[Frontiers in Bioscience, Landmark, 25, 1913-1924, June 1, 2020]

Resveratrol improves lipid metabolism in diabetic nephropathy rats

Yong-hong Zhao1, You-Jia Fan2

1Department of Pharmacy, Jing’ an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’ An Branch), Shanghaii, 200040, China, 2Department of Anesthesiology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201821, China

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and methods
    3.1. Animal models
    3.2. Assessment of renal dysfunction
    3.3. Blood lipid measurement
    3.4. Western blot assay
    3.5. Detection of HOMA-IR, HbA1C, plasma adiponectin and plasma insulin level
    3.6. Insulin tolerance tests (ITT) and glucose tolerance tests (GTT)
    3.7. Statistical analysis
4. Results
    4.1. RES ameliorates biochemical and physical indexes of DN
    4.2. RES improves lipid metabolism in DN
    4.3. RES suppresses insulin resistance in DN
    4.4. RES inhibits DN via inducing autophagy
    4.5. RES induces autophagy via activating AMPKα/mTOR pathway in DN
5. Discussion
6. Acknowledgments
7. References

1. ABSTRACT

Diabetic nephropathy (DN) is a major cause of chronic kidney disease characterized by insulin resistance and lipid deposition in tissues. To this end, we examined the effect of Resveratrol (RES) in streptozotocin (STZ) induced diabetic nephropathy. RES, in a dose dependent manner, decreased the insulin resistance, and improved kidney function and lipid metabolism in STZ treated rats. RES treatment increased p-AMPKα/AMPKα and p-ULK1 S777/ULK1 and the autophagy related proteins (Beclin1, LC3 II/I) and its effects on TC and improvement in insulin resistence were quenched by the inhibitor of autophagy, 3-MA. Together, these results suggest that the effect of RES in treatment of DN may involve AMPKα/mTOR-mediated autophagy.

7. REFERENCES

1. A. J. Collins, R. N. Foley, B. Chavers, D. Gilbertson, C. Herzog, K. Johansen, B. Kasiske, N. Kutner, J. Liu, W. St Peter, H. Guo, S. Gustafson, B. Heubner, K. Lamb, S. Li, S. Li, Y. Peng, Y. Qiu, T. Roberts, M. Skeans, J. Snyder, C. Solid, B. Thompson, C. Wang, E. Weinhandl, D. Zaun, C. Arko, S. C. Chen, F. Daniels, J. Ebben, E. Frazier, C. Hanzlik, R. Johnson, D. Sheets, X. Wang, B. Forrest, E. Constantini, S. Everson, P. Eggers and L. Agodoa: 'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis, 59(1 Suppl 1), A7, e1-420 (2012)
DOI: 10.1053/j.ajkd.2011.11.015

2. H. Mudaliar, C. Pollock and U. Panchapakesan: Role of Toll-like receptors in diabetic nephropathy. Clin Sci (Lond), 126(10), 685-94 (2014)
DOI: 10.1042/CS20130267

3. K. R. Tuttle and P. W. Anderson: A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition. Am J Kidney Dis, 42(3), 456-65 (2003)
DOI: 10.1016/S0272-6386(03)00741-8

4. J. C. Rutledge, K. F. Ng, H. H. Aung and D. W. Wilson: Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol, 6(6), 361-70 (2010)
DOI: 10.1038/nrneph.2010.59

5. Z. Wang, T. Jiang, J. Li, G. Proctor, J. L. McManaman, S. Lucia, S. Chua and M. Levi: Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes, 54(8), 2328-35 (2005)
DOI: 10.2337/diabetes.54.8.2328

6. T. Jiang, X. X. Wang, P. Scherzer, P. Wilson, J. Tallman, H. Takahashi, J. Li, M. Iwahashi, E. Sutherland, L. Arend and M. Levi: Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes, 56(10), 2485-93 (2007)
DOI: 10.2337/db06-1642

7. M. Herman-Edelstein, P. Scherzer, A. Tobar, M. Levi and U. Gafter: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res, 55(3), 561-72 (2014) doi:10.1194/jlr.P040501
DOI: 10.1194/jlr.P040501

8. E. Nerpin, U. Riserus, E. Ingelsson, J. Sundstrom, M. Jobs, A. Larsson, S. Basu and J. Arnlov: Insulin sensitivity measured with euglycemic clamp is independently associated with glomerular filtration rate in a community-based cohort. Diabetes Care, 31(8), 1550-5 (2008)
DOI: 10.2337/dc08-0369

9. A. I. Parvanova, R. Trevisan, I. P. Iliev, B. D. Dimitrov, M. Vedovato, A. Tiengo, G. Remuzzi and P. Ruggenenti: Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes, 55(5), 1456-62 (2006)
DOI: 10.2337/db05-1484

