[Frontiers in Bioscience, Elite, 12, 139-149, Jan 1, 2020]

Neuroprotective effects of resveratrol in Alzheimer’s disease

Yelluru Lakshmisha Rao1, Bolumbu Ganaraja2, Teresa Joy1, Mangala M. Pai1, Sheetal Dinkar Ullal3, Bukkambudhi V. Murlimanju1

1Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-575001, 2Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-575001, 3Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-575001


1. Abstract
2. Alzheimer’s disease (AD)
3. Treatments for AD
4. Resveratrol (RSV)
    4.1. Chemical structure of RSV
    4.2. Sources of RSV
    4.3. Neuroprotective effects of RSV
      4.3.1. Activation of SIRT1
      4.3.2. Effect of RSV on microglia
      4.3.3. Effect of RSV on amyloid plaque formation
    4.4. Bio-availability of RSV
    4.5. Adverse effects of RSV
    4.6. Drug interaction and safety of RSV
5. Conclusion
6. References


Alzheimer’s disease (AD) is a neurodegenerative disorder, which is commonly seen in older individuals. This is characterized by cognitive dysfunction, which leads to dementia. Pharmacological treatments for AD are mainly targeted on its symptoms like memory loss and cognitive impairment. The pathophysiology involved in AD is intra-neuronal accumulation of hyper-phosphorylated tau protein as neurofibrillary tangle and extra cellular beta amyloid plaque deposition, which is due to oxidative stress. Here we review the neuro-protective effects of Resveratrol (RSV) and its treatment efficacy in AD. RSV is a naturally available polyphenolic compound, which has antioxidant, anti-cancerous, anti-inflammatory and anti-aging properties. RSV crosses blood brain barrier and exerts its antioxidant effect by enhancing the anti-oxidant enzymes. RSV is involved in Sirtuin (SIRT1) mediated lifespan extension activity. RSV has reduced glial activation and helped in increasing the hippocampal neurogenesis. RSV was able to decrease the expression of amyloid precursor protein, along with improvement of spatial working memory. Since RSV acts as an antioxidant, it can be safely used as oral drug.


1. Zanetti, O., Solerte, S.B., and F. Cantoni: Life expectancy in Alzheimer's disease (AD). Arch Gerontol Geriatr 49, 237-243 (2009)
DOI: 10.1016/j.archger.2009.09.035

2. Huang, W.J., Zhang, X. and W.W. Chen: Role of oxidative stress in Alzheimer's disease. Biomed Rep 4, 519-522 (2016)
DOI: 10.3892/br.2016.630

3. Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., and G. Niewiadomska: Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15, 4671-4713 (2014)
DOI: 10.3390/ijms15034671

4. Pradeepkiran, J.A., and P.H. Reddy: Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer's disease. Cells 8, 260 (2019)
DOI: 10.3390/cells8030260

5. Ballatore, C., Lee, V.M., and J.Q. Trojanowski: Tau-mediated neurodegen¬eration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8, 663-672 (2007)
DOI: 10.1038/nrn2194

6. Yu, K.C., Kwan, P., Cheung, S.K. K., Ho, A., and L. Baum: Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl Neurosci 9, 54-60 (2018)
DOI: 10.1515/tnsci-2018-0010

7. Morrison, A.S. and C. Lyketsos: The pathophysiology of Alzheimer's disease and directions in treatment. Advanced study in Nursing 3, 256-270 (2005)

8. Zhang, P., Xu, S., Zhu, Z., and J. Xu: Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 176, 228-247 (2019)
DOI: 10.1016/j.ejmech.2019.05.020

9. Sahoo, A.K., Dandapat, J., Dash, U.C., and S. Kanhar: Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer's disease. J Ethnopharmacol 215, 42-73 (2018)
DOI: 10.1016/j.jep.2017.12.015

10. Kamat, P.K., Kalani, A., Rai, S., Swarnkar, S., Tota, S., Nath, C., and N. Tyagi: Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol 53, 648-661 (2016)
DOI: 10.1007/s12035-014-9053-6

11. Joy, T., Rao, M.S. and S. Madhyastha: N-acetyl cysteine supplement minimize tau expression and neuronal loss in animal model of Alzheimer's disease. Brain Sci 8, pii: E185 (2018)
DOI: 10.3390/brainsci8100185

