[Frontiers in Bioscience, Landmark, 20, 37-77, January 1, 2015]

The role of microRNAs in skeletal muscle health and disease

Tyler J. Kirby 1, 2 , Thomas Chaillou 1, 2 , John J. McCarthy 1, 2

1Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA


1. Abstract
2. Introduction
    2.1. History
    2.2. Biogenesis
    2.3. Tissue-specific expression
    2.4. MyomiRs
3. MicroRNA regulation of myogenesis
    3.1. Proliferation
    3.2. Differentiation
    3.3. Quiescence
4. Manipulation of microRNA expression on de novo skeletal muscle formation
    4.1. Development
    4.2. Regeneration
    4.3. Innervation
5. MicroRNAs in response to muscular activity
    5.1. MiRNAs in response to increased mechanical demand
    5.2. MiRNAs in response to increased metabolic demand
    5.3. Physical activity and circulating microRNA
6. MicroRNA in skeletal muscle disorder and atrophy
    6.1. Primary muscular disorder
      6.1.1. Duchenne muscle dystrophy
      6.1.2. Myotonic dystrophy type 1 and 2
      6.1.3. Facioscapulohumeral dystrophy
      6.1.4. Inflammatory myopathies
    6.2. Secondary muscular disorder
      6.2.1. Amyotrophic lateral sclerosis
      6.2.2. Disease-realted muscular disorder Diabetes mellitus Chronic kidney disease Chronic obstructive pulmonary disease Glucocorticoid induced-atrophy
      6.2.3. Disuse-related muscular disorder
    6.3. Aging
    6.4. Rhabdomyosarcoma
7. Conclusions
8. Acknowledgements
9. References


Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ~ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.


1. R. C. Lee, R. L. Feinbaum and V. Ambros: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-54 (1993)
DOI: 10.1016/0092-8674(93)90529-Y

2. B. Wightman, I. Ha and G. Ruvkun: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855-62 (1993)
DOI: 10.1016/0092-8674(93)90530-4

3. R. Lee, R. Feinbaum and V. Ambros: A short history of a short RNA. Cell, 116(2 Suppl), S89-92, 1 p following S96 (2004)

4. G. Ruvkun, B. Wightman and I. Ha: The 20 years it took to recognize the importance of tiny RNAs. Cell, 116(2 Suppl), S93-6, 2 p following S96 (2004)

5. A. E. Pasquinelli, B. J. Reinhart, F. Slack, M. Q. Martindale, M. I. Kuroda, B. Maller, D. C. Hayward, E. E. Ball, B. Degnan, P. Muller, J. Spring, A. Srinivasan, M. Fishman, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson and G. Ruvkun: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86-9 (2000)
DOI: 10.1038/35040556

6. M. Lagos-Quintana, R. Rauhut, W. Lendeckel and T. Tuschl: Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853-8 (2001)
DOI: 10.1126/science.1064921

7. N. C. Lau, L. P. Lim, E. G. Weinstein and D. P. Bartel: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858-62 (2001)
DOI: 10.1126/science.1065062

8. R. C. Lee and V. Ambros: An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543), 862-4 (2001) doi:10.1126/science.1065329
DOI: 10.1126/science.1065329

9. M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel and T. Tuschl: Identification of tissue-specific microRNAs from mouse. Curr Biol, 12(9), 735-9 (2002)
DOI: 10.1016/S0960-9822(02)00809-6

10. X. Cai, C. H. Hagedorn and B. R. Cullen: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12), 1957-66 (2004)
DOI: 10.1261/rna.7135204

11. Y. Lee, M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek and V. N. Kim: MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20), 4051-60 (2004)
DOI: 10.1038/sj.emboj.7600385

12. I. Godnic, M. Zorc, D. Jevsinek Skok, G. A. Calin, S. Horvat, P. Dovc, M. Kovac and T. Kunej: Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS One, 8(6), e65165 (2013)
DOI: 10.1371/journal.pone.0065165

13. A. Rodriguez, S. Griffiths-Jones, J. L. Ashurst and A. Bradley: Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A), 1902-10 (2004)
DOI: 10.1101/gr.2722704

14. A. M. Monteys, R. M. Spengler, J. Wan, L. Tecedor, K. A. Lennox, Y. Xing and B. L. Davidson: Structure and activity of putative intronic miRNA promoters. RNA, 16(3), 495-505 (2010)
DOI: 10.1261/rna.1731910

15. R. I. Gregory, K. P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch and R. Shiekhattar: The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235-40 (2004)
DOI: 10.1038/nature03120

16. M. Landthaler, A. Yalcin and T. Tuschl: The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 14(23), 2162-7 (2004)
DOI: 10.1016/j.cub.2004.11.001

17. J. Han, Y. Lee, K. H. Yeom, J. W. Nam, I. Heo, J. K. Rhee, S. Y. Sohn, Y. Cho, B. T. Zhang and V. N. Kim: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125(5), 887-901 (2006)
DOI: 10.1016/j.cell.2006.03.043

18. A. Freischmidt, K. Muller, A. C. Ludolph and J. H. Weishaupt: Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun, 1(1), 42 (2013)
DOI: 10.1186/2051-5960-1-42

19. B. N. Davis, A. C. Hilyard, G. Lagna and A. Hata: SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 454(7200), 56-61 (2008)
DOI: 10.1038/nature07086

20. Y. Yamanaka, H. Tagawa, N. Takahashi, A. Watanabe, Y. M. Guo, K. Iwamoto, J. Yamashita, H. Saitoh, Y. Kameoka, N. Shimizu, R. Ichinohasama and K. Sawada: Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood, 114(15), 3265-75 (2009)
DOI: 10.1182/blood-2009-06-222794

21. M. T. Bohnsack, K. Czaplinski and D. Gorlich: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10(2), 185-91 (2004)
DOI: 10.1261/rna.5167604

22. R. Yi, Y. Qin, I. G. Macara and B. R. Cullen: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24), 3011-6 (2003)
DOI: 10.1101/gad.1158803

23. I. J. Macrae, K. Zhou, F. Li, A. Repic, A. N. Brooks, W. Z. Cande, P. D. Adams and J. A. Doudna: Structural basis for double-stranded RNA processing by Dicer. Science, 311(5758), 195-8 (2006)
DOI: 10.1126/science.1121638

24. A. E. Pasquinelli: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet, 13(4), 271-82 (2012)

25. E. F. Finnegan and A. E. Pasquinelli: MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol, 48(1), 51-68 (2013)
DOI: 10.3109/10409238.2012.738643

26. J. Pilotte, E. E. Dupont-Versteegden and P. W. Vanderklish: Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3. PLoS One, 6(12), e28446 (2011)
DOI: 10.1371/journal.pone.0028446

27. E. E. Dupont-Versteegden, R. Nagarajan, M. L. Beggs, E. D. Bearden, P. M. Simpson and C. A. Peterson: Identification of cold-shock protein RBM3 as a possible regulator of skeletal muscle size through expression profiling. Am J Physiol Regul Integr Comp Physiol, 295(4), R1263-73 (2008)
DOI: 10.1152/ajpregu.90455.2008

