ROLE OF PTHrP AND PTH-1 RECEPTOR IN ENDOCHONDRAL BONE DEVELOPMENT

Andrew C. Karaplis and Ron A. Deckelbaum

Division of Endocrinology, Department of Medicine, and Lady Davis Institute for Medical Research, McGill University, Montréal, Canada

Received 2/16/98 Accepted 3/23/98

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. PTHrP and PTH-1 receptor in chondrocyte biology
 3.1. The endochondral skeleton
 3.2. Chondrocyte differentiation
 3.3. Chondrocyte apoptosis
 3.4. The hedgehog proteins
 3.5. The role of other cytokines
 3.6. Clarifying the role of the PTH-1 receptor
4. PTHrP and PTH-1 receptor in osteoblast biology
 4.1. PTHrP haploinsufficiency and osteopenia
 4.2. Induction of osteogenic differentiation by Hh proteins
 4.3. PTHrP and bone remodeling
 4.4. Potential therapy for osteoporosis
5. Perspective
6. Acknowledgments
7. References

1. ABSTRACT

Parathyroid hormone-related peptide (PTHrP) has important functions in the control of cellular growth and differentiation. Acting, at least in part, through the PTH-1 receptor, PTHrP profoundly influences chondrocytic and osteogenic cell biology. Studies using knockout and transgenic mouse technology have played a pivotal role in unraveling the physiological role of PTHrP and its receptor in endochondral bone development and adult skeletal homeostasis. Further clarification of these functions will have far-reaching implications in our general understanding of skeletogenesis and the pathophysiology of human skeletal disorders.

2. INTRODUCTION

Parathyroid hormone-related peptide (PTHrP) was initially identified as a tumor-derived, secretory protein with structural similarity to parathyroid hormone (PTH), the major regulator of calcium homeostasis [for review see (1)]. PTH and PTHrP bind to a common G protein-coupled cell surface receptor (PTH/PTHrP or PTH-1 receptor) that recognizes the N-terminal (1-34) region of these peptides (2, 3). Hence, when tumor-derived PTHrP enters the circulation, it activates receptors in classic PTH target organs such as bone and kidney and elicits PTH-like bioactivity. By promoting bone resorption and inhibiting calcium excretion, circulating PTHrP gives rise to the common paraneoplastic syndrome of malignancy-associated humoral hypercalcemia.

The human gene for PTHrP has been mapped to the short arm of chromosome 12 (4), whereas the PTH gene is assigned to human chromosome 11. An evolutionary relationship between the PTHrP and PTH genes has been suggested, since human chromosomes 11 and 12 are thought to have arisen by a tetraploidization event of a common ancestral chromosome (5). Considerably more complex than the PTH gene, the human PTHrP gene comprises eight exons (6) that span more than 15 kb of genomic DNA, utilizes three distinct promoters, two TATA and one GC-rich region, (7-9), and by alternate splicing gives rise to three different isoforms of 139, 141, and 173 amino acids in length. In rodents, only one major form is produced (141 amino acids in the rat, 139 in the mouse due to a two amino acid-deletion), and the existence of multiple promoters has been disputed (7, 10). Human, rat, mouse, and chicken PTHrP share marked amino acid sequence identity throughout the amino terminal and midregion portions of the protein but diverge beyond residue 112. This striking conservation through evolution prompted the suggestion that the protein is indeed of biological value.

Although initially discovered in tumors, PTHrP was subsequently shown to be expressed in a remarkable variety of normal tissues including the fetal and adult skeleton, where acting in concert with its amino terminal PTH-1 receptor, it serves to regulate cellular growth and
PTHrP and endochondral bone

differentiation. The present review aims to explore our recent understanding of PTHrP and PTH-1 receptor function in endochondral bone development.

3. PTHRP AND PTH-1 RECEPTOR IN CHONDROCYTE BIOLOGY

3.1 The endochondral skeleton

Endochondral ossification is a complex, multistep process involving the formation of cartilaginous skeleton from aggregated mesenchymal cells and its subsequent replacement by bone. The cellular and molecular events that regulate the highly ordered progression of chondrocytes within the growth plate through the stages of proliferation and differentiation must be under precise spatial and temporal control. Ultimately, it is these events that determine the extent and rate of skeletal growth.

