MODULATING CA2+ CLEARANCE FROM NEURONS

Stanley A. Thayer, Yury M. Usachev and William J. Pottorf, II

Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455-0217

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Mitochondria
 3.1. Mitochondria damp the amplitude and prolong the duration of [Ca2+], increases
 3.2. Modulation of mitochondrial uptake, storage and release of Ca2+
 3.3. Modulating mitochondrial Ca2+ buffering alters neuronal function
4. Endoplasmic Reticulum (ER)
 4.1. ER Ca2+ buffering and release – a capacity-dependent switch
 4.2. Modulation of sarcoplasmic or endoplasmic reticulum Ca2+ ATPase (SERCA)
 4.3. Modulation of ER Ca2+ storage capacity
 4.4. Functional consequences of switching between Ca2+ release and uptake
5. Ca2+ Binding Proteins
6. Plasma Membrane Ca2+ ATPase (PMCA)
 6.1. Alternative splicing generates Ca2+ pump isoforms with unique properties
 6.2. PMCAs provide high affinity Ca2+ extrusion
 6.3. Pharmacologic modulation of PMCAs
 6.4. Selective modulation of PMCA isoforms by endogenous signaling pathways
 6.5. PMCAs are sites where signaling pathways converge
7. Plasmalemmal Na+/Ca2+ Exchange
 7.1. Na+/Ca2+ exchange provides low affinity, high turnover Ca2+ extrusion
 7.2. Thermodynamic modulation of Na+/Ca2+ exchange
 7.3. Modulation of Na+/Ca2+ exchange by second messengers
 7.4. Pharmacologic modulation of Na+/Ca2+ exchange
 7.5. Functional consequences of modulating Na+/Ca2+ exchange in neurons
8. Perspectives
 8.1. Competing for Ca2+ - the integrated response
 8.2. Future directions
9. Acknowledgements
10. References

1. ABSTRACT

Neurons are exquisitely sensitive to the duration, amplitude and localization of transient increases in intracellular Ca2+ concentration ([Ca2+]). Modulation of Ca2+ uptake into the mitochondrion and endoplasmic reticulum, and efflux via the plasma membrane Ca2+ pump and Na+/Ca2+ exchange profoundly affect the shape of [Ca2+] signals. Ca2+ clearance mechanisms are modulated by other signaling pathways, are sensitive to metabolic state and have a memory of the recent history of cell activation. We present here examples of pharmacologic and endogenous regulation of Ca2+ sequestration and efflux in neurons. Ca2+ clearance mechanisms differentially shape [Ca2+] signals based on their affinity, capacity and location; their modulation alters specific neuronal functions. The increasingly apparent diversity of the molecular entities that make up the [Ca2+] regulatory system reveals new sites for modulation. Specialized Ca2+ clearance mechanisms participate in unique cellular functions and thus, are important targets for pharmacological and physiological regulation of the neuron.

2. INTRODUCTION

Transient increases in the intracellular Ca2+ concentration ([Ca2+]) trigger many neuronal functions including excitability, neurotransmitter release, gene expression and neurotoxicity (1). The rate at which Ca2+ is cleared from the cytoplasm following excitation affects the duration, amplitude and spread of [Ca2+] signals. This article focuses on the modulation of the processes responsible for removing Ca2+ from the cytoplasm of neurons primarily using results from studies with sensory
Modulating Ca2+ clearance from neurons

neurons as examples. Modulation of Ca2+ influx and release is well established and recent reviews discuss pharmacologic and second-messenger-dependent modulation of Ca2+ channels gated by voltage (2, 3), ligands (4), temperature (5) and second messengers (6, 7). We examine here the processes that shape transient increases in [Ca2+], such as uptake into the mitochondrion and endoplasmic reticulum (ER) and efflux via the plasma membrane Ca2+ ATPase (PMCA) and Na\textsuperscript+/Ca2+ exchanger. It is increasingly apparent that Ca2+ clearance mechanisms are not simple housekeepers of Ca2+ homeostasis but are modulated by cross talk with other signaling pathways, are sensitive to metabolic state and have a memory of the recent history of cell activation. Specialization of function and state-dependence of activation are central to understanding the modulation of Ca2+ clearance mechanisms in neurons. This review will provide examples demonstrating that regulation of sequestration and efflux processes is far more dynamic than previously thought.

