[Frontiers In Bioscience, Landmark, 24, 1401-1425, June 1, 2019]

Biologic response of sperm and seminal plasma to transient testicular heating

Zhen-Ya Fang1, Wei Xiao2, Su-Ren Chen3, Mei-Hua Zhang1, Yi Qiu1, Yi-Xun Liu3, 4

1Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Key Laboratory for Improving Birth Outcome Technique, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, China, 2Shandong Provincial Hospital Affiliated to Shandong University, 3State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China, 4University of Chinese Academy of Sciences, Beijing, 100049, China


1. Abstract
2. Introduction
3. Research strategy, experimental animals, subjects, and materials for TTH as a contraceptive method
3.1. Research strategy3.2. TTH method
4. Evidence of alteration of spermatogenesis and sperm parameters under TTH
5. Effects of TTH on the testis, histology and germ cells
6. Sperm DNA damage, oxidative stress and apoptosis in TTH treatment phase
6.1. Sperm DNA damage, oxidative stress and reactive oxygen species (ROS) after TTH treatment
6.2. Effect of TTH on sperm chromosome and acrosin activity
6.3. Effect of TTH on caspase
7. Effects of TTH on sperm protein expression, autophagy and molecular changes
7.1. Effect of TTH on sperm protein expression
7.2. Autophagy and apoptosis of sperm or germ cells in TTH treatment phase
7.3. Molecular changes in TTH
8. Effect of TTH on epididymis and seminal biochemistry
8.1. Effect of TTH on epididymal proteins
8.2. Effect of TTH on epididymal sperm
8.3. Effect of TTH on NO and NOS
8.4. Effect of TTH on MIF
8.5. Changes in seminal NAG, L-carnitine and epidermal growth factor
9. Conclusions
10. Acknowledgment
11. References


Currently, there are few male contraceptive methods that are purely based on prevention of the entry of the sperm into the female reproductive tract. An alternative approach for designing reversible male contraceptive is achieved by transient testicular heating (TTH). This treatment, through massive germ cell apoptosis, causes reversible oligospermia or azoospermia. Here, we describe as how TTH causes DNA damage, oxidative stress, apoptosis, autophagy, sperm protein expression, and alters the biochemical components of seminal plasma. Further understanding of TTH will help design safe and reversible male contraception.


1. B. P. Setchell: Possible physiological bases for contraceptive techniques in the male. Hum Reprod, 9(6), 1081-7 (1994)
DOI: 10.1093/oxfordjournals.humrep.a138637

2. R. Mieusset and L. Bujan: The potential of mild testicular heating as a safe, effective and reversible contraceptive method for men. Int J Androl, 17(4), 186-91 (1994)
DOI: 10.1111/j.1365-2605.1994.tb01241.x

3. S. T. Page, J. K. Amory and W. J. Bremner: Advances in male contraception. Endocr Rev, 29(4), 465-93 (2008) DOI: 10.1210/er.2007-0041

4. E. A. McLaughlin and R. J. Aitken: Is there a role for immunocontraception? Mol Cell Endocrinol, 335(1), 78-88 (2011)
DOI: 10.1016/j.mce.2010.04.004

5. Y. X. Liu: Temperature control of spermatogenesis and prospect of male contraception. Front Biosci (Schol Ed), 2, 730-55 (2010)
DOI: 10.2741/s97

6. A. M. Henken, G. R. Kleinhout and W. van der Hel: The effect of environmental temperature on immune response and metabolism of the young chicken. 1. Effect of intramuscular injection on heat production. Poult Sci, 61(3), 503-9 (1982)
DOI: 10.3382/ps.0610503

7. C. Wang, Y. G. Cui, X. H. Wang, Y. Jia, A. Sinha Hikim, Y. H. Lue, J. S. Tong, L. X. Qian, J. H. Sha, Z. M. Zhou, L. Hull, A. Leung and R. S. Swerdloff: transient scrotal hyperthermia and levonorgestrel enhance testosterone-induced spermatogenesis suppression in men through increased germ cell apoptosis. J Clin Endocrinol Metab, 92(8), 3292-304 (2007)
DOI: 10.1210/jc.2007-0367

8. Y. H. Lue, B. L. Lasley, L. S. Laughlin, R. S. Swerdloff, A. P. Hikim, A. Leung, J. W. Overstreet and C. Wang: Mild testicular hyperthermia induces profound transitional spermatogenic suppression through increased germ cell apoptosis in adult cynomolgus monkeys (Macaca fascicularis). J Androl, 23(6), 799-805 (2002)
DOI: 10.1002/j.1939-4640.2002.tb02336.x

9. B. Kim, H. J. Cooke and K. Rhee: DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress. Development, 139(3), 568-78 (2012)
DOI: 10.1242/dev.075846

10. C. Paul, A. A. Murray, N. Spears and P. T. Saunders: A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction, 136(1), 73-84 (2008)
DOI: 10.1530/REP-08-0036

11. S. Banks, S. A. King, D. S. Irvine and P. T. Saunders: Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction, 129(4), 505-14 (2005)
DOI: 10.1530/rep.1.00531

12. C. Paul, S. Teng and P. T. Saunders: A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod, 80(5), 913-9 (2009)
DOI: 10.1095/biolreprod.108.071779

13. D. Durairajanayagam, A. Agarwal and C. Ong: Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online, 30(1), 14-27 (2015)
DOI: 10.1016/j.rbmo.2014.09.018

14. M. Liu, L. Qi, Y. Zeng, Y. Yang, Y. Bi, X. Shi, H. Zhu, Z. Zhou and J. Sha: Transient scrotal hyperthermia induces lipid droplet accumulation and reveals a different ADFP expression pattern between the testes and liver in mice. PLoS One, 7(10), e45694 (2012)
DOI: 10.1371/journal.pone.0045694

15. A. Jung and H. C. Schuppe: Influence of genital heat stress on semen quality in humans. Andrologia, 39(6), 203-15 (2007)
DOI: 10.1111/j.1439-0272.2007.00794.x

16. A. Jung, F. Leonhardt, W. B. Schill and H. C. Schuppe: Influence of the type of undertrousers and physical activity on scrotal temperature. Hum Reprod, 20(4), 1022-7 (2005)
DOI: 10.1093/humrep/deh697

17. Y. Yin, K. L. Hawkins, W. C. DeWolf and A. Morgentaler: Heat stress causes testicular germ cell apoptosis in adult mice. J Androl, 18(2), 159-65 (1997)
DOI: 10.1002/j.1939-4640.1997.tb01896.x

18. Y. H. Lue, A. P. Hikim, R. S. Swerdloff, P. Im, K. S. Taing, T. Bui, A. Leung and C. Wang: Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology, 140(4), 1709-17 (1999)
DOI: 10.1210/endo.