3.2 Chondrocyte differentiation

The generation of mice missing the PTHrP gene provided the first direct evidence of a physiological role for this protein in chondrocyte biology (11). Mice homozygous for the PTHrP-null mutation die in the immediate postnatal period, likely from respiratory failure as a consequence of widespread abnormalities of endochondral bone development. Characterized by diminished proliferation, accelerated differentiation, and premature apoptotic death of chondrocytes, this form of osteochondrodysplasia results in rapid and untimely maturation of the skeleton (11-14).

The critical role of PTHrP as an inhibitor of the chondrocyte differentiation program has been further substantiated by the targeted overexpression of PTHrP in chondrocytes by means of the mouse collagen type II promoter (15). This targeting induces a novel form of chondrodysplasia that mirrors the PTHrP-null phenotype and is characterized by a delay in endochondral ossification so profound that mice are born with cartilaginous endochondral skeletons. However, by 7 weeks of age, this delay in chondrocyte differentiation and ossification has been largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. This ultimate histological healing and the sequence by which it proceeds are reminiscent of that seen in patients with Jansen's metaphyseal chondrodysplasia, a condition arising from aggregated mesenchymal cells and its subsequent replacement by bone. The cellular and molecular events that regulate the highly ordered progression of chondrocytes within the growth plate through the stages of proliferation and differentiation must be under precise spatial and temporal control. Ultimately, it is these events that determine the extent and rate of skeletal growth.

3.3 Chondrocyte apoptosis

The mechanism by which PTHrP inhibits the process of chondrocyte differentiation is just beginning to unravel. Hypertrophic chondrocytes in the growth plate are thought to undergo apoptosis immediately prior to ossification (21) and, therefore, represent the terminal stage of differentiation in the chondrogenic lineage. PTHrP expression might be expected to delay, or even prevent, the progression to terminal differentiation and eventual programmed cell death. Studies using chondrocytic CFK2 cells that overexpress PTHrP demonstrated enhanced cell survival under conditions that promote apoptotic death (22). In addition, quantitative analysis of the growth plate of PTHrP-null mice revealed significantly more apoptotic chondrocytes near the chondro-osseous junction compared to wild-type littermates (14, 23). Thus, PTHrP influences not only chondrocyte proliferation and differentiation, but also programmed cell death.

In several cell types, apoptosis is regulated by the ratio of expression of the cell death inhibitor, Bcl-2, and the cell death inducer Bax. Bcl-2 is expressed in growth plate chondrocytes in a pattern similar to PTHrP (12, 24) with highest levels detected in late proliferative and prehypertrophic chondrocytes (14, 24). Both in vitro and in transgenic mice, PTHrP overexpression causes a marked increase in Bcl-2 with no detectable change in Bax levels (24). A shift of the Bcl-2/Bax ratio in favor of Bcl-2 delays terminal differentiation, prolongs chondrocyte survival, and leads to the accumulation of cells in their prehypertrophic stage. These observations are deemed very exciting as they place Bcl-2 downstream of PTHrP in the pathway that controls chondrocyte maturation and endochondral skeletal development.

3.4 The hedgehog proteins

A most interesting recent development has been the observation that PTHrP mediates the actions of Indian hedgehog (Ihh) on chondrocyte differentiation. Ihh is a member of a family of proteins, the most notable of which is Sonic hedgehog (Shh), the vertebrate homologue of the Drosophila segment polarity gene product, hedgehog (hh), which regulates a variety of patterning events during embryonic development. The mouse Hedgehog (Hh) gene family consists of Sonic (Shh), Desert (Dhh), and Indian (Ihh) hedgehog, and all encode secreted proteins implicated in cell-cell interactions. Upon secretion, they undergo autocatalytic internal cleavage generating a ~20-kD amino-terminal domain and a ~25-kD carboxyl-terminal domain. While the amino domain possesses all known signaling activity of these proteins, the carboxyl terminal is responsible for the autocatalytic processing (25).