10. P. A. Sarafidis and L. M. Ruilope: Insulin resistance, microalbuminuria, and chronic kidney disease. Curr Hypertens Rep, 10(4), 249-51 (2008)
DOI: 10.1007/s11906-008-0046-6

11. N. Mizushima: Autophagy: process and function. Genes Dev, 21(22), 2861-73 (2007)
DOI: 10.1101/gad.1599207

12. W. Wei, X. R. An, S. J. Jin, X. X. Li and M. Xu: Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep, 8(1), 9 (2018)
DOI: 10.1038/s41598-017-18427-2

13. D. Rajasekaran, J. Elavarasan, M. Sivalingam, E. Ganapathy, A. Kumar, K. Kalpana and D. Sakthisekaran: Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep, 4(6), 1211-7 (2011)

14. Z. Haohao, Q. Guijun, Z. Juan, K. Wen and C. Lulu: Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion. J Physiol Biochem, 71(1), 121-31 (2015)
DOI: 10.1007/s13105-015-0392-1

15. F. Xu, Y. Wang, W. Cui, H. Yuan, J. Sun, M. Wu, Q. Guo, L. Kong, H. Wu and L. Miao: Resveratrol Prevention of Diabetic Nephropathy Is Associated with the Suppression of Renal Inflammation and Mesangial Cell Proliferation: Possible Roles of Akt/NF-kappaB Pathway. Int J Endocrinol, 2014, 289327 (2014)
DOI: 10.1155/2014/289327

16. C. K. Singh, M. A. Ndiaye and N. Ahmad: Resveratrol and cancer: Challenges for clinical translation. Biochim Biophys Acta, 1852(6), 1178-85 (2015)
DOI: 10.1016/j.bbadis.2014.11.004

17. Y. Qiao, K. Gao, Y. Wang, X. Wang and B. Cui: Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-beta1 pathway. Exp Ther Med, 13(6), 3223-3230 (2017)
DOI: 10.3892/etm.2017.4420

18. J. E. Schaffer: Lipotoxicity: when tissues overeat. Curr Opin Lipidol, 14(3), 281-7 (2003)
DOI: 10.1097/00041433-200306000-00008

19. G. A. Francis, J. S. Annicotte and J. Auwerx: PPAR-alpha effects on the heart and other vascular tissues. Am J Physiol Heart Circ Physiol, 285(1), H1-9 (2003)
DOI: 10.1152/ajpheart.01118.2002

20. C. W. Park, H. W. Kim, S. H. Ko, J. H. Lim, G. R. Ryu, H. W. Chung, S. W. Han, S. J. Shin, B. K. Bang, M. D. Breyer and Y. S. Chang: Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol, 18(4), 1227-38 (2007)
DOI: 10.1681/ASN.2006070778

21. G. Proctor, T. Jiang, M. Iwahashi, Z. Wang, J. Li and M. Levi: Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes, 55(9), 2502-9 (2006)
DOI: 10.2337/db05-0603

22. S. S. Huang, D. F. Ding, S. Chen, C. L. Dong, X. L. Ye, Y. G. Yuan, Y. M. Feng, N. You, J. R. Xu, H. Miao, Q. You, X. Lu and Y. B. Lu: Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep, 7, 45692 (2017)
DOI: 10.1038/srep45692

23. X. Peng, H. Su, D. Liang, J. Li, W. J. Ting, S. C. Liao and C. Y. Huang: Ramipril and resveratrol co-treatment attenuates RhoA/ROCK pathway-regulated early-stage diabetic nephropathy-associated glomerulosclerosis in streptozotocin-induced diabetic rats. Environ Toxicol, 34(7), 861-868 (2019) 24. T. He, J. Xiong, L. Nie, Y. Yu, X. Guan, X. Xu, T. Xiao, K. Yang, L. Liu, D. Zhang, Y. Huang, J. Zhang, J. Wang, K. Sharma and J. Zhao: Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J Mol Med (Berl), 94(12), 1359-1371 (2016) doi:10.1007/s00109-016-1451-y
DOI: 10.1007/s00109-016-1451-y

25. G. G. Wang, X. H. Lu, W. Li, X. Zhao and C. Zhang: Protective Effects of Luteolin on Diabetic Nephropathy in STZ-Induced Diabetic Rats. Evid Based Complement Alternat Med, 2011, 323171 (2011)
DOI: 10.1155/2011/323171

26. M. A. Baig, V. B. Gawali, R. R. Patil and S. R. Naik: Protective effect of herbomineral formulation (Dolabi) on early diabetic nephropathy in streptozotocin-induced diabetic rats. J Nat Med, 66(3), 500-9 (2012)
DOI: 10.1007/s11418-011-0614-y

