[Frontiers In Bioscience, Landmark, 22, 1599-1621, June 1, 2017]

Pathogen-associated regulatory non-coding RNAs and oncogenesis

Noriyuki Yoshida1, Tominori Kimura1

1Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Oncoviral microRNAs and oncogenesis
3.1. EBV miRNAs and oncogenesis
3.2. KSHV miRNAs and oncogenesis
3.3. HPV miRNAs and oncogenesis
4. Another class of ncRNAs encoded by EBV involved in oncogenesis
4.1. Molecular mechanisms of EBER1 and 2 action in viral oncogenesis
5. KSHV lncRNA PAN and oncogenesis
6. HTLV-1 basic leucine zipper factor mRNA and oncogenesis
7. H. pylori infection and oncogenesis
8. HCV miRNA and oncogenesis
9. Perspectives
10. Acknowledgements
11. References

1. ABSTRACT

Among all new cancer cases in 2012, on average, 15.4% were caused by Helicobacter pylori or oncoviruses, including Epstein-Barr virus, human papillomavirus, hepatitis B virus, hepatitis C viruses, Kaposi sarcoma-associated herpesvirus and human T-lymphotropic virus. These pathogens encode a variety of non-coding RNAs, which are important cofactors for oncogenesis. In this review, we focus on recent developments in the study of long and small non-protein-coding RNAs, including microRNAs, of oncogenic pathogens, and discuss their mechanisms of action in the multiple steps of oncogenesis.

11. REFERENCES

1. E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, Y. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Sodergren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S. Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H. M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. W. Davis, N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti, H. C. Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S. Furey, J. Galagan, J. G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J. Kent, P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght, T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler, J. Schultz, G. Slater, A. F. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H. Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J. Peterson, A. Felsenfeld, K. A. Wetterstrand, A. Patrinos, M. J. Morgan, P. de Jong, J. J. Catanese, K. Osoegawa, H. Shizuya, S. Choi, Y. J. Chen, J. Szustakowki and C. International Human Genome Sequencing: Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921 (2001)
DOI:10.1038/35057062

2. E. P. Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57-74 (2012)
DOI:10.1038/nature11247

3. S. Djebali, C. A. Davis, A. Merkel, A. Dobin, T. Lassmann, A. Mortazavi, A. Tanzer, J. Lagarde, W. Lin, F. Schlesinger, C. Xue, G. K. Marinov, J. Khatun, B. A. Williams, C. Zaleski, J. Rozowsky, M. Roder, F. Kokocinski, R. F. Abdelhamid, T. Alioto, I. Antoshechkin, M. T. Baer, N. S. Bar, P. Batut, K. Bell, I. Bell, S. Chakrabortty, X. Chen, J. Chrast, J. Curado, T. Derrien, J. Drenkow, E. Dumais, J. Dumais, R. Duttagupta, E. Falconnet, M. Fastuca, K. Fejes-Toth, P. Ferreira, S. Foissac, M. J. Fullwood, H. Gao, D. Gonzalez, A. Gordon, H. Gunawardena, C. Howald, S. Jha, R. Johnson, P. Kapranov, B. King, C. Kingswood, O. J. Luo, E. Park, K. Persaud, J. B. Preall, P. Ribeca, B. Risk, D. Robyr, M. Sammeth, L. Schaffer, L. H. See, A. Shahab, J. Skancke, A. M. Suzuki, H. Takahashi, H. Tilgner, D. Trout, N. Walters, H. Wang, J. Wrobel, Y. Yu, X. Ruan, Y. Hayashizaki, J. Harrow, M. Gerstein, T. Hubbard, A. Reymond, S. E. Antonarakis, G. Hannon, M. C. Giddings, Y. Ruan, B. Wold, P. Carninci, R. Guigo and T. R. Gingeras: Landscape of transcription in human cells. Nature, 489(7414), 101-8 (2012)
DOI:10.1038/nature11233

4. F. Crick: Central dogma of molecular biology. Nature, 227(5258), 561-3 (1970)
DOI:10.1038/227561a0

5. J. R. Ecker, W. A. Bickmore, I. Barroso, J. K. Pritchard, Y. Gilad and E. Segal: Genomics: ENCODE explained. Nature, 489(7414), 52-5 (2012)
DOI:10.1038/489052a

6. F. F. Costa: Non-coding RNAs: could they be the answer? Brief Funct Genomics, 10(5), 316-9 (2011)
DOI:10.1093/bfgp/elq029

7. K. Numata and H. Kiyosawa: Genome-wide impact of endogenous antisense transcripts in eukaryotes. Front Biosci (Landmark Ed), 17, 300-15 (2012)
DOI:10.2741/3928

