[Frontiers In Bioscience, Landmark, 23, 221-246, January 1, 2018]

Neural signatures of attention: insights from decoding population activity patterns

Panagiotis Sapountzis1, Georgia G. Gregoriou1,2

1Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, N. Plastira 100, GR70013 Heraklion, Crete Greece, 2 University of Crete, Faculty of Medicine, P.O. Box 2208, GR71003, Heraklion, Crete, Greece

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. The attention network
4. Neural signatures of attention
4.1. Firing rate
4.2. Neural Synchrony
4.3. Response variability
4.4. Inter-neuronal correlations
5. Advantages of population analysis methods
6. Decoding of neural activity using pattern-classification algorithms
7. Insights into population coding of cognitive functions using decoding approaches
7.1. Population coding of attention
7.2. Mixed selectivity and adaptive coding
7.3. Temporal population dynamics
7.4. Sparse and distributed information coding
7.5. Temporal resolution of information code
7.6. The role of correlations
7.7. Contribution of the LFP signal
8. Comparison between different signal types
9. Implications for the development of brain-machine interfaces (BMIs)
10. Conclusion
11. Acknowledgement
12. References

1. ABSTRACT

Understanding brain function and the computations that individual neurons and neuronal ensembles carry out during cognitive functions is one of the biggest challenges in neuroscientific research. To this end, invasive electrophysiological studies have provided important insights by recording the activity of single neurons in behaving animals. To average out noise, responses are typically averaged across repetitions and across neurons that are usually recorded on different days. However, the brain makes decisions on short time scales based on limited exposure to sensory stimulation by interpreting responses of populations of neurons on a moment to moment basis. Recent studies have employed machine-learning algorithms in attention and other cognitive tasks to decode the information content of distributed activity patterns across neuronal ensembles on a single trial basis. Here, we review results from studies that have used pattern-classification decoding approaches to explore the population representation of cognitive functions. These studies have offered significant insights into population coding mechanisms. Moreover, we discuss how such advances can aid the development of cognitive brain-computer interfaces.

12. REFERENCES

1. M. I. Posner: Orienting of attention. Q J Exp Psychol, 32(1), 3-25 (1980)
DOI:10.1080/00335558008248231

2. K. R. Cave and J. M. Wolfe: Modeling the role of parallel processing in visual search. Cogn Psychol, 22(2), 225-71 (1990)
DOI:10.1016/0010-0285(90)90017-X

3. A. M. Treisman and G. Gelade: A feature-integration theory of attention. Cogn Psychol, 12(1), 97-136 (1980)
DOI:10.1016/0010-0285(80)90005-5

4. J. M. Wolfe: Guided Search 2.0. - a Revised Model of Visual-Search. Psychonomic Bulletin & Review, 1(2), 202-238 (1994)
DOI:10.3758/BF03200774

5. M. Corbetta and G. L. Shulman: Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201-15. (2002)
DOI:10.1038/nrn755

6. R. Desimone and J. Duncan: Neural mechanisms of selective visual attention. Annu Rev Neurosci, 18, 193-222 (1995)
DOI:10.1146/annurev.ne.18.030195.001205

7. S. Kastner and L. G. Ungerleider: Mechanisms of visual attention in the human cortex. Annu Rev Neurosci, 23, 315-41 (2000)
DOI:10.1146/annurev.neuro.23.1.315

8. L. Chelazzi, J. Duncan, E. K. Miller and R. Desimone: Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol, 80(6), 2918-40. (1998)

9. L. Chelazzi, E. K. Miller, J. Duncan and R. Desimone: Responses of neurons in macaque area V4 during memory-guided visual search. Cereb Cortex, 11(8), 761-72. (2001)
DOI:10.1093/cercor/11.8.761

10. S. J. Luck, L. Chelazzi, S. A. Hillyard and R. Desimone: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol, 77(1), 24-42. (1997)

11. J. Moran and R. Desimone: Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782-784 (1985)
DOI:10.1126/science.4023713

12. B. C. Motter: Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol, 70(3), 909-19 (1993)

13. J. H. Reynolds, L. Chelazzi and R. Desimone: Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci, 19(5), 1736-53 (1999)

14. S. Treue and J. C. Martinez Trujillo: Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575-9 (1999)
DOI:10.1038/21176

15. S. Treue and J. H. Maunsell: Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382(6591), 539-41 (1996)
DOI:10.1038/382539a0

16. B. Noudoost, M. H. Chang, N. A. Steinmetz and T. Moore: Top-down control of visual attention. Curr Opin Neurobiol, 20(2), 183-90 (2010)
DOI:10.1016/j.conb.2010.02.003

17. J. Duncan: Disorganization of Behavior after Frontal-Lobe Damage. Cognitive Neuropsych, 3(3), 271-290 (1986)
DOI:10.1080/02643298608253360

18. S. R. Friedman-Hill, L. C. Robertson, R. Desimone and L. G. Ungerleider: Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci U S A, 100(7), 4263-8 (2003)
DOI:10.1073/pnas.0730772100

