[Frontiers in Bioscience E4, 2269-2288, January 1, 2012]

Life is a pattern: vascular assembly within the embryo

Jennifer Heinke1, Cam Patterson2, Martin Moser1

1Department of Internal Medicine III, University of Freiburg, Germany, 2McAllister Heart Institute, University of North Carolina at Chapel Hill, USA


1. Abstract
2. Introduction
3. Vasculogenesis
4. Angiogenesis
5. Molecular signaling
5.1. The role of VEGF/receptors
5.2. Ang/Tie system
5.3. PDGF and TGF-beta Signaling
5.4. Vessel guidance molecules
5.5. Transcription factors
5.6. microRNAs
6. Arteriovenous differentiation
7. Concluding remarks
8. Acknowledgement
9. References


The formation of the vascular system is one of the earliest and most important events during organogenesis in the developing embryo because the growing organism needs a transportation system to supply oxygen and nutrients and to remove waste products. Two distinct processes termed vasculogenesis and angiogenesis lead to a complex vasculature covering the entire body. Several cellular mechanisms including migration, proliferation, differentiation and maturation are involved in generating this hierarchical vascular tree. To achieve this aim, a multitude of signaling pathways need to be activated and coordinated in spatio-temporal patterns. Understanding embryonic molecular mechanism in angiogenesis further provides insight for therapeutic approaches in pathological conditions like cancer or ischemic diseases in the adult. In this review, we describe the current understanding of major signaling pathways that are necessary and active during vascular development.


The vascular system is essential for all vertebrates because it provides tissues and organs with oxygen and nutrients. Due to a relatively short (0.1 to 0.2 mm) diffusion distance, the entire body is covered with an extensively branched network of blood vessels, which in conjunction with the heart and blood represents the circulatory system (1, 2). The connection between arteries and veins forming a closed circulation filled with blood was described for the first time in 1628 by William Harvey. Even though Harvey was not able to visualize the capillaries, he hypothesized their existence and accordingly they were specified in 1661 by Marcello Malpighi (3, 4).

Capillaries are the smallest vessels in the vasculature, and consist only of a single layer of endothelial cells (ECs), creating the inner lining of blood vessels (endothelium), and of occasional pericytes to maximize contact with the surrounding tissue. In larger vessels (arterioles and venules) the endothelium is accompanied by pericytes and connective tissue, whereas arteries and veins comprise of a thick layer of smooth muscle cells (SMC) and circumjacent connective tissue to stabilize these vessels. Oxygenated blood is pumped by the heart from the lungs with high pressure through arteries and arterioles into the capillaries, where material exchange with the tissue takes place. From there deoxygenated blood is transported with lower pressure and therefore flows much slower through venules and veins back to the lung. To withstand the high pressure, arteries require a stronger wall and have a thicker layer of SMCs compared to veins (5-7).

The circulatory vasculature serves not only to transport gases, nutrients, metabolic waste, macromolecules and liquids between tissues and organs, but also stabilizes the body temperature and pH to maintain homeostasis. Further important functions are to facilitate rapid communication between different organs mediated by hormones or cytokines, and finally to transport immune cells to sites of inflammation or infection (7-9). Consequentially, malformations or dysfunction of the vascular system have a huge impact on the whole organism and contribute to the pathogenesis of many diseases as, for instance, ischemic cardiovascular diseases (6). The importance of a complete and healthy vasculature is shown best during embryonic development because mice failing to establish functional blood vessels die early around day 10 (10).

In the developing embryo the formation of the vascular system is one of the earliest events during organogenesis (11) (see Figure 1). Two distinct processes termed vasculogenesis and angiogenesis are involved in generating the vasculature of the growing organism (7).

During vasculogenesis mesodermal precursor cells migrate, differentiate and aggregate de novo to form a bipotential haemangioblast which gives rise to blood and ECs. Subsequently, the nascent blood vessels develop and generate a primitive vascular plexus. Further expansion and remodeling of this primary plexus of capillaries is denoted as angiogenesis and covers several steps including adhesion, proliferation, migration, differentiation and tube formation from already existing vessels as well as vessel maturation (7, 11). Over the past years, a plethora of signaling pathways has been shown to be involved in embryonic vascular development (Table 1). In particular, vascular endothelial growth factor (VEGF) and the angiopoetin/Tie receptor families, which are all nearly endothelial cell specific and crucial for the establishment of a functional vasculature, are the most extensively studied pathways. Other signaling pathways such as the Delta/Notch, ephrin/ephrine receptors, fibroblast growth factor (FGF), platelet derived growth factor (PDGF/PDGFR) and transforming growth factor beta (TGFb) family or pathways that are involved in axonal guidance such as the semaphorins, netrins and ROBO/Slits are not restricted to the endothelial lineage, but nevertheless play a specific and necessary role in vascular development (Table 1) (12). Although environmental factors such as hypoxia (13, 14) and hemodynamic forces (15, 16) modulate the establishment of the vasculature, the initial process of vasculogenesis seems to be genetically programmed (17-19).


Vasculogenesis is the process of de novo differentiation of endothelial cells from mesodermal precursor cells. Around E6- E6.5 during development of the mouse embryo, primitive endothelial cells begin to arise from mesodermal tissue located in the extra-embryonic yolk sac (20, 21) and afterwards in the embryo proper (22, 23) as well as in the allantois (24, 25) and placenta (26). One of the earliest markers for the endothelial progenitor cell lineage is fetal liver kinase (Flk1), also known as vascular endothelial growth factor receptor 2 (VEGFR2) (26), which is expressed together with the mesodermal marker Brachyury in mesodermal angioblast precursor cells located in the primitive streak (27). These progenitor cells migrate in response to endoderm-derived signals including FGF and bone morphogenetic protein 4 (BMP4) to sites of vascularization - first into the extraembryonic visceral mesoderm of the yolk sac (11). There, mesodermal angioblast precursor cells proliferate, aggregate, differentiate and contribute to the formation of blood islands (28, 29).

In the early 20th century Sabin has observed a spatio-temporal proximity of endothelial and haematopoetic cell lineages in avian embryos and therefore postulated the existence of a common precursor, which was later called the haemangioblast by Murray (30-32). Indirect evidence for the existence of a bipotential progenitor came from Flk/VEGFR2 deficient mice that showed lack of blood islands and organized blood vessels in the yolk sac or embryo as well as only few haematopoetic progenitors (28, 33). Further insight for the haemangioblast theory was provided by a study using embryonic stem (ES) cells differentiating into blast colony-forming cells (BL-CFC). A single colony of these progenitor cells can give rise to an embryoid body containing both endothelial and haematopoetic lineages (34). This result was supported by Huber et al. using isolated haemangioblast cells from E7.5 mouse embryos that also could give rise to both lineages (27) as well as by a single cell fate map study in zebrafish (35).

However, another theory assumes that the haematopoetic lineage arises from an endothelial cell intermediate with haematopoetic potential, called haemogenic endothelium, and not directly from a mesodermal precursor (36-38).

Recently, two independent research groups provided additional evidence supporting this concept by the use of new imaging and cell tracking methods to analyze cell surface markers (39, 40). Mesodermal angioblast progenitors give rise to blood islands that consist of haematopoietic progenitor cells in the centre and a peripheral layer of angioblasts. Upon fusion processes of blood islands, a primitive capillary plexus arises (Figure 1). Thereafter, intraembryonic vasculogenesis is initiated along the paraaortic mesoderm (aorta-gonad-mesonephros (AGM) region) and subsequently capillary plexi are generated around the whole embryo (20, 41). The only exception for this process is the generation of the dorsal aorta and cardinal vein both of which are directly differentiated from mesodermal angioblast precursors (11, 42). Further pruning and maturation of the existing primary vascular plexus is described by the term angiogenesis (43, 44).


Angiogenesis is defined as the growth of new blood vessels from pre-existing vessels. Two principal mechanisms - non-sprouting (intussusceptive) and sprouting angiogenesis - are distinguished in embryonic development (Figure 1). The major difference between both mechanisms is that sprouting angiogenesis is also invasive to unvascularized tissues like in the brain primordium, but the process is relatively slow and depends on cell proliferation (8). On the contrary, the process of intussusceptive angiogenesis allows formation of new blood vessels under flow and is quite fast since it appears within minutes to hours and does not primarily need proliferation of ECs (45).

Concurrent with sprouting angiogenesis intussusceptive angiogenesis occurs during lung, heart and yolk sac development (8). In lung development ECs, predominantly in venules or capillaries, invaginate into existing vessels and thereby create contact of opposing endothelium walls. In the following steps the endothelial bilayer becomes perforated and a transcapillary pillar is formed, which is further stabilized by invading pericytes producing collagen fibers. Finally, a longitudinal division of one vessel into two vessels is achieved (46-48).

For sprouting angiogenesis, ECs of a pre-existing vessel are activated by growth factors such as vascular endothelial growth factor (VEGF). Upon stimulation, ECs begin to release proteases such as members of the matrix metalloproteinase (MMP) family. The degradation of the extracellular matrix (ECM) surrounding the cells as well as of plasma proteins from the blood leads to a provisional scaffold facilitating EC migration (44, 49). Within the capillary vessel wall some ECs are selected for sprouting and the first cells of the growing sprout are denoted as tip cells. For example, during retina angiogenesis tip cells extend long filopodia to sense VEGF and thereupon migrate in a directed way along the VEGF concentration gradient. Interestingly, subsequent cells respond to VEGF by proliferation rather than by migration and are thus named stalk cells. Afterwards, they begin to form a lumen and give rise to a new vessel (7, 50).

Finally, maturation of this new blood vessel is achieved by recruitment of supporting cells, like pericytes or SMCs, and production of the basal lamina. Further growth of the organism requires remodeling of the vascular system induced by environmental stimuli like hypoxia, or changes in hemodynamic forces inducing multiple growth factors. In response to these stimuli the whole vascular tree is remodeled through branching and pruning (51).


Until today, a various number of angiogenic molecules and their corresponding signaling pathways have been identified to be involved in the complex processes of angiogenesis. Therefore growth factors, chemokines, receptors, adhesion molecules, transcription factors and intracellular signaling cascades need to be tightly orchestrated in a spatiotemporal manner to achieve the physiologic growth of the vasculature.