19. A. Garolla, M. Torino, B. Sartini, I. Cosci, C. Patassini, U. Carraro and C. Foresta: Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod, 28(4), 877-85 (2013)
DOI: 10.1093/humrep/det020

20. M. H. Zhang, Z. D. Shi, J. C. Yu, Y. P. Zhang, L. G. Wang and Y. Qiu: Scrotal heat stress causes sperm chromatin damage and cysteinyl aspartate-spicific proteinases 3 changes in fertile men. J Assist Reprod Genet, 32(5), 747-55 (2015)
DOI: 10.1007/s10815-015-0451-0

21. M. H. Zhang, A. D. Zhang, Z. D. Shi, L. G. Wang and Y. Qiu: Changes in levels of seminal nitric oxide synthase, macrophage migration inhibitory factor, sperm DNA integrity and Caspase-3 in fertile men after scrotal heat stress. PLoS One, 10(10), e0141320 (2015)
DOI: 10.1371/journal.pone.0141320

22. M. H. Zhang, L. P. Zhai, Z. Y. Fang, A. N. Li, Y. Qiu and Y. X. Liu: Impact of a mild scrotal heating on sperm chromosomal abnormality, acrosin activity and seminal alpha-glucosidase in human fertile males. Andrologia (2018)
DOI: 10.1111/and.12985

23. Y. X. Liu: Control of spermatogenesis in primate and prospect of male contraception. Arch Androl, 51(2), 77-92 (2005)
DOI: 10.1080/01485010490485768

24. S. R. Chen, A. Batool, Y. Q. Wang, X. X. Hao, C. S. Chang, C. Y. Cheng and Y. X. Liu: The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon’s head to tail. Cell Death Dis, 7(11), e2472 (2016)
DOI: 10.1038/cddis.2016.344

25. E. Nieschlag and A. Henke: Hopes for male contraception. Lancet, 365(9459), 554-6 (2005)
DOI: 10.1016/S0140-6736(05)17924-0

26. Q. Yu, X. Q. Mei, X. F. Ding, T. T. Dong, W. W. Dong and H. G. Li: Construction of a catsper1 DNA vaccine and its antifertility effect on male mice. PLoS One, 10(5), e0127508 (2015)
DOI: 10.1371/journal.pone.0127508

27. J. Stover, J. E. Rosen, M. N. Carvalho, E. L. Korenromp, H. S. Friedman, M. Cogan and B. Deperthes: The case for investing in the male condom. PLoS One, 12(5), e0177108 (2017)
DOI: 10.1371/journal.pone.0177108

28. L. Li, J. Shao and X. Wang: Percutaneous no-scalpel vasectomy via one puncture in China. Urol J, 11(2), 1452-6 (2014)
DOI: 10.22037/uj.v11i2.2053

29. M. Mullinax, S. Sanders, B. Dennis, J. Higgins, J. D. Fortenberry and M. Reece: How condom discontinuation occurs: interviews with emerging adult women. J Sex Res, 54(4-5), 642-650 (2017)
DOI: 10.1080/00224499.2016.1143440

30. D. Waller, D. Bolick, E. Lissner, C. Premanandan and G. Gamerman: Reversibility of Vasalgel male contraceptive in a rabbit model. Basic Clin Androl, 27, 8 (2017)
DOI: 10.1186/s12610-017-0051-1

31. M. Sabes-Alsina, O. Tallo-Parra, M. T. Mogas, J. M. Morrell and M. Lopez-Bejar: Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa. Anim Reprod Sci, 173, 18-23 (2016)
DOI: 10.1016/j.anireprosci.2016.08.004

32. J. S. Fleming, F. Yu, R. M. McDonald, S. A. Meyers, G. W. Montgomery, J. F. Smith and H. D. Nicholson: Effects of scrotal heating on sperm surface protein PH-20 expression in sheep. Mol Reprod Dev, 68(1), 103-14 (2004)
DOI: 10.1002/mrd.20049

33. H. Henning, C. Masal, A. Herr, K. Wolf, C. Urhausen, A. Beineke, M. Beyerbach, S. Kramer and A. R. Gunzel-Apel: Effect of short-term scrotal hyperthermia on spermatological parameters, testicular blood flow and gonadal tissue in dogs. Reprod Domest Anim, 49(1), 145-57 (2014)
DOI: 10.1111/rda.12244

34. M. Chen, H. Cai, J. L. Yang, C. L. Lu, T. Liu, W. Yang, J. Guo, X. Q. Hu, C. H. Fan, Z. Y. Hu, F. Gao and Y. X. Liu: Effect of heat stress on expression of junction-associated molecules and upstream factors androgen receptor and Wilms’ tumor 1 in monkey sertoli cells. Endocrinology. 149(10):4871-82 (2008)

35. M. Rao, X. L. Zhao, J. Yang, S. F. Hu, H. Lei, W. Xia and C. H. Zhu: Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl, 17(4), 668-75 (2015)
DOI: 10.4103/1008-682X.146967

36. D. S. Hwang, H. G. Kim, S. Park, N. D. Hong, J. H. Ryu and M. S. Oh. Capsaicin attenuates spermatogenic cell death induced by scrotal hyperthermia through its antioxidative and anti-apoptotic activities. Andrologia. 49(5) (2017)
DOI: 10.1111/and.12656

37. A. Kheradmand, O. Dezfoulian and M. Alirezaei: Ghrelin regulates Bax and PCNA but not Bcl-2 expressions followingscrotalhyperthermiain the rat. Tissue Cell, 44(5), 308-15 (2012)
DOI: 10.1016/j.tice.2012.04.009

38. M. Kanter, C. Aktas and M. Erboga: Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: an immunohistochemical and ultrastructural study. Toxicol Ind Health, 29(2), 99-113 (2013)
DOI: 10.1177/0748233711425082

39. Z. Zhang, X. Fan, H. Xi, R. Ji, H. Shen, A. Shi and J. He: Effect of local scrotal heating on the expression of tight junction-associated molecule Occludin in boar testes. Reprod Domest Anim, 53(2), 458-62 (2018)
DOI: 10.1111/rda.13131

40. R. F. Hellon and N. K. Misra: Neurones in the dorsal horn of the rat responding to scrotal skin temperature changes. J Physiol, 232(2), 375-88 (1973)

41. T. R. Hamilton, C. M. Mendes, L. S. de Castro, P. M. de Assis, A. F. Siqueira, J. C. de Delgado, M. D. Goissis, T. Muiño-Blanco, J. Á. Cebrián-Pérez, M. Nichi, J. A. Visintin and M. E. Assumpção: Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid Med Cell Longevity, 2016, 12 (2016)
DOI: 10.1155/2016/1687657

42. T. R. D. S. Hamilton, A. F. P. Siqueira, L. S. de Castro, C. M. Mendes, J. C. Delgado, P. M. de Assis, L. P. Mesquita, P. C. Maiorka, M. Nichi, M. D. Goissis, J. A. Visintin and M. E. O. D. Á. Assumpção: Effect of Heat Stress on Sperm DNA: Protamine Assessment in Ram Spermatozoa and Testicle. Oxid Med Cell Longev, 2018, 5413056 (2018)
DOI: 10.1155/2018/5413056

43. Y. Lue, A. P. Hikim, C. Wang, M. Im, A. Leung and R. S. Swerdloff: Testicular heat exposure enhances the suppression of spermatogenesis by testosterone in rats: the “two-hit” approach to male contraceptive development. Endocrinology, 141(4), 1414-24 (2000)
DOI: 10.1210/endo.

44. Y. Lue, C. Wang, Y. X. Liu, A. P. Hikim, X. S. Zhang, C. M. Ng, Z. Y. Hu, Y. C. Li, A. Leung and R. S. Swerdloff: Transient testicular warming enhances the suppressive effect of testosterone on spermatogenesis in adult cynomolgus monkeys (Macaca fascicularis). J Clin Endocrinol Metab, 91(2), 539-45 (2006)
DOI: 10.1210/jc.2005-1808

45. X. S. Zhang, Y. H. Lue, S. H. Guo, J. X. Yuan, Z. Y. Hu, C. S. Han, A. P. Hikim, R. S. Swerdloff, C. Wang and Y. X. Liu: Expression of HSP105 and HSP60 during germ cell apoptosis in the heat-treated testes of adult cynomolgus monkeys (macaca fascicularis). Front Biosci, 10, 3110-21 (2005)
DOI: 10.2741/1767

46. B. P. Setchell: The Parkes Lecture. Heat and the testis. J Reprod Fertil, 114(2), 179-94 (1998)
DOI: 10.1530/jrf.0.1140179

47. F. R. Kandeel and R. S. Swerdloff: Role of temperature in regulation of spermatogenesis and the use of heating as a method for contraception. Fertil Steril. 1988;49:1-23.