The versatility of Ca2+ as a second messenger is made possible by the varied and complex Ca2+ regulatory system. Each cell expresses a set of Ca2+ transporters tailored to suit its specialized function (8). The mitochondrion acts as a low affinity [Ca2+] buffer. The ER has a high affinity for [Ca2+]\textsubscript{r}, limited capacity and depending on refilling state can either take up or release Ca2+. The PMCA has a high affinity for [Ca2+], an infinite capacity and predominantly influences [Ca2+]\textsubscript{i}, recovery near basal levels. The Na\textsuperscript+/Ca2+ exchanger has a low affinity for [Ca2+], is sensitive to electrical and Na+ gradients, and is responsible for rapid reduction in [Ca2+], following intense stimulation. Sequestration and efflux processes play different roles in shaping [Ca2+], signals based on their affinity, capacity and location.

Ca2+-activated processes display a complimentary sensitivity to the amplitude and duration of changes in [Ca2+]. A number of enzymes are exquisitely sensitive to the duration of increases in [Ca2+]. For example, prolonged elevation of [Ca2+], enables the autocatalytic activation of Ca2+/calmodulin-dependent protein kinase II (9) enabling subsequent long lasting effects on synaptic plasticity (10). The neurosecretory machinery has both high and low affinity components. The Ca2+-dependent initiation of membrane fusion has a low affinity for Ca2+ and is very sensitive to the amplitude of [Ca2+], increases (11, 12). In contrast, the size of the readily releasable pool of vesicles is regulated by calmodulin, is sensitive to modest increases in [Ca2+], and is thus, very sensitive to [Ca2+], recovery kinetics and residual [Ca2+] (13). Thus, modulation of Ca2+ clearance alters important functional responses in neurons.

3. MITOCHONDRIA

3.1. Mitochondria damp the amplitude and prolong the duration of [Ca2+], increases

Mitochondria have a tremendous capacity to take up Ca2+. The low affinity of isolated mitochondria for Ca2+ was thought to limit their participation in Ca2+ signaling to toxic processes. It is now clear that mitochondrial Ca2+ buffering shapes physiological [Ca2+], transients in neurons (14, 15). This more physiological role may be due to a higher affinity for Ca2+ in vivo relative to isolated mitochondria or exposure to higher [Ca2+], near the mouths of Ca2+ channels than previously realized (16-19). Mitochondria do not appear to retain Ca2+, at least not as free cation, but instead, slowly release Ca2+. The net result is a powerful buffer that attenuates the amplitude and increases the duration of the [Ca2+] response. As shown in Figure 1A, this places a ceiling on [Ca2+], such that increasing stimulus strength lengthens the duration of a shoulder in the recovery phase of the [Ca2+], transient (14). In sensory neurons, this shoulder forms a distinct plateau following application of large Ca2+ loads. Rapid mitochondrial uptake followed by slow release has also been observed in adrenal chromaffin cells (20, 21), sympathetic neurons (15), central neurons (22-24) and motor nerve endings (25). Thus, the mitochondrion acts as a powerful buffer to shape physiological [Ca2+], signals.

Changes in mitochondrial Ca2+ uptake and release affect Ca2+-sensitive processes both within and outside the mitochondrion. Changes in matrix Ca2+ regulate Ca2+-sensitive dehydrogenases, coupling the increased metabolic demand signaled by elevated [Ca2+], to increased aerobic metabolism (26, 27). Ca2+ buffering by the mitochondrial alters [Ca2+], gradients, which affects secretory processes (18, 28) and the refilling and release of Ca2+ from the ER (29-31). The mitochondrial contribution to Ca2+ regulation is location specific. Slow, prolonged Ca2+-release from mitochondria provides the residual [Ca2+], necessary for post-tetanic potentiation at the crayfish neuromuscular junction (32). In contrast, mitochondria at a ribbon synapse only affect synaptic transmission indirectly, by supplying ATP (33). Mitochondrial Ca2+ uptake seems to play a dual role during bursts of activity. Increases in [Ca2+]\textsubscript{mt} activate metabolism, while rapid Ca2+ uptake preserves the phasic nature of individual action-potential-induced increases in [Ca2+], (34, 35). When elevated [Ca2+], reaches toxic levels, neurodegenerative processes are triggered by the resulting Ca2+ overload (36, 37). It was previously thought that mitochondrial Ca2+ buffering protected the cell from Ca2+ triggered cell death, however, it is now clear that mitochondrial Ca2+ targets are for Ca2+ overload and are capable of initiating both necrotic and apoptotic processes (38). In summary, mitochondria play an important physiological role in shaping the amplitude and duration of transient increases in [Ca2+], and in so doing, link excitation to metabolism. Ca2+ overload triggers cell death and the excessive accumulation of Ca2+ within the mitochondrial matrix is an early event in Ca2+-induced toxicity.