19. M. M. Mesulam: A cortical network for directed attention and unilateral neglect. Ann Neurol, 10(4), 309-25 (1981)
DOI:10.1002/ana.410100402

20. A. F. Rossi, N. P. Bichot, R. Desimone and L. G. Ungerleider: Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J Neurosci, 27(42), 11306-14 (2007)
DOI:10.1523/JNEUROSCI.2939-07.2007

21. C. Wardak, E. Olivier and J. R. Duhamel: A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron, 42(3), 501-8 (2004)
DOI:10.1016/S0896-6273(04)00185-0

22. J. Gottlieb: From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron, 53(1), 9-16 (2007)
DOI:10.1016/j.neuron.2006.12.009

23. K. G. Thompson and N. P. Bichot: A visual salience map in the primate frontal eye field. Prog Brain Res, 147, 251-62 (2005)
DOI:10.1016/s0079-6123(04)47019-8

24. E. B. Cutrell and R. T. Marrocco: Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Exp Brain Res, 144(1), 103-13 (2002)
DOI:10.1007/s00221-002-1032-x

25. T. Moore and M. Fallah: Control of eye movements and spatial attention. Proc Natl Acad Sci U S A, 98(3), 1273-6 (2001)
DOI:10.1073/pnas.98.3.1273

26. I. E. Monosov and K. G. Thompson: Frontal eye field activity enhances object identification during covert visual search. J Neurophysiol, 102(6), 3656-72 (2009)
DOI:10.1152/jn.00750.2009

27. C. Wardak, G. Ibos, J. R. Duhamel and E. Olivier: Contribution of the monkey frontal eye field to covert visual attention. J Neurosci, 26(16), 4228-35 (2006)
DOI:10.1523/JNEUROSCI.3336-05.2006

28. T. J. Buschman and E. K. Miller: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-2 (2007)
DOI:10.1126/science.1138071

29. N. P. Bichot, M. T. Heard, E. M. DeGennaro and R. Desimone: A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 88(4), 832-44 (2015)
DOI:10.1016/j.neuron.2015.10.001

30. C. J. McAdams and J. H. Maunsell: Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol, 83(3), 1751-5 (2000)

31. J. H. Reynolds and D. J. Heeger: The normalization model of attention. Neuron, 61(2), 168-85 (2009)
DOI:10.1016/j.neuron.2009.01.002

32. J. Lee and J. H. Maunsell: A normalization model of attentional modulation of single unit responses. PLoS ONE, 4(2), e4651 (2009)
DOI:10.1371/journal.pone.0004651

33. J. C. Martinez-Trujillo and S. Treue: Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr Biol, 14(9), 744-51 (2004)
DOI:10.1016/j.cub.2004.04.028

34. E. A. Buffalo, P. Fries, R. Landman, T. J. Buschman and R. Desimone: Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci U S A, 108(27), 11262-7 (2011)
DOI:10.1073/pnas.1011284108

35. K. McAlonan, J. Cavanaugh and R. H. Wurtz: Guarding the gateway to cortex with attention in visual thalamus. Nature, 456(7220), 391-4 (2008)
DOI:10.1038/nature07382

36. R. M. McPeek and E. L. Keller: Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol, 88(4), 2019-34 (2002)

37. A. Ignashchenkova, P. W. Dicke, T. Haarmeier and P. Thier: Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci, 7(1), 56-64 (2004)
DOI:10.1038/nn1169

38. R. J. Krauzlis, L. P. Lovejoy and A. Zenon: Superior Colliculus and Visual Spatial Attention. Annu Rev Neurosci (2013)
DOI:10.1146/annurev-neuro-062012-170249

39. J. L. Herrero, M. J. Roberts, L. S. Delicato, M. A. Gieselmann, P. Dayan and A. Thiele: Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature, 454(7208), 1110-4 (2008)
DOI:10.1038/nature07141

40. C. J. McAdams and R. C. Reid: Attention modulates the responses of simple cells in monkey primary visual cortex. J Neurosci, 25(47), 11023-33 (2005)
DOI:10.1523/JNEUROSCI.2904-05.2005

41. P. S. Khayat, H. Spekreijse and P. R. Roelfsema: Attention lights up new object representations before the old ones fade away. J Neurosci, 26(1), 138-42 (2006)
DOI:10.1523/JNEUROSCI.2784-05.2006

42. N. P. Bichot, A. F. Rossi and R. Desimone: Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308(5721), 529-34 (2005)
DOI:10.1126/science.1109676

43. J. W. Bisley and M. E. Goldberg: Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299(5603), 81-6 (2003)
DOI:10.1126/science.1077395

44. J. P. Gottlieb, M. Kusunoki and M. E. Goldberg: The representation of visual salience in monkey parietal cortex. Nature, 391, 481-484 (1998)
DOI:10.1038/35135

45. K. G. Thompson, N. P. Bichot and J. D. Schall: Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophysiol, 77(2), 1046-50 (1997)

46. N. P. Bichot and J. D. Schall: Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci, 16(1), 81-9 (1999)
DOI:10.1017/S0952523899161042

47. G. G. Gregoriou, S. J. Gotts, H. Zhou and R. Desimone: High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207-10 (2009)
DOI:10.1126/science.1171402