5.1. VEGF signaling

Secreted vascular endothelial growth factor (VEGF) ligands and their cognate receptors and co-receptors play a pivotal role for all aspects of vascular development - from the earliest event of endothelial cell lineage specification to vasculogenesis, angiogenesis and endothelial cell survival. VEGFRs are basically markers for commitment to the endothelial cell lineage. However, they can also be expressed in haematopoietic and neural stem cells, which is an exception to their endothelial cell specificity (52-54).

Gene deletion studies in mice revealed that a majority of genes that have a critical impact on the formation of the functional vessel network are related to the VEGF signaling pathway (23). Moreover, deletion of only a single allele of vegfa leads to embryonic lethality between day 11 and 12 due to severe defects in the vasculature (55, 56). Similar phenotypes are observed for homozygous deletions of any of the three major receptors VEGFR1/Flt1 (57), VEGFR2/Flk (28), VEGFR3/Flt4 (58) or of the two co-receptors Neuropilin 1 and 2 (59). Besides the ligand VEGFA there at least four more VEGF subtypes. Attenuation of any of the other VEGF subtypes (VEGFB -D and placenta growth factor (PLGF)) also has a great impact on the formation of a functional vasculature (see Table 1).

VEGFA (VEGF subtype A) is the major mediator of blood vessel growth, survival and permeability when bound to VEGFR2, whereas, binding to VEGFR1 in a soluble form (sVEGFR1) seems to trap VEGFA and therefore may function as a decoy receptor or ligand reservoir (60-63). The precise function of VEGFR1 is still under debate, and seems to be dependent on its biological context. Mice deficient in VEGFR1 die of an excessive proliferation of angioblasts and malformation of blood vessels (57, 64) suggesting excessive VEGF signaling (28). On the other hand, VEGFA leads to weak phosphorylation of VEGFR1 (65), and additionally VEGFR1 is reported to crosstalk with VEGFR2, which may result in either inhibitory or stimulatory activity dependent on the biological context (reviewed in reference (66)).

VEGFA is expressed in multiple alternative splice isoforms with varying abilities to bind to VEGFRs and co-receptors such as neuropilins or heparin sulfate proteoglycans (HSPGs). VEGFRs belong to the superfamily of receptor tyrosine kinases (RTK) like PDGFRs or FGFRs that dimerize and become transphosphorylated upon activation. Binding of VEGF induces homodimerization of VEGFRs that leads to autophosphorylation and activation of different intracellular signaling cascades (66). For example, in a confluent endothelial cell layer Flk1 is associated with VE-cadherin through p120, beta-catenin and density enhanced phosphatase (DEP1). Altogether this complex promotes survival signals through phosphorylation of PI3K and Akt. The appearance of DEP1 in this case inhibits Erk signaling and subsequent proliferation of confluent cells (67-68).

VEGFB and PDGF can also mediate pro-angiogenic signals by binding to VEGFR1, but to a tenfold less extent compared to VEGFA binding to VEGFR2 (69). VEGFC and D bind to VEGFR3 and thereby stimulate lymphangiogenesis (70).

Taken together, activation of the VEGF pathway is essential for the generation of the EC lineage and the vasculature.

5.2. Ang/Tie2 signaling

Other crucial members of the endothelial cell lineage specific RTKs are the tyrosine kinase with Ig and EGF homology (Tie1 and Tie2) receptors with their corresponding secreted ligands - the angiopoetins (Ang1-2). These are also highly important regulators of angiogenic processes. Unlike VEGF deficient mice, gene deletion of Tie receptors reveal that formation of blood vessels proceeds normally but further maturation and expansion of the vasculature is disturbed resulting in embryonic lethality. Mice deficient in either the receptor Tie2 (71, 72) or its ligand Ang1 (73), which have the same phenotype, die at E9.5 to E12.5 because of multiple cardiovascular defects (Table 1). Therefore, Ang1 activity is suggested to be receptor-specific (73). Deletion of the other receptor Tie1 does not affect angiogenesis but displays a loss of vessel integrity and widespread edema resulting in lethality between E13 and birth (72, 74). In contrast, embryonic vascular development of Ang2 deficient mice seems to be normal (75), however, later on in adult mice vascular disorders have been found in various tissues i.e. kidney or retina (76, 77). Interestingly, in Ang2 overexpressing transgenic mice, blood vessel formation is disturbed and the phenotype resembles the Tie2 or Ang1 deficient phenotypes (78, 79). Taken together, loss and gain of function studies in mice suggest that Ang2 might function as an antagonist of Ang1 to modulate Tie2 receptor activity (79).

Binding of Ang1 to Tie2 receptors induces homodimerization. As the next step autophosporylation of the receptors and recruitment of intracellular adapter proteins that facilitate endothelial cell migration, survival, maturation and permeability can occur (80). As expected from the in vivo data, Ang2 can bind to Tie2 but does not activate it (81, 82). However, the role of Tie1 is still under debate. Full length Tie1 is either thought to form heterodimers with Tie2 (83) or to be an orphan receptor. Tie1 and VEGF signaling are functionally linked. Tie1 is cleaved by gamma-secretases following VEGF stimulation. The cleaved form, remaining in the cell membrane, interacts with Tie2 and is hypothesized to support Tie2 signaling (84, 85).

Taken together, stimulation of Tie2 by Ang1 induces remodeling and stabilization of blood vessels by recruiting pericytes and by formation of cell-cell and cell-matrix interactions and thus plays an important role in maintaining endothelial integrity and quiescence in the adult organism (86-89). On the contrary, Ang2 has a destabilizing effect on blood vessels, which may lead to vessel sprouting or regression dependent on tissue and biological context (i. e. availability of VEGFA) (90, 91).

5.3. PDGF and TGF-beta signaling

For stabilization of the newly formed vessels, recruitment of pericytes and smooth muscle cells is required and mainly involves PDGF, Ang1/Tie2 and TGF-beta signaling pathways. PDGFs are growth factors comprising a family of four (A- D) structurally related members binding to their appropriate RTKs - PDGFR-alpha or -beta, which may be present as homodimer or heterodimer (92).

During embryonic development of the vasculature, PDGF signaling has been shown to be indispensable for proliferation and migration of pericytes and SMCs. Deficiency of the PDGF-B chain or the PDGFR-beta in mice leads to severe vascular defects manifested in leakiness of vessels or in overproliferation of endothelial cells that is due to lack of pericytes (93-95). PDGF-B is secreted by endothelial cells, probably in response to VEGF stimulation, to recruit pericytes expressing PDGFR-beta. Additionally, pericytes themselves can secrete PDGF-B and thereby amplify the signal (96).

Another important growth factor released by ECs is TGF-beta. It induces attraction and differentiation of mesenchymal progenitor cells into pericytes and SMCs and synthesis of the extracellular matrix (97, 98). TGF-beta belongs to a large family of pleiotropic secreted growth factors, which also includes activins and bone morphogenetic proteins (BMPs). These ligands mediate their effect by binding to a complex of type I and type II serine/threonine kinase transmembrane receptors (99).

Interestingly, gene deletion studies of components related to the TGF-beta pathway (e.g. Tgfbr1 or 2) also revealed an abnormal formation of the primitive vascular plexus in mice, which suggests an important role of TGF-beta for endothelial cells besides decreased vessel wall integrity by impaired recruitment of SMCs (100, 101). Moreover, in vitro studies demonstrate that TGF-beta 1 has a context dependent biphasic effect on endothelial cells: at low concentrations extracellular TGF-beta 1 induces pro-angiogenic effects on endothelial cells. However, at high concentrations it leads to cytostasis, synthesis of extracellular matrix, vessel muscularization, and thereby to the status of quiescent endothelium (51). Furthermore, it is reported that TGF-beta family members additionally affect angiogenesis in a paracrine manner via stimulation of pro-angiogenic molecules like VEGF (102).

Early endothelial lineage specification is also controlled by members of the BMP family. In vitro cell culture models using murine embryonic stem (ES) cells to differentiate them towards the endothelial lineage revealed BMP4 to be indispensable for the generation of VEGFR positive embryonic endothelial progenitor cells (EPCs) (103). More recently, similar experiments using human ES cells came to the same conclusion. BMP4 was shown to signal downstream of Indian Hedgehog and to be essential for promoting endothelial cell differentiation from human ES cells (104). Even in a subgroup of EPCs derived from adult peripheral blood expression of BMP2/4 was observed and also implicated to be in conjunction with the capacity to promote neoangiogenesis (105).

More insights came from gene deletion studies in mice. Mice lacking BMP4 die around E7.5 with defects in mesoderm formation and patterning. Some embryos survive this developmental stage; however, they still die at E9.5 and show a vascular phenotype with a reduced number of blood islands (106). Accordingly, mice lacking either of the BMP type I receptors (Alk2 or Alk3) or BMPRII fail to complete gastrulation and die around the same time (E7.5 - E9.5) (107-109). Likewise, deletion of the intracellular effectors Smads display varying degrees of defects in vascular development. Targeted inactivation of Smad1 in mice results in defects in chorioallantoic fusion and embryos die between E9.5 - E10.5 (110, 111). Though overall vasculogenesis appears to be normal, some Smad1 deficient embryos show defects in yolk sac angiogenesis (111). Smad5 deficient and conditional endothelial specific Co-Smad4 deficient mice are embryonic lethal around midgestation due to vascular defects in the embryo proper and in the yolk sac (112-114). Interestingly, in these embryos vasculogenesis is effectively initiated in both the yolk sac and the embryo, but induction of angiogenesis fails (113, 114). Collectively, mice deficient for BMP ligands or receptors demonstrate the importance of BMP mediated signals in early embryonic development, but due to early embryonic lethality they do not yet allow full investigation of vasculogenesis or even angiogenesis. Of interest BMPER (BMP endothelial progenitor cell-derived regulator) is a BMP modulator that has been identified in a screen of VEGFR2 positive embryonal EPCs and therefore seems to be involved in endothelial cell lineage commitment and/or vasculogenesis (115). In addition, BMPER has been shown to enhance concentration-dependent angiogenic sprouting of endothelial cells (116), and loss of BMPER in the zebrafish model disturbed intersomitic vessel growth (117). These results point towards the necessity of a strict control and fine-tuning of the BMP signaling pathway to maintain proper blood vessel formation.