3.2. Modulation of mitochondrial uptake, storage and release of Ca2+

Mitochondrial Ca2+ uptake and release occur by different pathways (Figure 1B). The mitochondrial membrane potential (Δψ) provides the driving force for Ca2+ uptake via the uniporter (39, 40). Within the matrix, free Ca2+ is in equilibrium with Ca bound to an anion, mostly phosphate (41). Free Ca2+ is removed from neuronal mitochondria primarily by a Na+/Ca2+ exchange process (42-45). In addition, under certain conditions
Modulating Ca2+ clearance from neurons

Figure 1. Mitochondria decrease the amplitude and increase the duration of depolarization-induced increases in [Ca2+]. A. Trains of action potentials with the indicated number of spikes (APs) were elicited by electric field stimulation (▲) of a single sensory neuron. The same neuron was depolarized for 30 s with 50 mM K+ (ϒ). [Ca2+], was recorded with indo-1-based photometry as previously described (14). B. Scheme shows important sites for modulation of mitochondrial Ca2+ regulation: 1, uniporter; 2, Δψ; 3, Ca2+ phosphate complex formation; 4, Na+/Ca2+ exchange; and 5, PTP. C. Depolarization induced (50 mM K+, 30 s, ϒ) increases in [Ca2+], displayed a marked plateau in the recovery to baseline. Antimycin A1 (1 µM) applied at the time indicated by the horizontal bar increased the amplitude and decreased the duration of the mitochondrial-mediated plateau. D. CGP37157 (10 µM) applied after depolarization (ϒ) accelerated recovery to basal [Ca2+]. Removal of the drug evoked a rebound increase in [Ca2+], as Ca2+ trapped in the matrix was allowed to enter the cytoplasm. Figures A and C, and D were reproduced with permission from references (14) and (87), respectively.

Changes in Δψ alter Ca2+ uptake into the mitochondrion. Agents that poison electron transport (50), such as antimycin A1, provide a clear demonstration of how mitochondria shape transient increases in [Ca2+]. As shown in Figure 1C, when Δψ was dissipated by treatment with antimycin A1, the amplitude of the evoked [Ca2+], response increased and the plateau phase was absent, dramatically shortening the duration of the response. Proton ionophores such as p-trifluoromethoxyphenylhydrazone (FCCP) uncouple electron transport to dissipate Δψ and produce similar changes in [Ca2+], buffering (14). FCCP is a particularly useful agent for inhibiting mitochondrial Ca2+ uptake in intact cells because it is potent, membrane permeant and reversible. It is not, however, selective for mitochondrial membranes (51). Agents that activate ATP-sensitive K+ channels such as diazoxide also decrease the potential across the inner membrane and reduce Ca2+ uptake into the matrix; diazoxide affords protection from ischemia/reperfusion injury in cardiac myocytes (52, 53). The primary complication from dissipating Δψ is reduced ATP production and in some circumstances the actual consumption of ATP via reversal of the ATP synthase (54). Δψ is also changed by endogenous factors. Weak lipophilic acids such as palmitic acid produce a proton leak that decreases Δψ (55). Neurons express uncoupling proteins homologous to those responsible for thermogenesis in brown fat cells (56). Uncoupling proteins reduce mitochondrial production of reactive oxygen species, which may be their primary function in neurons. The availability of metabolic substrates alters Ca2+ uptake into mitochondria in a manner predicted by effects on Δψ (57, 58). Thus, the energy status of the cell modulates mitochondrial Ca2+ uptake. The actual transport of Ca2+ across the inner membrane requires energy and large Ca2+ loads depolarize mitochondria and reduce further Ca2+ uptake (59, 60). In contrast, modest increases in [Ca2+]\textsubscript{mt} increase the proton motive force by stimulating Ca2+-sensitive dehydrogenases (61). Generally, metabolic stress impairs and aerobic metabolism enhances, Ca2+ uptake into mitochondria.
Modulating Ca\(^{2+}\) clearance from neurons