In addition to cleavage, this processing causes the covalent attachment of a cholesterol moiety in ester linkage to the carboxylate of the terminal residue of the amino-terminal fragment (26). This modification may set constrains on the diffusion of Hh, by tethering it to the plasma membrane, thereby, spatially restricting the localization of the Hh signal. Local effects, based on a requirement for high concentration of amino-terminal Hh, can be easily envisioned for cells in close proximity to Hh-expressing cells. While long-range signaling also appears to function via diffusion of the amino-terminal fragment, indirect effects have also been reported. Both local- and long-range signaling of Hh proteins on target cells are mediated by a receptor that consists of two subunits, Patched (Ptc), a twelve transmembrane protein which is the binding subunit (27-28), and Smoothered (Smo), a seven transmembrane protein which is the signaling subunit. In the absence of Hh, Ptc associates with Smo and inhibits its activities. In
chondrocytes express differentiation in the growth plate by Ihh. Prehypertrophic
Figure 1. (36)
and from natural mutations in mice (34, 35) abnormalities arising from targeted disruption in mice (34)
Patterning of the developing limb (32, 33), (ii) the skeletal somites into sclerotome (31) and in the growth and
transcriptional activators. The three cloned contrast, binding of Hh to Ptc relieves the Ptc-dependent
"on" versus "off").
differs owing to different states of other gene activities (lighter shading) signals act in a concentration-dependent
manner to determine differential cell fate within the growth plate. The individual cellular response to Ihh signaling may vary in the various zones of the growth plate (proliferative vs hypertrophic), because the interpretation of the gradient differs owing to different states of other gene activities ("on" versus "off").

Figure 1. Proposed molecular regulation of cartilage differentiation in the growth plate by Ihh. Prehypertrophic chondrocytes express Ihh, and abundant PTHrP, and PTH-1 receptor (not shown). Shading represents Ihh signals with the intensity of shading indicating their relative strength. These inductive short- (dark shading) and long-range (lighter shading) signals act in a concentration-dependent manner to determine differential cell fate within the growth plate. The individual cellular response to Ihh signaling may vary in the various zones of the growth plate (proliferative vs hypertrophic), because the interpretation of the gradient differs owing to different states of other gene activities ("on" versus "off").

While attractive, this paracrine negative feedback loop within the growth plate requires further clarification. At present it remains unclear how the Hh signaling pathway functioning on the perichondrium, would lead to increased PTHrP expression by periaricular cells. In other studies, PTHrP and PTH-1 receptor expression was reported in resting, proliferating, and prehypertrophic chondrocytes (12, 23, 24). Moreover, Ptc, Smo, and Gli expression has been observed in chondrocytes within the murine growth plate and in clonal mouse ATDC5 cells undergoing chondrogenesis and cartilage differentiation (39, 40). Such a set up would therefore predict an alternative molecular regulation of cartilage differentiation. We have proposed that Ihh, via direct action on growth plate chondrocytes, induces differential PTHrP expression and hence differential cell fate, by both short and long-range signals, acting as a morphogen in a concentration-dependent fashion (figure 1) (41). Thus, local effects arising from high concentration of amino-terminal Ihh could be envisioned as promoting terminal chondrocyte differentiation independent of PTHrP, while long-range signaling via diffusion of the Ihh amino-terminal fragment would delay the differentiation of proliferating chondrocytes via activation of the PTHrP signaling pathway. Additional evidence substantiating this hypothesis has been provided by recent in vitro studies. Thus, Ihh mRNA expression parallels that of Col-X mRNA in ATDC5 cells undergoing chondrogenesis and subsequent cartilage differentiation (40). Further, ectopic expression of Ihh in limb bud micromass cultures promotes alkaline phosphatase and Col-X expression, characteristics of hypertrophic chondrocytes, in a mechanism independent of the PTHrP paracrine system (42). This apparent dual action of Ihh on the program of chondrocyte maturation will likely require the use of powerful genetic tools for further substantiation in the in vivo setting.

