[Frontiers In Bioscience, Landmark, 24, 1071-1084, March 1, 2019]

Regulation of animal behavior by epigenetic regulators

Kouhei Shimaji1, Saki Tomida2, Masamitsu Yamaguchi2

1Department of Biological Chemistry, University of California, Irvine, 260 Aldrich Hall, Irvine, California, USA, 2Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan


1. Abstract
2. Introduction
3. Learning and memory
3.1. Studies with mammals
3.2. Studies with Drosophila
4. Mating and courtship
4.1. Studies with mammals
4.2. Studies with Drosophila
5. Circadian behavior
5.1. Studies with mammals
5.2. Studies with Drosophila
6. Foraging/starvation-induced hyperactivity
7. Perspectives
8. Acknowledgments
9. References


Epigenetic regulation in animals induces rapid and long-lasting effects on gene expression in response to environmental changes that frequently affect animal behavior. In the last decade, accumulating studies have revealed how epigenetic regulation affects the behavior of animals, such as learning and memory, mating and courtship, the circadian sleep-wake cycle, and foraging/starvation-induced hyperactivity. In each section of this review, we discuss what we have learned from studies with mammals, mostly mouse models. We then highlight studies with Drosophila models to compare data with mouse models. Finally, we discuss several unanswered questions and future developments in this field.


1. CD Allis; T Jenuwein. The molecular hallmarks of epigenetic control. Nat Rev Genet 17, 487–500 (2016)
DOI: 10.1038/nrg.2016.59

2. JR Edwards; O Yarychkivska; M Boulard; TH Bestor. DNA methylation and DNA methyltransferases. Epigenetics and Chromatin 10, 1–10 (2017)
DOI: 10.1186/s13072-017-0130-8

3. G Allfrey; R Faulkner; AE Mirsky. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51, 786–794 (1964)
DOI: 10.1073/pnas.51.5.786

4. AJ Bannister; T Kouzarides. Regulation of chromatin by histone modifications. Cell Res 21, 381–395 (2011)
DOI: 10.1038/cr.2011.22

5. OJ Rando; HY Chang. Genome-wide views of chromatin structure. Annu Rev Biochem 78, 245–271 (2009)
DOI: 10.1146/annurev.biochem.78.071107.134639

6. A Portela; M Esteller. Epigenetic modifications and human disease. Nat Biotechnol 28, 1057–1068 (2010)
DOI: 10.1038/nbt.1685

7. KN Harikrishnan; MZ Chow; EK Baker; S Pal; S Bassal; D Brasacchio; L Wang; JM Craig; PL Jones; S Sif; A El-Osta. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 37, 254–264 (2005)
DOI: 10.1038/ng1516

8. J Wysocka; T Swigut; H Xiao; TA Milne; SY Kwon; J Landry; M Kauer; AJ Tackett; BT Chait; P Badenhorst; C Wu; CD Allis. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006)
DOI: 10.1038/nature04815

9. A Lal; Y Pan; F Navarro; DM Dykxhoorn; L Moreau; E Meire; Z Bentwich; J Lieberman; D Chowdhury. MiR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16, 492–498 (2009)
DOI: 10.1038/nsmb.1589

10. M Kaneda; M Okano; K Hata; T Sado; H Tsujimoto; E Li; H Sasaki. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004)
DOI: 10.1038/nature02633

11. ME Donohoe. Epigenetic regulation of X-chromosome inactivation. In: Chromatin Regulation and Dynamics. Eds; A Gondor, Elsevier Inc, Amsterdam, Netherlands. (2017)
DOI: 10.1016/B978-0-12-803395-1.00014-9

12. R Krishnakumar; RH Blelloch. Epigenetics of cellular reprogramming. Curr Opin Genet Dev 23, 548–555 (2013)
DOI: 10.1016/j.gde.2013.06.005

13. P Sen; PP Shah; R Nativio; SL Berger. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016)
DOI: 10.1016/j.cell.2016.07.050

14. I Anreiter; SD Biergans; MB Sokolowski. Epigenetic regulation of behavior in Drosophila melanogaster. Curr Opin Behav Sci 25, 44–50 (2019)
DOI: 10.1016/j.cobeha.2018.06.010