28. J. S. Yang and E. C. Lai: Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6), 892-903 (2011)
DOI: 10.1016/j.molcel.2011.07.024

29. D. Langenberger, M. V. Cakir, S. Hoffmann and P. F. Stadler: Dicer-processed small RNAs: rules and exceptions. J Exp Zool B Mol Dev Evol, 320(1), 35-46 (2012)
DOI: 10.1002/jez.b.22481

30. S. Cheloufi, C. O. Dos Santos, M. M. Chong and G. J. Hannon: A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298), 584-9 (2010)
DOI: 10.1038/nature09092

31. P. Dmitriev, A. Barat, A. Polesskaya, M. J. O’Connell, T. Robert, P. Dessen, T. A. Walsh, V. Lazar, A. Turki, G. Carnac, D. Laoudj-Chenivesse, M. Lipinski and Y. S. Vassetzky: Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics, 14, 265 (2013)
DOI: 10.1186/1471-2164-14-265

32. P. K. Davidsen, I. J. Gallagher, J. W. Hartman, M. A. Tarnopolsky, F. Dela, J. W. Helge, J. A. Timmons and S. M. Phillips: High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985), 110(2), 309-17 (2011)
DOI: 10.1152/japplphysiol.00901.2010

33. D.M. Patrick, C.C. Zhang, Y. Tao, H. Yao, X. Qi, R.J. Schwartz, L.J-S. Huang, & E.N. Olson, E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 24, 1614-9 (2010)
DOI: 10.1101/gad.1942810

34. L. F. Sempere, S. Freemantle, I. Pitha-Rowe, E. Moss, E. Dmitrovsky and V. Ambros: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 5(3), R13 (2004)
DOI: 10.1186/gb-2004-5-3-r13

35. J. J. McCarthy: MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta, 1779(11), 682-91 (2008)
DOI: 10.1016/j.bbagrm.2008.03.001

36. E. M. Small, J. R. O’Rourke, V. Moresi, L. B. Sutherland, J. McAnally, R. D. Gerard, J. A. Richardson and E. N. Olson: Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A, 107(9), 4218-23 (2010)
DOI: 10.1073/pnas.1000300107

37. E. van Rooij, D. Quiat, B. A. Johnson, L. B. Sutherland, X. Qi, J. A. Richardson, R. J. Kelm, Jr. and E. N. Olson: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 17(5), 662-73 (2009)
DOI: 10.1016/j.devcel.2009.10.013

38. E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill and E. N. Olson: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575-9 (2007)
DOI: 10.1126/science.1139089

39. J. J. McCarthy and K. A. Esser: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 102(1), 306-13 (2007)
DOI: 10.1152/japplphysiol.00932.2006

40. N. Liu and E. N. Olson: MicroRNA regulatory networks in cardiovascular development. Dev Cell, 18(4), 510-25 (2010)
DOI: 10.1016/j.devcel.2010.03.010

41. L. P. Lim, N. C. Lau, P. Garrett-Engele, A. Grimson, J. M. Schelter, J. Castle, D. P. Bartel, P. S. Linsley and J. M. Johnson: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769-73 (2005)
DOI: 10.1038/nature03315

42. N. S. Sokol and V. Ambros: Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 19(19), 2343-54 (2005)
DOI: 10.1101/gad.1356105

43. Y. Liu, M. Li, J. Ma, J. Zhang, C. Zhou, T. Wang, X. Gao and X. Li: Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol, 14, 7 (2013)
DOI: 10.1186/1471-2199-14-7

44. S. Muroya, M. Taniguchi, M. Shibata, M. Oe, K. Ojima, I. Nakajima and K. Chikuni: Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing. J Anim Sci, 91(1), 90-103 (2013)
DOI: 10.2527/jas.2012-5371

45. T. E. Callis, K. Pandya, H. Y. Seok, R. H. Tang, M. Tatsuguchi, Z. P. Huang, J. F. Chen, Z. Deng, B. Gunn, J. Shumate, M. S. Willis, C. H. Selzman and D. Z. Wang: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 119(9), 2772-86 (2009)
DOI: 10.1172/JCI36154

46. N. Liu, A. H. Williams, J. M. Maxeiner, S. Bezprozvannaya, J. M. Shelton, J. A. Richardson, R. Bassel-Duby and E. N. Olson: microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest, 122(6), 2054-65 (2012)
DOI: 10.1172/JCI62656

47. A. H. Williams, G. Valdez, V. Moresi, X. Qi, J. McAnally, J. L. Elliott, R. Bassel-Duby, J. R. Sanes and E. N. Olson: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science, 326(5959), 1549-54 (2009)
DOI: 10.1126/science.1181046

48. Y. Zhao, J. F. Ransom, A. Li, V. Vedantham, M. von Drehle, A. N. Muth, T. Tsuchihashi, M. T. McManus, R. J. Schwartz and D. Srivastava: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303-17 (2007)
DOI: 10.1016/j.cell.2007.03.030

49. M. P. Heyer, A. K. Pani, R. J. Smeyne, P. J. Kenny and G. Feng: Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci, 32(32), 10887-94 (2012)
DOI: 10.1523/JNEUROSCI.1732-12.2012

50. A. K. Leung and P. A. Sharp: MicroRNA functions in stress responses. Mol Cell, 40(2), 205-15 (2010)
DOI: 10.1016/j.molcel.2010.09.027

51. H. K. Kim, Y. S. Lee, U. Sivaprasad, A. Malhotra and A. Dutta: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol, 174(5), 677-87 (2006)
DOI: 10.1083/jcb.200603008

52. J. F. Chen, E. M. Mandel, J. M. Thomson, Q. Wu, T. E. Callis, S. M. Hammond, F. L. Conlon and D. Z. Wang: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 38(2), 228-33 (2006)
DOI: 10.1038/ng1725

53. N. Liu, S. Bezprozvannaya, A. H. Williams, X. Qi, J. A. Richardson, R. Bassel-Duby and E. N. Olson: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev, 22(23), 3242-54 (2008)
DOI: 10.1101/gad.1738708

54. N. Liu, S. Bezprozvannaya, J. M. Shelton, M. I. Frisard, M. W. Hulver, R. P. McMillan, Y. Wu, K. A. Voelker, R. W. Grange, J. A. Richardson, R. Bassel-Duby and E. N. Olson: Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest, 121(8), 3258-68 (2011)
DOI: 10.1172/JCI46267

55. C. F. Bentzinger, Y. X. Wang and M. A. Rudnicki: Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol, 4(2) (2012)
DOI: 10.1101/cshperspect.a008342

56. M. Buckingham: Skeletal muscle formation in vertebrates. Curr Opin Genet Dev, 11(4), 440-8 (2001)
DOI: 10.1016/S0959-437X(00)00215-X

57. M. Buckingham: Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev, 16(5), 525-32 (2006)
DOI: 10.1016/j.gde.2006.08.008

58. M. Buckingham and P. W. Rigby: Gene Regulatory Networks and Transcriptional Mechanisms that Control Myogenesis. Dev Cell, 28(3), 225-238 (2014)
DOI: 10.1016/j.devcel.2013.12.020