8. C. H. Li and Y. Chen: Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol, 45(8), 1895-910 (2013)
DOI:10.1016/j.biocel.2013.05.030

9. W. Y. Su, J. T. Li, Y. Cui, J. Hong, W. Du, Y. C. Wang, Y. W. Lin, H. Xiong, J. L. Wang, X. Kong, Q. Y. Gao, L. P. Wei and J. Y. Fang: Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res, 22(9), 1374-89 (2012)
DOI:10.1038/cr.2012.57

10. P. Johnsson, A. Ackley, L. Vidarsdottir, W. O. Lui, M. Corcoran, D. Grander and K. V. Morris: A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol, 20(4), 440-6 (2013)
DOI:10.1038/nsmb.2516

11. T. Gutschner and S. Diederichs: The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol, 9(6), 703-19 (2012)
DOI:10.4161/rna.20481

12. M. Nishizawa, Y. Ikeya, T. Okumura and T. Kimura: Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed), 20, 1-36 (2015)
DOI:10.2741/4297

13. M. Nishizawa, T. Okumura, Y. Ikeya and T. Kimura: Regulation of inducible gene expression by natural antisense transcripts. Front Biosci (Landmark Ed), 17, 938-58 (2012)
DOI:10.2741/3965

14. J. H. Luo, B. Ren, S. Keryanov, G. C. Tseng, U. N. Rao, S. P. Monga, S. Strom, A. J. Demetris, M. Nalesnik, Y. P. Yu, S. Ranganathan and G. K. Michalopoulos: Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology, 44(4), 1012-24 (2006)
DOI:10.1002/hep.21328

15. M. Huarte, M. Guttman, D. Feldser, M. Garber, M. J. Koziol, D. Kenzelmann-Broz, A. M. Khalil, O. Zuk, I. Amit, M. Rabani, L. D. Attardi, A. Regev, E. S. Lander, T. Jacks and J. L. Rinn: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), 409-19 (2010)
DOI:10.1016/j.cell.2010.06.040

16. Y. J. Geng, S. L. Xie, Q. Li, J. Ma and G. Y. Wang: Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res, 39(6), 2119-28 (2011)
DOI:10.1177/147323001103900608

17. R. Kogo, T. Shimamura, K. Mimori, K. Kawahara, S. Imoto, T. Sudo, F. Tanaka, K. Shibata, A. Suzuki, S. Komune, S. Miyano and M. Mori: Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res, 71(20), 6320-6 (2011)
DOI:10.1158/0008-5472.CAN-11-1021

18. J. R. Prensner, M. K. Iyer, O. A. Balbin, S. M. Dhanasekaran, Q. Cao, J. C. Brenner, B. Laxman, I. A. Asangani, C. S. Grasso, H. D. Kominsky, X. Cao, X. Jing, X. Wang, J. Siddiqui, J. T. Wei, D. Robinson, H. K. Iyer, N. Palanisamy, C. A. Maher and A. M. Chinnaiyan: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol, 29(8), 742-9 (2011)
DOI:10.1038/nbt.1914

19. L. H. Schmidt, T. Spieker, S. Koschmieder, S. Schaffers, J. Humberg, D. Jungen, E. Bulk, A. Hascher, D. Wittmer, A. Marra, L. Hillejan, K. Wiebe, W. E. Berdel, R. Wiewrodt and C. Muller-Tidow: The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol, 6(12), 1984-92 (2011)
DOI:10.1097/JTO.0b013e3182307eac

20. J. M. Silva, N. J. Boczek, M. W. Berres, X. Ma and D. I. Smith: LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol, 8(3), 496-505 (2011)
DOI:10.4161/rna.8.3.14800

21. T. Niinuma, H. Suzuki, M. Nojima, K. Nosho, H. Yamamoto, H. Takamaru, E. Yamamoto, R. Maruyama, T. Nobuoka, Y. Miyazaki, T. Nishida, T. Bamba, T. Kanda, Y. Ajioka, T. Taguchi, S. Okahara, H. Takahashi, Y. Nishida, M. Hosokawa, T. Hasegawa, T. Tokino, K. Hirata, K. Imai, M. Toyota and Y. Shinomura: Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res, 72(5), 1126-36 (2012)
DOI:10.1158/0008-5472.CAN-11-1803

22. Y. Han, Y. Liu, Y. Gui and Z. Cai: Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol, 107(5), 555-9 (2013)
DOI:10.1002/jso.23264

23. K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim and S. Safe: HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 32(13), 1616-25 (2013)
DOI:10.1038/onc.2012.193

24. A. Zhang, M. Xu and Y. Y. Mo: Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol, 6(3), 181-91 (2014)
DOI:10.1093/jmcb/mju013