15. IB Zovkic; MC Guzman-Karlsson; JD Sweatt. Epigenetic regulation of memory formation and maintenance. Learn Mem 20, 61–74 (2013)
DOI: 10.1101/lm.026575.112

16. MA Wood; MP Kaplan; A Park; EJ Blanchard; AMM Oliveira; TL Lombardi; T Abel. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem 12, 111–119 (2005)
DOI: 10.1101/lm.86605

17. E Korzus; MG Rosenfeld; M Mayford. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004)
DOI: 10.1016/j.neuron.2004.06.002

18. J-S Guan; SJ Haggart; E Giacometti; J-H Dannenberg; N Joseph; J Gao; TJF Nieland; Y Zhou; X Wang; R Mazitschek; JE Bradner; RA DePinho; R Jaenisch; L-H Tsai. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009)
DOI: 10.1038/nature07925

19. JL Kwapis; Y Alaghband; EA Kramár; AJ López; A Vogel Ciernia; AO White; G Shu; D Rhee; CM Michael; E Montellier; Y Liu; CN Magnan; S Chen; P Sassone-Corsi; P Baldi; DP Matheos; MA Wood. Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat Commun 9, 3323 (2018)
DOI: 10.1038/s41467-018-05868-0

20. R Sando; N Gounko; S Pieraut; L Liao; J Yates; A Maximov. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151, 821–834 (2012)
DOI: 10.1016/j.cell.2012.09.037

21. M-S Kim; MW Akhtar; M Adachi; M Mahgoub; R Bassel-Duby; ET Kabalali; EN Oison; LM Monteggia. An essential role for Histone Deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 32, 10879–10886 (2012)
DOI: 10.1523/JNEUROSCI.2089-12.2012

22. K Fujiwara; Y Fujita; A Kasai; Y Onaka; H Hashimoto; H Okada; T Yamashita. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry 6, e766 (2016)
DOI: 10.1038/tp.2016.31

23. S Gupta-agarwal; A V Franklin; T Deramus; M Wheelock; L Davis; LL Mcmahon; FD Lubin. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32, 5440–5453 (2012)
DOI: 10.1523/JNEUROSCI.0147-12.2012

24. M Sharma; NB Razali; S Sajikumar. Inhibition of G9a / GLP complex promotes long-term potentiation and synaptic tagging / capture in hippocampal CA1 pyramidal neurons. Cereb Cortex 27, 3161–3171 (2017)

25. CJ Cole; V Mercaldo; L Restivo; AP Yiu; MJ Sekeres; JH Han; G Vetere; T Pekar; PJ Ross; RL Neve; PW Frankland; SA Josselyn. MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci 15, 1255–1264 (2012)
DOI: 10.1038/nn.3189

26. TVP Bliss; GL Collingridge. A synaptic model of memory : long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)
DOI: 10.1038/361031a0

27. U Frey; RGM Morris. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997)
DOI: 10.1038/385533a0

28. JJ Day; D Childs; MC Guzman-Karlsson; M Kibe; J Moulden; E Song; A Tahir; JD Sweatt. DNA methylation regulates associative reward learning. Nat Neurosci 16, 1445–1452 (2013)
DOI: 10.1038/nn.3504

29. Y Ushijima; YH Inoue; T Konishi; D Kitazawa; H Yoshida; K Shimaji; H Kimura; M Yamaguchi. Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis. Chromosom Res 20, 319–331 (2012)
DOI: 10.1007/s10577-012-9276-1

30. JM Kramer; K Kochinke; MAW Oortveld; H Marks; D Kramer; EK de Jong; Z Asztalos; JT Westwood; HG Stunnenberg; MB Sokolowski; K Keleman; H Zhou; H van Bokhoven; A Schenck. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol 9, e1000569 (2011)
DOI: 10.1371/journal.pbio.1000569

31. HL Fitzsimons; MJ Scott. Genetic modulation of Rpd3 expression impairs long-term courtship memory in Drosophila. PLoS One 6, e29171 (2011)
DOI: 10.1371/journal.pone.0029171

32. HL Fitzsimons; S Schwartz; FM Given; MJ Scott. The Histone Deacetylase HDAC4 regulates long-term memory in Drosophila. PLoS One 8, e80903 (2013)
DOI: 10.1371/journal.pone.0083903