59. A. S. Brack and T. A. Rando: Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell, 10(5), 504-14 (2012)
DOI: 10.1016/j.stem.2012.04.001

60. Z. Yablonka-Reuveni: The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem, 59(12), 1041-59 (2011)
DOI: 10.1369/0022155411426780

61. H. Yin, F. Price and M. A. Rudnicki: Satellite cells and the muscle stem cell niche. Physiol Rev, 93(1), 23-67 (2013)
DOI: 10.1152/physrev.00043.2011

62. M. Buckingham, L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt and F. Relaix: The formation of skeletal muscle: from somite to limb. J Anat, 202(1), 59-68 (2003)
DOI: 10.1046/j.1469-7580.2003.00139.x

63. Z. Chen, S. Liang, Y. Zhao and Z. Han: miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development. Development, 139(19), 3543-52 (2012)
DOI: 10.1242/dev.082719

64. J. Gagan, B. K. Dey, R. Layer, Z. Yan and A. Dutta: Notch3 and Mef2c proteins are mutually antagonistic via Mkp1 protein and miR-1/206 microRNAs in differentiating myoblasts. J Biol Chem, 287(48), 40360-70 (2012)
DOI: 10.1074/jbc.M112.378414

65. S. Ikeda, A. He, S. W. Kong, J. Lu, R. Bejar, N. Bodyak, K. H. Lee, Q. Ma, P. M. Kang, T. R. Golub and W. T. Pu: MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol, 29(8), 2193-204 (2009)
DOI: 10.1128/MCB.01222-08

66. H. Y. Seok, M. Tatsuguchi, T. E. Callis, A. He, W. T. Pu and D. Z. Wang: miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem, 286(41), 35339-46 (2011)
DOI: 10.1074/jbc.M111.273276

67. T. H. Cheung, N. L. Quach, G. W. Charville, L. Liu, L. Park, A. Edalati, B. Yoo, P. Hoang and T. A. Rando: Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 482(7386), 524-8 (2012)
DOI: 10.1038/nature10834

68. C. G. Crist, D. Montarras and M. Buckingham: Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell, 11(1), 118-26 (2012)
DOI: 10.1016/j.stem.2012.03.011

69. Z. Huang, X. Chen, B. Yu, J. He and D. Chen: MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun, 423(2), 265-9 (2012)
DOI: 10.1016/j.bbrc.2012.05.106

70. C. McFarlane, A. Vajjala, H. Arigela, S. Lokireddy, X. Ge, S. Bonala, R. Manickam, R. Kambadur and M. Sharma: Negative Auto-Regulation of Myostatin Expression is Mediated by Smad3 and MicroRNA-27. PLoS One, 9(1), e87687 (2014)
DOI: 10.1371/journal.pone.0087687

71. Y. Chen, J. Gelfond, L. M. McManus and P. K. Shireman: Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics, 43(10), 621-30 (2011)
DOI: 10.1152/physiolgenomics.00136.2010

72. J. F. Chen, Y. Tao, J. Li, Z. Deng, Z. Yan, X. Xiao and D. Z. Wang: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol, 190(5), 867-79 (2010)
DOI: 10.1083/jcb.200911036

73. B. K. Dey, J. Gagan and A. Dutta: miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol, 31(1), 203-14 (2011)
DOI: 10.1128/MCB.01009-10

74. C. E. Winbanks, B. Wang, C. Beyer, P. Koh, L. White, P. Kantharidis and P. Gregorevic: TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem, 286(16), 13805-14 (2011)
DOI: 10.1074/jbc.M110.192625

75. D. Zhang, X. Li, C. Chen, Y. Li, L. Zhao, Y. Jing, W. Liu, X. Wang, Y. Zhang, H. Xia, Y. Chang, X. Gao, J. Yan and H. Ying: Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration. PLoS One, 7(7), e41478 (2012)
DOI: 10.1371/journal.pone.0041478

76. C. Anderson, H. Catoe and R. Werner: MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res, 34(20), 5863-71 (2006)
DOI: 10.1093/nar/gkl743

77. R. Squecco, C. Sassoli, F. Nuti, M. Martinesi, F. Chellini, D. Nosi, S. Zecchi-Orlandini, F. Francini, L. Formigli and E. Meacci: Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell, 17(11), 4896-910 (2006)
DOI: 10.1091/mbc.E06-03-0243

78. H. Reinecke, E. Minami, J. I. Virag and C. E. Murry: Gene transfer of connexin43 into skeletal muscle. Hum Gene Ther, 15(7), 627-36 (2004)
DOI: 10.1089/1043034041361253

79. K. Goljanek-Whysall, H. Pais, T. Rathjen, D. Sweetman, T. Dalmay and A. Munsterberg: Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J Cell Sci, 125(Pt 15), 3590-600 (2012)
DOI: 10.1242/jcs.101758

80. Y. Feng, L. L. Niu, W. Wei, W. Y. Zhang, X. Y. Li, J. H. Cao and S. H. Zhao: A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis, 4, e934 (2013)
DOI: 10.1038/cddis.2013.462

81. N. Liu, A. H. Williams, Y. Kim, J. McAnally, S. Bezprozvannaya, L. B. Sutherland, J. A. Richardson, R. Bassel-Duby and E. N. Olson: An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A, 104(52), 20844-9 (2007)
DOI: 10.1073/pnas.0710558105

82. C. F. Wong and R. L. Tellam: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem, 283(15), 9836-43 (2008)
DOI: 10.1074/jbc.M709614200

83. B. K. Dey, J. Gagan, Z. Yan and A. Dutta: miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev, 26(19), 2180-91 (2012)
DOI: 10.1101/gad.198085.112

84. A. H. Juan, R. M. Kumar, J. G. Marx, R. A. Young and V. Sartorelli: Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell, 36(1), 61-74 (2009)
DOI: 10.1016/j.molcel.2009.08.008

85. J. Liu, X. J. Luo, A. W. Xiong, Z. D. Zhang, S. Yue, M. S. Zhu and S. Y. Cheng: MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem, 285(34), 26599-607 (2010)
DOI: 10.1074/jbc.M110.115824

86. K. Shi, J. Lu, Y. Zhao, L. Wang, J. Li, B. Qi, H. Li and C. Ma: MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone, 55(2), 487-94 (2013)
DOI: 10.1016/j.bone.2013.04.002

87. S. Sarkar, B. K. Dey and A. Dutta: MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell, 21(13), 2138-49 (2010)
DOI: 10.1091/mbc.E10-01-0062

88. H. Wang, R. Garzon, H. Sun, K. J. Ladner, R. Singh, J. Dahlman, A. Cheng, B. M. Hall, S. J. Qualman, D. S. Chandler, C. M. Croce and D. C. Guttridge: NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369-81 (2008)
DOI: 10.1016/j.ccr.2008.10.006

89. X. H. Wang, Z. Hu, J. D. Klein, L. Zhang, F. Fang and W. E. Mitch: Decreased miR-29 suppresses myogenesis in CKD. J Am Soc Nephrol, 22(11), 2068-76 (2011)
DOI: 10.1681/ASN.2010121278