5.4. Vessel guidance molecules

An emerging vessel sprout needs to know in which direction it has to grow. Therefore vessel guidance is nessecary. Like the vascular system, the nervous system forms a complex network. Thus, it is not surprising that molecules which participate in axonal guidance are also found to be involved in EC sprouting (118, 119). Prominent protagonists of such proteins are the erythropoietin-producing human hepatocellular carcinoma (Eph) receptors, which are also members of the RTK family and their corresponding eph family receptor interacting proteins (ephrin ligands). Originally, Eph receptors and ephrin ligands were described as neuron-specific molecules that mediate attractive or repulsive guidance signals on growing neurons (120). However, EphrinB2 and EphB4 have been shown to be expressed in ECs and are key regulators of arteriovenous specification. Both EphrinB2 (121) or EphB4 (122) deficient mice die around embryonic day 10.5 displaying defects in vascular remodeling.

Other proteins involved in axonal guidance that are also important in vascular development are the Delta-like-4 (DLL4)/Notch system (123, 124), semaphorins/neuropilins/plexins (125, 126), Netrin/uncoordinated-5 (UNC5) (127) and Slit/round-about (ROBO) receptor (128, 129) (Table1).

Recent studies demonstrate that Notch receptors and their Delta-like-4 (DLL4) ligand coordinate tip/stalk cell behavior. DLL4 is prominently expressed in tip cells, whereas Notch1 is found in stalk cells. Disruption of the Notch signaling pathway leads to an increase in tip cells and massive endothelial cell sprouting and branching, indicating that Notch signaling is necessary for the stalk cell phenotype (124, 130). Notch signaling represses VEGFR2 expression in stalk cells and leads to proliferation of ECs in response to VEGFA stimulation instead of migration as it does in tip cells. Discrimination of tip versus stalk cell fate seems to be dependent on the amount of DLL4 expression induced by VEGFA. Cells with high DLL4 expression repress the tip cell phenotype of neighboring cells and are thus determined to be stalk cells (123, 124, 130, 131). Of interest, neuropilins (Nrp) also act as VEGFR co-receptors and enhance the affinity of VEGF to VEGFR2 and subsequent downstream signaling pathways. Furthermore, Nrp1 is specifically expressed on arteries and Nrp2 on veins (132-134).

Very recently two independent research groups reported Ephb2 to be not only involved in arteriovenous specification but also in angiogenic sprouting. Ephb2 has been shown to act as a positive regulator of VEGFR endocytosis, which then activates the downstream signaling that is required for VEGF-induced tip cell filopodia (135, 136).

5.5. Transcription factors

Whereas interaction of numerous growth factors, receptors and signaling pathways have been identified to be crucial for the process of vasculogenesis and angiogenesis, the transcriptional regulation of angiogenic molecules is less explored. The same is true regarding the impact of cytokines on regulation of transcription factors (TFs) in endothelial cells (137). A plethora of TFs seem to have important roles for the differentiation of endothelial cells and for the formation of the vasculature; members of the ETS family have a central role in this process. The other important families are the hypoxia-inducible factor (HIF), the forkhead box (FOX), the GATA, the sry-related HMG box (SOX), the homeobox (HOX) and finally the kruepple-like factor (KLF) transcription factors (138-142).

So far, ETS transcription factors have appeared to be central regulators of endothelial gene expression because ETS motifs are present in virtually all analyzed endothelial promoters and enhancers including VEGFR1, VEGFR2, Tie1 and Tie2 (137, 143). In addition, expression of ETS family member Fli-1 is detected in very early precursor cells of the haematopoietic and endothelial lineages and seems to be upstream of the TAL1/SCL and GATA2, which are known to be required for haemangioblast formation and VEGFR2 gene expression (144-146). To achieve endothelial-specific gene expression - as for example for VEGFR2 - different transcription factors have to act together in a complex manner. Besides ETS, Tal1 and GATA2, others like FOXH1 (147), HIF2-alpha (148), KLF2 (149) and HOXB5 (150) are known to participate in the regulation of promoter and enhancer regions of the vegfr2 gene.

Members of the HIF family are activated by the potent stimulus of hypoxia, which is known to be an important regulator of angiogenesis. Activated HIFs stimulate the expression of several angiogenic molecules, the most important being VEGF (151).

Endothelial cells express several members of the Fox transcription factor family including FOXC1/2, FOXF1, FOXH1 and FOXO1/3/4 and deletion studies in mice demonstrated severe defects in vascular development for all of them (reviewed in (140)). In addition to early functions in endothelial development, FoxC1 and FoxC2 also play an important role in arteriovenosus differentiation.

Interestingly, FOXO1-deficient mice die during embryogenesis and display malformations in major vessels of the embryo and in the yolk sac, whereas FOXO3 and 4 are viable and are grossly indistinguishable from wild type littermates (152). Furthermore, several studies investigated the role of FOXOs on ECs in the postnatal vasculature where overexpression of FOXO1 and FOXO3 in endothelial cells inhibited angiogenesis and silencing of FOXOs resulted in enhanced angiogenic processes (153). Moreover, mice lacking all three FOXOs developed haemangiomas and angiosarcomas, which demonstrated not only the importance of FOXOs for endothelial homeostasis and but also the tumor suppressor potential of FOXOs (154).

Hox proteins interact with numerous regulatory pathways like the FGF or BMP pathway, which are also known to be involved in vascularization (11). Multiple HOX transcription factors are reported to regulate expression of different angiogenesis related molecules: HOXA9 is a direct transactivator of ephb4 and enos (155, 156), HOXB3 stimulates expression of ephrina1 and HOXD3 coordinates expression of integrin alpha5, integrin beta3 and upa (urokinase-type plasminogen activator) and thus activate migration and sprouting of endothelial cells (157, 158). Along the same line of evidence, HOXB5 binds and transactivates the vegfr2 promoter and thereby increases the number of mature ECs (150). Additionally, HOXB5 has an activating effect on EC sprouting and coordinated vascular growth conferred by Ang2 (159). Another HOX-relative is prospero-related homeobox1 (PROX-1), which is a major regulator for lymphatic endothelial cell development (160). This is based on the fact that deletion of PROX-1 in mice results in loss of lymphatic-marker expression as well as the whole lymphatic vasculature (161).

Smad transcription factors were originally identified as a class of proteins that are related to the drosophila mothers against decapentaplegic protein (Mad) and the sma proteins from Caenorhabditis elegans. They are components of the TGF-beta and BMP signaling pathway and mediate signals upon activation through phosphorylation from the receptor into the nucleus. Regarding angiogenesis, Smad5 seems to be indispensable due to the fact that Smad-null embryos reveal distinct defects of the vasculature (112, 113). Likewise, Smad3 is reported to mediate pro-angiogenic effects by stimulating VEGFA expression (162). In contrast, Smad4 and Smad2 have been shown to inhibit angiogenesis by promoting expression of anti-angiogenic factors such as thrombospondin-1. Taken together, Smads display distinct roles in regulating angiogenesis (163).

The inhibitors of DNA binding (ID) 1-3 lack a DNA binding domain and consequently form heterodimers with other transcription factors to regulate gene expression. IDs are expressed during development in endothelial cells but are mostly absent in postnatal vasculature. Also, they are found to be highly expressed in blood vessels of tumors and control the expression of integrin alpha5, integrin beta3 and / or mmp2 (164).

Members of the KLF family are reported to be inducible in response to shear stress or insufficient vascular injury. Klf2 is induced by shear stress and KLF2 deficient mice die at E14.5 due to haemorrhage caused by incorrect vessel stabilization (165). Moreover, KLF2 is reported to possess anti-angiogenic effects by reducing endothelial cell proliferation and migration (149). But in contrast, very recently KLF2 is reported to be associated with the ETS transcription factors ERG and to synergistically activate the transcription of vegfr2 (166).

Other transcription factors are essential for controlling specification of endothelial cells into arterial, venous or lymphatic subtypes. This includes members of the SOX family, the hairy and enhancer of split-related (HEY) transcription factors, and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII).

5.6. microRNAs

Besides transcriptional control of signaling pathways by transcription factors, the translational control of genes by microRNAs (miRNA) gained broad attention recently. MiRNAs are small non-coding RNAs, which bind imperfectly to the 3'- untranslated regions of different mRNAs and act to fine tune gene expression (167). The key enzymes to process miRNAs, Drosha and Dicer, have been targeted in endothelial cells by RNA interference resulting in decreased angiogenesis in vitro (168, 169). Accordingly, mice carrying a homozygous deletion of the first 2 exons of the Dicer gene die between E12.5-E14.5 displaying defective blood vessels in the yolk sac and in the embryo proper (170).

Of interest, some miRNAs are highly expressed in endothelial cells, namely miR-221/222, miR-21, the let-7 family, the miR-17~92 cluster, the miR-23~24 cluster and the endothelial cell specific miR-126 (168, 169). MiR-126 has been shown to be enriched in VEGFR-2 positive embryonal vascular progenitors as well as in mature endothelial cells (171). Deletion of miR-126 in mice resulted in severe vascular abnormalities: systemic edema and multifocal hemorrhages (172). In vitro or ex vivo experiments revealed miR-126 to be involved in endothelial cell sprouting, migration, proliferation and cytoskeleton organization. Mechanistically the effects of miR-126 in VEGF signaling are due to translational inhibition of negative regulators of the Akt and MAPK signaling pathways PIK3R2 and SPRED1, respectively (171, 172).

Recently, a connection between changes in haemodynamics and miR-126 expression was reported in the zebrafish model. Due to changes in blood flow, expression of KLF2a is increased, which leads to enhanced expression of miR-126. This miRNA is known to decrease expression of SPRED1, an inhibitor of VEGF signaling. Thus, miR-126 facilitates enhanced VEGF signaling due to changes in haemodynamics (173).


Arteries and veins are formed during remodeling processes of the primary capillary plexus in the early embryo. EphrinB2 is uniquely expressed by arteries and EphB4 by veins (121). In the past, the differentiation into arteries and veins was assumed to be induced by hemodynamic forces, but studies in zebrafish and mouse model systems have uncovered genetically predetermined events before the onset of blood flow (see Figure 2) (174). However, as known from coronary artery bypass grafting where veins are grafted into the arterial circulation and acquire arterial-like properties, there is plasticity of the vascular wall to changes of microenvironment and of blood pressure and flow (5).