33. BZ Kacsoh; CS Greene; G Bosco. Machine learning analysis identifies Drosophila Grunge/Atrophin as an important learning and memory gene required for memory retention and social learning. G3 Genes|Genomes|Genetics 7, 3705–3718 (2017)

34. IM Boros. Histone modification in Drosophila. Brief Funct Genomics 11, 319–331 (2012)
DOI: 10.1093/bfgp/els029

35. S Xu; R Wilf; T Menon; P Panikker; J Sarthi; F Elefant. Epigenetic control of learning and memory in Drosophila by Tip60 HAT action. Genetics 198, 1571–1586 (2014)
DOI: 10.1534/genetics.114.171660

36. A Kennedy; K Asahina; E Hoopfer; H Inagaki; Y Jung; H Lee; R Remedios; DJ Anderson. Internal states and behavioral decision-making: Toward an integration of emotion and cognition. Cold Spring Harb Symp Quant Biol 79, 199–210 (2014)
DOI: 10.1101/sqb.2014.79.024984

37. PJ Bonthuis; JK Patteson; EF Rissman. Acquisition of Sexual Receptivity: Roles of chromatin acetylation, estrogen receptor-α, and ovarian hormones. Endocrinology 152, 3172–3181 (2011)
DOI: 10.1210/en.2010-1001

38. H Wang; F Duclot; Y Liu; Z Wang; M Kabbaj. Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 16, 919–924 (2013)
DOI: 10.1038/nn.3420

39. K Sato; D Yamamoto. An epigenetic switch of the brain sex as a basis of gendered behavior in Drosophila. Advances Genet Elsevier (2014)
DOI: 10.1016/B978-0-12-800222-3.00003-6

40. E Demir; BJ Dickson. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005)
DOI: 10.1016/j.cell.2005.04.027

41. H Ito; K Sato; M Koganezawa; M Ote; K Matsumoto; C Hama; D Yamamoto. Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. Cell 149, 1327–1338 (2012)
DOI: 10.1016/j.cell.2012.04.025

42. S Fujii; P Emery; H Amrein. SIK3–HDAC4 signaling regulates Drosophila circadian male sex drive rhythm via modulating the DN1 clock neurons. Proc Natl Acad Sci 114, E6669–E6677 (2017)
DOI: 10.1073/pnas.1620483114

43. T Gupta; HR Morgan; JC Andrews; ER Brewer; SJ Certel. Methyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila. Sci Rep 7, 5420 (2017)
DOI: 10.1038/s41598-017-05844-6

44. U Schibler; P Sassone-corsi. A web of circadian pacemakers. Cell 111, 919–922 (2002)
DOI: 10.1016/S0092-8674(02)01225-4

45. S Sahar; P Sassone-Corsi. The epigenetic language of circadian clocks. In: Circadian Clocks. Eds: A Kramer, M Merrow, Springer-Verlag Berlin Heidelberg. (2013)
DOI: 10.1007/978-3-642-25950-0_2

46. Y Nakahata; M Kaluzova; B Grimaldi; S Sahar; D Chen; LP Guarente; P Sassone-corsi. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008)
DOI: 10.1016/j.cell.2008.07.002

47. S Imai; CM Armstrong; M Kaeberlein; L Guarente. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2002)
DOI: 10.1038/35001622

48. G Asher; D Gatfield; M Stratmann; H Reinke; C Dibner; F Kreppel; R Mostoslavsky; FW Alt; U Schibler. SIRT1 Regulates Circadian Clock Gene expression through PER2 deacetylation. Cell 134, 317–328 (2008)
DOI: 10.1016/j.cell.2008.06.050

49. S Katada; P Sassone-Corsi. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17, 1414–1421 (2010)
DOI: 10.1038/nsmb.1961

50. T Alenghat; K Meyers; SE Mullican; K Leitner; A Adeniji-Adele; J Avila; M Bućan; RS Ahima; KH Kaestner; MA Lazar. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456, 997–1000 (2008)
DOI: 10.1038/nature07541

51. L DiTacchio; HD Le; C Vollmers; M Hatori; M Witcher; J Secombe; S Panda. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science (80- ) 333, 1881–1886 (2011)