90. W. Wei, H. B. He, W. Y. Zhang, H. X. Zhang, J. B. Bai, H. Z. Liu, J. H. Cao, K. C. Chang, X. Y. Li and S. H. Zhao: miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis, 4, e668 (2013)
DOI: 10.1038/cddis.2013.184

91. L. Zhou, L. Wang, L. Lu, P. Jiang, H. Sun and H. Wang: A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem, 287(30), 25255-65 (2012)
DOI: 10.1074/jbc.M112.357053

92. L. Zhou, L. Wang, L. Lu, P. Jiang, H. Sun and H. Wang: Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One, 7(3), e33766 (2012)
DOI: 10.1371/journal.pone.0033766

93. I. Naguibneva, M. Ameyar-Zazoua, A. Polesskaya, S. Ait-Si-Ali, R. Groisman, M. Souidi, S. Cuvellier and A. Harel-Bellan: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 8(3), 278-84 (2006)
DOI: 10.1038/ncb1373

94. M. Yamamoto and A. Kuroiwa: Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ, 45(5-6), 485-98 (2003)
DOI: 10.1111/j.1440-169X.2003.00715.x

95. B. K. Dey, K. Pfeifer and A. Dutta: The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev, 28(5), 491-501 (2014)
DOI: 10.1101/gad.234419.113

96. C. M. Snyder, A. L. Rice, N. L. Estrella, A. Held, S. C. Kandarian and F. J. Naya: MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration. Development, 140(1), 31-42 (2013)
DOI: 10.1242/dev.081851

97. A. Chinchilla, E. Lozano, H. Daimi, F. J. Esteban, C. Crist, A. E. Aranega and D. Franco: MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res, 89(1), 98-108 (2011)
DOI: 10.1093/cvr/cvq264

98. C. G. Crist, D. Montarras, G. Pallafacchina, D. Rocancourt, A. Cumano, S. J. Conway and M. Buckingham: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A, 106(32), 13383-7 (2009)
DOI: 10.1073/pnas.0900210106

99. L. Wang, X. Chen, Y. Zheng, F. Li, Z. Lu, C. Chen, J. Liu, Y. Wang, Y. Peng, Z. Shen, J. Gao, M. Zhu and H. Chen: MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res, 318(18), 2324-34 (2012)
DOI: 10.1016/j.yexcr.2012.06.018

100. R. J. Marjoram, E. C. Lessey and K. Burridge: Regulation of RhoA Activity by Adhesion Molecules and Mechanotransduction. Curr Mol Med, 14(2), 199-208 (2014)
DOI: 10.2174/1566524014666140128104541

101. L. Shu and P. J. Houghton: The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol Cell Biol, 29(17), 4691-700 (2009)
DOI: 10.1128/MCB.00764-09

102. S. Charrasse, F. Comunale, Y. Grumbach, F. Poulat, A. Blangy and C. Gauthier-Rouviere: RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell, 17(2), 749-59 (2006)
DOI: 10.1091/mbc.E05-04-0284

103. J. Zhang, Z. Z. Ying, Z. L. Tang, L. Q. Long and K. Li: MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem, 287(25), 21093-101 (2012)
DOI: 10.1074/jbc.M111.330381

104. M. Koning, P. M. Werker, M. J. van Luyn, G. Krenning and M. C. Harmsen: A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation, 84(4), 314-21 (2012)
DOI: 10.1016/j.diff.2012.08.002

105. E. Bernstein, S. Y. Kim, M. A. Carmell, E. P. Murchison, H. Alcorn, M. Z. Li, A. A. Mills, S. J. Elledge, K. V. Anderson and G. J. Hannon: Dicer is essential for mouse development. Nat Genet, 35(3), 215-7 (2003)
DOI: 10.1038/ng1253

106. J. R. O’Rourke, S. A. Georges, H. R. Seay, S. J. Tapscott, M. T. McManus, D. J. Goldhamer, M. S. Swanson and B. D. Harfe: Essential role for Dicer during skeletal muscle development. Dev Biol, 311(2), 359-68 (2007)
DOI: 10.1016/j.ydbio.2007.08.032

107. C. Kwon, Z. Han, E. N. Olson and D. Srivastava: MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 102(52), 18986-91 (2005)
DOI: 10.1073/pnas.0509535102

108. Z. Deng, J. F. Chen and D. Z. Wang: Transgenic overexpression of miR-133a in skeletal muscle. BMC Musculoskelet Disord, 12, 115 (2011)
DOI: 10.1186/1471-2474-12-115

109. Y. Chen, D. W. Melton, J. A. Gelfond, L. M. McManus and P. K. Shireman: MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiol Genomics, 44(21), 1042-51 (2012)
DOI: 10.1152/physiolgenomics.00052.2012

110. Y. Ge, Y. Sun and J. Chen: IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol, 192(1), 69-81 (2011)
DOI: 10.1083/jcb.201007165

111. T. Nakasa, M. Ishikawa, M. Shi, H. Shibuya, N. Adachi and M. Ochi: Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med, 14(10), 2495-505 (2010)
DOI: 10.1111/j.1582-4934.2009.00898.x

112. S. Maciotta, M. Meregalli, L. Cassinelli, D. Parolini, A. Farini, G. D. Fraro, F. Gandolfi, M. Forcato, S. Ferrari, D. Gabellini, S. Bicciato, G. Cossu and Y. Torrente: Hmgb3 is regulated by microRNA-206 during muscle regeneration. PLoS One, 7(8), e43464 (2012)
DOI: 10.1371/journal.pone.0043464

113. M. J. Nemeth, M. R. Kirby and D. M. Bodine: Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci U S A, 103(37), 13783-8 (2006)
DOI: 10.1073/pnas.0604006103

114. Y. Ge, A. L. Wu, C. Warnes, J. Liu, C. Zhang, H. Kawasome, N. Terada, M. D. Boppart, C. J. Schoenherr and J. Chen: mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol, 297(6), C1434-44 (2009)
DOI: 10.1152/ajpcell.00248.2009

115. Y. Sun, Y. Ge, J. Drnevich, Y. Zhao, M. Band and J. Chen: Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol, 189(7), 1157-69 (2010)
DOI: 10.1083/jcb.200912093

116. M. S. Alexander, J. C. Casar, N. Motohashi, J. A. Myers, I. Eisenberg, R. T. Gonzalez, E. A. Estrella, P. B. Kang, G. Kawahara and L. M. Kunkel: Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle, 1, 27 (2011)
DOI: 10.1186/2044-5040-1-27

117. L. Jia, Y. F. Li, G. F. Wu, Z. Y. Song, H. Z. Lu, C. C. Song, Q. L. Zhang, J. Y. Zhu, G. S. Yang and X. E. Shi: MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci, 15(1), 296-308 (2014)
DOI: 10.3390/ijms15010296

118. E. E. Caygill and L. A. Johnston: Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol, 18(13), 943-50 (2008)
DOI: 10.1016/j.cub.2008.06.020