Binding of EphrinB2 to its receptor EphB4 requires cell-cell contact because both are membrane bound molecules. Interestingly, Ephrin ligand and Eph receptors are able to signal bidirectional (forward: EphrinB - EphB and reverse: EphB - EphrinB). This interaction is essential to establish arterial-venous boundaries and proper vascular development. To support this notion gene deletion studies in mice revealed embryonic death at E9.5 due to failure in vascular remodeling (175). Several genes act upstream of EphrinB2 and EphB4 to establish arteriovenous differentiation (see also Figure 2). Sonic hedgehog is secreted by the notochord and induces arterial differentiation via expression of VEGF in nearby somites (176). ECs cultured in the presence of VEGF showed an upregulation of components of the Notch signaling pathway and subsequently of Hey1/2 (177). Hey 1/2 together with Sox7, Sox17 and Sox18 lead to arterial marker expression (EphrinB2 and neuropilin1) and accordingly arterial specification. Loss of any component of the Notch pathway in zebrafish and mice results in arteriovenous malformations indicating the importance of Notch signaling in arterial specification (178).

For venous specification, expression of Coup-TFII is indispensable because it inhibits Notch signaling and expression of Nrp1 and therefore arterial specification. Furthermore, it induces expression of venous markers (EphB4 and Nrp2) and thus venous specification (175).

The development of coronary arteries is still under debate. Early on observations of anatomical studies in humans suggested that they emerge from the aorta (179). However, chimeric chick-quail experiments had come to the conclusion that endothelial cells of the coronary arteries arise through differentiation of the proepicardium (180, 181). In contrast, lineage-tracing experiments in mice found only very few ECs that differentiate from the proepicardium (182, 183). Very recently Red-Horse et al. showed by histological and clonal analysis in mice that coronary arteries develop from differentiated venous ECs in the sinus venosus and from the endocardium (184). Interestingly, quite similar observations have been made for the development of the lymphatic vasculature. Subsequent to arterial-venous differentiation, lymphatic specification begins with the expression of SOX18 preceding PROX-1 in some ECs of the anterior cardinal veins. Overexpression of SOX18 in cultured ECs results in increased expression of lymphatic markers including PROX-1 (185). PROX-1 itself is essential for lymphatic development because inactivation in mice results in loss of lymphatic markers and lack of lymphatic vasculature (Figure 2) (161).

Besides arterial-venous differentiation further pruning and remodeling of the vascular tree involves vessel regression and tissue specialization to build a full functional circulatory vasculature. ECs are a quite heterogeneous cell population that must adapt to the underlying tissue and thus display organ specificity (4, 5).


For a long time the VEGF signaling pathway inherited the key position for vascular development. However, as we discussed above many other pathways regulate or are controlled by the VEGF pathway. Accordingly, an interacting network of signal transduction governs the outcome for further blood vessel development, homeostasis or even regression of existing blood vessels. Furthermore, the discovery of microRNAs as regulators of gene expression adds an additional element to fine tune signals from different pathways. In the future, it will be interesting to see how the orchestra of vascular signaling pathways assemble, and also how they will play together during embryogenesis.


We thank Sheena Kinniry for critical reading the manuscript. This work was supported by DFG Mo973/5-1 and DFG Mo973/6-1 to M.M.


1. Carmeliet, P. & R. K. Jain: Angiogenesis in cancer and other diseases. Nature, 407, 249-57 (2000)

2. Fraisl, P., M. Mazzone, T. Schmidt & P. Carmeliet: Regulation of angiogenesis by oxygen and metabolism. Dev Cell, 16, 167-79 (2009)

3. Brown, A. & J. Barnes: William Harvey (1578-1657) and Marcello Malpighi (1628-1694): linked in blood, paralleled in life. Adler Mus Bull, 20, 14-23 (1994)

4. Aird, W. C.: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res, 100, 158-73 (2007)

5. Aird, W. C.: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res, 100, 174-90 (2007)

6. Carmeliet, P.: Angiogenesis in health and disease. Nat Med, 9, 653-60 (2003)

7. Adams, R. H. & K. Alitalo: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 8, 464-78 (2007)

8. Risau, W.: Mechanisms of angiogenesis. Nature, 386, 671-4 (1997)

9. Aird, W. C.: Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res, 98, 159-62 (2006)

10. Semenza, G. L.: Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem, 102, 840-7 (2007)

11. Coultas, L., K. Chawengsaksophak & J. Rossant: Endothelial cells and VEGF in vascular development. Nature, 438, 937-45 (2005)

12. Rossant, J. & L. Howard: Signaling pathways in vascular development. Annu Rev Cell Dev Biol, 18, 541-73 (2002)

13. Adelman, D. M., M. Gertsenstein, A. Nagy, M. C. Simon & E. Maltepe: Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev, 14, 3191-203 (2000)

14. Ramirez-Bergeron, D. L., A. Runge, K. D. Dahl, H. J. Fehling, G. Keller & M. C. Simon: Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development, 131, 4623-34 (2004)

15. Lucitti, J. L., E. A. Jones, C. Huang, J. Chen, S. E. Fraser & M. E. Dickinson: Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development, 134, 3317-26 (2007)

16. Jones, E. A., M. H. Baron, S. E. Fraser & M. E. Dickinson: Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol, 287, H1561-9 (2004)

17. Lawson, N. D., N. Scheer, V. N. Pham, C. H. Kim, A. B. Chitnis, J. A. Campos-Ortega & B. M. Weinstein: Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 128, 3675-83 (2001)

18. Lawson, N. D. & B. M. Weinstein: In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 248, 307-18 (2002)

19. Isogai, S., N. D. Lawson, S. Torrealday, M. Horiguchi & B. M. Weinstein: Angiogenic network formation in the developing vertebrate trunk. Development, 130, 5281-90 (2003)

20. Risau, W. & I. Flamme: Vasculogenesis. Annu Rev Cell Dev Biol, 11, 73-91 (1995)

21. Ferkowicz, M. J. & M. C. Yoder: Blood island formation: longstanding observations and modern interpretations. Exp Hematol, 33, 1041-7 (2005)

22. Drake, C. J. & P. A. Fleming: Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood, 95, 1671-9 (2000)

23. Argraves, W. S. & C. J. Drake: Genes critical to vasculogenesis as defined by systematic analysis of vascular defects in knockout mice. Anat Rec A Discov Mol Cell Evol Biol, 286, 875-84 (2005)

24. Downs, K. M., S. Gifford, M. Blahnik & R. L. Gardner: Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development, 125, 4507-20 (1998)

25. Caprioli, A., T. Jaffredo, R. Gautier, C. Dubourg & F. Dieterlen-Lievre: Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci U S A, 95, 1641-6 (1998)

26. Yamaguchi, T. P., D. J. Dumont, R. A. Conlon, M. L. Breitman & J. Rossant: flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development, 118, 489-98 (1993)

27. Huber, T. L., V. Kouskoff, H. J. Fehling, J. Palis & G. Keller: Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature, 432, 625-30 (2004)

28. Shalaby, F., J. Rossant, T. P. Yamaguchi, M. Gertsenstein, X. F. Wu, M. L. Breitman & A. C. Schuh: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376, 62-6 (1995)

29. Risau, W., H. Sariola, H. G. Zerwes, J. Sasse, P. Ekblom, R. Kemler & T. Doetschman: Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 102, 471-8 (1988)

30. Sabin, F. R.: Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood plasma, and red blood-cells as seen in the living chick. Anat Rec 13, 19-204 (1917)

31. Murray, P. D. F.: The Development in vitro of the Blood of the Early Chick Embryo. Proceedings of the Royal Society of London. Series B, Biological Science, 111, 497-521 (1932)

32. Jin, S. W. & C. Patterson: The Opening Act. Vasculogenesis and the Origins of Circulation. Arterioscler Thromb Vasc Biol (2008)

33. Shalaby, F., J. Ho, W. L. Stanford, K. D. Fischer, A. C. Schuh, L. Schwartz, A. Bernstein & J. Rossant: A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89, 981-90 (1997)

34. Choi, K., M. Kennedy, A. Kazarov, J. C. Papadimitriou & G. Keller: A common precursor for hematopoietic and endothelial cells. Development, 125, 725-32 (1998)

35. Vogeli, K. M., S. W. Jin, G. R. Martin & D. Y. Stainier: A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature, 443, 337-9 (2006)

36. Jaffredo, T., R. Gautier, A. Eichmann & F. Dieterlen-Lievre: Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development, 125, 4575-83 (1998)

37. Nishikawa, S. I., S. Nishikawa, H. Kawamoto, H. Yoshida, M. Kizumoto, H. Kataoka & Y. Katsura: In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity, 8, 761-9 (1998)

38. North, T. E., M. F. de Bruijn, T. Stacy, L. Talebian, E. Lind, C. Robin, M. Binder, E. Dzierzak & N. A. Speck: Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity, 16, 661-72 (2002)

39. Lancrin, C., P. Sroczynska, C. Stephenson, T. Allen, V. Kouskoff & G. Lacaud: The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature (2009)

40. Eilken, H. M., S. Nishikawa & T. Schroeder: Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature, 457, 896-900 (2009)

41. Sadlon, T. J., I. D. Lewis & R. J. D'Andrea: BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells, 22, 457-74 (2004)

42. Ishii, Y., J. Langberg, K. Rosborough & T. Mikawa: Endothelial cell lineages of the heart. Cell Tissue Res, 335, 67-73 (2009)
PMid:18682987    PMCid:2729171

43. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand & J. Holash: Vascular-specific growth factors and blood vessel formation. Nature, 407, 242-8 (2000)

44. Carmeliet, P.: Mechanisms of angiogenesis and arteriogenesis. Nat Med, 6, 389-95 (2000)


45. Burri, P. H., R. Hlushchuk & V. Djonov: Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn, 231, 474-88 (2004)

46. Patan, S.: Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol, 50, 1-15 (2000)

47. Djonov, V., O. Baum & P. H. Burri: Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res, 314, 107-17 (2003)

48. Kurz, H., P. H. Burri & V. G. Djonov: Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci, 18, 65-70 (2003)

49. Davis, G. E. & D. R. Senger: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res, 97, 1093-107 (2005)

50. Gerhardt, H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima & C. Betsholtz: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 161, 1163-77 (2003)
PMid:12810700    PMCid:2172999

51. ten Dijke, P. & H. M. Arthur: Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol, 8, 857-69 (2007)

52. Cao, L., X. Jiao, D. S. Zuzga, Y. Liu, D. M. Fong, D. Young & M. J. During: VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet, 36, 827-35 (2004)

53. Jin, K., Y. Zhu, Y. Sun, X. O. Mao, L. Xie & D. A. Greenberg: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 99, 11946-50 (2002)
PMid:12181492    PMCid:129374