48. P. Fries, J. H. Reynolds, A. E. Rorie and R. Desimone: Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 1560-1563 (2001)
DOI:10.1126/science.1055465

49. Y. B. Saalmann, I. N. Pigarev and T. R. Vidyasagar: Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science, 316(5831), 1612-5 (2007)
DOI:10.1126/science.1139140

50. K. Taylor, S. Mandon, W. A. Freiwald and A. K. Kreiter: Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb Cortex, 15(9), 1424-37 (2005)
DOI:10.1093/cercor/bhi023

51. G. G. Gregoriou, S. Paneri and P. Sapountzis: Oscillatory synchrony as a mechanism of attentional processing. Brain Res, 1626, 165-82 (2015)
DOI:10.1016/j.brainres.2015.02.004

52. T. Gruber, M. M. Muller, A. Keil and T. Elbert: Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol, 110(12), 2074-85 (1999)
DOI:10.1016/S1388-2457(99)00176-5

53. M. M. Muller and A. Keil: Neuronal synchronization and selective color processing in the human brain. J Cogn Neurosci, 16(3), 503-22 (2004)
DOI:10.1162/089892904322926827

54. M. Siegel, T. H. Donner, R. Oostenveld, P. Fries and A. K. Engel: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60(4), 709-19 (2008)
DOI:10.1016/j.neuron.2008.09.010

55. C. Tallon-Baudry, O. Bertrand, M. A. Henaff, J. Isnard and C. Fischer: Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex, 15(5), 654-62 (2005)
DOI:10.1093/cercor/bhh167

56. C. A. Bosman, J. M. Schoffelen, N. Brunet, R. Oostenveld, A. M. Bastos, T. Womelsdorf, B. Rubehn, T. Stieglitz, P. De Weerd and P. Fries: Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75(5), 875-88 (2012)
DOI:10.1016/j.neuron.2012.06.037

57. I. Grothe, S. D. Neitzel, S. Mandon and A. K. Kreiter: Switching neuronal inputs by differential modulations of gamma-band phase-coherence. J Neurosci, 32(46), 16172-80 (2012)
DOI:10.1523/JNEUROSCI.0890-12.2012

58. A. M. Bastos, J. Vezoli and P. Fries: Communication through coherence with inter-areal delays. Curr Opin Neurobiol, 31, 173-80 (2015)
DOI:10.1016/j.conb.2014.11.001

59. G. G. Gregoriou, A. F. Rossi, L. G. Ungerleider and R. Desimone: Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat Neurosci, 17(7), 1003-11 (2014)
DOI:10.1038/nn.3742

60. A. Bollimunta, J. Mo, C. E. Schroeder and M. Ding: Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci, 31(13), 4935-43 (2011)
DOI:10.1523/JNEUROSCI.5580-10.2011

61. P. Fries, T. Womelsdorf, R. Oostenveld and R. Desimone: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci, 28(18), 4823-35 (2008)
DOI:10.1523/JNEUROSCI.4499-07.2008

62. M. Bauer, R. Oostenveld, M. Peeters and P. Fries: Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci, 26(2), 490-501 (2006)
DOI:10.1523/JNEUROSCI.5228-04.2006

63. G. Thut, A. Nietzel, S. A. Brandt and A. Pascual-Leone: Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci, 26(37), 9494-502 (2006)
DOI:10.1523/JNEUROSCI.0875-06.2006

64. M. S. Worden, J. J. Foxe, N. Wang and G. V. Simpson: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci, 20(6), RC63 (2000)

65. B. F. Handel, T. Haarmeier and O. Jensen: Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci, 23(9), 2494-502 (2011)
DOI:10.1162/jocn.2010.21557

66. S. P. Kelly, E. C. Lalor, R. B. Reilly and J. J. Foxe: Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol, 95(6), 3844-51 (2006)
DOI:10.1152/jn.01234.2005

67. S. Palva and J. M. Palva: New vistas for alpha-frequency band oscillations. Trends Neurosci, 30(4), 150-8 (2007)
DOI:10.1016/j.tins.2007.02.001

68. W. Klimesch: Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci, 16(12), 606-17 (2012)
DOI:10.1016/j.tics.2012.10.007

69. A. Maier, G. K. Adams, C. Aura and D. A. Leopold: Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci, 4 (2010)
DOI:10.3389/fnsys.2010.00031

70. D. Xing, C. I. Yeh, S. Burns and R. M. Shapley: Laminar analysis of visually evoked activity in the primary visual cortex. Proc Natl Acad Sci U S A, 109(34), 13871-6 (2012)
DOI:10.1073/pnas.1201478109

71. T. van Kerkoerle, M. W. Self, B. Dagnino, M. A. Gariel-Mathis, J. Poort, C. van der Togt and P. R. Roelfsema: Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A, 111(40), 14332-41 (2014)
DOI:10.1073/pnas.1402773111

72. M. N. Shadlen and W. T. Newsome: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 18(10), 3870-96 (1998)

73. D. J. Tolhurst, J. A. Movshon and A. F. Dean: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 23(8), 775-85 (1983)
DOI:10.1016/0042-6989(83)90200-6