52. G Oh; S Ebrahimi; M Carlucci; A Zhang; A Nair; DE Groot; V Labrie; P Jia; ES Oh; RH Jeremian; M Susic; TC Shrestha; MR Ralph; J Gordevičius; K Koncevičius; A Petronis. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging. Nat Commun 9, 1–11 (2018)
DOI: 10.1038/s41467-018-03073-7

53. O Ramos-Lopez; M Samblas; FI Milagro; JI Riezu-Boj; AB Crujeiras; JA Martinez; MENA Project. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int 35, 969–981 (2018)
DOI: 10.1080/07420528.2018.1446021

54. NA Shalaby; JH Pinzon; AS Narayanan; EJ Jin; MP Ritz; RJ Dove; H Wolfenberg; AR Rodan; M Buszczak; A Rothenfluh. JmjC domain proteins modulate circadian behaviors and sleep in Drosophila. Sci Rep 8, 815 (2018)
DOI: 10.1038/s41598-017-18989-1

55. N Singh; MT Lorbeck; A Zervos; J Zimmerman; F Elefant. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 115, 493–504 (2010)
DOI: 10.1111/j.1471-4159.2010.06892.x

56. MB Sokolowski. Drosophila: genetics meets behaviour. Nat Rev Genet 2, 879–890 (2001)
DOI: 10.1038/35098592

57. MB Sokolowski. Foraging strategies of Drosophila melanogaster: A chromosomal analysis. Behav Genet 10, 291–302 (1980)
DOI: 10.1007/BF01067774

58. MB Sokolowski; HS Pereira; K Hughes. Evolution of foraging behavior in Drosophila by density-dependent selection. Proc Natl Acad Sci U S A 94, 7373–7377 (1997)
DOI: 10.1073/pnas.94.14.7373

59. JS De Belle; MB Sokolowski. Heredity of rover/sitter: Alternative foraging strategies of Drosophila melanogaster larvae. Heredity (Edinb) 59, 73–83 (1987)
DOI: 10.1038/hdy.1987.98

60. I Anreiter; JM Kramer; MB Sokolowski. Epigenetic mechanisms modulate differences in Drosophila foraging behavior. Proc Natl Acad Sci 114, 12518–12523 (2017)
DOI: 10.1073/pnas.1710770114

61. AM Allen; I Anreiter; MC Neville; MB Sokolowski. Feeding-related traits are affected by dosage of the foraging gene in Drosophila melanogaster. Genetics 205, 761–773 (2017)
DOI: 10.1534/genetics.116.197939

62. E Nakajima; K Shimaji; T Umegawachi; S Tomida; H Yoshida; N Yoshimoto; S Izawa; H Kimura; M Yamaguchi. The histone deacetylase gene Rpd3 is required for starvation stress resistance. PLoS One 11, 1–17 (2016)
DOI: 10.1371/journal.pone.0167554

63. G Lee; JH Park. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167, 311–323 (2004)
DOI: 10.1534/genetics.167.1.311

64. G Isabel; J-R Martin; S Chidami; JA Veenstra; P Rosay. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288, R531–R538 (2005)
DOI: 10.1152/ajpregu.00158.2004

65. Z Yang; Y Yu; V Zhang; Y Tian; W Qi; L Wang. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci 112, 5219–5224 (2015)
DOI: 10.1073/pnas.1417838112

66. K Shimaji; R Tanaka; T Maeda; M Ozaki; H Yoshida; Y Ohkawa; T Sato; M Suyama; M Yamaguchi. Histone methyltransferase G9a is a key regulator of the starvation-induced behaviors in Drosophila melanogaster. Sci Rep 7, 14763 (2017)
DOI: 10.1038/s41598-017-15344-2

67. PNT An; K Shimaji; R Tanaka; H Yoshida; H Kimura; E Fukusaki; M Yamaguchi. Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a. Sci Rep 7, 1–14 (2017)
DOI: 10.1038/s41598-017-07566-1

68. S Fujii; A Yavuz; XS Slone, Jesse, Christopher Jagge; H Amrein. Drosophila sugar receptors in sweet taste perception, olfaction and internal nutrient sensing. Curr Biol 25, 621–627 (2015)
DOI: 10.1016/j.cub.2014.12.058