3.5 The role of other cytokines

While a number of other signaling molecules produced within the growth plate may alter chondrocyte proliferation and differentiation by their own independent actions, others influence these processes likely by modulating the Ihh/PTHrP pathway. Signaling by bone morphogenetic proteins (BMPs) has been implicated in the development of the vertebrate limb. Recent studies have reported that BMP receptor-IA is specifically expressed in prehypertrophic chondrocytes and modulates the program of chondrocyte maturation (43). Consequently, misexpression of a constitutively active form of BMP receptor-IA delayed chondrocyte differentiation and was associated with decreased Col-X and Ihh expression, while
similar to that observed in the PTHrP-negative mutants, do survive to the peripartum period exhibit a phenotype
PTHrP (38). The small number of homozygous mice that
proof that this receptor mediates the cartilaginous effects of
PTH-1 receptor knockout mice that provided unequivocal
bone formation (20). It was, however, the generation of
receptor-negative animals exhibit a more severe phenotype
osteochondrodysplasia.

alterations are characterized by accelerated differentiation
although they are proportionally smaller. Skeletal
plate abnormalities characterized by increased
expression (44). Thus, loss of responsiveness to TGF-
expression was increased. Analysis of this model
suggests that BMP signals are downstream mediators of Ihh
function in both a local signaling loop and a longer-range
relay system that may involve PTHrP.

In other studies, the overexpression of a truncated
type II TGF-beta receptor (a dominant-negative mutant) in
skeletal tissue of transgenic mice resulted in degenerative
joint disease resembling human osteoarthritis, and growth
plate abnormalities characterized by increased Col-X and
Ihh expression (44). Thus, loss of responsiveness to TGF-
beta promotes chondrocyte terminal differentiation through
a mechanism that likely involves the Ihh/PTHrP pathway.

Figure 2. PTHrP signaling in wild type, PTH-1 receptor-
and PTHrP-negative cells. In normal cells (left), the
biological actions elicited by PTHrP require the
coordinated activity between its (a) autocrine/paracrine and
(b) intracrine actions. In receptor-deficient cells (center),
extracellular signaling is absent, while the nuclear effects
proceed unabated. This leads to severely dysregulated cell
function and to the more severe phenotype of the receptor-
null animals. In contrast, both PTHrP signaling pathways
are abolished in ligand-deficient cells (right), leading in a
more "coordinated" functional disruption.

3.6 Clarifying the role of the PTH-1 receptor

There is abundant evidence that the cloned PTH-
1 receptor mediates most PTHrP actions. Finding natural
mutations in humans with Jansen’s metaphyseal
chondrodysplasia has emphasized a critical role for the
receptor in skeletal development. In addition, targeted
overexpression of constitutively active PTH-1 receptor to
the growth plate of transgenic mice delays endochondral
bone formation (20). It was, however, the generation of
PTH-1 receptor knockout mice that provided unequivocal
proof that this receptor mediates the cartilaginous effects of
PTHrP (38). The small number of homozygous mice that
do survive to the peripartum period exhibit a phenotype
similar to that observed in the PTHrP-negative mutants,
although they are proportionally smaller. Skeletal
alterations are characterized by accelerated differentiation
of chondrocytes leading to a severe and lethal form of
osteochondrodysplasia.

Of note, however, is the observation that most
receptor-negative animals exhibit a more severe phenotype
than the PTHrP-null mice do and is characterized by early
embryonic lethality (embryonic day E14.5). It was
originally speculated that PTHrP synthesized by maternal
decidual cells could complement the absence of fetal
PTHrP but not that of its receptor. Another possibility may
be that circulating PTH can partly compensate for the
absence of PTHrP but not for the receptor deficiency.
Alternatively, the more severe phenotype may implicate the
presence of another member of the PTH/PTHrP ligand
family that interacts with the common receptor. The
existence of such a protein, however, remains speculative at
present.

Perhaps the most intriguing explanation for the
early demise of these animals stems from the apparent dual
mechanism of action of PTHrP on cellular function (22, 45-
47). PTHrP translocates to the nucleus and inhibits
expression of differentiation-associated proteins in
chondrocytes (48). It is tempting to speculate that normal
embryonic development requires the coordinated activity
between the amino-terminal end of the protein acting on the
cell surface receptor promoting proliferation and the
nucleolar form modulating differentiation (figure 2). In the
absence of the amino terminal receptor, the unopposed
nucleolar effects of PTHrP would lead to severe imbalance
of cellular proliferation/differentiation and hence, to early
lethality of the receptor-negative mutants. In contrast,
ablation of the ligand would eliminate both receptor- and
nuclear-mediated activities, leading to a more
"coordinated" impairment and a less severe phenotype. At
present, however, it is reasonable to conclude that the small
size and early death of the PTH-1 receptor-null mice
remains unexplained.