74. M. M. Churchland, B. M. Yu, J. P. Cunningham, L. P. Sugrue, M. R. Cohen, G. S. Corrado, W. T. Newsome, A. M. Clark, P. Hosseini, B. B. Scott, D. C. Bradley, M. A. Smith, A. Kohn, J. A. Movshon, K. M. Armstrong, T. Moore, S. W. Chang, L. H. Snyder, S. G. Lisberger, N. J. Priebe, I. M. Finn, D. Ferster, S. I. Ryu, G. Santhanam, M. Sahani and K. V. Shenoy: Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci, 13(3), 369-78 (2010)
DOI:10.1038/nn.2501

75. M. H. Chang, K. M. Armstrong and T. Moore: Dissociation of response variability from firing rate effects in frontal eye field neurons during visual stimulation, working memory, and attention. J Neurosci, 32(6), 2204-16 (2012)
DOI:10.1523/JNEUROSCI.2967-11.2012

76. B. A. Purcell, R. P. Heitz, J. Y. Cohen and J. D. Schall: Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience. J Neurophysiol, 108(10), 2737-50 (2012)
DOI:10.1152/jn.00613.2012

77. C. J. McAdams and J. H. Maunsell: Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23(4), 765-73 (1999)
DOI:10.1016/S0896-6273(01)80034-9

78. J. F. Mitchell, K. A. Sundberg and J. H. Reynolds: Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron, 55(1), 131-41 (2007)
DOI:10.1016/j.neuron.2007.06.018

79. A. Thiele, C. Brandt, M. Dasilva, S. Gotthardt, D. Chicharro, S. Panzeri and C. Distler: Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys. J Neurosci, 36(29), 7601-12 (2016)
DOI:10.1523/JNEUROSCI.0872-16.2016

80. C. Hussar and T. Pasternak: Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task. Proc Natl Acad Sci U S A, 107(50), 21842-7 (2010)
DOI:10.1073/pnas.1009956107

81. R. L. Goris, J. A. Movshon and E. P. Simoncelli: Partitioning neuronal variability. Nat Neurosci, 17(6), 858-65 (2014)
DOI:10.1038/nn.3711

82. E. Zohary, M. N. Shadlen and W. T. Newsome: Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140-3 (1994)
DOI:10.1038/370140a0

83. M. R. Cohen and A. Kohn: Measuring and interpreting neuronal correlations. Nat Neurosci, 14(7), 811-9 (2011)
DOI:10.1038/nn.2842

84. J. Poort and P. R. Roelfsema: Noise correlations have little influence on the coding of selective attention in area V1. Cereb Cortex, 19(3), 543-53 (2009)
DOI:10.1093/cercor/bhn103

85. W. Bair, E. Zohary and W. T. Newsome: Correlated firing in macaque visual area MT: time scales and relationship to behavior. J Neurosci, 21(5), 1676-97 (2001)

86. M. L. Leavitt, F. Pieper, A. Sachs, R. Joober and J. C. Martinez-Trujillo: Structure of spike count correlations reveals functional interactions between neurons in dorsolateral prefrontal cortex area 8a of behaving primates. PLoS One, 8(4), e61503 (2013)
DOI:10.1371/journal.pone.0061503

87. J. L. Herrero, M. A. Gieselmann, M. Sanayei and A. Thiele: Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron, 78(4), 729-39 (2013)
DOI:10.1016/j.neuron.2013.03.029

88. D. A. Ruff and M. R. Cohen: Attention Increases Spike Count Correlations between Visual Cortical Areas. J Neurosci, 36(28), 7523-34 (2016)
DOI:10.1523/JNEUROSCI.0610-16.2016

89. M. R. Cohen and J. H. Maunsell: Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci, 12(12), 1594-600 (2009)
DOI:10.1038/nn.2439

90. J. F. Mitchell, K. A. Sundberg and J. H. Reynolds: Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron, 63(6), 879-88 (2009)
DOI:10.1016/j.neuron.2009.09.013

91. A. Zenon and R. J. Krauzlis: Attention deficits without cortical neuronal deficits. Nature, 489(7416), 434-U124 (2012)
DOI:10.1038/nature11497

92. E. Astrand, C. Wardak, P. Baraduc and S. Ben Hamed: Direct Two-Dimensional Access to the Spatial Location of Covert Attention in Macaque Prefrontal Cortex. Curr Biol, 26(13), 1699-704 (2016)
DOI:10.1016/j.cub.2016.04.054

93. N. C. Rabinowitz, R. L. Goris, M. Cohen and E. P. Simoncelli: Attention stabilizes the shared gain of V4 populations. Elife, 4, e08998 (2015)
DOI:10.7554/eLife.08998

94. R. Yuste: From the neuron doctrine to neural networks. Nat Rev Neurosci, 16(8), 487-97 (2015)
DOI:10.1038/nrn3962

95. R. O. Duda, P. E. Hart and D. G. Stork: Pattern classification. Wiley, New York (2001)

96. M. Jazayeri and J. A. Movshon: Optimal representation of sensory information by neural populations. Nat Neurosci, 9(5), 690-6 (2006)
DOI:10.1038/nn1691