25. R. Maruyama, M. Shipitsin, S. Choudhury, Z. Wu, A. Protopopov, J. Yao, P. K. Lo, M. Bessarabova, A. Ishkin, Y. Nikolsky, X. S. Liu, S. Sukumar and K. Polyak: Altered antisense-to-sense transcript ratios in breast cancer. Proc Natl Acad Sci U S A, 109(8), 2820-4 (2012)
DOI:10.1073/pnas.1010559107

26. J. Liz and M. Esteller: lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta, 1859(1), 169-76 (2016)
DOI:10.1016/j.bbagrm.2015.06.015

27. P. S. Moore and Y. Chang: Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer, 10(12), 878-89 (2010)
DOI:10.1038/nrc2961

28. M. Plummer, C. de Martel, J. Vignat, J. Ferlay, F. Bray and S. Franceschi: Global burden of cancers attributable to infections in 2012: a synthetic analysis. The Lancet Global Health, 4(9), e609-e616 (2016)
DOI:10.1016/S2214-109X(16)30143-7

29. R. M. Peek, Jr. and M. J. Blaser: Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2(1), 28-37 (2002)
DOI:10.1038/nrc703

30. K. T. Tycowski, Y. E. Guo, N. Lee, W. N. Moss, T. K. Vallery, M. Xie and J. A. Steitz: Viral noncoding RNAs: more surprises. Genes Dev, 29(6), 567-84 (2015)
DOI:10.1101/gad.259077.115

31. D. Hanahan and R. A. Weinberg: The hallmarks of cancer. Cell, 100(1), 57-70 (2000)
DOI:10.1016/S0092-8674(00)81683-9

32. D. Hanahan and R. A. Weinberg: Hallmarks of cancer: the next generation. Cell, 144(5), 646-74 (2011)
DOI:10.1016/j.cell.2011.02.013

33. S. Barth, T. Pfuhl, A. Mamiani, C. Ehses, K. Roemer, E. Kremmer, C. Jaker, J. Hock, G. Meister and F. A. Grasser: Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res, 36(2), 666-75 (2008)
DOI:10.1093/nar/gkm1080

34. E. Y. Choy, K. L. Siu, K. H. Kok, R. W. Lung, C. M. Tsang, K. F. To, D. L. Kwong, S. W. Tsao and D. Y. Jin: An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med, 205(11), 2551-60 (2008)
DOI:10.1084/jem.20072581

35. A. R. Marquitz, A. Mathur, C. S. Nam and N. Raab-Traub: The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology, 412(2), 392-400 (2011)
DOI:10.1016/j.virol.2011.01.028

36. R. L. Skalsky, D. L. Corcoran, E. Gottwein, C. L. Frank, D. Kang, M. Hafner, J. D. Nusbaum, R. Feederle, H. J. Delecluse, M. A. Luftig, T. Tuschl, U. Ohler and B. R. Cullen: The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog, 8(1), e1002484 (2012)
DOI:10.1371/journal.ppat.1002484

37. L. Dolken, G. Malterer, F. Erhard, S. Kothe, C. C. Friedel, G. Suffert, L. Marcinowski, N. Motsch, S. Barth, M. Beitzinger, D. Lieber, S. M. Bailer, R. Hoffmann, Z. Ruzsics, E. Kremmer, S. Pfeffer, R. Zimmer, U. H. Koszinowski, F. Grasser, G. Meister and J. Haas: Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe, 7(4), 324-34 (2010)
DOI:10.1016/j.chom.2010.03.008

38. A. Hannigan, A. M. Qureshi, C. Nixon, P. M. Tsimbouri, S. Jones, A. W. Philbey and J. B. Wilson: Lymphocyte deficiency limits Epstein-Barr virus latent membrane protein 1 induced chronic inflammation and carcinogenic pathology in vivo. Mol Cancer, 10(1), 11 (2011)
DOI:10.1186/1476-4598-10-11

39. J. Vilcek and T. H. Lee: Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem, 266(12), 7313-6 (1991)

40. M. Karin and F. R. Greten: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 5(10), 749-59 (2005)
DOI:10.1038/nri1703

41. L. M. Coussens and Z. Werb: Inflammation and cancer. Nature, 420(6917), 860-7 (2002)
DOI:10.1038/nature01322

42. Z. Sun, S. Wang and R. C. Zhao: The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol, 7, 14 (2014)
DOI:10.1186/1756-8722-7-14

43. S. Landi, V. Moreno, L. Gioia-Patricola, E. Guino, M. Navarro, J. de Oca, G. Capella, F. Canzian and G. Bellvitge Colorectal Cancer Study: Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res, 63(13), 3560-6 (2003)