119. N. S. Sokol, P. Xu, Y. N. Jan and V. Ambros: Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev, 22(12), 1591-6 (2008)
DOI: 10.1101/gad.1671708

120. D. J. Simon, J. M. Madison, A. L. Conery, K. L. Thompson-Peer, M. Soskis, G. B. Ruvkun, J. M. Kaplan and J. K. Kim: The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell, 133(5), 903-15 (2008)
DOI: 10.1016/j.cell.2008.04.035

121. K. Sun, J. O. Westholm, K. Tsurudome, J. W. Hagen, Y. Lu, M. Kohwi, D. Betel, F. B. Gao, A. P. Haghighi, C. Q. Doe and E. C. Lai: Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet, 8(2), e1002515 (2012)
DOI: 10.1371/journal.pgen.1002515

122. K. Tsurudome, K. Tsang, E. H. Liao, R. Ball, J. Penney, J. S. Yang, F. Elazzouzi, T. He, A. Chishti, G. Lnenicka, E. C. Lai and A. P. Haghighi: The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron, 68(5), 879-93 (2010)
DOI: 10.1016/j.neuron.2010.11.016

123. G. Valdez, M. P. Heyer, G. Feng and J. R. Sanes: The role of muscle microRNAs in repairing the neuromuscular junction. PLoS One, 9(3), e93140 (2014)
DOI: 10.1371/journal.pone.0093140

124. C. M. Loya, C. S. Lu, D. Van Vactor and T. A. Fulga: Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods, 6(12), 897-903 (2009)
DOI: 10.1038/nmeth.1402

125. C. M. Loya, E. M. McNeill, H. Bao, B. Zhang and D. Van Vactor: miR-8 controls synapse structure by repression of the actin regulator Enabled. Development, 141(9), 1864-74 (2014)
DOI: 10.1242/dev.105791

126. K. R. Nesler, R. I. Sand, B. A. Symmes, S. J. Pradhan, N. G. Boin, A. E. Laun and S. A. Barbee: The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PLoS One, 8(7), e68385 (2013)
DOI: 10.1371/journal.pone.0068385

127. P. Miura, A. Amirouche, C. Clow, G. Belanger and B. J. Jasmin: Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem, 120(2), 230-8 (2012)
DOI: 10.1111/j.1471-4159.2011.07583.x

128. J. J. McCarthy and K. A. Esser: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol (1985), 102(1), 306-13 (2007)
DOI: 10.1152/japplphysiol.00932.2006

129. M. J. Drummond, J. J. McCarthy, C. S. Fry, K. A. Esser and B. B. Rasmussen: Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab, 295(6), E1333-40 (2008)
DOI: 10.1152/ajpendo.90562.2008

130. L. Elia, R. Contu, M. Quintavalle, F. Varrone, C. Chimenti, M. A. Russo, V. Cimino, L. De Marinis, A. Frustaci, D. Catalucci and G. Condorelli: Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120(23), 2377-85 (2009)
DOI: 10.1161/CIRCULATIONAHA.109.879429

131. J. Gagan, B. K. Dey, R. Layer, Z. Yan and A. Dutta: MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem, 286(22), 19431-8 (2011)
DOI: 10.1074/jbc.M111.219006

132. A. Safdar, A. Abadi, M. Akhtar, B. P. Hettinga and M. A. Tarnopolsky: miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One, 4(5), e5610 (2009)
DOI: 10.1371/journal.pone.0005610

133. W. Aoi, Y. Naito, K. Mizushima, Y. Takanami, Y. Kawai, H. Ichikawa and T. Yoshikawa: The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab, 298(4), E799-806 (2010)
DOI: 10.1152/ajpendo.00448.2009

134. H. Yamamoto, K. Morino, Y. Nishio, S. Ugi, T. Yoshizaki, A. Kashiwagi and H. Maegawa: MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab, 303(12), E1419-27 (2012)
DOI: 10.1152/ajpendo.00097.2012

135. T. Fernandes, F. C. Magalhaes, F. R. Roque, M. I. Phillips and E. M. Oliveira: Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension, 59(2), 513-20 (2012)
DOI: 10.1161/HYPERTENSIONAHA.111.185801

136. C. Y. Sun, X. M. She, Y. Qin, Z. B. Chu, L. Chen, L. S. Ai, L. Zhang and Y. Hu: miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis, 34(2), 426-35 (2013)
DOI: 10.1093/carcin/bgs333

137. I. M. Olfert, R. A. Howlett, P. D. Wagner and E. C. Breen: Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol, 299(4), R1059-67 (2010)
DOI: 10.1152/ajpregu.00347.2010

138. S. Nielsen, C. Scheele, C. Yfanti, T. Akerstrom, A. R. Nielsen, B. K. Pedersen and M. J. Laye: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol, 588(Pt 20), 4029-37 (2010)
DOI: 10.1113/jphysiol.2010.189860

139. A. P. Russell, S. Lamon, H. Boon, S. Wada, I. Guller, E. L. Brown, A. V. Chibalin, J. R. Zierath, R. J. Snow, N. Stepto, G. D. Wadley and T. Akimoto: Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol, 591(Pt 18), 4637-53 (2013)
DOI: 10.1113/jphysiol.2013.255695

140. P. Keller, N. B. Vollaard, T. Gustafsson, I. J. Gallagher, C. J. Sundberg, T. Rankinen, S. L. Britton, C. Bouchard, L. G. Koch and J. A. Timmons: A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol (1985), 110(1), 46-59 (2011)
DOI: 10.1152/japplphysiol.00634.2010

141. S. Radom-Aizik, F. Zaldivar, Jr., S. Oliver, P. Galassetti and D. M. Cooper: Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol (1985), 109(1), 252-61 (2010)
DOI: 10.1152/japplphysiol.01291.2009

142. S. Radom-Aizik, F. Zaldivar, Jr., S. Y. Leu, G. R. Adams, S. Oliver and D. M. Cooper: Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci, 5(1), 32-8 (2012)
DOI: 10.1111/j.1752-8062.2011.00384.x

143. S. Radom-Aizik, F. Zaldivar, F. Haddad and D. M. Cooper: Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985), 114(5), 628-36 (2013)
DOI: 10.1152/japplphysiol.01341.2012

144. A. L. Baggish, A. Hale, R. B. Weiner, G. D. Lewis, D. Systrom, F. Wang, T. J. Wang and S. Y. Chan: Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol, 589(Pt 16), 3983-94 (2011)
DOI: 10.1113/jphysiol.2011.213363

145. W. Aoi, H. Ichikawa, K. Mune, Y. Tanimura, K. Mizushima, Y. Naito and T. Yoshikawa: Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol, 4, 80 (2013) doi:10.3389/fphys.2013.00080
DOI: 10.3389/fphys.2013.00080

146. S. Sawada, M. Kon, S. Wada, T. Ushida, K. Suzuki and T. Akimoto: Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PLoS One, 8(7), e70823 (2013)
DOI: 10.1371/journal.pone.0070823