12. Cente, M., Filipcik, P., Mandakova, S., Zilka, N., Krajciova, G. and M. Novak: Expression of a truncated human tau protein induces aqueous-phase free radicals in a rat model of tauopathy: implications for targeted antioxidative therapy. J Alzheimers Dis 17, 913-920 (2019)
DOI: 10.3233/JAD-2009-1107

13. Park, S.Y., Kim, H.S., Cho, E.K., Kwon, B.Y., Phark, S., Hwang, K.W., and D. Sul: Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 46, 2881-2887 (2008)
DOI: 10.1016/j.fct.2008.05.030

14. Mohan, S., Gobinath, T., Salomy, A., Nisha, M., Kandasamy, M., Essa, M.M., Jayachandran, K.S., and M. Anusuyadevi: Biophysical interaction of resveratrol with sirtuin pathway: Significance in Alzheimer's disease. Front Biosci (Landmark Ed) 23, 1380-1390 (2018)
DOI: 10.2741/4650

15. Gomes, B.A.Q., Silva, J.P.B., Romeiro, C.F.R., Dos, Santos, S.M., Rodrigues, C.A., Gonçalves, P.R., Sakai, J.T., Mendes, P.F.S., Varela, E.L.P., and M.C. Monteiro: Neuroprotective Mechanisms of Resveratrol in Alzheimer's Disease: Role of SIRT1. Oxid Med Cell Longev, Article ID 8152373, 15 pages (2018)
DOI: 10.1155/2018/8152373

16. Li, H., Xia, N., Hasselwander, S., and A. Daiber: Resveratrol and vascular function. Int J Mol Sci 20, pii: E2155 (2019)
DOI: 10.3390/ijms20092155

17. Timmers, S., Auwerx J., and P. Schrauwen: The journey of resveratrol from yeast to human. Aging (Albany NY) 4, 146-158 (2012)
DOI: 10.18632/aging.100445

18. Vang, O., Ahmad, N., Baile, C.A., Baur, J.A., Brown, K., Csiszar, A., Das, D.K., Delmas, D., Gottfried, C., Lin, H.Y., Ma, Q.Y., Mukhopadhyay, P., Nalini, N., Pezzuto, J.M., Richard, T., Shukla, Y., Surh, Y.J, Szekeres, T., Szkudelski, T., Walle, T., and J.M. Wu: What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One 6, e19881 (2011)
DOI: 10.1371/journal.pone.0019881

19. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., Scherer, B., and D.A. Sinclair: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196 (2003)
DOI: 10.1038/nature01960

20. Smoliga, J.M., Baur, J.A. and H.A. Hausenblas: Resveratrol and health-a comprehensive review of human clinical trials. Mol Nutr Food Res 55, 1129-1141 (2011)
DOI: 10.1002/mnfr.201100143

21. Kong, D., Yan, Y. and X. He: Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer's disease. BioMed Research International Article ID 8983752, 8 pages (2019)
DOI: 10.1155/2019/8983752

22. Ahmed, T., Javed, S., Javed, S., Tariq, A., Šamec, D., Tejada, S., Nabavi, S.F., Braidy, N. and S.M. Nabavi: Resveratrol and Alzheimer's disease: mechanistic insights. Mol Neurobiol 54, 2622-2635 (2017)
DOI: 10.1007/s12035-016-9839-9

23. Giacomini, E., Rupiani, S., Guidotti, L., Recanatini, M., and M. Roberti: The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Curr Med Chem 23, 2439-2489 (2016)
DOI: 10.2174/0929867323666160517121629

24. Singh, C.K., George, J. and N. Ahmad: Resveratrol-based combinatorial strategies for cancer management. Ann N Y Acad Sci 1290, 113-121 (2013)
DOI: 10.1111/nyas.12160

25. Reinisalo, M., Kårlund, A., Koskela, A., Kaarniranta,K. and R.O. Karjalainen: Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev 340520 (2015)
DOI: 10.1155/2015/340520

26. Palle, S. and P. Neerati: Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioural deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 391, 445-453 (2018)
DOI: 10.1007/s00210-018-1474-8