44. R. H. Edwards, A. R. Marquitz and N. Raab-Traub: Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol, 82(18), 9094-106 (2008)
DOI:10.1128/JVI.00785-08

45. A. Grundhoff, C. S. Sullivan and D. Ganem: A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 12(5), 733-50 (2006)
DOI:10.1261/rna.2326106

46. R. P. Kincaid and C. S. Sullivan: Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog, 8(12), e1003018 (2012)
DOI:10.1371/journal.ppat.1003018

47. T. Xia, A. O'Hara, I. Araujo, J. Barreto, E. Carvalho, J. B. Sapucaia, J. C. Ramos, E. Luz, C. Pedroso, M. Manrique, N. L. Toomey, C. Brites, D. P. Dittmer and W. J. Harrington, Jr.: EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res, 68(5), 1436-42 (2008)
DOI:10.1158/0008-5472.CAN-07-5126

48. H. L. Ploegh: Viral strategies of immune evasion. Science, 280(5361), 248-53 (1998)
DOI:10.1126/science.280.5361.248

49. M. R. Ambrosio, M. Navari, L. Di Lisio, E. A. Leon, A. Onnis, S. Gazaneo, L. Mundo, C. Ulivieri, G. Gomez, S. Lazzi, M. A. Piris, L. Leoncini and G. De Falco: The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer, 9, 12 (2014)
DOI:10.1186/1750-9378-9-12

50. E. Seto, A. Moosmann, S. Gromminger, N. Walz, A. Grundhoff and W. Hammerschmidt: Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog, 6(8), e1001063 (2010)
DOI:10.1371/journal.ppat.1001063

51. H. Iizasa, B. E. Wulff, N. R. Alla, M. Maragkakis, M. Megraw, A. Hatzigeorgiou, D. Iwakiri, K. Takada, A. Wiedmer, L. Showe, P. Lieberman and K. Nishikura: Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem, 285(43), 33358-70 (2010)
DOI:10.1074/jbc.M110.138362

52. M. Samanta, D. Iwakiri, T. Kanda, T. Imaizumi and K. Takada: EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J, 25(18), 4207-14 (2006)
DOI:10.1038/sj.emboj.7601314

53. A. S. Banerjee, A. D. Pal and S. Banerjee: Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration. Virology, 443(2), 294-305 (2013)
DOI:10.1016/j.virol.2013.05.020

54. T. Lei, K. S. Yuen, R. Xu, S. W. Tsao, H. Chen, M. Li, K. H. Kok and D. Y. Jin: Targeting of DICE1 tumor suppressor by Epstein-Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int J Cancer, 133(1), 79-87 (2013)
DOI:10.1002/ijc.28007

55. J. W. Pollard: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4(1), 71-8 (2004)
DOI:10.1038/nrc1256

56. J. Condeelis and J. W. Pollard: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263-6 (2006)
DOI:10.1016/j.cell.2006.01.007

57. J. Wyckoff, W. Wang, E. Y. Lin, Y. Wang, F. Pixley, E. R. Stanley, T. Graf, J. W. Pollard, J. Segall and J. Condeelis: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 64(19), 7022-9 (2004)
DOI:10.1158/0008-5472.CAN-04-1449

58. H. Yamaguchi, F. Pixley and J. Condeelis: Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85(3-4), 213-8 (2006)
DOI:10.1016/j.ejcb.2005.10.004

59. C. Murdoch, A. Giannoudis and C. E. Lewis: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104(8), 2224-34 (2004)
DOI:10.1182/blood-2004-03-1109

60. Y. Yang, M. Sun, L. Wang and B. Jiao: HIFs, angiogenesis, and cancer. J Cell Biochem, 114(5), 967-74 (2013)
DOI:10.1002/jcb.24438

61. C. Y. Hsu, Y. H. Yi, K. P. Chang, Y. S. Chang, S. J. Chen and H. C. Chen: The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog, 10(2), e1003974 (2014)
DOI:10.1371/journal.ppat.1003974

62. T. Kanda, M. Miyata, M. Kano, S. Kondo, T. Yoshizaki and H. Iizasa: Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor. J Virol, 89(5), 2684-97 (2015)
DOI:10.1128/JVI.03189-14

63. Z. Chen, D. Zhang, F. Yue, M. Zheng, Z. Kovacevic and D. R. Richardson: The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J Biol Chem, 287(21), 17016-28 (2012)
DOI:10.1074/jbc.M112.350470