147. S. Banzet, M. Chennaoui, O. Girard, S. Racinais, C. Drogou, H. Chalabi and N. Koulmann: Changes in circulating microRNAs levels with exercise modality. J Appl Physiol (1985), 115(9), 1237-44 (2013)
DOI: 10.1152/japplphysiol.00075.2013

148. M. Uhlemann, S. Mobius-Winkler, S. Fikenzer, J. Adam, M. Redlich, S. Mohlenkamp, T. Hilberg, G. C. Schuler and V. Adams: Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol (2012)

149. A. Bye, H. Rosjo, S. T. Aspenes, G. Condorelli, T. Omland and U. Wisloff: Circulating microRNAs and aerobic fitness--the HUNT-Study. PLoS One, 8(2), e57496 (2013)
DOI: 10.1371/journal.pone.0057496

150. A. Izzotti: Genomic biomarkers and clinical outcomes of physical activity. Ann N Y Acad Sci, 1229, 103-14 (2011)
DOI: 10.1111/j.1749-6632.2011.06091.x

151. F. C. Mooren, J. Viereck, K. Kruger and T. Thum: Circulating micrornas as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol, 306(4), H557-63 (2014)
DOI: 10.1152/ajpheart.00711.2013

152. S. Nielsen, T. Akerstrom, A. Rinnov, C. Yfanti, C. Scheele, B. K. Pedersen and M. J. Laye: The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training. PLoS One, 9(2), e87308 (2014)
DOI: 10.1371/journal.pone.0087308

153. X. H. Wang: MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 258-66 (2013)
DOI: 10.1097/MCO.0b013e32835f81b9

154. A. E. Emery: The muscular dystrophies. Lancet, 359(9307), 687-95 (2002)
DOI: 10.1016/S0140-6736(02)07815-7

155. I. Eisenberg, A. Eran, I. Nishino, M. Moggio, C. Lamperti, A. A. Amato, H. G. Lidov, P. B. Kang, K. N. North, S. Mitrani-Rosenbaum, K. M. Flanigan, L. A. Neely, D. Whitney, A. H. Beggs, I. S. Kohane and L. M. Kunkel: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A, 104(43), 17016-21 (2007)
DOI: 10.1073/pnas.0708115104

156. M. S. Alexander, G. Kawahara, N. Motohashi, J. C. Casar, I. Eisenberg, J. A. Myers, M. J. Gasperini, E. A. Estrella, A. T. Kho, S. Mitsuhashi, F. Shapiro, P. B. Kang and L. M. Kunkel: MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ, 20(9), 1194-208 (2013)
DOI: 10.1038/cdd.2013.62

157. E. Ardite, E. Perdiguero, B. Vidal, S. Gutarra, A. L. Serrano and P. Munoz-Canoves: PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol, 196(1), 163-75 (2012)
DOI: 10.1083/jcb.201105013

158. S. Greco, M. De Simone, C. Colussi, G. Zaccagnini, P. Fasanaro, M. Pescatori, R. Cardani, R. Perbellini, E. Isaia, P. Sale, G. Meola, M. C. Capogrossi, C. Gaetano and F. Martelli: Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. Faseb J, 23(10), 3335-46 (2009)
DOI: 10.1096/fj.08-128579

159. J. J. McCarthy, K. A. Esser and F. H. Andrade: MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol, 293(1), C451-7 (2007)
DOI: 10.1152/ajpcell.00077.2007

160. K. Yuasa, Y. Hagiwara, M. Ando, A. Nakamura, S. Takeda and T. Hijikata: MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct, 33(2), 163-9 (2008)
DOI: 10.1247/csf.08022

161. D. Cacchiarelli, T. Incitti, J. Martone, M. Cesana, V. Cazzella, T. Santini, O. Sthandier and I. Bozzoni: miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep, 12(2), 136-41 (2011)
DOI: 10.1038/embor.2010.208

162. R. Perbellini, S. Greco, G. Sarra-Ferraris, R. Cardani, M. C. Capogrossi, G. Meola and F. Martelli: Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscul Disord, 21(2), 81-8 (2011)
DOI: 10.1016/j.nmd.2010.11.012

163. S. Gambardella, F. Rinaldi, S. M. Lepore, A. Viola, E. Loro, C. Angelini, L. Vergani, G. Novelli and A. Botta: Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med, 8, 48 (2010)
DOI: 10.1186/1479-5876-8-48

164. J. M. Fernandez-Costa, A. Garcia-Lopez, S. Zuniga, V. Fernandez-Pedrosa, A. Felipo-Benavent, M. Mata, O. Jaka, A. Aiastui, F. Hernandez-Torres, B. Aguado, M. Perez-Alonso, J. J. Vilchez, A. Lopez de Munain and R. D. Artero: Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients. Hum Mol Genet, 22(4), 704-16 (2013)
DOI: 10.1093/hmg/dds478

165. S. Greco, A. Perfetti, P. Fasanaro, R. Cardani, M. C. Capogrossi, G. Meola and F. Martelli: Deregulated microRNAs in myotonic dystrophy type 2. PLoS One, 7(6), e39732 (2012)
DOI: 10.1371/journal.pone.0039732

166. P. Dmitriev, M. Lipinski and Y. S. Vassetzky: Pearls in the junk: dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord, 19(1), 17-20 (2009)
DOI: 10.1016/j.nmd.2008.09.004

167. P. Dmitriev, L. Stankevicins, E. Ansseau, A. Petrov, A. Barat, P. Dessen, T. Robert, A. Turki, V. Lazar, E. Labourer, A. Belayew, G. Carnac, D. Laoudj-Chenivesse, M. Lipinski and Y. S. Vassetzky: Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem, 288(49), 34989-5002 (2013)
DOI: 10.1074/jbc.M113.504522

168. N. Harafuji, P. Schneiderat, M. C. Walter and Y. W. Chen: miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis, 8, 55 (2013)
DOI: 10.1186/1750-1172-8-55

169. S. T. Winokur, K. Barrett, J. H. Martin, J. R. Forrester, M. Simon, R. Tawil, S. A. Chung, P. S. Masny and D. A. Figlewicz: Facioscapulohumeral muscular dystrophy (FSHD) myoblasts demonstrate increased susceptibility to oxidative stress. Neuromuscul Disord, 13(4), 322-33 (2003)
DOI: 10.1016/S0960-8966(02)00284-5

170. L. N. Geng, Z. Yao, L. Snider, A. P. Fong, J. N. Cech, J. M. Young, S. M. van der Maarel, W. L. Ruzzo, R. C. Gentleman, R. Tawil and S. J. Tapscott: DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell, 22(1), 38-51 (2012)
DOI: 10.1016/j.devcel.2011.11.013

171. C. Briani, A. Doria, P. Sarzi-Puttini and M. C. Dalakas: Update on idiopathic inflammatory myopathies. Autoimmunity, 39(3), 161-70 (2006)
DOI: 10.1080/08916930600622132

172. R. W. Georgantas, K. Streicher, S. A. Greenberg, L. Greenlees, W. Zhu, P. Brohawn, B. W. Higgs, M. Czapiga, C. Morehouse, A. Amato, L. Richman, B. Jallal, Y. Yao and K. Ranade: Inhibition of myogenic MicroRNAs-1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheum (2013)