97. E. Astrand, P. Enel, G. Ibos, P. F. Dominey, P. Baraduc and S. Ben Hamed: Comparison of classifiers for decoding sensory and cognitive information from prefrontal neuronal populations. PLoS One, 9(1), e86314 (2014)
DOI:10.1371/journal.pone.0086314

98. R. Quian Quiroga and S. Panzeri: Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci, 10(3), 173-85 (2009)
DOI:10.1038/nrn2578

99. I. Kanitscheider, R. Coen-Cagli, A. Kohn and A. Pouget: Measuring Fisher information accurately in correlated neural populations. PLoS Comput Biol, 11(6), e1004218 (2015)
DOI:10.1371/journal.pcbi.1004218

100. S. Panzeri, R. Senatore, M. A. Montemurro and R. S. Petersen: Correcting for the sampling bias problem in spike train information measures. J Neurophysiol, 98(3), 1064-72 (2007)
DOI:10.1152/jn.00559.2007

101. J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O'Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez and M. A. Nicolelis: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol, 1(2), E42 (2003)
DOI:10.1371/journal.pbio.0000042

102. N. Hatsopoulos, J. Joshi and J. G. O'Leary: Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J Neurophysiol, 92(2), 1165-74 (2004)
DOI:10.1152/jn.01245.2003

103. S. Tremblay, F. Pieper, A. Sachs and J. Martinez-Trujillo: Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex. Neuron, 85(1), 202-15 (2015)
DOI:10.1016/j.neuron.2014.11.021

104. S. Tremblay, G. Doucet, F. Pieper, A. Sachs and J. Martinez-Trujillo: Single-Trial Decoding of Visual Attention from Local Field Potentials in the Primate Lateral Prefrontal Cortex Is Frequency-Dependent. J Neurosci, 35(24), 9038-49 (2015)
DOI:10.1523/JNEUROSCI.1041-15.2015

105. K. M. Armstrong, M. H. Chang and T. Moore: Selection and maintenance of spatial information by frontal eye field neurons. J Neurosci, 29(50), 15621-9 (2009)
DOI:10.1523/JNEUROSCI.4465-09.2009

106. S. Farbod Kia, E. Astrand, G. Ibos and S. Ben Hamed: Readout of the intrinsic and extrinsic properties of a stimulus from un-experienced neuronal activities: towards cognitive neuroprostheses. J Physiol Paris, 105(1-3), 115-22 (2011)
DOI:10.1016/j.jphysparis.2011.07.015

107. P. Sapountzis, S. Anastasakis, R. Desimone and G. G. Gregoriou: Decoding covert attention from simultaneous recordings in prefrontal and visual cortex. In: AREADNE Research in Encoding and Decoding of Neural Ensembles. Ed N. G. Hatsopoulos&J. S. Pezaris. Santorini, Greece (2014)

108. M. Esghaei and M. R. Daliri: Decoding of visual attention from LFP signals of macaque MT. PLoS One, 9(6), e100381 (2014)
DOI:10.1371/journal.pone.0100381

109. Y. Zhang, E. M. Meyers, N. P. Bichot, T. Serre, T. A. Poggio and R. Desimone: Object decoding with attention in inferior temporal cortex. Proc Natl Acad Sci U S A, 108(21), 8850-5 (2011)
DOI:10.1073/pnas.1100999108

110. J. Jonides: Voluntary Versus Automatic Control Over the Mind’s Eye’s Movement. In: Attention and Performance IX. Ed J. B. Long&A. D. Baddely. Lawrence Erlbaum Associates Hillsdale, NJ (1981)

111. D. Raposo, M. T. Kaufman and A. K. Churchland: A category-free neural population supports evolving demands during decision-making. Nat Neurosci, 17(12), 1784-92 (2014)
DOI:10.1038/nn.3865

112. E. M. Meyers, X. L. Qi and C. Constantinidis: Incorporation of new information into prefrontal cortical activity after learning working memory tasks. P Natl Acad Sci U S A, 109(12), 4651-4656 (2012)
DOI:10.1073/pnas.1201022109

113. M. G. Stokes, M. Kusunoki, N. Sigala, H. Nili, D. Gaffan and J. Duncan: Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364-75 (2013)
DOI:10.1016/j.neuron.2013.01.039

114. E. L. Rich and J. D. Wallis: Decoding subjective decisions from orbitofrontal cortex. Nat Neurosci, 19(7), 973-80 (2016)
DOI:10.1038/nn.4320

115. J. Duncan: An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci, 2(11), 820-9 (2001)
DOI:10.1038/35097575

116. S. Fusi, E. K. Miller and M. Rigotti: Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol, 37, 66-74 (2016)
DOI:10.1016/j.conb.2016.01.010

117. D. V. Buonomano and W. Maass: State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci, 10(2), 113-25 (2009)
DOI:10.1038/nrn2558

118. R. S. Zucker and W. G. Regehr: Short-term synaptic plasticity. Annu Rev Physiol, 64, 355-405 (2002)
DOI:10.1146/annurev.physiol.64.092501.114547