4. PTHrP AND PTH-1 RECEPTOR IN OSTEOBLAST BIOLOGY

4.1 PTHrP haploinsufficiency and osteopenia

Accumulating evidence indicates that PTHrP also
regulates osteogenic cell differentiation and/or function.
The evidence can be summarized as follows: First, PTHrP
and PTH-1 receptor are expressed in cells of the osteogenic
lineage (12, 13, 49-54). Second, in the PTHrP-null mouse,
osteoblastic progenitor cells contain inappropriate
accumulations of glycogen (12). This finding, also
observed in PTHrP-null chondrocytes, is indicative of a
defect, metabolic or otherwise, in cells of the osteogenic
lineage arising as a consequence of PTHrP deficiency.
Third, heterozygous PTHrP-null mice, while
phenotypically normal at birth, by three months of age
exhibit a form of osteopenia characterized by a marked
decrease in trabecular thickness and connectivity (13).
Moreover, their bone marrow contains an abnormally high
number of adipocytes. Since the same pluripotent stromal
cells in the bone marrow compartment can give rise to
adipocytes and osteoprogenitor cells (55), the increased
number of adipocytes and osteopenia in these mice could
be attributed to altered stem cell differentiation as a
consequence of PTHrP haploinsufficiency (figure 3). Taken
together, these findings suggest that PTHrP is important for
the orderly commitment of precursor cells toward the
osteogenic lineage and for their subsequent maturation
and/or function.
4.2 Induction of osteogenic differentiation by Hh proteins

Recent studies have shown that members of the Hh family of proteins (Shh and Ihh) can stimulate the osteogenic differentiation of mouse preosteoblastic MC3T3-E1 and fibroblastic C3H10T1/2 cell lines (56, 57). While this stimulatory effect was synergistically enhanced by BMP-2, Hh proteins did not induce Bmp gene expression. These cells, however, express Ptc indicating that the effects of Hh proteins on the osteoblast differentiation program are direct. What role of Hh proteins is in modulating the expression of PTHrP and its receptor in cells of the osteogenic lineage, remains to be defined.

4.3 PTHrP and bone remodeling

With increasing evidence that PTHrP plays an important role in osteoblast biology, it becomes necessary to understand the regulation of its expression and the mechanisms by which it exerts its effects within the skeletal microenvironment. The effects of PTHrP on bone formation and resorption may be partly mediated through cytokines. In vitro, transient treatment with PTHrP stimulates collagen synthesis, an effect mediated by enhancement of local IGF-1 production (58). Osteoblast expression of leukemia inhibitory factor (LIF) mRNA increases following PTHrP administration in vitro (59) and in vivo (60). The release of LIF likely promotes osteoblast differentiation and may thereby mediate the anabolic actions of PTHrP in bone. Increased expression of interleukin-6 (IL-6) (59, 60) and colony stimulating factor-1 (CSF-1) (61) in osteoblasts has been reported following activation of the PTH-1 receptor. These cytokines in turn influence osteoclast function and/or recruitment, and neutralizing antibodies to the IL-6 receptor (59) and CSF-1 (61) can be blocked their effects.

While a number of factors have been reported to influence PTHrP gene expression in non-skeletal tissues (1), its regulation in bone remains poorly defined. The effect of glucocorticoids on PTHrP gene expression in bone is of interest in view of the severe bone loss associated with their prolonged use. Glucocorticoid administration inhibits PTHrP mRNA expression in human osteogenic cells (62) and increases PTH binding. PTH-stimulated cAMP production and PTH-1 receptor mRNA in an osteoblast cell line (63).

PTHRP may play an important role in the increased bone turnover and bone loss associated with estrogen deficiency. Stimulation of adenylate cyclase activity by PTH and PTHrP in cultured osteoblasts is inhibited by estrogen administration (64, 65). A better understanding of the regulation of PTHrP and its receptor by estrogens is of clinical interest, since increased skeletal responsiveness to the catabolic effects of continuous PTH administration has been observed in postmenopausal women (66).