48. J. I. McNitt and N. L. First: Effects of 72-hour heat stress on semen quality in boars. Int J Biometeorol, 14(4), 373-80 (1970)
DOI: 10.1007/BF01462914

49. M. Spinaci, S. Volpe, C. Bernardini, M. de Ambrogi, C. Tamanini, E. Seren and G. Galeati: Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl, 27(6):899-907 (2006)
DOI: 10.2164/jandrol.106.001008

50. H. Shen, X. Fan, Z. Zhang, H. Xi, R. Ji, Y. Liu, M. Yue, Q. Li and J. He: Effects of elevated ambient temperature and local testicular heating on the expressions of heat shock protein 70 and androgen receptor in boar testes. Acta Histochem, (2019)
DOI: 10.1016/j.acthis.2019.01.009

51. H. Wechalekar, B. P. Setchell, K. R. Pilkington, C. Leigh, W. G. Breed and E. Peirce: Effects of whole-body heat on male germ cell development and sperm motility in the laboratory mouse. Reprod Fertil Dev, 28(5):545-55 (2016)
DOI: 10.1071/RD13395

52. Y. Li, A. Wang, K. Taya and C. Li: Declining semen quality and steadying seminal plasma ions in heat-stressed boar model. Reprod Med Biol, 14(4):171-7 (2015)
DOI: 10.1007/s12522-015-0205-9

53. B. A. Stone: Thermal characteristics of the testis and epididymis of the boar. J Reprod Fertil, 63(2), 551-7 (1981)
DOI: 10.1530/jrf.0.0630551

54. K. Larsson and S. Einarsson: Seminal changes in boars after heat stress. Acta Vet Scand, 25(1), 57-66 (1984)

55. L. Malmgren and K. Larsson: Semen quality and fertility after heat stress in boars. Acta Vet Scand, 25(3), 425-35 (1984)

56. G. Ahmad, N. Moinard, C. Esquerré-Lamare, R. Mieusset and L. Bujan: Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men. Fertil Steril, 97(3), 546-53 (2012)
DOI: 10.1016/j.fertnstert.2011.12.025

57. K. A. Galil and B. P. Setchell: Effects of local heating of the testis on testicular blood flow and testosterone secretion in the rat. Int J Androl, 11(1), 73-85 (1988)
DOI: 10.1111/j.1365-2605.1988.tb01218.x

58. J. Guo, S. X. Tao, M. Chen, Y. Q. Shi, Z. Q. Zhang, Y. C. Li, X. S. Zhang, Z. Y. Hu and Y. X. Liu: Heat treatment induces liver receptor homolog-1 expression in monkey and rat sertoli cells. Endocrinology, 148(3), 1255-65 (2007)
DOI: 10.1210/en.2006-1004

59. X. X. Li, S. R. Chen, B. Shen, J. L. Yang, S. Y. Ji, Q. Wen, Q. S. Zheng, L. Li, J. Zhang, Z. Y. Hu, X. X. Huang and Y. X. Liu: The heat-induced reversible change in the blood-testis barrier (BTB) is regulated by the androgen receptor (AR) via the partitioning-defective protein (Par) polarity complex in the mouse. Biol Reprod, 89(1), 1-10 (2013)
DOI: 10.1095/biolreprod.113.109405

60. X. S. Zhang, Z. H. Zhang, X. Jin, P. Wei, X. Q. Hu, M. Chen, C. L. Lu, Y. H. Lue, Z. Y. Hu, A. P. Sinha Hikim, R. S. Swerdloff, C. Wang and Y. X. Liu: Dedifferentiation of adult monkey Sertoli cells through activation of extracellularly regulated kinase 1/2 induced by heat treatment. Endocrinology, 147(3), 1237-45 (2006)
DOI: 10.1210/en.2005-0981

61. G. R. Dohle, G. M. Colpi, T. B. Hargreave, G. K. Papp, A. Jungwirth, W. Weidner and E. A. U. W. G. o. M. Infertility: EAU guidelines on male infertility. Eur Urol, 48(5), 703-11 (2005)
DOI: 10.1016/j.eururo.2005.06.002

62. E. Geva, J. B. Lessing, L. Lerner-Geva and A. Amit: Free radicals, antioxidants and human spermatozoa: clinical implications. Hum Reprod, 13(6), 1422-4 (1998)
DOI: 10.1093/oxfordjournals.humrep.a019709

63. M. Heidary, S. Vahhabi, J. Reza Nejadi, B. Delfan, M. Birjandi, H. Kaviani and S. Givrad: Effect of saffron on semen parameters of infertile men. Urol J, 5(4), 255-9 (2008)

64. B. P. Setchell, L. Plöen andE. M.Ritzen: Effect of local heating of rat testes after suppression of spermatogenesis by pretreatment with a GnRH agonist and an anti-androgen. Reproduction, 124(1), 133-40 (2002)
DOI: 10.1530/rep.0.1240133

65. C. Wang, V. McDonald, A. Leung, L. Superlano, N. Berman, L. Hull and R. S. Swerdloff: Effect of increased scrotal temperature on sperm production in normal men. Fertil Steril, 68(2), 334-9 (1997)
DOI: 10.1016/S0022-5347(01)62981-1

66. R. Munkelwitz and B. R. Gilbert:Are boxer shorts really better? A critical analysis of the role of underwear type in male subfertility. J Urol, 160(4), 1329-33 (1998)
DOI: 10.1097/00005392-199810000-00030

67. C. Lin, Y. S. Choi, S. G. Park, L. W. Gwon, J. G. Lee, J. M. Yon, I. J. Baek, B. J. Lee, Y. W. Yun and S. Y. Nam: Enhanced protective effects of combined treatment with β-carotene and curcumin against hyperthermic spermatogenic disorders in mice. Biomed Res Int, 2016, 2572073 (2016)
DOI: 10.1155/2016/2572073

68. S. G. Park, J.M. Yon, C. Lin, L. W. Gwon, J.G. Lee, I. J. Baek, B. J. Lee, Y. W. Yun and S.Y. Nam: Capsaicin attenuates spermatogenic cell death induced by scrotal hyperthermia through its antioxidative and anti-apoptotic activities. Andrologia. 2016 Jul 12.
DOI: 10.1111/and.12656.