27. Wan, D., Zhou, Y., Wang, K., Hou, Y., Hou, R. and X. Ye: Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating thecAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 121, 255-262 (2016)
DOI: 10.1016/j.brainresbull.2016.02.011

28. Chuang, Y.C., Chen, S.D., Hsu, C.Y., Chen, S.F., Chen, N.C. and S.B. Jou: Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1Α signalling pathway. Int J Mol Sci 20, pii: E998 (2019)
DOI: 10.3390/ijms20040998

29. Kumar, P., Padi, S.S., Naidu, P.S., and A. Kumar: Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17, 485-492 (2006)
DOI: 10.1097/00008877-200609000-00014

30. Kumar, A., Naidu, P.S., Seghal, N. and S.S. Padi: Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 79, 17-26 (2007)
DOI: 10.1159/000097511

31. Sinclair, D.A: Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126, 987-1002 (2005)
DOI: 10.1016/j.mad.2005.03.019

32. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, EG., Le Couteur, D., Shaw, R..J, Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., and D.A. Sinclair: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 (2006)
DOI: 10.1038/nature05354

33. Lamming, D.W., Wood, J.G., and. A. Sinclair: Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 53, 1003-1009 (2004)
DOI: 10.1111/j.1365-2958.2004.04209.x

34. Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., Colombo, L., Manzoni, C., Salmona, M., Caccia, S., Negro, A., and G. Forloni: The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 110, 1445-1456 (2009)
DOI: 10.1111/j.1471-4159.2009.06228.x

35. Wang, S.J., Zhao, X.H., Chen, W., Bo, N., Wang, X.J., Chi, Z.F. and W. Wu: Sirtuin 1 activation enhances the PGC-1α/mitochondrial antioxidant system pathway in status epilepticus. Mol Med Rep 11, 521-526 (2015)
DOI: 10.3892/mmr.2014.2724

36. Dasgupta, B. and J. Milbrandt: Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104, 7217-7222 (2007)
DOI: 10.1073/pnas.0610068104

37. Yao, Y., Li, J., Niu, Y., Yu, J.Q., Yan, L., Miao, Z.H., Zhao, X.X., Li, Y.J., Yao, W.X., Zheng, P. and W.Q. Li: Resveratrol inhibits oligomeric Aβ-induced microglial activation via NADPH oxidase. Mol Med Rep 12, :6133-6139 (2015)
DOI: 10.3892/mmr.2015.4199

38. Xu, L., He, D. and Y. Bai: Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 53, 6709-6715 (2016)
DOI: 10.1007/s12035-015-9593-4

39. Yang, X., Xu, S., Qian, Y. and Q. Xiao: Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 64, 162-172 (2017)
DOI: 10.1016/j.bbi.2017.03.003

40. Kodali, M., Parihar, V.K, Hattiangady, B., Mishra, V., Shuai, B. and A.K. Shetty: Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 5, 8075 (2015)
DOI: 10.1038/srep08075

41. Huang, T.C., Lu, K.T., Wo, Y.Y., Wu, Y.J. and Y.L. Yang: Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6, e29102 (2011)
DOI: 10.1371/journal.pone.0029102

42. Chen, Y., Shi, G.W., Liang, Z.M., Sheng, S.Y., Shi, Y.S., Peng, L., Wang, Y.P., Wang, F. and X.M. Zhang: Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol Med Rep 19, 3783-3790 (2019)
DOI: 10.3892/mmr.2019.10010

43. Ge, J.F., Qiao, J.P., Qi, C.C., Wang, C.W. and J.N. Zhou: The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61, 1192-201 (2012)
DOI: 10.1016/j.neuint.2012.08.012

44. Ladiwala, A.R., Lin, J.C., Bale, S.S., Marcelino-Cruz, A.M., Bhattacharya, M., Dordick, J.S. and P.M. Tessier: Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J Biol Chem 285, 24228-24237 (2010)
DOI: 10.1074/jbc.M110.133108

45. Guo, J.P., Yu, S. and P.L. McGeer: Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer's disease therapy. J Alzheimers Dis 19, 1359-1370 (2010)
DOI: 10.3233/JAD-2010-1331