64. R. Jin, W. Liu, S. Menezes, F. Yue, M. Zheng, Z. Kovacevic and D. R. Richardson: The metastasis suppressor NDRG1 modulates the phosphorylation and nuclear translocation of beta-catenin through mechanisms involving FRAT1 and PAK4. J Cell Sci, 127(Pt 14), 3116-30 (2014)
DOI:10.1242/jcs.147835

65. B. R. Cullen: Viruses and microRNAs. Nat Genet, 38 Suppl, S25-30 (2006)
DOI:10.1038/ng1793

66. E. Gottwein and B. R. Cullen: Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe, 3(6), 375-87 (2008)
DOI:10.1016/j.chom.2008.05.002

67. J. R. Abend, D. Ramalingam, P. Kieffer-Kwon, T. S. Uldrick, R. Yarchoan and J. M. Ziegelbauer: Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J Virol, 86(21), 11663-74 (2012)
DOI:10.1128/JVI.01147-12

68. D. Liang, Y. Gao, X. Lin, Z. He, Q. Zhao, Q. Deng and K. Lan: A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res, 21(5), 793-806 (2011)
DOI:10.1038/cr.2011.5

69. J. M. Ziegelbauer, C. S. Sullivan and D. Ganem: Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet, 41(1), 130-4 (2009)
DOI:10.1038/ng.266

70. J. R. Abend, T. Uldrick and J. M. Ziegelbauer: Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol, 84(23), 12139-51 (2010)
DOI:10.1128/JVI.00884-10

71. G. Suffert, G. Malterer, J. Hausser, J. Viiliainen, A. Fender, M. Contrant, T. Ivacevic, V. Benes, F. Gros, O. Voinnet, M. Zavolan, P. M. Ojala, J. G. Haas and S. Pfeffer: Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog, 7(12), e1002405 (2011)
DOI:10.1371/journal.ppat.1002405

72. R. L. Skalsky, M. A. Samols, K. B. Plaisance, I. W. Boss, A. Riva, M. C. Lopez, H. V. Baker and R. Renne: Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol, 81(23), 12836-45 (2007)
DOI:10.1128/JVI.01804-07

73. X. Lei, Z. Bai, F. Ye, J. Xie, C. G. Kim, Y. Huang and S. J. Gao: Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol, 12(2), 193-9 (2010)
DOI:10.1038/ncb2019

74. F. Lu, W. Stedman, M. Yousef, R. Renne and P. M. Lieberman: Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol, 84(6), 2697-706 (2010)
DOI:10.1128/JVI.01997-09

75. X. Lin, D. Liang, Z. He, Q. Deng, E. S. Robertson and K. Lan: miR-K12-7-5p encoded by Kaposi's sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS One, 6(1), e16224 (2011)
DOI:10.1371/journal.pone.0016224

76. Z. Qin, P. Kearney, K. Plaisance and C. H. Parsons: Pivotal Advance: Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. Journal of Leukocyte Biology, 87(1), 25-34 (2009)
DOI:10.1189/jlb.0409251

77. E. Gottwein and B. R. Cullen: A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol, 84(10), 5229-37 (2010)
DOI:10.1128/JVI.00202-10

78. M. A. Samols, R. L. Skalsky, A. M. Maldonado, A. Riva, M. C. Lopez, H. V. Baker and R. Renne: Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog, 3(5), e65 (2007)
DOI:10.1371/journal.ppat.0030065

79. M. Hu, C. Wang, W. Li, W. Lu, Z. Bai, D. Qin, Q. Yan, J. Zhu, B. J. Krueger, R. Renne, S. J. Gao and C. Lu: A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling. PLoS Pathog, 11(9), e1005171 (2015)
DOI:10.1371/journal.ppat.1005171

80. Y. J. Xie, Z. F. Long and X. S. He: Involvement of EBV-encoded BART-miRNAs and dysregulated cellular miRNAs in nasopharyngeal carcinoma genesis. Asian Pac J Cancer Prev, 14(10), 5637-44 (2013)
DOI:10.7314/APJCP.2013.14.10.5637

81. A. K. Lo, C. W. Dawson, D. Y. Jin and K. W. Lo: The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol, 227(4), 392-403 (2012)
DOI:10.1002/path.4025

82. K. Qian, T. Pietila, M. Ronty, F. Michon, M. J. Frilander, J. Ritari, J. Tarkkanen, L. Paulin, P. Auvinen and E. Auvinen: Identification and validation of human papillomavirus encoded microRNAs. PLoS One, 8(7), e70202 (2013)
DOI:10.1371/journal.pone.0070202

83. L. Rymo: Identification of transcribed regions of Epstein-Barr virus DNA in Burkitt lymphoma-derived cells. J Virol, 32(1), 8-18 (1979)