27. T. S. Ye, Y. W. Zhang and X. M. Zhang: Protective effects of Danggui Buxue Tang on renal function, renal glomerular mesangium and heparanase expression in rats with streptozotocin-induced diabetes mellitus. Exp Ther Med, 11(6), 2477-2483 (2016)
DOI: 10.3892/etm.2016.3218

28. M. Kitada, S. Kume, N. Imaizumi and D. Koya: Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes, 60(2), 634-43 (2011)
DOI: 10.2337/db10-0386

29. X. H. Xu, D. F. Ding, H. J. Yong, C. L. Dong, N. You, X. L. Ye, M. L. Pan, J. H. Ma, Q. You and Y. B. Lu: Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur Rev Med Pharmacol Sci, 21(21), 4952-4965 (2017)

30. X. X. Wang, T. Jiang, Y. Shen, Y. Caldas, S. Miyazaki-Anzai, H. Santamaria, C. Urbanek, N. Solis, P. Scherzer, L. Lewis, F. J. Gonzalez, L. Adorini, M. Pruzanski, J. B. Kopp, J. W. Verlander and M. Levi: Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 59(11), 2916-27 (2010)
DOI: 10.2337/db10-0019

31. P. Pettinelli, A. M. Obregon and L. A. Videla: Molecular mechanisms of steatosis in nonalcoholic fatty liver disease. Nutr Hosp, 26(3), 441-50 (2011)

32. Q. Deng, G. Liu, L. Liu, Y. Zhang, L. Yin, X. Shi, J. Wang, X. Yuan, G. Sun, Y. Li, W. Yang, L. Guo, R. Zhang, Z. Wang, X. Li and X. Li: BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway. J Cell Biochem, 116(6), 1070-9 (2015)
DOI: 10.1002/jcb.25062

33. J. D. Horton, N. A. Shah, J. A. Warrington, N. N. Anderson, S. W. Park, M. S. Brown and J. L. Goldstein: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A, 100(21), 12027-32 (2003)
DOI: 10.1073/pnas.1534923100

34. V. Ormazabal, S. Nair, O. Elfeky, C. Aguayo, C. Salomon and F. A. Zuniga: Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol, 17(1), 122 (2018)
DOI: 10.1186/s12933-018-0762-4

35. A. S. Cheng, Y. H. Cheng, C. H. Chiou and T. L. Chang: Resveratrol upregulates Nrf2 expression to attenuate methylglyoxal-induced insulin resistance in Hep G2 cells. J Agric Food Chem, 60(36), 9180-7 (2012)
DOI: 10.1021/jf302831d

36. L. L. Chen, H. H. Zhang, J. Zheng, X. Hu, W. Kong, D. Hu, S. X. Wang and P. Zhang: Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation. Metabolism, 60(11), 1598-609 (2011)
DOI: 10.1016/j.metabol.2011.04.002

37. J. J. Diez and P. Iglesias: The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol, 148(3), 293-300 (2003)
DOI: 10.1530/eje.0.1480293

38. B. Levine and R. Ranganathan: Autophagy: Snapshot of the network. Nature, 466(7302), 38-40 (2010)
DOI: 10.1038/466038a

39. Z. Wang and M. E. Choi: Autophagy in kidney health and disease. Antioxid Redox Signal, 20(3), 519-37 (2014)
DOI: 10.1089/ars.2013.5363

40. H. Wu, A. Song, W. Hu and M. Dai: The Anti-atherosclerotic Effect of Paeonol against Vascular Smooth Muscle Cell Proliferation by Up-regulation of Autophagy via the AMPK/mTOR Signaling Pathway. Front Pharmacol, 8, 948 (2017)
DOI: 10.3389/fphar.2017.00948

41. P. Yang, L. Ling, W. Sun, J. Yang, L. Zhang, G. Chang, J. Guo, J. Sun, L. Sun and D. Lu: Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin (Shanghai), 50(2), 144-155 (2018)
DOI: 10.1093/abbs/gmx136

Abbreviations: DN: Diabetic nephropathy; RES: Resveratrol; STZ: streptozotocin; TC: total cholesterol: TG, triglyceride: FFA free fatty acid; T2DM: Type 2 diabetes mellitus; CPT-1: carnitine palmityltransferase-1; LDL-C: low density lipoprotein; HDL-C: high density lipoprotein; PPARα: peroxisome proliferators-activated receptor α; ACS: Acetyl-CoA synthetase; SREBP-1c: Sterol regulatory element-binding protein 1; ITT: Insulin tolerance tests; GTT: glucose tolerance tests

Key Words: Resveratrol, lipid metabolism, insulin resistance, diabetic nephropathy, autophagy

Send correspondence to: Yonghong Zhao, Department of Pharmacy, Jing’ an District Centre Hospital of Shanghai. Address: No. 266, Xikang road, Jingan district Central Hospital, Jing’an district, Shanghai, China, Tel: 8609158183608; Fax: 02161578000, E-mail: yanjianfengak@163.com