54. Tam, B. Y., K. Wei, J. S. Rudge, J. Hoffman, J. Holash, S. K. Park, J. Yuan, C. Hefner, C. Chartier, J. S. Lee, S. Jiang, N. R. Nayak, F. A. Kuypers, L. Ma, U. Sundram, G. Wu, J. A. Garcia, S. L. Schrier, J. J. Maher, R. S. Johnson, G. D. Yancopoulos, R. C. Mulligan & C. J. Kuo: VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis. Nat Med, 12, 793-800 (2006)

55. Ferrara, N., K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K. S. O'Shea, L. Powell-Braxton, K. J. Hillan & M. W. Moore: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380, 439-42 (1996)

56. Carmeliet, P., V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau & A. Nagy: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-9 (1996)

57. Fong, G. H., J. Rossant, M. Gertsenstein & M. L. Breitman: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376, 66-70 (1995)

58. Dumont, D. J., L. Jussila, J. Taipale, A. Lymboussaki, T. Mustonen, K. Pajusola, M. Breitman & K. Alitalo: Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science, 282, 946-9 (1998)

59. Takashima, S., M. Kitakaze, M. Asakura, H. Asanuma, S. Sanada, F. Tashiro, H. Niwa, J. Miyazaki Ji, S. Hirota, Y. Kitamura, T. Kitsukawa, H. Fujisawa, M. Klagsbrun & M. Hori: Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A, 99, 3657-62 (2002)
PMid:11891274    PMCid:122579

60. Kendall, R. L. & K. A. Thomas: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A, 90, 10705-9 (1993)

61. Kearney, J. B., C. A. Ambler, K. A. Monaco, N. Johnson, R. G. Rapoport & V. L. Bautch: Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood, 99, 2397-407 (2002)

62. Ferrara, N., H. P. Gerber & J. LeCouter: The biology of VEGF and its receptors. Nat Med, 9, 669-76 (2003)

63. Hiratsuka, S., K. Nakao, K. Nakamura, M. Katsuki, Y. Maru & M. Shibuya: Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is important for vasculogenesis and angiogenesis in mice. Mol Cell Biol, 25, 346-54 (2005)
PMid:15601855    PMCid:538773

64. Fong, G. H., L. Zhang, D. M. Bryce & J. Peng: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development, 126, 3015-25 (1999)

65. Autiero, M., J. Waltenberger, D. Communi, A. Kranz, L. Moons, D. Lambrechts, J. Kroll, S. Plaisance, M. De Mol, F. Bono, S. Kliche, G. Fellbrich, K. Ballmer-Hofer, D. Maglione, U. Mayr-Beyrle, M. Dewerchin, S. Dombrowski, D. Stanimirovic, P. Van Hummelen, C. Dehio, D. J. Hicklin, G. Persico, J. M. Herbert, D. Communi, M. Shibuya, D. Collen, E. M. Conway & P. Carmeliet: Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med, 9, 936-43 (2003)

66. Olsson, A. K., A. Dimberg, J. Kreuger & L. Claesson-Welsh: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol, 7, 359-71 (2006)

67. Carmeliet, P., M. G. Lampugnani, L. Moons, F. Breviario, V. Compernolle, F. Bono, G. Balconi, R. Spagnuolo, B. Oosthuyse, M. Dewerchin, A. Zanetti, A. Angellilo, V. Mattot, D. Nuyens, E. Lutgens, F. Clotman, M. C. de Ruiter, A. Gittenberger-de Groot, R. Poelmann, F. Lupu, J. M. Herbert, D. Collen & E. Dejana: Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 98, 147-57 (1999)

68. Grazia Lampugnani, M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T. O. Daniel & E. Dejana: Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol, 161, 793-804 (2003)
PMid:12771128    PMCid:2199373

69. Shibuya, M.: Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep, 41, 278-86 (2008)

70. Karkkainen, M. J., T. Makinen & K. Alitalo: Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol, 4, E2-5 (2002)

71. Dumont, D. J., G. Gradwohl, G. H. Fong, M. C. Puri, M. Gertsenstein, A. Auerbach & M. L. Breitman: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev, 8, 1897-909 (1994)

72. Sato, T. N., Y. Tozawa, U. Deutsch, K. Wolburg-Buchholz, Y. Fujiwara, M. Gendron-Maguire, T. Gridley, H. Wolburg, W. Risau & Y. Qin: Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376, 70-4 (1995)

73. Suri, C., P. F. Jones, S. Patan, S. Bartunkova, P. C. Maisonpierre, S. Davis, T. N. Sato & G. D. Yancopoulos: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 87, 1171-80 (1996)

74. Puri, M. C., J. Rossant, K. Alitalo, A. Bernstein & J. Partanen: The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. Embo J, 14, 5884-91 (1995)
PMid:8846781    PMCid:394706

75. Gale, N. W., G. Thurston, S. F. Hackett, R. Renard, Q. Wang, J. McClain, C. Martin, C. Witte, M. H. Witte, D. Jackson, C. Suri, P. A. Campochiaro, S. J. Wiegand & G. D. Yancopoulos: Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell, 3, 411-23 (2002)

76. Pitera, J. E., A. S. Woolf, N. W. Gale, G. D. Yancopoulos & H. T. Yuan: Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol, 165, 1895-906 (2004)

77. Hackett, S. F., H. Ozaki, R. W. Strauss, K. Wahlin, C. Suri, P. Maisonpierre, G. Yancopoulos & P. A. Campochiaro: Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol, 184, 275-84 (2000)

78. Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopoulos, T. J. Daly, S. Davis, T. N. Sato & G. D. Yancopoulos: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55-60 (1997)

79. Reiss, Y., J. Droste, M. Heil, S. Tribulova, M. H. Schmidt, W. Schaper, D. J. Dumont & K. H. Plate: Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res, 101, 88-96 (2007)

80. Augustin, H. G., G. Y. Koh, G. Thurston & K. Alitalo: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol, 10, 165-77 (2009)

81. Fiedler, U., T. Krissl, S. Koidl, C. Weiss, T. Koblizek, U. Deutsch, G. Martiny-Baron, D. Marme & H. G. Augustin: Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem, 278, 1721-7 (2003)

82. Macdonald, P. R., P. Progias, B. Ciani, S. Patel, U. Mayer, M. O. Steinmetz & R. A. Kammerer: Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope. J Biol Chem, 281, 28408-14 (2006)

83. Marron, M. B., D. P. Hughes, M. D. Edge, C. L. Forder & N. P. Brindle: Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem, 275, 39741-6 (2000)

84. Tsiamis, A. C., P. N. Morris, M. B. Marron & N. P. Brindle: Vascular endothelial growth factor modulates the Tie-2:Tie-1 receptor complex. Microvasc Res, 63, 149-58 (2002)

85. Marron, M. B., H. Singh, T. A. Tahir, J. Kavumkal, H. Z. Kim, G. Y. Koh & N. P. Brindle: Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem, 282, 30509-17 (2007)
PMid:17728252    PMCid:2270410

86. Jones, N., K. Iljin, D. J. Dumont & K. Alitalo: Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol, 2, 257-67 (2001)

87. Fiedler, U., Y. Reiss, M. Scharpfenecker, V. Grunow, S. Koidl, G. Thurston, N. W. Gale, M. Witzenrath, S. Rosseau, N. Suttorp, A. Sobke, M. Herrmann, K. T. Preissner, P. Vajkoczy & H. G. Augustin: Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med, 12, 235-9 (2006)

88. Saharinen, P., L. Eklund, J. Miettinen, R. Wirkkala, A. Anisimov, M. Winderlich, A. Nottebaum, D. Vestweber, U. Deutsch, G. Y. Koh, B. R. Olsen & K. Alitalo: Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol, 10, 527-37 (2008)

89. Fukuhara, S., K. Sako, T. Minami, K. Noda, H. Z. Kim, T. Kodama, M. Shibuya, N. Takakura, G. Y. Koh & N. Mochizuki: Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol, 10, 513-26 (2008)

90. Scharpfenecker, M., U. Fiedler, Y. Reiss & H. G. Augustin: The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci, 118, 771-80 (2005)

91. Eklund, L. & B. R. Olsen: Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res, 312, 630-41 (2006)

92. Cao, Y., R. Cao & E. M. Hedlund: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med, 86, 785-9 (2008)

93. Soriano, P.: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev, 8, 1888-96 (1994)

94. Leveen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson & C. Betsholtz: Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev, 8, 1875-87 (1994)

95. Lindahl, P., B. R. Johansson, P. Leveen & C. Betsholtz: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277, 242-5 (1997)

96. Hellstrom, M., H. Gerhardt, M. Kalen, X. Li, U. Eriksson, H. Wolburg & C. Betsholtz: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol, 153, 543-53 (2001)
PMid:11331305    PMCid:2190573

97. Chen, S. & R. J. Lechleider: Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res, 94, 1195-202 (2004)

98. Armulik, A., A. Abramsson & C. Betsholtz: Endothelial/pericyte interactions. Circ Res, 97, 512-23 (2005)

99. Goumans, M. J., Z. Liu & P. ten Dijke: TGF-beta signaling in vascular biology and dysfunction. Cell Res, 19, 116-27 (2009)

100. Dickson, M. C., J. S. Martin, F. M. Cousins, A. B. Kulkarni, S. Karlsson & R. J. Akhurst: Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121, 1845-54 (1995)

101. Oh, S. P., T. Seki, K. A. Goss, T. Imamura, Y. Yi, P. K. Donahoe, L. Li, K. Miyazono, P. ten Dijke, S. Kim & E. Li: Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A, 97, 2626-31 (2000)

102. Deckers, M. M., R. L. van Bezooijen, G. van der Horst, J. Hoogendam, C. van Der Bent, S. E. Papapoulos & C. W. Lowik: Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 143, 1545-53 (2002)

103. Park, C., I. Afrikanova, Y. S. Chung, W. J. Zhang, E. Arentson, G. Fong Gh, A. Rosendahl & K. Choi: A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development, 131, 2749-62 (2004)

104. Little, S. C. & M. C. Mullins: Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol (2009)

105. Smadja, D. M., I. Bieche, J. S. Silvestre, S. Germain, A. Cornet, I. Laurendeau, J. P. Duong-Van-Huyen, J. Emmerich, M. Vidaud, M. Aiach & P. Gaussem: Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol, 28, 2137-43 (2008)

106. Winnier, G., M. Blessing, P. A. Labosky & B. L. Hogan: Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev, 9, 2105-16 (1995)

107. Mishina, Y., A. Suzuki, N. Ueno & R. R. Behringer: Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev, 9, 3027-37 (1995)