84. M. D. Rosa, E. Gottlieb, M. R. Lerner and J. A. Steitz: Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol, 1(9), 785-96 (1981)
DOI:10.1128/MCB.1.9.785

85. J. Komano, S. Maruo, K. Kurozumi, T. Oda and K. Takada: Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J Virol, 73(12), 9827-31 (1999)

86. S. A. McKenna, D. A. Lindhout, T. Shimoike, C. E. Aitken and J. D. Puglisi: Viral dsRNA inhibitors prevent self-association and autophosphorylation of PKR. J Mol Biol, 372(1), 103-13 (2007)
DOI:10.1016/j.jmb.2007.06.028

87. W. Ahmed and G. Khan: The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol, 24(1), 3-14 (2014)
DOI:10.1002/rmv.1763

88. A. Giudice, G. D'Arena, A. Crispo, M. F. Tecce, F. Nocerino, M. Grimaldi, E. Rotondo, A. M. D'Ursi, M. Scrima, M. Galdiero, G. Ciliberto, M. Capunzo, G. Franci, A. Barbieri, S. Bimonte and M. Montella: Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. Oxid Med Cell Longev, 2016, 6021934 (2016)
DOI:10.1155/2016/6021934

89. D. Iwakiri, L. Zhou, M. Samanta, M. Matsumoto, T. Ebihara, T. Seya, S. Imai, M. Fujieda, K. Kawa and K. Takada: Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med, 206(10), 2091-9 (2009)
DOI:10.1084/jem.20081761

90. A. Nanbo, K. Inoue, K. Adachi-Takasawa and K. Takada: Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. EMBO J, 21(5), 954-65 (2002)
DOI:10.1093/emboj/21.5.954

91. N. Kitagawa, M. Goto, K. Kurozumi, S. Maruo, M. Fukayama, T. Naoe, M. Yasukawa, K. Hino, T. Suzuki, S. Todo and K. Takada: Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt's lymphoma growth through interleukin-10 induction. EMBO J, 19(24), 6742-50 (2000)
DOI:10.1093/emboj/19.24.6742

92. S. Alas, C. Emmanouilides and B. Bonavida: Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin's lymphoma to apoptosis. Clin Cancer Res, 7(3), 709-23 (2001)

93. L. Zeng, C. O'Connor, J. Zhang, A. M. Kaplan and D. A. Cohen: IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine, 49(3), 294-302 (2010)
DOI:10.1016/j.cyto.2009.11.015

94. B. Sredni, M. Weil, G. Khomenok, I. Lebenthal, S. Teitz, Y. Mardor, Z. Ram, A. Orenstein, A. Kershenovich, S. Michowiz, Y. I. Cohen, Z. H. Rappaport, I. Freidkin, M. Albeck, D. L. Longo and Y. Kalechman: Ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 64(5), 1843-52 (2004)
DOI:10.1158/0008-5472.CAN-03-3179

95. A. Shinozaki, T. Sakatani, T. Ushiku, R. Hino, M. Isogai, S. Ishikawa, H. Uozaki, K. Takada and M. Fukayama: Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res, 70(11), 4719-27 (2010)
DOI:10.1158/0008-5472.CAN-09-4620

96. T. Kimura, S. Jiang, N. Yoshida, R. Sakamoto and M. Nishizawa: Interferon-alpha competing endogenous RNA network antagonizes microRNA-1270. Cell Mol Life Sci, 72(14), 2749-61 (2015)
DOI:10.1007/s00018-015-1875-5

97. M. Nishizawa and T. Kimura: RNA Networks that Regulate mRNA Expression and their Potential as Drug Targets. RNA & DISEASE, 3, e864 (2016)
DOI:10.14800/rd.864

98. R. Sun, S. F. Lin, L. Gradoville and G. Miller: Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A, 93(21), 11883-8 (1996)
DOI:10.1073/pnas.93.21.11883

99. W. Zhong and D. Ganem: Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol, 71(2), 1207-12 (1997)

100. S. Borah, N. Darricarrere, A. Darnell, J. Myoung and J. A. Steitz: A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog, 7(10), e1002300 (2011)
DOI:10.1371/journal.ppat.1002300

101. C. C. Rossetto and G. S. Pari: Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation. J Virol, 85(24), 13290-7 (2011)
DOI:10.1128/JVI.05886-11

102. C. C. Rossetto, M. Tarrant-Elorza, S. Verma, P. Purushothaman and G. S. Pari: Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA. J Virol, 87(10), 5540-53 (2013)
DOI:10.1128/JVI.03111-12

103. G. Franchini: Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood, 86(10), 3619-39 (1995)

104. G. Gaudray, F. Gachon, J. Basbous, M. Biard-Piechaczyk, C. Devaux and J. M. Mesnard: The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol, 76(24), 12813-22 (2002)
DOI:10.1128/JVI.76.24.12813-12822.2002