69. Z. Li, Y. Li, X. Zhou, P. Dai and C. Li: Autophagy involved in the activation of the Nrf2-antioxidant system in testes of heat-exposed mice. J Therm Biol, 71(2), 142-52 (2018)
DOI: 10.1016/j.jtherbio.2017.11.006

70. C. Lin, D. G. Shin, S. G. Park, S. B. Chu, L. W. Gwon, J. G. Lee, J. M. Yon, I. J. Baek and S. Y. Nam: Curcumin dose-dependently improves spermatogenic disorders induced by scrotal heat stress in mice. Food Funct, 6(12), 3770-7 (2015)
DOI: 10.1039/c5fo00726g

71. M. Rao, S. Ma, S. Hu, H. Lei, Y. Wu, Y. Zhou, W. Xia andC. Zhu: Isobaric tags for relative and absolute quantification-based proteomic analysis of testis biopsies in rhesus monkeys treated with transient scrotal hyperthermia. Oncotarget, 8(49), 85909-25 (2017)
DOI: 10.18632/oncotarget.20719

72. E. Carlsen, A. M. Andersson, J. H. Petersen and N. E. Skakkebaek:History of febrile illness and variation in semen quality. Hum Reprod, 18, 2089-92 (2003)
DOI: 10.1093/humrep/deg412

73. A. Eisenberg-Lerner, S. Bialik, H. U. Simon and A. Kimchi: Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ, 16, 966-75 (2009)
DOI: 10.1038/cdd.2009.33

74. M. Zhang, M. Jiang, Y. Bi, H. Zhu, Z. Zhou and J. Sha: Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS ONE, 7, e41412 (2012)
DOI: 10.1371/journal.pone.0041412

75. M. Ahotupa and I. Huhtaniemi: Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod, 46(6), 1114-8 (1992)
DOI: 10.1095/biolreprod46.6.1.114

76. M. Ikeda, H. Kodama, J. Fukuda, Y. Shimizu, M. Murata, J. Kumagai and T. Tanaka: Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol Reprod, 61(2), 393-9 (1999)
DOI: 10.1095/biolreprod61.2.3.93

77. V. Peltola, I. Huhtaniemi and M. Ahotupa: Abdominal position of the rat testis is associated with high level of lipid peroxidation. Biol Reprod, 53(5), 1146-50 (1995)
DOI: 10.1095/biolreprod53.5.1.146

78. C.C. Love and R.M. Kenney: Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod. 60:615-620 (1999)

79. B. L. Sailer, L. J. Sarkar, J. A. Bjordahl, L. K. Jost and D. P. Evenson: Effects of heat stress on mouse testicular cells and sperm chromatin structure. J Androl, 18(3), 294-301 (1997)
DOI: 10.1002/j.1939-4640.1997.tb01922.x

80. B. K. Zhu and B. P. Setchell: Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Reprod Nutr Dev, 44(6), 617-29 (2004)
DOI: 10.1051/rnd:2004064

81. B. Zhu, S. K. Walker, H. Oakey, B. P. Setchell and S. Maddocks: Effect of paternal heat stress on the development in vitro of preimplantation embryos in the mouse. Andrologia, 36(6), 384-94 (2004)
DOI: 10.1111/j.1439-0272.2004.00635.x

82. K. M. Cammack, H. Mesa and W. R. Lamberson: Genetic variation in fertility of heat-stressed male mice. Theriogenology, 66(9), 2195-201 (2006)
DOI: 10.1016/j.theriogenology.2006.06.011

83. M. Nichi, P. E. Bols, R. M. Züge, V. H. Barnabe, I. G. Goovaerts, R. C. Barnabe and C. N. Cortada: Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 66(4), 822-8 (2006)
DOI: 10.1016/j.theriogenology.2006.01.056

84. C. G. Blumer, R. M. Fariello, A. E. Restelli, D. M. Spaine, R. P. Bertolla and A. P. Cedenho: Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril, 90(5), 1716-22 (2008)
DOI: 10.1016/j.fertnstert.2007.09.007

85. D. Sakkas and J. G. Alvarez: Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril, 93(4), 1027-36 (2010)
DOI: 10.1016/j.fertnstert.2009.10.046

86. K. Shiraishi, H. Takihara and H. Matsuyama: Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol, 28(3), 359-64 (2010)
DOI: 10.1007/s00345-009-0462-5

87. T. Shikone, H. Billig and A.J. Hsueh: Experimentally induced cryptorchidism increases apoptosis in rat testis. Biol Reprod, 51(5), 865-72 (1994)
DOI: 10.1095/biolreprod51.5.8.65

88. B. J. Houston, B. Nixon, J. H. Martin, G. N. De Iuliis, N. A. Trigg, E. G. Bromfield, K. E. McEwan and R. J. Aitken: Heatexposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod, 98(4), 593-606 (2018)
DOI: 10.1093/biolre/ioy009

89. R. Ramasamy, S. Besada and D. J. Lamb: Fluorescent in situ hybridization of human sperm: diagnostics, indications, and therapeutic implications. Fertil Steril, 102(6), 1534-9 (2014)
DOI: 10.1016/j.fertnstert.2014.09.013

90. Z. Sarrate, F. Vidal and J. Blanco: Role of sperm fluorescent in situ hybridization studies in infertile patients: indications, study approach, and clinical relevance. Fertil Steril, 93(6), 1892-902 (2010)
DOI: 10.1016/j.fertnstert.2008.12.139

91. W. J. Huang, D. J. Lamb, E. D. Kim, J. de Lara, W. W. Lin, L. I. Lipshultz and F. Z. Bischoff: Germ-cell nondisjunction in testes biopsies of men with idiopathic infertility. Am J Hum Genet, 64(6), 1638-45 (1999)
DOI: 10.1086/302402

92. B. P. Carreira, C. M. Carvalho and I. M. Araujo: Regulation of injury-induced neurogenesis by nitric oxide. Stem Cells Int. 2012; 895659. (2012)
DOI: 10.1155/2012/895659

93. S. B. Chao, L. Guo, X. H. Ou, S. M. Luo, Z. B. Wang, H. Schatten, G. L. Gao and Q. Y. Sun: Heated spermatozoa: effects on embryonic development and epigenetics. Hum Reprod, 27(4), 1016-24 (2012)
DOI: 10.1093/humrep/des005

94. R. Oko and P. Sutovsky: Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol, 83(1-2), 2-7 (2009)
DOI: 10.1016/j.jri.2009.05.008

95. Y. Yu, J. Vanhorne and R. Oko: The origin and assembly of a zona pellucida binding protein, IAM38, during spermiogenesis. Microsc Res Tech, 72(8), 558-65 (2009)
DOI: 10.1002/jemt.20696

96. N. H. Hjollund, L. Storgaard, E. Ernst, J. P. Bonde and J. Olsen: Impact of diurnal scrotal temperature on semen quality. Reprod Toxicol, 16(3), 215-21 (2002)
DOI: 10.1016/S0890-6238(02)00025-4

97. A. Ilacqua, G. Izzo, G.P. Emerenziani, C. Baldari and A. Aversa: Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol. 16(1):115. (2018)
DOI: 10.1186/s12958-018-0436-9.143

98. Y. Qiu, L. G. Wang, L. H. Zhang, J. Li, A. D. Zhang and M. H. Zhang: Sperm chromosomal aneuploidy and DNA integrity of infertile men with anejaculation. J Assist Reprod Genet. 2012;29(2):185-94.
DOI: 10.1007/s10815-011-9688-4

99. T. Planchenault, D. Cechová and V. Keil-Dlouha: Matrix degrading properties of sperm serine proteinase, acrosin. FEBS Lett. 294(3):279-281. (1991)

100. R.T. Richardson, B.S. Nikolajczyk, L.H. Abdullah, J.C. Beavers and M.G. O’Rand: Localization of rabbit sperm acrosin during the acrosome reaction induced by immobilized zona matrix. Biol Reprod. 45(1):20-26. (1991)

101. Z. H. Zhang, Z. Y. Hu, X. X. Song, L. J. Xiao, R. J. Zou, C. S. Han and Y. X. Liu: Disrupted expression of intermediate filaments in the testis of rhesus monkey after experimental cryptorchidism. Int J Androl, 27(4), 234-9 (2004)
DOI: 10.1111/j.1365-2605.2004.00477.x

