: Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. Journal of neurochemistry, 120(3), 461-472 (2012)
DOI: 10.1111/j.1471-4159.2011.07594.x

30. Q. S. Wang, Y. L. Cui, T. J. Dong, X. F. Zhang, K. M. Lin: Ethanol extract from a Chinese herbal formula, “Zuojin Pill”, inhibit the expression of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7. mouse macrophages. J Ethnopharmacol, 141(1), 377-85 (2012)
DOI: 10.1.016/j.jep.2012.0.2.0.49

31. K. A. Barth, J. D. Waterfield, D. M. Brunette: The effect of surface roughness on RAW 264.7. macrophage phenotype. Journal of Biomedical Materials Research Part A, 101(9), 2679-2688 (2013)
DOI: 10.1002/jbm.a.34562

32. C. Cardamone, R. Parente, G. De Feo, M. Triggiani: Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunology letters, 178, 10-14 (2016)
DOI: 10.1016/j.imlet.2016.07.003

33. L. Lin, L. Du: The role of secreted factors in stem cells-mediated immune regulation. Cellular Immunology (2017)
DOI: 10.1016/j.cellimm.2017.07.010

Key Words: Silver nanoparticles, Cell Viability, Inflammatory Biomarkers, Proteome Analysis, Cytokines And Chemokines

Send correspondence to: Edmund, J, Pool, Department of Medical Bioscience, University of the Western Cape, Cape Town, 7535, South Africa, Tel: 27 21 959 3535, -mail: epool@uwc.ac.za