119. D. A. Crowe, B. B. Averbeck and M. V. Chafee: Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. J Neurosci, 30(35), 11640-53 (2010)
DOI:10.1523/JNEUROSCI.0954-10.2010

120. E. M. Meyers, D. J. Freedman, G. Kreiman, E. K. Miller and T. Poggio: Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol, 100(3), 1407-19 (2008)
DOI:10.1152/jn.90248.2008

121. E. Astrand, G. Ibos, J. R. Duhamel and S. Ben Hamed: Differential dynamics of spatial attention, position, and color coding within the parietofrontal network. J Neurosci, 35(7), 3174-89 (2015)
DOI:10.1523/JNEUROSCI.2370-14.2015

122. J. D. Murray, A. Bernacchia, N. A. Roy, C. Constantinidis, R. Romo and X. J. Wang: Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc Natl Acad Sci U S A, 114(2), 394-399 (2017)
DOI:10.1073/pnas.1619449114

123. A. S. Morcos and C. D. Harvey: History-dependent variability in population dynamics during evidence accumulation in cortex. Nat Neurosci, 19(12), 1672-1681 (2016)
DOI:10.1038/nn.4403

124. B. A. Olshausen and D. J. Field: Sparse coding of sensory inputs. Curr Opin Neurobiol, 14(4), 481-487 (2004)
DOI:10.1016/j.conb.2004.07.007

125. A. B. Graf, A. Kohn, M. Jazayeri and J. A. Movshon: Decoding the activity of neuronal populations in macaque primary visual cortex. Nat Neurosci, 14(2), 239-45 (2011)
DOI:10.1038/nn.2733

126. A. B. Graf and R. A. Andersen: Inferring eye position from populations of lateral intraparietal neurons. Elife, 3, e02813 (2014)
DOI:10.7554/eLife.02813

127. C. B. Boulay, F. Pieper, M. Leavitt, J. Martinez-Trujillo and A. J. Sachs: Single-trial decoding of intended eye movement goals from lateral prefrontal cortex neural ensembles. J Neurophysiol, 115(1), 486-99 (2016)
DOI:10.1152/jn.00788.2015

128. D. A. Markowitz, Y. T. Wong, C. M. Gray and B. Pesaran: Optimizing the decoding of movement goals from local field potentials in macaque cortex. J Neurosci, 31(50), 18412-22 (2011)
DOI:10.1523/JNEUROSCI.4165-11.2011

129. S. B. Laughlin and T. J. Sejnowski: Communication in neuronal networks. Science, 301(5641), 1870-4 (2003)
DOI:10.1126/science.1089662

130. M. Rigotti, O. Barak, M. R. Warden, X. J. Wang, N. D. Daw, E. K. Miller and S. Fusi: The importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451), 585-90 (2013)
DOI:10.1038/nature12160

131. R. C. deCharms and A. Zador: Neural representation and the cortical code. Annu Rev Neurosci, 23, 613-47 (2000)
DOI:10.1146/annurev.neuro.23.1.613

132. C. P. Hung, G. Kreiman, T. Poggio and J. J. DiCarlo: Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863-6 (2005)
DOI:10.1126/science.1117593

133. S. Panzeri, N. Brunel, N. K. Logothetis and C. Kayser: Sensory neural codes using multiplexed temporal scales. Trends Neurosci, 33(3), 111-20 (2010)
DOI:10.1016/j.tins.2009.12.001

134. A. Kohn, R. Coen-Cagli, I. Kanitscheider and A. Pouget: Correlations and Neuronal Population Information. Annu Rev Neurosci, 39, 237-56 (2016)
DOI:10.1146/annurev-neuro-070815-013851

135. K. H. Britten, W. T. Newsome, M. N. Shadlen, S. Celebrini and J. A. Movshon: A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13(1), 87-100 (1996)
DOI:10.1017/S095252380000715X

136. L. F. Abbott and P. Dayan: The effect of correlated variability on the accuracy of a population code. Neural Comput, 11(1), 91-101 (1999)
DOI:10.1162/089976699300016827

137. A. S. Ecker, P. Berens, A. S. Tolias and M. Bethge: The effect of noise correlations in populations of diversely tuned neurons. J Neurosci, 31(40), 14272-83 (2011)
DOI:10.1523/JNEUROSCI.2539-11.2011

138. R. Moreno-Bote, J. Beck, I. Kanitscheider, X. Pitkow, P. Latham and A. Pouget: Information-limiting correlations. Nat Neurosci, 17(10), 1410-7 (2014)
DOI:10.1038/nn.3807

139. A. S. Ecker, G. H. Denfield, M. Bethge and A. S. Tolias: On the Structure of Neuronal Population Activity under Fluctuations in Attentional State. J Neurosci, 36(5), 1775-89 (2016)
DOI:10.1523/JNEUROSCI.2044-15.2016

140. B. B. Averbeck, P. E. Latham and A. Pouget: Neural correlations, population coding and computation. Nat Rev Neurosci, 7(5), 358-66 (2006)
DOI:10.1038/nrn1888