108. Gu, Z., E. M. Reynolds, J. Song, H. Lei, A. Feijen, L. Yu, W. He, D. T. MacLaughlin, J. van den Eijnden-van Raaij, P. K. Donahoe & E. Li: The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development, 126, 2551-61 (1999)

109. Beppu, H., M. Kawabata, T. Hamamoto, A. Chytil, O. Minowa, T. Noda & K. Miyazono: BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol, 221, 249-58 (2000)

110. Tremblay, K. D., N. R. Dunn & E. J. Robertson: Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development, 128, 3609-21 (2001)

111. Lechleider, R. J., J. L. Ryan, L. Garrett, C. Eng, C. Deng, A. Wynshaw-Boris & A. B. Roberts: Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol, 240, 157-67 (2001)

112. Chang, H., D. Huylebroeck, K. Verschueren, Q. Guo, M. M. Matzuk & A. Zwijsen: Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development, 126, 1631-42 (1999)

113. Yang, X., L. H. Castilla, X. Xu, C. Li, J. Gotay, M. Weinstein, P. P. Liu & C. X. Deng: Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development, 126, 1571-80 (1999)

114. Lan, Y., B. Liu, H. Yao, F. Li, T. Weng, G. Yang, W. Li, X. Cheng, N. Mao & X. Yang: Essential role of endothelial Smad4 in vascular remodeling and integrity. Mol Cell Biol, 27, 7683-92 (2007)
PMid:17724086    PMCid:2169040

115. Moser, M., O. Binder, Y. Wu, J. Aitsebaomo, R. Ren, C. Bode, V. L. Bautch, F. L. Conlon & C. Patterson: BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol, 23, 5664-79 (2003)
PMid:12897139    PMCid:166349

116. Heinke, J., L. Wehofsits, Q. Zhou, C. Zoeller, K. M. Baar, T. Helbing, A. Laib, H. Augustin, C. Bode, C. Patterson & M. Moser: BMPER Is an Endothelial Cell Regulator and Controls Bone Morphogenetic Protein-4-Dependent Angiogenesis. Circ Res (2008)

117. Moser, M., Q. Yu, C. Bode, J. W. Xiong & C. Patterson: BMPER is a conserved regulator of hematopoietic and vascular development in zebrafish. J Mol Cell Cardiol, 43, 243-53 (2007)
PMid:17618647    PMCid:2709533

118. Carmeliet, P. & M. Tessier-Lavigne: Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193-200 (2005)

119. Eichmann, A., T. Makinen & K. Alitalo: Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev, 19, 1013-21 (2005)

120. Flanagan, J. G. & P. Vanderhaeghen: The ephrins and Eph receptors in neural development. Annu Rev Neurosci, 21, 309-45 (1998)

121. Wang, H. U., Z. F. Chen & D. J. Anderson: Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 93, 741-53 (1998)

122. Gerety, S. S., H. U. Wang, Z. F. Chen & D. J. Anderson: Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell, 4, 403-14 (1999)

123. Suchting, S., C. Freitas, F. le Noble, R. Benedito, C. Breant, A. Duarte & A. Eichmann: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A, 104, 3225-30 (2007)
PMid:17296941    PMCid:1805603

124. Hellstrom, M., L. K. Phng, J. J. Hofmann, E. Wallgard, L. Coultas, P. Lindblom, J. Alva, A. K. Nilsson, L. Karlsson, N. Gaiano, K. Yoon, J. Rossant, M. L. Iruela-Arispe, M. Kalen, H. Gerhardt & C. Betsholtz: DLL4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445, 776-80 (2007)

125. Gitler, A. D., M. M. Lu & J. A. Epstein: PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell, 7, 107-16 (2004)

126. Torres-Vazquez, J., A. D. Gitler, S. D. Fraser, J. D. Berk, N. P. Van, M. C. Fishman, S. Childs, J. A. Epstein & B. M. Weinstein: Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell, 7, 117-23 (2004)

127. Wilson, B. D., M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo & D. Y. Li: Netrins promote developmental and therapeutic angiogenesis. Science, 313, 640-4 (2006)
PMid:16809490    PMCid:2577078

128. Park, K. W., C. M. Morrison, L. K. Sorensen, C. A. Jones, Y. Rao, C. B. Chien, J. Y. Wu, L. D. Urness & D. Y. Li: Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol, 261, 251-67 (2003)

129. Bedell, V. M., S. Y. Yeo, K. W. Park, J. Chung, P. Seth, V. Shivalingappa, J. Zhao, T. Obara, V. P. Sukhatme, I. A. Drummond, D. Y. Li & R. Ramchandran: roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A, 102, 6373-8 (2005)
PMid:15849270    PMCid:1088354

130. Sainson, R. C., J. Aoto, M. N. Nakatsu, M. Holderfield, E. Conn, E. Koller & C. C. Hughes: Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J, 19, 1027-9 (2005)


131. Lobov, I. B., R. A. Renard, N. Papadopoulos, N. W. Gale, G. Thurston, G. D. Yancopoulos & S. J. Wiegand: Delta-like ligand 4 (DLL4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A, 104, 3219-24 (2007)
PMid:17296940    PMCid:1805530

132. Soker, S., S. Takashima, H. Q. Miao, G. Neufeld & M. Klagsbrun: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92, 735-45 (1998)

133. Gluzman-Poltorak, Z., T. Cohen, Y. Herzog & G. Neufeld: Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 (corrected). J Biol Chem, 275, 18040-5 (2000)

134. Kawamura, H., X. Li, K. Goishi, L. A. van Meeteren, L. Jakobsson, S. Cebe-Suarez, A. Shimizu, D. Edholm, K. Ballmer-Hofer, L. Kjellen, M. Klagsbrun & L. Claesson-Welsh: Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood, 112, 3638-49 (2008)
PMid:18664627    PMCid:2572791

135. Sawamiphak, S., S. Seidel, C. L. Essmann, G. A. Wilkinson, M. E. Pitulescu, T. Acker & A. Acker-Palmer: Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature, 465, 487-91 (2010)

136. Wang, Y., M. Nakayama, M. E. Pitulescu, T. S. Schmidt, M. L. Bochenek, A. Sakakibara, S. Adams, A. Davy, U. Deutsch, U. Luthi, A. Barberis, L. E. Benjamin, T. Makinen, C. D. Nobes & R. H. Adams: Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature, 465, 483-6 (2010)

137. De Val, S. & B. L. Black: Transcriptional control of endothelial cell development. Dev Cell, 16, 180-95 (2009)
PMid:19217421    PMCid:2728550

138. De Val, S., N. C. Chi, S. M. Meadows, S. Minovitsky, J. P. Anderson, I. S. Harris, M. L. Ehlers, P. Agarwal, A. Visel, S. M. Xu, L. A. Pennacchio, I. Dubchak, P. A. Krieg, D. Y. Stainier & B. L. Black: Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell, 135, 1053-64 (2008)
PMid:19070576    PMCid:2782666

139. Oettgen, P.: Transcriptional regulation of vascular development. Circ Res, 89, 380-8 (2001)

140. Papanicolaou, K. N., Y. Izumiya & K. Walsh: Forkhead transcription factors and cardiovascular biology. Circ Res, 102, 16-31 (2008)
PMid:18174472    PMCid:2752022

141. Gorski, D. H. & K. Walsh: The role of homeobox genes in vascular remodeling and angiogenesis. Circ Res, 87, 865-72 (2000)

142. Atkins, G. B. & M. K. Jain: Role of Kruppel-like transcription factors in endothelial biology. Circ Res, 100, 1686-95 (2007)

143. Bernat, J. A., G. E. Crawford, A. Y. Ogurtsov, F. S. Collins, D. Ginsburg & A. S. Kondrashov: Distant conserved sequences flanking endothelial-specific promoters contain tissue-specific DNase-hypersensitive sites and over-represented motifs. Hum Mol Genet, 15, 2098-105 (2006)

144. Bloor, A. J., M. J. Sanchez, A. R. Green & B. Gottgens: The role of the stem cell leukemia (SCL) gene in hematopoietic and endothelial lineage specification. J Hematother Stem Cell Res, 11, 195-206 (2002)

145. Lugus, J. J., Y. S. Chung, J. C. Mills, S. I. Kim, J. Grass, M. Kyba, J. M. Doherty, E. H. Bresnick & K. Choi: GATA2 functions at multiple steps in hemangioblast development and differentiation. Development, 134, 393-405 (2007)

146. Kappel, A., T. M. Schlaeger, I. Flamme, S. H. Orkin, W. Risau & G. Breier: Role of SCL/Tal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood, 96, 3078-85 (2000)

147. Choi, J., L. Dong, J. Ahn, D. Dao, M. Hammerschmidt & J. N. Chen: FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol, 304, 735-44 (2007)
PMid:17306248    PMCid:1876740

148. Kappel, A., V. Ronicke, A. Damert, I. Flamme, W. Risau & G. Breier: Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood, 93, 4284-92 (1999)

149. Bhattacharya, R., S. Senbanerjee, Z. Lin, S. Mir, A. Hamik, P. Wang, P. Mukherjee, D. Mukhopadhyay & M. K. Jain: Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem, 280, 28848-51 (2005)

150. Wu, Y., M. Moser, V. L. Bautch & C. Patterson: HoxB5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells. Mol Cell Biol, 23, 5680-91 (2003)
PMid:12897140    PMCid:166331

151. Harris, A. L.: Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2, 38-47 (2002)

152. Hosaka, T., W. H. Biggs, 3rd, D. Tieu, A. D. Boyer, N. M. Varki, W. K. Cavenee & K. C. Arden: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A, 101, 2975-80 (2004)
PMid:14978268    PMCid:365730

153. Potente, M., C. Urbich, K. Sasaki, W. K. Hofmann, C. Heeschen, A. Aicher, R. Kollipara, R. A. DePinho, A. M. Zeiher & S. Dimmeler: Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest, 115, 2382-92 (2005)
PMid:16100571    PMCid:1184037

154. Paik, J. H., R. Kollipara, G. Chu, H. Ji, Y. Xiao, Z. Ding, L. Miao, Z. Tothova, J. W. Horner, D. R. Carrasco, S. Jiang, D. G. Gilliland, L. Chin, W. H. Wong, D. H. Castrillon & R. A. DePinho: FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell, 128, 309-23 (2007)
PMid:17254969    PMCid:1855089

155. Bruhl, T., C. Urbich, D. Aicher, A. Acker-Palmer, A. M. Zeiher & S. Dimmeler: Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ Res, 94, 743-51 (2004)