102. H. Cai, Y. Ren, X. X. Li, J. L. Yang, C. P. Zhang, M. Chen, C. H. Fan, X. Q. Hu, Z. Y. Hu, F. Gao and Y. X. Liu: Scrotal heat stress causes a transient alteration in tight junctions and induction of TGF-beta expression. Int J Androl, 34(4), 352-62 (2011)
DOI: 10.1111/j.1365-2605.2010.01089.x

103. M. Chen, J. X. Yuan, Y. Q. Shi, X. S. Zhang, Z. Y. Hu, F. Gao and Y. X. Liu: Effect of 43 degrees treatment on expression of heat shock proteins 105, 70 and 60 in cultured monkey Sertoli cells. Asian J Androl, 10(3), 474-85 (2008)
DOI: 10.1111/j.1745-7262.2008.00391.x

104. D. H. Wang, J. R. Hu, L. Y. Wang, Y. J. Hu, F. Q. Tan, H. Zhou, J. Z. Shao and W. X. Yang: The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One, 7(6), e39920 (2012)
DOI: 10.1371/journal.pone.0039920

105. S. Kaur and M. P. Bansal: Protective role of dietary-supplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia, 47(10), 1109-19 (2015)
DOI: 10.1111/and.12390

106. J. H. Kim, S. J. Park, T. S. Kim, H. J. Park, J. Park, B. K. Kim, G. R. Kim, J. M. Kim, S. M. Huang, J. I. Chae, C. K. Park and D. S. Lee: Testicular hyperthermia induces Unfolded Protein Response signaling activation in spermatocyte. Biochem Biophys Res Commun, 434(4), 861-6 (2013)
DOI: 10.1016/j.bbrc.2013.04.032

107. Y. Vera, M. Diaz-Romero, S. Rodriguez, Y. Lue, C. Wang, R. S. Swerdloff and A. P. Sinha Hikim: Mitochondria-dependent pathway is involved in heat-induced male germ cell death: lessons from mutant mice. Biol Reprod, 70(5), 1534-40 (2004)
DOI: 10.1095/biolreprod.103.024661

108. S. G. Park, J. M. Yon, C. Lin, L. W. Gwon, J. G. Lee, I. J. Baek, B. J. Lee, Y. W. Yun and S. Y. Nam: Capsaicin attenuates spermatogenic cell death induced by scrotal hyperthermia through its antioxidative and anti-apoptotic activities. Andrologia, 49(5) (2017)
DOI: 10.1111/and.12656

109. M. Chihara, T. Nakamura, N. Sakakibara, S. Otsuka, O. Ichii and Y. Kon: The onset of heat-induced testicular calcification in mice: involvement of the telomeric locus on chromosome 1. Am J Pathol, 184(9), 2480-92 (2014)
DOI: 10.1016/j.ajpath.2014.06.004

110. M. M. Matzuk and D. J. Lamb: The biology of infertility: research advances and clinical challenges. Nat Med, 14(11), 1197-213 (2008)
DOI: 10.1038/nm.f.1895

111. A. Laiho, N. Kotaja, A. Gyenesei and A. Sironen: Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One, 8(4), e61558 (2013)
DOI: 10.1371/journal.pone.0061558

112. F. Rossi, G. Bernardini, P. Bonfanti, A. Colombo, M. Prati and R. Gornati: Effects of TCDD on spermatogenesis relatedfactor-2 (SRF-2): gene expression in Xenopus. Toxicol Lett, 191(2-3), 189-94 (2009)
DOI: 10.1016/j.toxlet.2009.08.022

113. S. M. Wu, V. Baxendale, Y. Chen, A. L. Pang, T. Stitely, P. J. Munson, M. Y. Leung, N. Ravindranath, M. Dym, O. M. Rennert, and W. Y. Chan: Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance. Genomics, 84(6), 971-81 (2004)
DOI: 10.1016/j.ygeno.2004.08.018

114. M. Rao, D. Ke, G. Cheng, S. Hu, Y. Wu, Y. Wang, F Zhou., H. Liu, C. Zhu and W. Xia: The regulation of CIRBPby transforming growth factor beta during heat shock-induced testicular injury. Andrology, (2018).
DOI: 10.1111/andr.12566

115. M. Rao, Z. Y. Zeng, L. Tang, G. P. Cheng, W. Xia and C. H. Zhu: Next-generation sequencing-based microRNA profiling of mice testis subjected to transient heat stress. Oncotarget. 8(67):111672–82. (2017)
DOI: 10.18632/oncotarget.22900

116. H. Xi, X. Fan, Z. Zhang, Y. Liang, Q. Li and J. He: Bax and Bcl-2 are involved in the apoptosis induced by local testicular heating in the boar testis. Reprod Domest Anim, 52(3), 359-65 (2017)
DOI: 10.1111/rda.12904

117. S. Danno, K. Itoh, T.Matsuda and J. Fujita: Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am J Pathol, 156(5), 1685-92 (2000)
DOI: 10.1016/S0002-9440(10)65039-0

118. A. Eisenberg-Lerner and A. Kimchi: PKD at the crossroads of necrosis and autophagy. Autophagy. 8(3):433-34. (2012)
DOI: 10.4161/auto.19288

119. A. Horibe, N. Eid, Y. Ito, Y. Otsuki and Y. Kondo: Ethanol-induced autophagy in Sertoli cells is specifically marked at androgen-dependent stages of the spermatogenic cycle: potential mechanisms and implications. Int J Mol Sci. 20(1). pii: E184.( 2019)
DOI: 10.3390/ijms20010184

120. M. Hamasaki, N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, et al: Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441):389-93. (2013)
DOI: 10.1038/nature11910

121. T. D. Oberley, J. M. Swanlund, H. J. Zhang and K. C. Kregel: Aging results in increased autophagy of mitochondria and protein nitration in rat hepatocytes following heat stress. J Histochem Cytochem. 56:615–27. (2008)
DOI: 10.1369/jhc.2008.950873

122. B. Levine and D. J. Klionsky: Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

123. G. Kroemer, G. Mariño and B. Levine: Autophagy and the integrated stress response. Mol Cell. 40(2):280-93. (2010)
DOI: 10.1016/j.molcel.2010.09.023

124. S. Foroozan-Broojeni, M. Tavalaee, R. A. Lockshin, Z. Zakeri, H. Abbasi and M. H. Nasr-Esfahani: Comparison of main molecular markers involved in autophagy and apoptosis pathways between spermatozoa of infertile men with varicocele and fertile individuals. Andrologia. Oct 23:e13177. (2018)
DOI: 10.1111/and.13177

125. N. Chen, M. Lin, N. Liu, S. Wang and X. Xiao: Methylmercury-induced testis damage is associated with activation of oxidative stress and germ cell autophagy. J Inorg Biochem, 190:67-74. (2019)
DOI: 10.1016/j.jinorgbio.2018.10.007

126. J. J. Parrish, K.L. Willenburg, K. M. Gibbs, K.B. Yagoda, M. M. Krautkramer, T. M. Loether, F.C.S.A. Melo: Scrotal insulation and sperm production in the boar. Mol Reprod Dev. 84(9):969-78. (2017)
DOI: 10.1002/mrd.22841

127. Y. F. Zhu, Y. G. Cui, X. J. Guo, L. Wang, Y. Bi, Y. Q. Hu, X. Zhao, Q. Liu, R. Huo, M. Lin, Z. M.Zhou and J. H. Sha: Proteomic analysis of effect of hyperthermia on spermatogenesis in adult male mice. J Proteome Res, 5(9), 2217-25 (2006)
DOI: 10.1021/pr0600733