141. B. B. Averbeck and D. Lee: Effects of noise correlations on information encoding and decoding. J Neurophysiol, 95(6), 3633-44 (2006)
DOI:10.1152/jn.00919.2005

142. A. B. Graf and R. A. Andersen: Predicting oculomotor behaviour from correlated populations of posterior parietal neurons. Nat Commun, 6, 6024 (2015)
DOI:10.1038/ncomms7024

143. P. Berens, A. S. Ecker, R. J. Cotton, W. J. Ma, M. Bethge and A. S. Tolias: A fast and simple population code for orientation in primate V1. J Neurosci, 32(31), 10618-26 (2012)
DOI:10.1523/JNEUROSCI.1335-12.2012

144. D. Nikolic, S. Hausler, W. Singer and W. Maass: Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol, 7(12), e1000260 (2009)
DOI:10.1371/journal.pbio.1000260

145. J. S. McDonald, C. W. Clifford, S. S. Solomon, S. C. Chen and S. G. Solomon: Integration and segregation of multiple motion signals by neurons in area MT of primate. J Neurophysiol, 111(2), 369-78 (2014)
DOI:10.1152/jn.00254.2013

146. C. Mehring, J. Rickert, E. Vaadia, S. Cardosa de Oliveira, A. Aertsen and S. Rotter: Inference of hand movements from local field potentials in monkey motor cortex. Nat Neurosci, 6(12), 1253-4 (2003)
DOI:10.1038/nn1158

147. E. J. Hwang and R. A. Andersen: The utility of multichannel local field potentials for brain-machine interfaces. J Neural Eng, 10(4), 046005 (2013)
DOI:10.1088/1741-2560/10/4/046005

148. J. Poort, A. Pooresmaeili and P. R. Roelfsema: Multi-neuron representations of visual attention. In: Understanding visual population codes: towards a common multivariate framework for cell recording and functional imaging. Ed N. Kriegeskorte&G. Kreiman. MIT Press, (2012)

149. G. Buzsaki, C. A. Anastassiou and C. Koch: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 13(6), 407-20 (2012)
DOI:10.1038/nrn3241

150. U. Mitzdorf: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev, 65(1), 37-100 (1985)

151. N. K. Logothetis: What we can do and what we cannot do with fMRI. Nature, 453(7197), 869-78 (2008)
DOI:10.1038/nature06976

152. N. K. Logothetis: The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci, 23(10), 3963-71 (2003)

153. M. J. Bartolo, M. A. Gieselmann, V. Vuksanovic, D. Hunter, L. Sun, X. Chen, L. S. Delicato and A. Thiele: Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the resonance blood oxygen level-dependent signal in macaque primary visual cortex. Eur J Neurosci, 34(11), 1857-70 (2011)
DOI:10.1111/j.1460-9568.2011.07877.x

154. P. Sapountzis, D. Schluppeck, R. Bowtell and J. W. Peirce: A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex. Neuroimage, 49(2), 1632-40 (2010)
DOI:10.1016/j.neuroimage.2009.09.066

155. J. D. Haynes and G. Rees: Decoding mental states from brain activity in humans. Nat Rev Neurosci, 7(7), 523-34 (2006)
DOI:10.1038/nrn1931

156. A. Belitski, S. Panzeri, C. Magri, N. K. Logothetis and C. Kayser: Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands. J Comput Neurosci, 29(3), 533-45 (2010)
DOI:10.1007/s10827-010-0230-y

157. J. Rickert, S. C. Oliveira, E. Vaadia, A. Aertsen, S. Rotter and C. Mehring: Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J Neurosci, 25(39), 8815-24 (2005)
DOI:10.1523/JNEUROSCI.0816-05.2005

158. D. Rotermund, U. A. Ernst, S. Mandon, K. Taylor, Y. Smiyukha, A. K. Kreiter and K. R. Pawelzik: Toward high performance, weakly invasive brain computer interfaces using selective visual attention. J Neurosci, 33(14), 6001-11 (2013)
DOI:10.1523/JNEUROSCI.4225-12.2013

159. S. Ray and J. H. Maunsell: Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol, 9(4), e1000610 (2011)
DOI:10.1371/journal.pbio.1000610

160. T. P. Zanos, P. J. Mineault and C. C. Pack: Removal of spurious correlations between spikes and local field potentials. J Neurophysiol, 105(1), 474-86 (2011)
DOI:10.1152/jn.00642.2010

161. U. Mitzdorf: Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci, 33(1-2), 33-59 (1987)
DOI:10.3109/00207458708985928

162. D. A. Kaliukhovich and R. Vogels: Decoding of repeated objects from local field potentials in macaque inferior temporal cortex. PLoS One, 8(9), e74665 (2013)
DOI:10.1371/journal.pone.0074665

163. H. Scherberger, M. R. Jarvis and R. A. Andersen: Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron, 46(2), 347-54 (2005)
DOI:10.1016/j.neuron.2005.03.004

164. B. Pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra and R. A. Andersen: Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci, 5(8), 805-11 (2002)
DOI:10.1038/nn890