105. Y. Mitobe, J. Yasunaga, R. Furuta and M. Matsuoka: HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival. Cancer Res, 75(19), 4143-52 (2015)
DOI:10.1158/0008-5472.CAN-15-0942

106. Y. Satou, J. Yasunaga, M. Yoshida and M. Matsuoka: HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A, 103(3), 720-5 (2006)
DOI:10.1073/pnas.0507631103

107. M. J. Blaser, G. I. Perez-Perez, H. Kleanthous, T. L. Cover, R. M. Peek, P. H. Chyou, G. N. Stemmermann and A. Nomura: Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, 55(10), 2111-5 (1995)

108. J. Parsonnet, G. D. Friedman, N. Orentreich and H. Vogelman: Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 40(3), 297-301 (1997)
DOI:10.1136/gut.40.3.297

109. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman and F. Bray: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5), E359-86 (2015)
DOI:10.1002/ijc.29210

110. M. Plummer, S. Franceschi, J. Vignat, D. Forman and C. de Martel: Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer, 136(2), 487-90 (2015)
DOI:10.1002/ijc.28999

111. M. Hatakeyama: Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer, 4(9), 688-94 (2004)
DOI:10.1038/nrc1433

112. Z. Z. Chong and K. Maiese: The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol, 22(11), 1251-67 (2007)

113. P. Saju, N. Murata-Kamiya, T. Hayashi, Y. Senda, L. Nagase, S. Noda, K. Matsusaka, S. Funata, A. Kunita, M. Urabe, Y. Seto, M. Fukayama, A. Kaneda and M. Hatakeyama: Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus. Nature Microbiology, 1 (2016)
DOI:10.1038/nmicrobiol.2016.26

114. S. Akiba, C. Koriyama, R. Herrera-Goepfert and Y. Eizuru: Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci, 99(2), 195-201 (2008)
DOI:10.1111/j.1349-7006.2007.00674.x

115. M. V. Lin, L. Y. King and R. T. Chung: Hepatitis C virus-associated cancer. Annu Rev Pathol, 10, 345-70 (2015)
DOI:10.1146/annurev-pathol-012414-040323

116. Z. Wang, K. Ceniccola, L. Florea, B. D. Wang, N. H. Lee and A. Kumar: Viral non-coding RNA inhibits HNF4alpha expression in HCV associated hepatocellular carcinoma. Infect Agent Cancer, 10, 19 (2015)
DOI:10.1186/s13027-015-0014-0

117. S. Thuault, E. J. Tan, H. Peinado, A. Cano, C. H. Heldin and A. Moustakas: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem, 283(48), 33437-46 (2008)
DOI:10.1074/jbc.M802016200

118. S. Lamouille, J. Xu and R. Derynck: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 15(3), 178-96 (2014)
DOI:10.1038/nrm3758

119. W. Bao, L. Florea, N. Wu, Z. Wang, K. Banaudha, J. Qian, L. Houzet, R. Kumar and A. Kumar: Loss of nuclear PTEN in HCV-infected human hepatocytes. Infect Agent Cancer, 9, 23 (2014)
DOI:10.1186/1750-9378-9-23

120. W. H. Shen, A. S. Balajee, J. Wang, H. Wu, C. Eng, P. P. Pandolfi and Y. Yin: Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 128(1), 157-70 (2007)
DOI:10.1016/j.cell.2006.11.042

121. P. G. Smiraldo, A. M. Gruver, J. C. Osborn and D. L. Pittman: Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res, 65(6), 2089-96 (2005)
DOI:10.1158/0008-5472.CAN-04-2079

122. D. Kremsdorf, P. Soussan, P. Paterlini-Brechot and C. Brechot: Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene, 25(27), 3823-33 (2006)
DOI:10.1038/sj.onc.1209559

123. M. A. Feitelson and J. Lee: Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett, 252(2), 157-70 (2007)
DOI:10.1016/j.canlet.2006.11.010

124. M. Levrero: Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene, 25(27), 3834-47 (2006)
DOI:10.1038/sj.onc.1209562

125. A. Saha and E. S. Robertson: Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res, 17(10), 3056-63 (2011)
DOI:10.1158/1078-0432.CCR-10-2578

126. Y. Chang, E. Cesarman, M. S. Pessin, F. Lee, J. Culpepper, D. M. Knowles and P. S. Moore: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 266(5192), 1865-9 (1994)
DOI:10.1126/science.7997879

127. D. Martin and J. S. Gutkind: Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene, 27 Suppl 2, S31-42 (2008)
DOI:10.1038/onc.2009.351