173. E. Kim, J. Cook-Mills, G. Morgan, S. T. Sredni and L. M. Pachman: Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126. Arthritis Rheum, 64(11), 3809-17 (2012)
DOI: 10.1002/art.34606

174. M. Ishtiaq, D. Campos-Melo, K. Volkening and M. J. Strong: Analysis of Novel NEFL mRNA Targeting microRNAs in Amyotrophic Lateral Sclerosis. PLoS One, 9(1), e85653 (2014)
DOI: 10.1371/journal.pone.0085653

175. A. P. Russell, S. Wada, L. Vergani, M. B. Hock, S. Lamon, B. Leger, T. Ushida, R. Cartoni, G. D. Wadley, P. Hespel, A. Kralli, G. Soraru, C. Angelini and T. Akimoto: Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis, 49C, 107-117 (2012)

176. G. Bruneteau, T. Simonet, S. Bauche, N. Mandjee, E. Malfatti, E. Girard, M. L. Tanguy, A. Behin, F. Khiami, E. Sariali, C. Hell-Remy, F. Salachas, P. F. Pradat, E. Fournier, L. Lacomblez, J. Koenig, N. B. Romero, B. Fontaine, V. Meininger, L. Schaeffer and D. Hantai: Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain, 136(Pt 8), 2359-68 (2013)
DOI: 10.1093/brain/awt164

177. D. M. D’Souza, D. Al-Sajee and T. J. Hawke: Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol, 4, 379 (2013)
DOI: 10.3389/fphys.2013.00379

178. A. D. McClelland and P. Kantharidis: microRNA in the development of diabetic complications. Clin Sci (Lond), 126(2), 95-110 (2014)
DOI: 10.1042/CS20130079

179. M. B. Hudson, M. E. Woodworth-Hobbs, B. Zheng, J. A. Rahnert, M. A. Blount, J. L. Gooch, C. D. Searles and S. R. Price: miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol (2013)

180. B. Huang, W. Qin, B. Zhao, Y. Shi, C. Yao, J. Li, H. Xiao and Y. Jin: MicroRNA expression profiling in diabetic GK rat model. Acta Biochim Biophys Sin (Shanghai), 41(6), 472-7 (2009)
DOI: 10.1093/abbs/gmp035

181. L. Q. Jiang, N. Franck, B. Egan, R. J. Sjogren, M. Katayama, D. Duque-Guimaraes, P. Arner, J. R. Zierath and A. Krook: Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab, 305(11), E1359-66 (2013)
DOI: 10.1152/ajpendo.00236.2013

182. D. S. Karolina, A. Armugam, S. Tavintharan, M. T. Wong, S. C. Lim, C. F. Sum and K. Jeyaseelan: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 6(8), e22839 (2011)
DOI: 10.1371/journal.pone.0022839

183. P. Agarwal, R. Srivastava, A. K. Srivastava, S. Ali and M. Datta: miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim Biophys Acta, 1832(8), 1294-303 (2013)
DOI: 10.1016/j.bbadis.2013.03.021

184. Y. Zhang, L. Yang, Y. F. Gao, Z. M. Fan, X. Y. Cai, M. Y. Liu, X. R. Guo, C. L. Gao and Z. K. Xia: MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol, 381(1-2), 230-40 (2013)
DOI: 10.1016/j.mce.2013.08.004

185. I. J. Gallagher, C. Scheele, P. Keller, A. R. Nielsen, J. Remenyi, C. P. Fischer, K. Roder, J. Babraj, C. Wahlestedt, G. Hutvagner, B. K. Pedersen and J. A. Timmons: Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med, 2(2), 9 (2010)
DOI: 10.1186/gm130

186. G. Q. Chen, W. J. Lian, G. M. Wang, S. Wang, Y. Q. Yang and Z. W. Zhao: Altered microRNA expression in skeletal muscle results from high-fat diet-induced insulin resistance in mice. Mol Med Rep, 5(5), 1362-8 (2012)

187. D. Bach, D. Naon, S. Pich, F. X. Soriano, N. Vega, J. Rieusset, M. Laville, C. Guillet, Y. Boirie, H. Wallberg-Henriksson, M. Manco, M. Calvani, M. Castagneto, M. Palacin, G. Mingrone, J. R. Zierath, H. Vidal and A. Zorzano: Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes, 54(9), 2685-93 (2005)
DOI: 10.2337/diabetes.54.9.2685

188. R. H. Mak and W. W. Cheung: MicroRNAs: a new therapeutic frontier for muscle wasting in chronic kidney disease. Kidney Int, 82(4), 373-4 (2012)
DOI: 10.1038/ki.2012.150

189. J. Xu, R. Li, B. Workeneh, Y. Dong, X. Wang and Z. Hu: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int, 82(4), 401-11 (2012)
DOI: 10.1038/ki.2012.84

190. A. Lewis, J. Riddoch-Contreras, S. A. Natanek, A. Donaldson, W. D. Man, J. Moxham, N. S. Hopkinson, M. I. Polkey and P. R. Kemp: Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax, 67(1), 26-34 (2012)
DOI: 10.1136/thoraxjnl-2011-200309

191. A. Donaldson, S. A. Natanek, A. Lewis, W. D. Man, N. S. Hopkinson, M. I. Polkey and P. R. Kemp: Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax, 68(12), 1140-9 (2013)
DOI: 10.1136/thoraxjnl-2012-203129

192. P. O. Hasselgren: Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care, 2(3), 201-5 (1999)
DOI: 10.1097/00075197-199905000-00002

193. H. Kukreti, K. Amuthavalli, A. Harikumar, S. Sathiyamoorthy, P. Z. Feng, R. Anantharaj, S. L. Tan, S. Lokireddy, S. Bonala, S. Sriram, C. McFarlane, R. Kambadur and M. Sharma: Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem, 288(9), 6663-78 (2013)
DOI: 10.1074/jbc.M112.390369

194. N. Ling, J. Gu, Z. Lei, M. Li, J. Zhao, H.T. Zhang & X. Li: microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep 30, 2111-82013 (2013)

195. H. Shen, T. Liu, L. Fu, S. Zhao, B. Fan, J. Cao and X. Li: Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol Cell Biochem, 381(1-2), 105-13 (2013)
DOI: 10.1007/s11010-013-1692-9

196. D. L. Allen and A. S. Loh: Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Physiol Cell Physiol, 300(1), C124-37 (2011)
DOI: 10.1152/ajpcell.00142.2010

197. M.B. Hudson, M.E. Woodworth-Hobbs, B. Zheng, J.A. Rahnert, M.A. Blount, J.L. Gooch, C.D. Searles & S.R. Price: miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol (2013)

198. S. Wada, Y. Kato, M. Okutsu, S. Miyaki, K. Suzuki, Z. Yan, S. Schiaffino, H. Asahara, T. Ushida and T. Akimoto: Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem, 286(44), 38456-65 (2011)
DOI: 10.1074/jbc.M111.271270