4.4 Potential therapy for osteoporosis

The anabolic effects of intermittent PTH administration on bone and its therapeutic potential in osteoporosis have been extensively explored [for review see (67)]. With the recognition that PTHrP is the endogenous ligand for the PTH/PTHrP receptor in osteoblasts, its use as an anabolic agent has also been investigated. PTHrP (1-74) was shown to increase bone mass in rats (68). PTHrP (1-36), one of the authentic secretory forms of PTHrP (69), has been reported to have equivalent potency to PTH (1-34) in its actions (70), yet its anabolic effects on bone remain to be defined. PTHrP (1-
PTHrP and endochondral bone

34) was less potent than PTH (1-34) in producing an anabolic response in bone (71), although that could be partly attributed to its higher clearance rate (72).

Analogs of PTHrP (1-34) have been developed in an attempt to improve its anabolic efficacy. One such analog, RS-66271, has received much attention because of its pronounced bone anabolic activity in vivo. It markedly increased trabecular and cortical bone formation when given intermittently to ovariectomized, osteopenic rats (73). The anabolic benefits of RS-66271 have been confirmed in a non-human primate model of estrogen deprivation osteopenia (74) and in rabbits with glucocorticoid-induced bone loss (75). A rapid increase in size and number of osteoblasts on trabecular surfaces was observed following initiation of treatment (76). The rapidity with which these changes occurred suggests that the lining cells on trabecular surfaces were induced to differentiate into osteoblasts. With cessation of the drug, the osteoblasts reverted to lining cells.

While promising, there are nonetheless some potential concerns arising with the use of PTHrP and its analogs for the treatment of osteoporosis (77). Clearly, more studies using these peptides are needed to verify their safety and efficacy as therapeutic agents.

5. PERSPECTIVE

The perinatal mortality of the knockout mouse severely limits our understanding of PTHrP function in adult tissues. By circumventing the cartilaginous malformations, other abnormalities, skeletal or otherwise, would become evident in the adult PTHrP-null animal. Matings of PTHrP heterozygous mice to transgenic animals would become evident in the adult PTHrP-null animal. Malformations, other abnormalities, skeletal or otherwise, adult tissues. By circumventing the cartilaginous severely limits our understanding of PTHrP function in

6. ACKNOWLEDGEMENTS

This work was supported by grants from the Medical Research Council of Canada.

7. REFERENCES

PTHRp and endochondral bone

Peptide (PTHRp)-depleted mice show abnormal epiphysial cartilage development and altered endochondral bone formation. J Cell Biol 126, 1611-1623 (1994)

PTHRP and endochondral bone

41. A. C. Karaplis & L. Vautour: Parathyroid hormone-related peptide and the parathyroid hormone/parathyroid hormone-related peptide receptor in skeletal development. *Curr Opin Nephrol Hypertension* 6, 308-13 (1997)

42. N. S. Stott & C.-M. Chuong: Dual action of sonic hedgehog on chondrocyte hypertrophy: retrovirus mediated ectopic sonic hedgehog expression in limb bud micromass culture induces novel cartilage nodules that are positive for alkaline phosphatase and type X collagen. *J Cell Sci* 110, 2691-701 (1997)

65. S. Fukayama & A. H. Tashjian: Direct modulation by estradiol of the response of human bone cells (SaOS-2) to human parathyroid hormone (PTH) and PTH-related protein. *Endocrinology* 124, 397-401 (1989)

Key words: Review, PTHrP signaling, Endochondral ossification, Skeletal dysplasia, Chondrocytes, Osteoblasts

Send correspondence to: Andrew C. Karaplis, M.D., Ph.D., Division of Endocrinology, Sir Mortimer B. Davis-Jewish General Hospital and Lady Davis Institute for Medical Research, 3755 Côte Ste. Catherine Road, Montréal, Québec, Canada H3T 1E2. Tel:(514)-340-8222x4907, Fax: (514)-340-7573, E-mail: karapli@ldi.jgh.mcgill.ca