128. H. Zhu, Y. Cui, J. Xie, L. Chen, X. Chen, X. Guo, Y. Zhu, X. Wang, J. Tong, Z. Zhou, Y. Jia, Y. H. Lue, A. S. Hikim, C. Wang, R. S. Swerdloff and J. Sha: Proteomic analysis of testis biopsies in men treated with transient scrotal hyperthermia reveals the potential targets for contraceptive development. Proteomics, 10(19), 3480-93 (2010)
DOI: 10.1002/pmic.201000281

129. A. P. Hikim, Y. Lue, C. M. Yamamoto, Y. Vera, S. Rodriguez, P. H. Yen, K. Soeng, C. Wang and R. S. Swerdloff: Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology, 144(7), 3167-75 (2003)
DOI: 10.1210/en.2003-0175

130. M. Rao, W. Xia, J. Yang, L. X. Hu, S. F. Hu, H. Lei, Y. Q. Wu and C. H. Zhu: Transient scrotal hyperthermia affects human sperm DNA integrity, spermapoptosis, and spermprotein expression. Andrology, 4(6), 1054-63 (2016)
DOI: 10.1111/andr.12228

131. W. Widlak and N. Vydra: The Role of heat shock factors in mammalian spermatogenesis. Adv Anat Embryol Cell Biol. 222:45-65. (2017)

132. K. Purandhar, P.K. Jena, B. Prajapati, P. Rajput and S. Seshadri: Understanding the role of heat shock protein Isoforms in male fertility, aging and apoptosis. World J Mens Health. 32(3):123-32. (2014)

133. M. Kus-Liśkiewicz, J. Polańska, J. Korfanty, M. Olbryt, N. Vydra, A. Toma and W. Widłak: Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics, 14, 456 (2013)
DOI: 10.1186/1471-2164-14-456

134. J. Korfanty, T. Stokowy, P. Widlak, A. Gogler-Piglowska, L. Handschuh, J. Podkowiński, N. Vydra, A. Naumowicz, A. Toma-Jonik and W. Widlak: Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes. Int J Biochem Cell Biol, 57, 76-83 (2014)
DOI: 10.1016/j.biocel.2014.10.006

135. J. C. Rockett, F. L. Mapp, J. B. Garges, J. C. Luft, C. Mori and D. J. Dix: Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod, 65(1), 229-39 (2001)
DOI: 10.1095/biolreprod65.1.2.29

136. M. K. Kim, K. M. Cha, S. Y. Hwang, U. K. Park, S. K. Seo, S. H. Lee, M. S. Jeong, S. Cho, S. R. Kopalli and S. K. Kim: Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats. Reproduction, 153(6), 737-47 (2017)
DOI: 10.1530/REP-16-0560

137. F. Bozkaya, M. O. Atli, A. Guzeloglu, S. A. Kayis, M. E. Yildirim, E. Kurar, R. Yilmaz and N. Aydilek: Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue. Andrologia. 49(6). (2017)
DOI: 10.1111/and.12668

138. F.A. Gohari, B. Saranjam, M. Asgari, L. Omidi, H. Ekrami and S.A. Moussavi-Najarkola: An experimental study of the effects of combined exposure to microwave and heat on gene expression and sperm parameters in mice. J Hum Reprod Sci. 10(2):128-34. (2017)
DOI: 10.4103/jhrs.JHRS_136_16

139. X. Guo, S. Chi, X. Cong, H. Li, Z. Jiang, R. Cao and W. Tian: Baicalin protects sertoli cells from heat stress-induced apoptosis via activation of the Fas/FasL pathway and Hsp72 expression. Reprod Toxicol. 57:196-203. (2015)

140. S. M. Downs: Nutrient pathways regulating the nuclear maturation of mammalian oocytes. Reprod Fertil Dev, 27(4), 572-82 (2015)
DOI: 10.1071/RD14343

141. J. L. Gatti, S. Castella, F. Dacheux, H. Ecroyd, S. Métayer, V. Thimon and J. L. Dacheux: Post-testicular sperm environment and fertility. Anim Reprod Sci, 82-83, 321-39 (2004)
DOI: 10.1016/j.anireprosci.2004.05.011

142. M. H. Zhang, L. P. Zhai, Z. Y. Fang, A. N. Li, W. Xiao and Y. Qiu: Effect of scrotal heating on sperm quality, seminal biochemical substances, and reproductive hormones in human fertile men. J Cell Biochem, 119(12), 10228-38 (2018)
DOI: 10.1002/jcb.27365

143. X. Wang, F. Liu, X. Gao, X. Liu, X. Kong, H. Wang and J. Li: Comparative proteomic analysis of heat stress proteins associated with rat sperm maturation. Mol Med Rep, 13(4), 3547-52 (2016)
DOI: 10.3892/mmr.2016.4958

144. F. J. Liu and X. F. Shen: Comparative analysis of human reproductive proteomes identifies candidate proteins of sperm maturation. Mol Biol Rep, 39(12), 10257-63 (2012)
DOI: 10.1007/s11033-012-1902-7

145. W. Xun, L. Shi, T. Cao, C. Zhao, P. Yu, D. Wang, G. Hou and H. Zhou: Dual functions in response to heat stress and spermatogenesis: Characterization of expression profile of small heat shock proteins 9 and 10 in goat testis. Biomed Res Int, 2015, 686239 (2015)
DOI: 10.1155/2015/686239

146. D. R. Rocha, J. A. Martins, M. F. van Tilburg, R. V. Oliveira, F. B. Moreno, A. C. Monteiro-Moreira, R. A. Moreira, A. A.Araújo and A. A. Moura: Effect of increased testicular temperature on seminal plasma proteome of the ram. Theriogenology, 84(8), 1291-305 (2015)
DOI: 10.1016/j.theriogenology.2015.07.008

147. J. Yaeram, B. P. Setchell and S. Maddocks: Effect of heat stress on the fertility of male mice in vivo and in vitro. Reprod Fertil Dev, 18(6), 647-53 (2006)
DOI: 10.1071/RD05022

148. H. Wechalekar, B. P. Setchell, E. J. Peirce, M. Ricci, C. Leigh and W. G. Breed: Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J Androl, 12(4), 591-8 (2010)
DOI: 10.1038/aja.2010.41

149. M. Pérez-Crespo, B. Pintado and A. Gutiérrez-Adán: Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev, 75(1), 40-7 (2008)
DOI: 10.1002/mrd.20759

150. K. Shiraishi and K. Naito: Nitricoxideproduced in the testis is involved in dilatation of the internal spermatic vein that compromises spermatogenesis in infertilemenwith varicocele. BJU Int, 99(5), 1086-90 (2007)
DOI: 10.1111/j.1464-410x.2007.06800.x

151. B. P. Carreira, C. M. Carvalho and I. M. Araújo: Regulation of injury-induced neurogenesis by nitric oxide. Stem Cells Int, 2012, 895659 (2012)
DOI: 10.1155/2012/895659

152. H. Meiser and R. Schulz: Detection and localization of two constitutive NOS isoforms in bull spermatozoa. Anat Histol Embryol, 32(6), 321-5 (2003)
DOI: 10.1111/j.1439-0264.2003.00459.x

153. S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson and U. Chakravarthy: Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol Hum Reprod, 2(11), 873-8 (1996)
DOI: 10.1093/molehr/2.11.873

154. S. S. du Plessis, D. A. McAllister, A. Luu, J. Savia, A. Agarwal and F. Lampiao: Effects of H(2)O(2) exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia, 42(3), 206-10 (2010)http://med.wanfangdata.com.cn/Periodical/N2007EPST0000007
DOI: 10.1111/j.1439-0272.2009.00980.x