128. M. A. Whiteside, E. M. Siegel and E. R. Unger: Human papillomavirus and molecular considerations for cancer risk. Cancer, 113(10 Suppl), 2981-94 (2008)
DOI:10.1002/cncr.23750

129. K. Takatsuki: Discovery of adult T-cell leukemia. Retrovirology, 2, 16 (2005)
DOI:10.1186/1742-4690-2-16

130. N. Uemura, S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi, M. Yamakido, K. Taniyama, N. Sasaki and R. J. Schlemper: Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345(11), 784-9 (2001)
DOI:10.1056/NEJMoa001999

Abbreviations: ncRNA: non-protein-coding RNA; lncRNA: long non-coding RNA; HTLV-1: Human T-lymphotropic virus 1; HCV: Hepatitis C virus; HBV: Hepatitis B virus; HHV4: Human herpesvirus 4; EBV: Epstein-Barr virus; HHV8: Human herpesvirus 8; KSHV: Kaposi sarcoma-associated herpesvirus; HPV: Human papillomavirus; RISC: RNA-induced silencing complex; AGO: argonaute; MRE: miRNA response element; CTL: cytotoxic T lymphocyte; PUMA: p53 upregulated modulator of apoptosis; Bim: Bcl-2 interacting mediator of cell death; TOMM22: translocase of outer mitochondrial membrane 22; PTEN: phosphatase and tensin homologue deleted on chromosome 10; EBNA: EBV nuclear antigen; RTA: replication and transcription activator; Bcl-XL: B-cell lymphoma XL; cIAP: cellular inhibitors of apoptosis protein; GADD45beta growth arrest and DNA-damage-inducible 45beta; BCL2A1: B-cell-lymphoma-2-related protein A1; SOD2: superoxide dismutase 2; TNF-alpha tumor necrosis factor-alpha EBER: EBV-encoded small RNA; DICE1: deleted in cancer cells 1; INTS6: Integrator complex subunit 6; NPC: nasopharyngeal carcinoma; TAM: tumor-associated macrophage; VEGF: vascular endothelial growth factor; NDRG1: N-myc downstream regulated gene 1; EMT: epithelial-mesenchymal transition; IRAK1: interleukin-1 receptor-associated kinase 1; MYD88: myeloid differentiation primary response protein 88; TLR: Toll-like receptor; IKBKE: inhibitor of nuclear factor-kappaB kinase subunit epsilon; IKKepsilon: IkappaB kinase epsilon: IRF: interferon regulatory factor; BCLAF1: Bcl-2-associated transcription factor 1; KS: Kaposi sarcoma; TWEAK: tumor necrosis factor-like weak inducer of apoptosis; TWEAKR: TWEAK receptor; LDOC: leucine zipper downregulated in cancer 1; MCP: major capsid protein; DNMT: DNA methyl transferase; Rbl2: retinoblastoma-like protein 2; LIP: liver-enriched inhibitory protein; PEL: primary effusion lymphoma; THBS1: thrombospondin 1; GRK2: G protein-coupled receptor kinase 2; BL: Burkitt Lymphoma; SCID: severe combined immunodeficiency; IRG: interferon response gene; PKR: protein kinase R; dsRBD: double-stranded RNA-binding domain; EBNA: Epstein-Barr nuclear antigen; LMP: Latent Membrane Protein; IL-6: Interleukine-6; CXCR4: C-X-C chemokine receptor type 4; RANTES: Regulated on Activation, Normal T Cell Expressed and Secreted; MCP1: Monocyte Chemotactic Protein-1; ZEB: zinc finger E-box binding homeobox transcription factor; ceRNA; competing endogenous RNA; HBZ: HTLV-1 basic leucine zipper factor; bZIP: basic leucine zipper; E2F1: E2 promoter-binding factor 1; ATL: Adult T cell Leukemia; SHP2: Src homology 2-domain containing tyrosine phosphatase; HCC: hepatocellular carcinoma; HNF4alpha: hepatocyte nuclear factor 4alpha TGF-beta transforming growth factor-beta; HMGA2: high mobility group AT-hook 2; CDH1: Cadherin 1; TNPO2: Transportin-2; RIG-I: retinoic acid-inducible gene-I; Bax: Bcl-2 associated X; IkappaBalpha inhibitor of kappaBalpha

Key Words: Regulatory non-coding RNA, Oncogenesis, microRNA, Small ncRNA, Long ncRNA, Cancer hallmarks, Review

Send correspondence to: Tominori Kimura, Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan, Tel: 81-77-561-2826, Fax: 81-77-561-2564, E-mail: kimurato@ph.ritsumei.ac.jp