199. D. L. Allen, E. R. Bandstra, B. C. Harrison, S. Thorng, L. S. Stodieck, P. J. Kostenuik, S. Morony, D. L. Lacey, T. G. Hammond, L. L. Leinwand, W. S. Argraves, T. A. Bateman and J. L. Barth: Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol (1985), 106(2), 582-95 (2009) doi:10.1152/japplphysiol.90780.2008
DOI: 10.1152/japplphysiol.90780.2008

200. J. J. McCarthy, K. A. Esser, C. A. Peterson and E. E. Dupont-Versteegden: Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics, 39(3), 219-26 (2009)
DOI: 10.1152/physiolgenomics.00042.2009

201. T. Rezen, A. Kovanda, O. Eiken, I. B. Mekjavic and B. Rogelj: Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males. Acta Physiol (Oxf) (2014)

202. S. Ringholm, R. S. Bienso, K. Kiilerich, A. Guadalupe-Grau, N. J. Aachmann-Andersen, B. Saltin, P. Plomgaard, C. Lundby, J. F. Wojtaszewski, J. A. Calbet and H. Pilegaard: Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab, 301(4), E649-58 (2011)
DOI: 10.1152/ajpendo.00230.2011

203. J. J. McCarthy: The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev, 39(3), 150-4 (2011)
DOI: 10.1097/JES.0b013e31821c01e1

204. M. L. Bell, M. Buvoli and L. A. Leinwand: Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol, 30(8), 1937-45 (2010)
DOI: 10.1128/MCB.01370-09

205. F. Haddad, G. R. Adams, P. W. Bodell and K. M. Baldwin: Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading. J Appl Physiol, 100(2), 433-41 (2006)
DOI: 10.1152/japplphysiol.01203.2005

206. M. W. Hamrick, S. Herberg, P. Arounleut, H. Z. He, A. Shiver, R. Q. Qi, L. Zhou, C. M. Isales and Q. S. Mi: The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochem Biophys Res Commun, 400(3), 379-83 (2010)
DOI: 10.1016/j.bbrc.2010.08.079

207. E. M. Mercken, E. Majounie, J. Ding, R. Guo, J. Kim, M. Bernier, J. Mattison, M. R. Cookson, M. Gorospe, R. de Cabo and K. Abdelmohsen: Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging (Albany NY), 5(9), 692-703 (2013)

208. T. Nomura, T. Ueyama, E. Ashihara, K. Tateishi, S. Asada, N. Nakajima, K. Isodono, T. Takahashi, H. Matsubara and H. Oh: Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-beta family signaling. Biochem Biophys Res Commun, 365(4), 863-9 (2008)
DOI: 10.1016/j.bbrc.2007.11.087

209. B. Cardinali, L. Castellani, P. Fasanaro, A. Basso, S. Alema, F. Martelli and G. Falcone: Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One, 4(10), e7607 (2009)
DOI: 10.1371/journal.pone.0007607

210. M. J. Drummond, J. J. McCarthy, M. Sinha, H. M. Spratt, E. Volpi, K. A. Esser and B. B. Rasmussen: Aging and MicroRNA Expression in Human Skeletal Muscle: A Microarray and Bioinformatics Analysis. Physiol Genomics (2011)
DOI: 10.1152/physiolgenomics.00148.2010

211. M. Mueller, F. A. Breil, G. Lurman, S. Klossner, M. Fluck, R. Billeter, C. Dapp and H. Hoppeler: Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology, 57(6), 528-38 (2011)
DOI: 10.1159/000323267

212. C. De Giovanni, L. Landuzzi, G. Nicoletti, P. L. Lollini and P. Nanni: Molecular and cellular biology of rhabdomyosarcoma. Future Oncol, 5(9), 1449-75 (2009)
DOI: 10.2217/fon.09.97

213. J. Novak, J. Vinklarek, J. Bienertova-Vasku and O. Slaby: MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis. Pediatr Blood Cancer, 60(11), 1739-46 (2013) doi:10.1002/pbc.24664
DOI: 10.1002/pbc.24664

214. D. Yan, E. Dong Xda, X. Chen, L. Wang, C. Lu, J. Wang, J. Qu and L. Tu: MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem, 284(43), 29596-604 (2009)
DOI: 10.1074/jbc.M109.020511

215. P. K. Rao, E. Missiaglia, L. Shields, G. Hyde, B. Yuan, C. J. Shepherd, J. Shipley and H. F. Lodish: Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. Faseb J, 24(9), 3427-37 (2010)
DOI: 10.1096/fj.09-150698

216. E. Missiaglia, C. J. Shepherd, S. Patel, K. Thway, G. Pierron, K. Pritchard-Jones, M. Renard, R. Sciot, P. Rao, O. Oberlin, O. Delattre and J. Shipley: MicroRNA-206 expression levels correlate with clinical behaviour of rhabdomyosarcomas. Br J Cancer, 102(12), 1769-77 (2010)
DOI: 10.1038/sj.bjc.6605684

217. Y. Diao, X. Guo, L. Jiang, G. Wang, C. Zhang, J. Wan, Y. Jin and Z. Wu: miR-203, a Tumor Suppressor Frequently Down-regulated by Promoter Hypermethylation in Rhabdomyosarcoma. J Biol Chem, 289(1), 529-39 (2014)
DOI: 10.1074/jbc.M113.494716

218. R. Ciarapica, G. Russo, F. Verginelli, L. Raimondi, A. Donfrancesco, R. Rota and A. Giordano: Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle, 8(1), 172-5 (2009)
DOI: 10.4161/cc.8.1.7292

219. A. L. Sarver, L. Li and S. Subramanian: MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res, 70(23), 9570-80 (2010)
DOI: 10.1158/0008-5472.CAN-10-2074

220. J. Hu, M. Kong, Y. Ye, S. Hong, L. Cheng and L. Jiang: Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem (2014)
DOI: 10.1111/jnc.12662

Abbreviations: miRNA: microRNA; TGF-β: Transforming growth factor- beta; PAX3: paired-box 3; PAX7: Paired-box 7; MYOD: myogenic differentiation; MYF5: Myogenic factor 5; MRF4: Myogenic regulatory factor 4; Mef2: Myocyte enhancing factor; SRF: serum response factor; HDAC4: Histone deacetylase 4; EZH2: Enhancer of zeste homolog 2; YY1: Ying yang 1; mTOR: mechanical target of rapamycin; IGF: Insulin-like growth factor; PTEN: phosphatase and tensin homolog; CKD: chronic kidney disease; RMS: rhabdomyosarcoma; DMD: Duchenne muscular dystrophy; FSHD: Facioscapulohumeral muscular dystrophy; ALS: Amyotrphic lateral sclerosis; Dex: Dexamethasone, NMJ: neuromuscular junction

Key Words: MyomiR, Exercise, Hypertrophy, Atrophy, Muscular dystrophy, Review

Send correspondence to: John J. McCarthy, University of Kentucky, Department of Physiology, 800 Rose Street, MS508, Lexington, KY 40536-0298, Tel: 859-323-4730, Fax: 859-323-1070, E-mail: jjmcca2@email.uky.edu