155. S. S. du Plessis, K.Hagenaar and F. Lampiao: The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia, 42(2), 112-6 (2010)
DOI: 10.1111/j.1439-0272.2009.00964.x

156. P. C. Rodriguez, L. B. Valdez, T. Zaobornyj, A. Boveris and M. T. Beconi: Nitric oxide and superoxide anion production during heparin-induced capacitation in cryopreserved bovine spermatozoa. Reprod Domest Anim, 46(1), 74-81 (2011)
DOI: 10.1111/j.1439-0531.2010.01583.x

157. J. M. Moran, L.Madejón, C. Ortega Ferrusola and F. J. Peña: Nitric oxide induces caspase activity in boar spermatozoa. Theriogenology, 70(1), 91-6 (2008)
DOI: 10.1016/j.theriogenology.2008.02.010

158. K. F. Beck, W. Eberhardt, S. Frank, A. Huwiler, U. K. Mebmer, H. Muhl and J. Pfeilschifter: Inducible NO synthase: role in cellular signaling. J Exp Biol, 202(Pt 6), 645-53 (1999)

159. L. E. Shao, T. Tanaka, R. Gribi and J. Yu: Thioredoxin-related regulation of NO/NOS activities. Ann N Y Acad Sci, 962, 140-50 (2002)
DOI: 10.1111/j.1749-6632.2002.tb04064.x

160. E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera and S. A. Lipton: Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A, 92(16), 7162-6 (1995)
DOI: 10.1073/pnas.92.16.7162

161. T. Ramya, M. M. Misro, D. Sinha, D. Nandan and S. Mithal: Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil Steril, 95(1), 135-40 (2011)
DOI: 10.1016/j.fertnstert.2010.06.044

162. Y. Sakamoto, T. Ishikawa, Y. Kondo, K. Yamaguchi and M. Fujisawa: The assessment of oxidative stress in infertile patients with varicocele. BJU Int, 101(12), 1547-52 (2008)
DOI: 10.1016/S0022-5347(08)61860-1

163. M. Salter and R. G. Knowles: Assay of NOS activity by the measurement of conversion of oxyhemoglobin to methemoglobin by NO. Methods Mol Biol, 100, 61-5 (1998)
DOI: 10.1385/1-59259-749-1:61

164. P. Ghosh, S. Mukherjee, A. Bhoumik and S. R. Dungdung: A novel epididymal quiescence factor inhibits sperm motility by modulating NOS activity and intracellular NO-cGMP pathway. J Cell Physiol, 233(5):4345-59 (2018)

165. S. S. Gross and M. S. Wolin: Nitric oxide: pathophysiologica mechanisms. Annu Rev Physiol, 57, 737-69 (1995)

166. C. Romeo, R. Ientile, G. Santoro, P. Impellizzeri, N. Turiaco, P. Impalà, S. Cifalà, G. Cutroneo, F. Trimarchi and C. Gentile: Nitric oxide production is increased in the spermatic veins of adolescents with left idiophatic varicocele. J Pediatr Surg, 36(2), 389-93 (2001)
DOI: 10.1053/jpsu.2001.20724

167. C. Roessner, U. Paasch, H. J. Glander and S. Grunewald: Activity of nitric oxide synthase in mature and immature human spermatozoa. Andrologia, 42(2), 132-7 (2010)
DOI: 10.1111/j.1439-0272.2009.01005.x

168. M. K. O’Bryan, S. Schlatt, O. Gerdprasert, D. J. Phillips, D. M. de Kretser and M. P. Hedger: Inducible nitric oxide synthase in the rat testis: evidence for potential roles in both normal function and inflammation mediated infertility. Biol Reprod, 63(5), 1285-93 (2000)
DOI: 10.1095/biolreprod63.5.1.285

169. Y. Lue, A. P. S. Hikim, C. Wang, A. Leung and R. S. Swerdloff: Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number, and determination of testes size: evidence from null mutant mice. Endocrinology, 144(7), 3092-100 (2003)
DOI: 10.1210/en.2002-0142

170. J. Guo, Y. Jia, S. X. Tao, Y. C. Li, X. S. Zhang, Z. Y. Hu, N. Chiang, Y. H. Lue, A. P. Hikim, R. S. Swerdloff, C. Wang and Y. X. Liu: Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J Androl, 30(2), 190-9 (2009)
DOI: 10.2164/jandrol.108.005538

171. M. B. Herrero, E. Cebral, M. Boquet, J. M. Viggiano, A. Vitullo and M. A. Gimeno: Effect of nitric oxide on mouse sperm hyperactivation. Acta Physiol Pharmacol Ther Latinoam, 44(3), 65-9 (1994)
DOI: https://doi:http://dx.doi.org/

172. R. R. Yeoman, W. D. Jones and B. M. Rizk: Evidence for nitric oxide regulation of hamster sperm hyperactivation. J Androl, 19(1), 58-64 (1998)
DOI: 10.1002/j.1939-4640.1998.tb02470.x

173. W. J. Hellstrom, M. Bell, R.Wang and S. C. Sikka: Effect of sodium nitroprusside on sperm motility, viability, and lipid peroxidation. Fertil Steril, 61(6), 1117-22 (1994)
DOI: 10.1016/s0015-0282(16)56766-1

174. E. Miraglia, F. De Angelis, E. Gazzano, H. Hassanpour, A. Bertagna, E. Aldieri, A. Revelli and D. Ghigo: Nitric oxide stimulates human sperm motility via activation of the cyclic GMP/protein kinase G signaling pathway. Reproduction, 141(1), 47-54 (2011)
DOI: 10.1530/REP-10-0151

175. B. S. Joo, S. H. Park, S. J. Park, H. S. Kang, H. S. Moon and H. D. Kim: The effect of nitric oxide on sperm cell function and embryo development. Am J Reprod Immunol, 42(6), 327-34 (1999)
DOI: 10.1111/j.1600-0897.1999.tb00109.x

176. B. Aljabari, A. E. Calogero, A. Perdichizzi, E. Vicari, R. Karaki, T. Lahloub, R. Zatari, K. El-Abed, F. Nicoletti, E. J. Miller, V. A. Pavlov and Y. Al-Abed: Imbalance in seminal fluid MIF indicates male infertility. Mol Med, 13(3-4), 199-202 (2007)
DOI: 10.2119/2006-00114.Aljabari

177. G. Frenette, R. R. Tremblay, J. Y. Dube, C. Lazure and M. Lemay: High concentrations of the macrophage migration inhibitory factor in human seminal plasma and prostatic tissues. Arch Androl, 41(3), 185-93 (1998)
DOI: 10.3109/01485019808994890

178. G. Frenette, C. Lessard, E. Madore, M. A. Fortier and R. Sullivan: Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod, 69(5), 1586-92 (2003)
DOI: 10.1095/biolreprod.103.019216

179. G. Frenette, C. Légaré, F. Saez and R. Sullivan: Macrophage migration inhibitory factor in the human epididymis and semen. Mol Hum Reprod, 11(8), 575-82 (2005)
DOI: 10.1093/molehr/gah197

180. R. Eickhoff, C. Baldauf, H. W. Koyro, G. Wennemuth, Y. Suga, J. Seitz, R. Henkel and A. Meinhardt: Influence of macrophage migration inhibitory factor(MIF) on the zinc content and redox state of protein-bound sulphydryl groups in ratsperm: indications for a new role of MIF in spermmaturation. Mol Hum Reprod, 10(8), 605-11 (2004)
DOI: 10.1093/molehr/gah075