165. R. Biran, D. C. Martin and P. A. Tresco: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol, 195(1), 115-26 (2005)
DOI:10.1016/j.expneurol.2005.04.020

166. C. A. Chestek, V. Gilja, P. Nuyujukian, J. D. Foster, J. M. Fan, M. T. Kaufman, M. M. Churchland, Z. Rivera-Alvidrez, J. P. Cunningham, S. I. Ryu and K. V. Shenoy: Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J Neural Eng, 8(4), 045005 (2011)
DOI:10.1088/1741-2560/8/4/045005

167. J. A. Perge, S. Zhang, W. Q. Malik, M. L. Homer, S. Cash, G. Friehs, E. N. Eskandar, J. P. Donoghue and L. R. Hochberg: Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. J Neural Eng, 11(4), 046007 (2014)
DOI:10.1088/1741-2560/11/4/046007

168. D. Wang, Q. Zhang, Y. Li, Y. Wang, J. Zhu, S. Zhang and X. Zheng: Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task. J Neural Eng, 11(3), 036009 (2014)
DOI:10.1088/1741-2560/11/3/036009

169. M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows and J. P. Donoghue: Instant neural control of a movement signal. Nature, 416(6877), 141-2 (2002)
DOI:10.1038/416141a

170. L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt and J. P. Donoghue: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372-5 (2012)
DOI:10.1038/nature11076

171. L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn and J. P. Donoghue: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164-71 (2006)
DOI:10.1038/nature04970

172. E. Astrand, C. Wardak and S. Ben Hamed: Selective visual attention to drive cognitive brain-machine interfaces: from concepts to neurofeedback and rehabilitation applications. Front Syst Neurosci, 8, 144 (2014)
DOI:10.3389/fnsys.2014.00144

173. P. Nuyujukian, J. C. Kao, S. I. Ryu and K. V. Shenoy: A Nonhuman Primate Brain-Computer Typing Interface. Proceedings of the IEEE, 105(1), 66-72 (2017)
DOI:10.1109/JPROC.2016.2586967

174. B. Jarosiewicz, A. A. Sarma, D. Bacher, N. Y. Masse, J. D. Simeral, B. Sorice, E. M. Oakley, C. Blabe, C. Pandarinath, V. Gilja, S. S. Cash, E. N. Eskandar, G. Friehs, J. M. Henderson, K. V. Shenoy, J. P. Donoghue and L. R. Hochberg: Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci Transl Med, 7(313), 313ra179 (2015)
DOI:10.1126/scitranslmed.aac7328

175. F. Bremmer, A. Kaminiarz, S. Klingenhoefer and J. Churan: Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP). Front Integr Neurosci, 10, 30 (2016)
DOI:10.3389/fnint.2016.00030

176. S. Ohmae, T. Takahashi, X. Lu, Y. Nishimori, Y. Kodaka, I. Takashima and S. Kitazawa: Decoding the timing and target locations of saccadic eye movements from neuronal activity in macaque oculomotor areas. J Neural Eng, 12(3), 036014 (2015)
DOI:10.1088/1741-2560/12/3/036014

177. A. B. Graf and R. A. Andersen: Brain-machine interface for eye movements. Proc Natl Acad Sci U S A, 111(49), 17630-5 (2014)
DOI:10.1073/pnas.1419977111

178. M. S. Treder and B. Blankertz: (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behavioral and Brain Functions, 6 (2010)
DOI:10.1186/1744-9081-6-28

179. A. S. Dickey, A. Suminski, Y. Amit and N. G. Hatsopoulos: Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol, 102(2), 1331-9 (2009)
DOI:10.1152/jn.90920.2008

180. G. W. Fraser, S. M. Chase, A. Whitford and A. B. Schwartz: Control of a brain-computer interface without spike sorting. J Neural Eng, 6(5), 055004 (2009)
DOI:10.1088/1741-2560/6/5/055004

181. S. Todorova, P. Sadtler, A. Batista, S. Chase and V. Ventura: To sort or not to sort: the impact of spike-sorting on neural decoding performance. J Neural Eng, 11(5), 056005 (2014)
DOI:10.1088/1741-2560/11/5/056005

182. G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar and K. V. Shenoy: A high-performance brain-computer interface. Nature, 442(7099), 195-8 (2006)
DOI:10.1038/nature04968

183. E. Calabrese, A. Badea, C. L. Coe, G. R. Lubach, Y. Shi, M. A. Styner and G. A. Johnson: A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage, 117, 408-16 (2015)
DOI:10.1016/j.neuroimage.2015.05.072

184. R. Bakker, P. Tiesinga and R. Kotter: The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content. Neuroinformatics, 13(3), 353-66 (2015)
DOI:10.1007/s12021-014-9258-x

Key Words: Visual Attention, Decoding, Machine-Learning Algorithm, Spikes, LFPs, Correlated Variability, Neuronal Synchronization, Review

Send correspondence to: Panagiotis Sapountzis, Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, N. Plastira 100, GR 70013, Heraklion Crete, Greece. Tel: 30-2810-394857, Fax: 30-2810-394840, E-mail: pasapoyn@iacm.forth.gr