156. Rossig, L., C. Urbich, T. Bruhl, E. Dernbach, C. Heeschen, E. Chavakis, K. Sasaki, D. Aicher, F. Diehl, F. Seeger, M. Potente, A. Aicher, L. Zanetta, E. Dejana, A. M. Zeiher & S. Dimmeler: Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med, 201, 1825-35 (2005)
PMid:15928198    PMCid:2213253

157. Myers, C., A. Charboneau & N. Boudreau: Homeobox B3 promotes capillary morphogenesis and angiogenesis. J Cell Biol, 148, 343-51 (2000)
PMid:10648567    PMCid:2174277

158. Boudreau, N., C. Andrews, A. Srebrow, A. Ravanpay & D. A. Cheresh: Induction of the angiogenic phenotype by Hox D3. J Cell Biol, 139, 257-64 (1997)
PMid:9314544    PMCid:2139816

159. Winnik, S., M. Klinkert, H. Kurz, C. Zoeller, J. Heinke, Y. Wu, C. Bode, C. Patterson & M. Moser: HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving Angiopoietin-2. Cardiovasc Res (2009)

160. Petrova, T. V., T. Makinen, T. P. Makela, J. Saarela, I. Virtanen, R. E. Ferrell, D. N. Finegold, D. Kerjaschki, S. Yla-Herttuala & K. Alitalo: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. Embo J, 21, 4593-9 (2002)
PMid:12198161    PMCid:125413

161. Wigle, J. T. & G. Oliver: Prox1 function is required for the development of the murine lymphatic system. Cell, 98, 769-78 (1999)

162. Sanchez-Elsner, T., L. M. Botella, B. Velasco, A. Corbi, L. Attisano & C. Bernabeu: Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem, 276, 38527-35 (2001)

163. Hamik, A., B. Wang & M. K. Jain: Transcriptional regulators of angiogenesis. Arterioscler Thromb Vasc Biol, 26, 1936-47 (2006)

164. Benezra, R., S. Rafii & D. Lyden: The Id proteins and angiogenesis. Oncogene, 20, 8334-41 (2001)

165. Lee, J. S., Q. Yu, J. T. Shin, E. Sebzda, C. Bertozzi, M. Chen, P. Mericko, M. Stadtfeld, D. Zhou, L. Cheng, T. Graf, C. A. MacRae, J. J. Lepore, C. W. Lo & M. L. Kahn: Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell, 11, 845-57 (2006)

166. Meadows, S. M., M. C. Salanga & P. A. Krieg: Kruppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development. Development (2009)

167. Lewis, B. P., C. B. Burge & D. P. Bartel: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20 (2005)

168. Kuehbacher, A., C. Urbich, A. M. Zeiher & S. Dimmeler: Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res, 101, 59-68 (2007)

169. Suarez, Y., C. Fernandez-Hernando, J. S. Pober & W. C. Sessa: Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res, 100, 1164-73 (2007)

170. Yang, W. J., D. D. Yang, S. Na, G. E. Sandusky, Q. Zhang & G. Zhao: Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem, 280, 9330-5 (2005)

171. Fish, J. E., M. M. Santoro, S. U. Morton, S. Yu, R. F. Yeh, J. D. Wythe, K. N. Ivey, B. G. Bruneau, D. Y. Stainier & D. Srivastava: miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 15, 272-84 (2008)
PMid:18694566    PMCid:2604134

172. Wang, S., A. B. Aurora, B. A. Johnson, X. Qi, J. McAnally, J. A. Hill, J. A. Richardson, R. Bassel-Duby & E. N. Olson: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell, 15, 261-71 (2008)
PMid:18694565    PMCid:2685763

173. Nicoli, S., C. Standley, P. Walker, A. Hurlstone, K. E. Fogarty & N. D. Lawson: MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature, 464, 1196-200 (2010)
PMid:20364122    PMCid:2914488

174. Torres-Vazquez, J., M. Kamei & B. M. Weinstein: Molecular distinction between arteries and veins. Cell Tissue Res, 314, 43-59 (2003)

175. Aitsebaomo, J., A. L. Portbury, J. C. Schisler & C. Patterson: Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res, 103, 929-39 (2008)
PMid:18948631    PMCid:2760069

176. Pola, R., L. E. Ling, M. Silver, M. J. Corbley, M. Kearney, R. Blake Pepinsky, R. Shapiro, F. R. Taylor, D. P. Baker, T. Asahara & J. M. Isner: The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med, 7, 706-11 (2001)

177. Williams, C. K., J. L. Li, M. Murga, A. L. Harris & G. Tosato: Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood, 107, 931-9 (2006)
PMid:16219802    PMCid:1895896

178. Hofmann, J. J. & M. L. Iruela-Arispe: Notch signaling in blood vessels: who is talking to whom about what? Circ Res, 100, 1556-68 (2007)

179. Hutchins, G. M., A. Kessler-Hanna & G. W. Moore: Development of the coronary arteries in the embryonic human heart. Circulation, 77, 1250-7 (1988)

180. Mikawa, T. & R. G. Gourdie: Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol, 174, 221-32 (1996)

181. Manner, J.: Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec, 255, 212-26 (1999)

182. Cai, C. L., J. C. Martin, Y. Sun, L. Cui, L. Wang, K. Ouyang, L. Yang, L. Bu, X. Liang, X. Zhang, W. B. Stallcup, C. P. Denton, A. McCulloch, J. Chen & S. M. Evans: A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454, 104-8 (2008)

183. Zhou, B., Q. Ma, S. Rajagopal, S. M. Wu, I. Domian, J. Rivera-Feliciano, D. Jiang, A. von Gise, S. Ikeda, K. R. Chien & W. T. Pu: Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109-13 (2008)
PMid:18568026    PMCid:2574791

184. Red-Horse, K., H. Ueno, I. L. Weissman & M. A. Krasnow: Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549-53 (2010)
PMid:20336138    PMCid:2924433

185. Francois, M., A. Caprini, B. Hosking, F. Orsenigo, D. Wilhelm, C. Browne, K. Paavonen, T. Karnezis, R. Shayan, M. Downes, T. Davidson, D. Tutt, K. S. Cheah, S. A. Stacker, G. E. Muscat, M. G. Achen, E. Dejana & P. Koopman: Sox18 induces development of the lymphatic vasculature in mice. Nature, 456, 643-7 (2008)

186. Carmeliet, P., Y. S. Ng, D. Nuyens, G. Theilmeier, K. Brusselmans, I. Cornelissen, E. Ehler, V. V. Kakkar, I. Stalmans, V. Mattot, J. C. Perriard, M. Dewerchin, W. Flameng, A. Nagy, F. Lupu, L. Moons, D. Collen, P. A. D'Amore & D. T. Shima: Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med, 5, 495-502 (1999)

187. Bellomo, D., J. P. Headrick, G. U. Silins, C. A. Paterson, P. S. Thomas, M. Gartside, A. Mould, M. M. Cahill, I. D. Tonks, S. M. Grimmond, S. Townson, C. Wells, M. Little, M. C. Cummings, N. K. Hayward & G. F. Kay: Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res, 86, E29-35 (2000)

188. Aase, K., G. von Euler, X. Li, A. Ponten, P. Thoren, R. Cao, Y. Cao, B. Olofsson, S. Gebre-Medhin, M. Pekny, K. Alitalo, C. Betsholtz & U. Eriksson: Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation, 104, 358-64 (2001)

189. Carmeliet, P., L. Moons, A. Luttun, V. Vincenti, V. Compernolle, M. De Mol, Y. Wu, F. Bono, L. Devy, H. Beck, D. Scholz, T. Acker, T. DiPalma, M. Dewerchin, A. Noel, I. Stalmans, A. Barra, S. Blacher, T. Vandendriessche, A. Ponten, U. Eriksson, K. H. Plate, J. M. Foidart, W. Schaper, D. S. Charnock-Jones, D. J. Hicklin, J. M. Herbert, D. Collen & M. G. Persico: Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med, 7, 575-83 (2001)

190. Luttun, A., K. Brusselmans, H. Fukao, M. Tjwa, S. Ueshima, J. M. Herbert, O. Matsuo, D. Collen, P. Carmeliet & L. Moons: Loss of placental growth factor protects mice against vascular permeability in pathological conditions. Biochem Biophys Res Commun, 295, 428-34 (2002)

191. Xue, Y., X. Gao, C. E. Lindsell, C. R. Norton, B. Chang, C. Hicks, M. Gendron-Maguire, E. B. Rand, G. Weinmaster & T. Gridley: Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet, 8, 723-30 (1999)

192. Gale, N. W., M. G. Dominguez, I. Noguera, L. Pan, V. Hughes, D. M. Valenzuela, A. J. Murphy, N. C. Adams, H. C. Lin, J. Holash, G. Thurston & G. D. Yancopoulos: Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A, 101, 15949-54 (2004)
PMid:15520367    PMCid:524697

193. Krebs, L. T., J. R. Shutter, K. Tanigaki, T. Honjo, K. L. Stark & T. Gridley: Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev, 18, 2469-73 (2004)

194. Krebs, L. T., Y. Xue, C. R. Norton, J. R. Shutter, M. Maguire, J. P. Sundberg, D. Gallahan, V. Closson, J. Kitajewski, R. Callahan, G. H. Smith, K. L. Stark & T. Gridley: Notch signaling is essential for vascular morphogenesis in mice. Genes Dev, 14, 1343-52 (2000)
PMid:10837027    PMCid:316662

195. Limbourg, F. P., K. Takeshita, F. Radtke, R. T. Bronson, M. T. Chin & J. K. Liao: Essential role of endothelial Notch1 in angiogenesis. Circulation, 111, 1826-32 (2005)
PMid:15809373    PMCid:2633594

196. Fischer, A., N. Schumacher, M. Maier, M. Sendtner & M. Gessler: The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev, 18, 901-11 (2004)

197. Kokubo, H., S. Miyagawa-Tomita, M. Nakazawa, Y. Saga & R. L. Johnson: Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol, 278, 301-9 (2005)

198. Zhou, M., R. L. Sutliff, R. J. Paul, J. N. Lorenz, J. B. Hoying, C. C. Haudenschild, M. Yin, J. D. Coffin, L. Kong, E. G. Kranias, W. Luo, G. P. Boivin, J. J. Duffy, S. A. Pawlowski & T. Doetschman: Fibroblast growth factor 2 control of vascular tone. Nat Med, 4, 201-7 (1998)