181. A. Meinhardt, M.Bacher, J. R. McFarlane, C. N. Metz, J. Seitz, M. P. Hedger, D. M. de Kretser and R. Bucala: Macrophage migration inhibitory factor production by Leydig cells: evidence for a role in the regulation of testicular function. Endocrinology, 137(11), 5090-5 (1996)
DOI: 10.1210/endo.137.11.8895383

182. A. G. Utleg, E. C. Yi, T. Xie, P. Shannon, J. T. White, D. R. Goodlett, L.Hood and B. Lin: Proteomic analysis of human prostasomes. Prostate, 56(2), 150-61 (2003)
DOI: 10.1002/pros.10255

183. K. Komori, A. Tsujimura, Y. Okamoto, Y. Matsuoka, T. Takao, Y. Miyagawa, S. Takada, N. Nonomura and A. Okuyama: Relationship between substances in seminal plasma and Acrobeads Test results. Fertil Steril, 91(1), 179-84 (2009)
DOI: 10.1016/j.fertnstert.2007.11.003

184. T. G. Cooper, C. H. Yeung, D.Nashan and E. Nieschlag: Epididymal markers in human infertility. J Androl, 9(2), 91-101 (1988)
DOI: 10.1002/j.1939-4640.1988.tb01016.x

185. R. Henkel, G. Maass, H. C. Schuppe, A. Jung, J.Schubert and W. B. Schill: Seasonal changes of neutral alpha-glucosidase activity in human semen. J Androl, 27(1), 34-9 (2006)
DOI: 10.2164/jandrol.05064

186. P. Pena, J. Risopatron, J. Villegas, W. Miska, W. B. Schill and R. Sanchez: Alpha-glucosidase in the human epididymis: topographic distribution and clinical application. Andrologia, 36(5), 315-20 (2004)
DOI: 10.1111/j.1439-0272.2004.00625.x

187. B. Kret, M. Milad and R. S. Jeyendran: New discriminatory level for glucosidase activity to diagnose epididymal obstruction or dysfunction. Arch Androl, 35(1), 29-33 (1995)
DOI: 10.3109/01485019508987850

188. Y. Qui, K. Tian, D. Yang, Q. Zhang, Z. Wang, Z. Huang, M. Sun and S. Mingzhang: The change of carnitine content in seminal plasma after reversible injection occlusion of vas deferens. Contraception, 51(4), 261-3 (1995)
DOI: 10.1016/0010-7824(95)00043-A

189. W. M. Buckett and D. I. Lewis-Jones: Fructose concentrations in seminal plasma from men with nonobstructive azoospermia. Arch Androl. 48(1):23-7 (2002)

190. M. K. Ahmad, A. A. Mahdi, K. K. Shukla, N. Islam, S. P. Jaiswar and S. Ahmad: Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men. Fertil Steril, 90(3):627-35 (2008)
DOI: 10.1016/j.fertnstert.2007.07.1314

191. C. H. Yeung, T. G. Cooper and T. Senge: Histochemical localization and quantification of alpha-glucosidase in the epididymis of men and laboratory animals. Biol Reprod, 42(4), 669-76 (1990)
DOI: 10.1095/biolreprod42.4.6.69

192. M. H. Viljoen, M. S. Bornman, M. P. van der Merwe and D. J. du Plessis: Alpha-glucosidase activity and sperm motility. Andrologia, 22(3), 205-8 (1990)
DOI: 10.1111/j.1439-0272.1990.tb01967.x

193. M. M. Roaiah, T. Mostafa, D. Salem, A. R. El-Nashar, I. I. Kamel and M. S. El-Kashlan: alpha-1, 4-Glucosidase activity in infertile oligoasthenozoospermic men with and without varicocele. Andrologia, 39(1), 28-32 (2007)
DOI: 10.1111/j.1439-0272.2006.00756.x

194. G. Vivas-Acevedo, R. Lozano-Hernández and M. I. Camejo: Varicocele decreases epididymal neutral α-glucosidase and is associated with alteration of nuclear DNA and plasma membrane in spermatozoa. BJU Int, 113(4), 642-9 (2014)
DOI: 10.1111/bju.12523

195. M. Watanabe, R. Roussev, P. Ahlering, R. Sauer, C. Coulam and R. S. Jeyendran: Correlation between neutral alpha-glucosidase activity and sperm DNA fragmentation. Andrologia, 41(5), 316-8 (2009)
DOI: 10.1111/j.1439-0272.2009.00950.x

196. C. Sudheer Kumar and M. J. Swamy: Modulation of chaperone-like and membranolytic activities of major horseseminal plasmaprotein HSP-1/2 by L-carnitine. J Biosci, 42(3), 469-79 (2017)
DOI: 10.1007/s12038-017-9693-6

197. S. D. Ahmed, K. A. Karira, Jagdesh and S. Ahsan: Role of L-carnitine in male infertility. J Pak Med Assoc, 61(8), 732-6 (2011)
DOI: 10.1016/j.trsl.2010.12.017

198. U. Wetterauer and H. J. Heite: Carnitine in seminal fluid as parameter for the epididymal function. Andrologia, 10(3), 203-10 (1978)

199. K. Li, W. Li and Y. Huang: Determination of free L-carnitine in human seminal plasma by high performance liquid chromatography with pre-column ultraviolet derivatization and its clinical application in male infertility. Clin Chim Acta, 378(1-2), 159-63 (2007)
DOI: 10.1016/j.cca.2006.11.008

200. I. Gülçin: Antioxidant and antiradical activities of L-carnitine. Life Sci, 78(8), 803-11 (2006)
DOI: 10.1016/j.lfs.2005.05.103

201. R. E. L. Cabral, T. B. Mendes, V. Vendramini and S. M. Miraglia: Carnitine partially improves oxidative stress, acrosome integrity, and reproductive competence in doxorubicin-treated rats. Andrology, 6(1), 236-46 (2018)
DOI: 10.1111/andr.12426

202. E. Spaleková, A. V. Makarevich and N. Lukáč: Ram sperm motility parameters under the influence of epidermal growth factor. Vet Med Int, 2011, 642931 (2011)
DOI: 10.4061/2011/642931

203. S. C. Stubbs, T.B. Hargreave and F. K. Habib: Localization and characterization of epidermal growth factor receptors on human testicular tissue by biochemical and immunohistochemical techniques. J Endocrinol. 125(3):485-92 (1990)

204. K. Zitta, M. Albrecht, S. Weidinger, A. Mayerhofer and F. Köhn: Protease activated receptor 2 and epidermal growth factor receptor are involved in the regulation of human sperm motility. Asian J Androl, 9(5), 690-6 (2007)
DOI: 10.1111/j.1745-7262.2007.00289.x

205. R. K. Naz and P. Kaplan: Effects of epidermal growth factor on human sperm cell function. J Androl, 14(4), 240-7 (1993)
DOI: 10.1002/j.1939-4640.1993.tb03361.x

206. H. Fuse, M. Sakamoto, M. Okumura and T. Katayama: Epidermal growth factor contents in seminal plasma as a marker of prostatic function. Arch Androl, 29(1), 79-8 (1992)
DOI: 10.3109/01485019208987712

Key Words: Transient scrotal heating, TSH, Autophagy, Apoptosis, Sperm protein, Bio-components, Review

Send correspondence to: Yi Qiu, Maternal and Child Health Care Hospital of Shandong Province, 238 East Road of Jingshi, Jinan, Shandong 250014, China, Tel: 86-531-68795969, Fax: 86-531-68795005, E-mail: qiuyi987@sina.com