69. A Nishimura; Y Ishida; A Takahashi; H Okamoto; M Sakabe; M Itoh; T Takano-Shimizu; M Ozaki. Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster. J Neurogenet 26, 206–215 (2012)
DOI: 10.3109/01677063.2012.694931

70. T Shiraiwa; JR Carlson. Proboscis extension response (PER) assay in Drosophila. J Vis Exp 1–2 (2007)
DOI: 10.3791/193

71. C Pfeiffenberger; BC Lear; KP Keegan; R Allada. Locomotor activity level monitoring using the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc 2010, pdb.prot5518 (2010)

72. Y Yu; R Huang; J Ye; V Zhang; C Wu; G Cheng; J Jia; L Wang. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. Elife 5, e15693 (2016)
DOI: 10.7554/eLife.15693

73. PK Anderson. Foraging range in mice and voles: the role of risk. Can J Zool 64, 2645–2653 (1986)
DOI: 10.1139/z86-384

74. SL Kohler; MA McPeek. Predation Risk and The foraging behavior of competing stream insects. Ecology 70, 1811–1825 (1989)
DOI: 10.2307/1938114

75. SL Padilla; J Qiu; ME Soden; E Sanz; CC Nestor; FD Barker; A Quintana; LS Zweifel; OK Ronnekleiv; MJ Kelly; RD Palmiter. AgRP neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci 19, 734–741 (2016)
DOI: 10.1038/nn.4274

76. MD McCue. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol - A Mol Integr Physiol 156, 1–18 (2010)
DOI: 10.1016/j.cbpa.2010.01.002

77. R Dumlupinar; F Demýr; T Sýsman; G Budak; A Karabulut; ÖK Erman; E Baydas. Trace element changes during hibernation of Drosophila melanogaster by WDXRF analyses at chilling temperature. J Quant Spectrosc Radiat Transf 102, 492–498 (2006)
DOI: 10.1016/j.jqsrt.2006.02.030

78. S Grönke; DF Clarke; S Broughton; TD Andrews; L Partridge. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6, e1000857 (2010)
DOI: 10.1371/journal.pgen.1000857

79. Y Zhang; Y Xi. Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster. J Tissue Sci Eng 6, 1–8 (2014)

80. W Brogiolo; H Stocker; T Ikeya; F Rintelen; R Fernandez; E Hafen. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11, 213–221 (2001)
DOI: 10.1016/S0960-9822(01)00068-9

81. N Okamoto; N Yamanaka; H Satake; H Saegusa; H Kataoka; A Mizoguchi. An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori. FEBS J 276, 1221–1232 (2009)
DOI: 10.1111/j.1742-4658.2008.06859.x

82. H Bai; P Kang; M Tatar. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11, 978–985 (2012)
DOI: 10.1111/acel.12000

83. SC McQuown; MA Wood. Epigenetic regulation in substance use disorders. Curr Psychiatry Rep 12, 145–153 (2010)
DOI: 10.1007/s11920-010-0099-5

84. JL Kwapis; Y Alaghband; AJ López; AO White; RR Campbell; RT Dang; D Rhee; A V Tran; AE Carl; DP Matheos; MA Wood. Context and auditory fear are differentially regulated by HDAC3 activity in the lateral and basal subnuclei of the Amygdala. Neuropsychopharmacology 42, 1284–1294 (2017)
DOI: 10.1038/npp.2016.274

85. N Whittle; V Maurer; C Murphy; J Rainer; D Bindreither; M Hauschild; A Scharinger; M Oberhauser; T Keil; C Brehm; T Valovka; J Striessnig; N Singewald. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl Psychiatry 6, e974 (2016)
DOI: 10.1038/tp.2016.231

86. AA Johnson; J Sarthi; SK Pirooznia; W Reube; F Elefant. Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer’s disease model. J Neurosci 33, 7535–7547 (2013)
DOI: 10.1523/JNEUROSCI.3739-12.2013

87. E Dong; P Tueting; F Matrisciano; DR Grayson; A Guidotti. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl Psychiatry 6, e711 (2016)
DOI: 10.1038/tp.2015.191