46. Rege, S.D., Geetha, T., Griffin, G.D., Broderick, T.L. and J.R. Babu: Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218 (2014)
DOI: 10.3389/fnagi.2014.00218

47. Delmas, D., Aires, V., Limagne, E., Dutartre, P., Mazué, F., Ghiringhelli, F. and N. Latruffe: Transport, stability, and biological activity of resveratrol. Ann N Y Acad Sci 1215, 48-59 (2011)
DOI: 10.1111/j.1749-6632.2010.05871.x

48. Walle, T: Bioavailability of resveratrol. Ann N Y Acad Sci 1215, 9-15 (2011)
DOI: 10.1111/j.1749-6632.2010.05842.x

49. Latruffe, N. and D. Vervandier-Fasseur: Strategic syntheses of vine and wine resveratrol derivatives to explore their effects on cell functions and dysfunctions. Diseases 6, 4 (2018)
DOI: 10.3390/diseases6040110

50. Sale, S., Verschoyle, R.D., Boocock, D., Jones, D.J., Wilsher, N., Ruparelia, K.C., Potter, G.A., Farmer, P.B., Steward, W.P. and A.J. Gescher: Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4'-tetramethoxystilbene. Br J Cancer 90, 736-44 (2004)
DOI: 10.1038/sj.bjc.6601568

51. Wightman, E.L., Reay, J.L., Haskell, C.F., Williamson, G., Dew, T.P. and D.O. Kennedy: Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr 112, 203-213 (2014)
DOI: 10.1017/S0007114514000737

52. Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Parekh, H.S. and A. Popat: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interface Sci 462, 368-374 (2016)
DOI: 10.1016/j.jcis.2015.10.022

53. Johnson, J.J., Nihal, M., Siddiqui, I.A., Scarlett, C.O., Bailey, H.H., Mukhtar, H. and N. Ahmad: Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55, 1169-76 (2011)
DOI: 10.1002/mnfr.201100117

54. Chow, H.H., Garland, L.L., Hsu, C.H., Vining, D.R., Chew, W.M., Miller, J.A, Perloff, M., Crowell, J.A. and D.S. Alberts: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila) 3, 1168-1175 (2010)
DOI: 10.1158/1940-6207.CAPR-09-0155

55. Goldberg, D.M., Yan, J. and G.J. Soleas: Absorption of three wine-related polyphenols in three different matrices by healthy subjects, Clin Biochem 36, 79-87 (2003)
DOI: 10.1016/S0009-9120(02)00397-1

56. Sahu, S.S., Madhyastha, S., and G.M. Rao: Neuroprotective effect of resveratrol against prenatal stress induced cognitive impairment and possible involvement of Na(+), K(+)-ATPase activity. Pharmacol Biochem Behav 103, 520-525 (2013)
DOI: 10.1016/j.pbb.2012.09.012

57. Gumireddy, A., Christman, R., Kumari, D., Tiwari, A., North, E.J. and H. Chauhan: Preparation, characterization, and in vitro evaluation of curcumin- and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech 20, 145 (2019)
DOI: 10.1208/s12249-019-1349-4

58. Tomé-Carneiro, J., Larrosa, M., González-Sarrías, A., Tomás-Barberán, F.A., García-Conesa, M.T. and J.C. Espín: Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19, 6064-6093 (2013)
DOI: 10.2174/13816128113199990407

Abbreviations: AD, Alzheimer’s disease; RSV, Resveratrol; SIRT1, Sirtuin; NMDA, N-methyl-D-aspartate; AChE, acetylcholine esterase; NAD, nicotinamide adenine dinucleotide; PGC-1α, peroxisome proliferator-activated receptor gamma co-activator 1 alpha; COX 1, cyclooxygenase 1; CA 3, cornu ammonis 3; NO, nitric oxide; ROS, reactive oxygen species; NOS, nitric oxide synthase;

Key Words: Alzheimer’s disease; Antioxidant effect; Dementia; Resveratrol, Review

Send correspondence to: Bukkambudhi V. Murlimanju, Department of Anatomy, Kasturba Medical College, Mangalore – 575004, India, Tel: 91-824 2211746, Fax: 91-824 2421283, E-mail: flutemist@gmail.com