199. Deng, C. X., A. Wynshaw-Boris, M. M. Shen, C. Daugherty, D. M. Ornitz & P. Leder: Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev, 8, 3045-57 (1994)

200. Sanford, L. P., I. Ormsby, A. C. Gittenberger-de Groot, H. Sariola, R. Friedman, G. P. Boivin, E. L. Cardell & T. Doetschman: TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 124, 2659-70 (1997)

201. Zhang, H. & A. Bradley: Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122, 2977-86 (1996)

202. Larsson, J., M. J. Goumans, L. J. Sjostrand, M. A. van Rooijen, D. Ward, P. Leveen, X. Xu, P. ten Dijke, C. L. Mummery & S. Karlsson: Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. Embo J, 20, 1663-73 (2001)
PMid:11285230    PMCid:145465

203. Oshima, M., H. Oshima & M. M. Taketo: TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol, 179, 297-302 (1996)

204. Urness, L. D., L. K. Sorensen & D. Y. Li: Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet, 26, 328-31 (2000)

205. Bourdeau, A., D. J. Dumont & M. Letarte: A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest, 104, 1343-51 (1999)
PMid:10562296    PMCid:409846

206. Li, D. Y., L. K. Sorensen, B. S. Brooke, L. D. Urness, E. C. Davis, D. G. Taylor, B. B. Boak & D. P. Wendel: Defective angiogenesis in mice lacking endoglin. Science, 284, 1534-7 (1999)

207. Arthur, H. M., J. Ure, A. J. Smith, G. Renforth, D. I. Wilson, E. Torsney, R. Charlton, D. V. Parums, T. Jowett, D. A. Marchuk, J. Burn & A. G. Diamond: Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol, 217, 42-53 (2000)

208. Sorensen, L. K., B. S. Brooke, D. Y. Li & L. D. Urness: Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol, 261, 235-50 (2003)

209. Liu, D., J. Wang, B. Kinzel, M. Mueller, X. Mao, R. Valdez, Y. Liu & E. Li: Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood, 110, 1502-10 (2007)

210. Beppu, H., F. Ichinose, N. Kawai, R. C. Jones, P. B. Yu, W. M. Zapol, K. Miyazono, E. Li & K. D. Bloch: BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol, 287, L1241-7 (2004)

211. Yang, X., C. Li, X. Xu & C. Deng: The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A, 95, 3667-72 (1998)

212. Sirard, C., J. L. de la Pompa, A. Elia, A. Itie, C. Mirtsos, A. Cheung, S. Hahn, A. Wakeham, L. Schwartz, S. E. Kern, J. Rossant & T. W. Mak: The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev, 12, 107-19 (1998)

213. Byrd, N., S. Becker, P. Maye, R. Narasimhaiah, B. St-Jacques, X. Zhang, J. McMahon, A. McMahon & L. Grabel: Hedgehog is required for murine yolk sac angiogenesis. Development, 129, 361-72 (2002)

214. Pepicelli, C. V., P. M. Lewis & A. P. McMahon: Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol, 8, 1083-6 (1998)

215. Zhang, X. M., M. Ramalho-Santos & A. P. McMahon: Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell, 105, 781-92 (2001)

216. Adams, R. H., G. A. Wilkinson, C. Weiss, F. Diella, N. W. Gale, U. Deutsch, W. Risau & R. Klein: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev, 13, 295-306 (1999)

217. Gerety, S. S. & D. J. Anderson: Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development, 129, 1397-410 (2002)

218. Kawasaki, T., T. Kitsukawa, Y. Bekku, Y. Matsuda, M. Sanbo, T. Yagi & H. Fujisawa: A requirement for neuropilin-1 in embryonic vessel formation. Development, 126, 4895-902 (1999)

219. Gerhardt, H., C. Ruhrberg, A. Abramsson, H. Fujisawa, D. Shima & C. Betsholtz: Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn, 231, 503-9 (2004)

220. Gu, C., E. R. Rodriguez, D. V. Reimert, T. Shu, B. Fritzsch, L. J. Richards, A. L. Kolodkin & D. D. Ginty: Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell, 5, 45-57 (2003)

221. Yuan, L., D. Moyon, L. Pardanaud, C. Breant, M. J. Karkkainen, K. Alitalo & A. Eichmann: Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development, 129, 4797-806 (2002)

222. Behar, O., J. A. Golden, H. Mashimo, F. J. Schoen & M. C. Fishman: Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature, 383, 525-8 (1996)

223. Serini, G., D. Valdembri, S. Zanivan, G. Morterra, C. Burkhardt, F. Caccavari, L. Zammataro, L. Primo, L. Tamagnone, M. Logan, M. Tessier-Lavigne, M. Taniguchi, A. W. Puschel & F. Bussolino: Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 424, 391-7 (2003)

224. Fiore, R., B. Rahim, V. M. Christoffels, A. F. Moorman & A. W. Puschel: Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol, 25, 2310-9 (2005)
PMid:15743826    PMCid:1061610

225. Gu, C., Y. Yoshida, J. Livet, D. V. Reimert, F. Mann, J. Merte, C. E. Henderson, T. M. Jessell, A. L. Kolodkin & D. D. Ginty: Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science, 307, 265-8 (2005)

226. Lu, X., F. Le Noble, L. Yuan, Q. Jiang, B. De Lafarge, D. Sugiyama, C. Breant, F. Claes, F. De Smet, J. L. Thomas, M. Autiero, P. Carmeliet, M. Tessier-Lavigne & A. Eichmann: The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 432, 179-86 (2004)

227. Navankasattusas, S., K. J. Whitehead, A. Suli, L. K. Sorensen, A. H. Lim, J. Zhao, K. W. Park, J. D. Wythe, K. R. Thomas, C. B. Chien & D. Y. Li: The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development, 135, 659-67 (2008)
PMid:18223200    PMCid:2612632

228. Robb, L., I. Lyons, R. Li, L. Hartley, F. Kontgen, R. P. Harvey, D. Metcalf & C. G. Begley: Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A, 92, 7075-9 (1995)

229. Shivdasani, R. A., E. L. Mayer & S. H. Orkin: Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 373, 432-4 (1995)

230. Furuyama, T., K. Kitayama, Y. Shimoda, M. Ogawa, K. Sone, K. Yoshida-Araki, H. Hisatsune, S. Nishikawa, K. Nakayama, K. Nakayama, K. Ikeda, N. Motoyama & N. Mori: Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem, 279, 34741-9 (2004)

231. Spyropoulos, D. D., P. N. Pharr, K. R. Lavenburg, P. Jackers, T. S. Papas, M. Ogawa & D. K. Watson: Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol, 20, 5643-52 (2000)
PMid:10891501    PMCid:86032

232. Ryan, H. E., J. Lo & R. S. Johnson: HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J, 17, 3005-15 (1998)
PMid:9606183    PMCid:1170640

233. Iyer, N. V., L. E. Kotch, F. Agani, S. W. Leung, E. Laughner, R. H. Wenger, M. Gassmann, J. D. Gearhart, A. M. Lawler, A. Y. Yu & G. L. Semenza: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 12, 149-62 (1998)

234. Peng, J., L. Zhang, L. Drysdale & G. H. Fong: The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A, 97, 8386-91 (2000)

235. Maltepe, E., J. V. Schmidt, D. Baunoch, C. A. Bradfield & M. C. Simon: Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 386, 403-7 (1997)

236. Lyden, D., A. Z. Young, D. Zagzag, W. Yan, W. Gerald, R. O'Reilly, B. L. Bader, R. O. Hynes, Y. Zhuang, K. Manova & R. Benezra: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401, 670-7 (1999)

237. Baudino, T. A., C. McKay, H. Pendeville-Samain, J. A. Nilsson, K. H. Maclean, E. L. White, A. C. Davis, J. N. Ihle & J. L. Cleveland: c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev, 16, 2530-43 (2002)

238. Pereira, F. A., Y. Qiu, G. Zhou, M. J. Tsai & S. Y. Tsai: The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev, 13, 1037-49 (1999)

239. You, L. R., F. J. Lin, C. T. Lee, F. J. DeMayo, M. J. Tsai & S. Y. Tsai: Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435, 98-104 (2005)

Abbreviations: AGM: aorta-gonad-mesonephros, Alk: activin receptor-like Kinase, Ang: angiopoetins, BMP: bone morphogenetic protein, BMPER: BMP endothelial cell precursor-derived regulator, BMPRIa/b: BMP-type Ia/b receptor, co-Smad: common mediator Smad, COUP-TFII: chicken ovalbumin upstream promoter-transcription factor II, DLL4: delta-like-4, EC: endothelial cells, ECM: extracellular matrix, EPC: endothelial progenitor cell, Eph: erythropoietin-producing human hepatocellular carcinoma receptor, Erk: extracellular-signal regulated kinase, ESC: embryonic stem cell, FGF/R: fibroblast growth factor/ receptor, FOX: forkhead box, HEY: hairy and enhancer of split-related, HIF: hypoxia-inducible factor, HOX: homeobox, HSPG: heparan sulphate proteoglycans, ID: inhibitors of DNA binding, I-Smad: inhibitory Smads, KLF: kruepple-like factor, MAPK: mitogen-activated protein kinases, miRNA: micro Ribonucleic acid, MMP: matrix metalloproteinase, Nrp: neuropilin, PDGF/R: platelet-derived growth factor/ receptor, PI3K: phosphatidylinositol-3-kinase, PLGF: placental growth factor, PROX-1: prospero-related homeobox1, ROBO: round-about receptor, R-Smad: receptor-regulated Smad, RTK: receptor tyrosine kinase, Shh: sonic hedgehog, Smad: sma proteins from Caenorhabditis elegans and drosophila mothers against decapentaplegic protein (MAD), SMC: smooth muscle cell, SOX: sry related HMG box, TF: transcription factor, TGF-beta/R: transforming growth factor-beta/ receptor, Tie: tyrosine kinase with Ig and EGF homology, UNC5: uncoordinated-5, VE-cadherin: vascular endothelial-cadherin, VEGF/R: vascular endothelial growth factor/ receptor

Key Words: Vascular development, Embryogenesis, Angiogenic signaling, Endothelium, VEGF, Angiopoetins, TGF-beta, Review

Send correspondence to: Martin Moser, University of Freiburg, Department of Internal Medicine III, Hugstetter Strasse 55, 79106 Freiburg, Germany, Tel: 497612703401, Fax: 497612703254, E-mail:Martin.Moser@uniklinik-freiburg.de