88. S Balan; Y Iwayama; M Maekawa; T Toyota; T Ohnishi; M Toyoshima; C Shimamoto; K Esaki; K Yamada; Y Iwata; K Suzuki; M Ide; M Ota; S Fukuchi; M Tsujii; N Mori; Y Shinkai; T Yoshikawa. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects. Mol Autism 5, 1–9 (2014)
DOI: 10.1186/2040-2392-5-49

89. TS Koemans; T Kleefstra; MC Chubak; MH Stone; MRF Reijnders; S de Munnik; MH Willemsen; M Fenckova; CTRM Stumpel; LA Bok; M Sifuentes Saenz; KA Byerly; LB Baughn; APA Stegmann; R Pfundt; H Zhou; H van Bokhoven; A Schenck; JM Kramer. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet 13, e1006864 (2017)
DOI: 10.1371/journal.pgen.1006864

90. I Ueoka; H Kawashima; A Konishi; M Aoki; R Tanaka; H Yoshida; T Maeda; M Ozaki; M Yamaguchi. Novel Drosophila model for psychiatric disorders including autism spectrum disorder by targeting of ATP-binding cassette protein A. Exp Neurol 300, 51–59 (2018)
DOI: 10.1016/j.expneurol.2017.10.027

91. JH Kim; JH Lee; IS Lee; SB Lee; KS Cho. Histone lysine methylation and neurodevelopmental disorders. Int J Mol Sci 18, E1404 (2017)
DOI: 10.3390/ijms18071404

92. M Yamaguchi; H Takashima. Drosophila Charcot-Marie-Tooth Disease Models. In: Drosophila Models for Human Diseases. Eds, M Yamaguchi, Springer Nature, Switzerland. (2018)
DOI: 10.1007/978-981-13-0529-0_7

93. T Kleefstra; M Smidt; MJG Banning; AR Oudakker; H Van Esch; APM De Brouwer; W Nillesen; EA Sistermans; BCJ Hamel; D De Bruijn; JP Fryns; HG Yntema; HG Brunner; BBA De Vries; H Van Bokhoven. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42, 299–306 (2005)
DOI: 10.1136/jmg.2004.028464

94. Z Agha; Z Iqbal; M Azam; H Ayub; LELM Vissers; C Gilissen; SHB Ali; M Riaz; JA Veltman; R Pfundt; H Van Bokhoven; R Qamar. Exome sequencing identifies three novel candidate genes implicated in intellectual disability. PLoS One 9, e112687 (2014)
DOI: 10.1371/journal.pone.0112687

95. C D’Ydewalle; J Krishnan; DM Chiheb; P Van Damme; J Irobi; AP Kozikowski; P Vanden Berghe; V Timmerman; W Robberecht; L Van Den Bosch. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 17, 968–974 (2011)
DOI: 10.1038/nm.2396

96. FM Vassoler; SL White; HD Schmidt; G Sadri-Vakili; RC Pierce. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16, 42–47 (2013)
DOI: 10.1038/nn.3280

97. J Dai; Z Wang; W Xu; M Zhang; Z Zhu; X Zhao; D Zhang; D Nie; L Wang; Z Qiao. Paternal nicotine exposure defines different behavior in subsequent generation via hyper-methylation of mmu-miR-15b. Sci Rep 7, 7286 (2017)
DOI: 10.1038/s41598-017-07920-3

98. D Nätt; R Barchiesi; J Murad; J Feng; EJ Nestler; FA Champagne; A Thorsell. Perinatal malnutrition leads to sexually dimorphic behavioral responses with associated epigenetic changes in the mouse brain. Sci Rep 7, 11082 (2017)
DOI: 10.1038/s41598-017-10803-2

99. G Sarker; R Berrens; J von Arx; P Pelczar; W Reik; C Wolfrum; D Peleg-Raibstein. Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Transl Psychiatry 8, 195 (2018)
DOI: 10.1038/s41398-018-0243-2

Key Words: Review, Epigenetics, Animal behavior, Drosophila melanogaster, Mammals, Learning, Foraging, Mating, Circadian rhythm

Send correspondence to: Masamitsu Yamaguchi, Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan, Tel:  81-75-724-7781, Fax: 81-75-724-7799, E-mail: myamaguc@kit.ac.jp