Table 1. Selected modulators of mitochondrial Ca\(^{2+}\) uptake and release

<table>
<thead>
<tr>
<th>Target/modulator</th>
<th>Concentration(^1) ((\mu M))</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. unipor - Ruthenium Red</td>
<td>0.007</td>
<td>Inhibit</td>
<td>64</td>
</tr>
<tr>
<td>Ru360</td>
<td>0.0002</td>
<td>Inhibit</td>
<td>64</td>
</tr>
<tr>
<td>Spermine</td>
<td>100-400</td>
<td>Increase</td>
<td>67, 68</td>
</tr>
<tr>
<td>2. (\Delta\psi) - Uncouplers – e.g. FCCP</td>
<td>0.1</td>
<td>Decrease</td>
<td>296</td>
</tr>
<tr>
<td>e(^-) transport inhibitors – e.g. antimycin A1</td>
<td>0.024-1.0</td>
<td>Decrease</td>
<td>14, 50</td>
</tr>
<tr>
<td>MitoK(_{ATP}) channel opener – e.g. diazoxide</td>
<td>100</td>
<td>Decrease</td>
<td>52, 53</td>
</tr>
<tr>
<td>Substrates - e.g. pyruvate/malate</td>
<td>10000</td>
<td>Increase</td>
<td>57, 58</td>
</tr>
<tr>
<td>3. matrix capacity</td>
<td>↓</td>
<td>Decrease</td>
<td>41</td>
</tr>
<tr>
<td>pH(_{mt})</td>
<td>250</td>
<td>Increase</td>
<td>41</td>
</tr>
<tr>
<td>4. Na(^+)/Ca(^{2+}) exchange</td>
<td>4</td>
<td>Inhibit</td>
<td>87</td>
</tr>
<tr>
<td>[Na(^+)](_i)</td>
<td>↓</td>
<td>Inhibit</td>
<td>42, 44</td>
</tr>
<tr>
<td>5. PTP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bongkrekic acid</td>
<td>1</td>
<td>Inhibit</td>
<td>45, 297</td>
</tr>
<tr>
<td>Atractylate</td>
<td>500</td>
<td>Induce</td>
<td>45, 298</td>
</tr>
<tr>
<td>Cyclosporins – e.g. cyclosporin A</td>
<td>0.005-0.1</td>
<td>Inhibit</td>
<td>78, 299</td>
</tr>
<tr>
<td>Prooxidants – e.g. t-butyldihydroperoxide</td>
<td>600</td>
<td>Induce</td>
<td>48, 300</td>
</tr>
<tr>
<td>SH reagents – e.g. N-ethylmaleimide</td>
<td>5</td>
<td>Inhibit</td>
<td>301</td>
</tr>
<tr>
<td>([\text{Ca}^{2+}](_{mt})</td>
<td>1000</td>
<td>Induce</td>
<td>83, 302</td>
</tr>
<tr>
<td>ADP</td>
<td>4-40</td>
<td>Inhibit</td>
<td>300</td>
</tr>
<tr>
<td>pH(_{int})</td>
<td>↓</td>
<td>Inhibit</td>
<td>45</td>
</tr>
<tr>
<td>(P_i)</td>
<td>5000</td>
<td>Induce</td>
<td>300</td>
</tr>
<tr>
<td>(\Delta\psi)</td>
<td>↓</td>
<td>Induce</td>
<td>45</td>
</tr>
</tbody>
</table>

\(^\text{1}\)Numbers preceding targets refer to figure 1B. \(^\text{2}\) Concentrations are approximate values that were shown effective for the conditions cited.

Ca\(^{2+}\) enters the mitochondrion via the unipor, a Ca\(^{2+}\) permeable channel of unknown molecular identity (39). The channel is activated by elevated \([\text{Ca}^{2+}]\(_i\) and in some cells displays a rapidly desensitizing high-conductance mode (62). ATP and Mg\(^2+\) inhibit the unipor by acting on its cytoplasmic face (63). Ruthenium red and a purified component, RU360, will block this channel preventing Ca\(^{2+}\) entry (64, 65). The use of these agents is limited due to their lack of specificity, the poor membrane permeability of ruthenium red and the poor stability of RU360. Cobalt complexes inhibit Ca\(^{2+}\) uptake by isolated mitochondria similar to ruthenium red and may prove more stable and cell permeant (66). Polyamines, particularly spermine, increase the rate and affinity of Ca\(^{2+}\) uptake into mitochondria (67, 68). Taurine also appears to enhance mitochondrial Ca\(^{2+}\) uptake by acting on the unipor at millimolar concentrations (71). As noted above, there are a number of physiologic and pharmacologic agents that modulate the unipor, providing a direct mechanism to alter \([\text{Ca}^{2+}]\(_{mt}\). A clear demonstration of the endogenous modulation in intact neurons is lacking.

Once inside the mitochondrion, Ca\(^{2+}\) is reversibly bound as a phosphate complex (72). Recent speculation concerning the dynamic nature of this interaction focuses on the effects of pH and phosphate (28). A decrease in matrix pH or a decrease in phosphate concentration reduced complex formation in isolated mitochondria (41), although experiments testing this hypothesis in situ have not been performed. An adjustable capacity for Ca\(^{2+}\) uptake could have significant effects on the role of the mitochondrion in shaping physiological signals and coping with potentially toxic Ca\(^{2+}\) loads.

The PTP is an inner membrane channel of unknown structure (45, 48). Opening of the large conductance PTP is enhanced by decreases in \(\Delta\psi\), elevated \([\text{Ca}^{2+}]\(_{mt}\), increased matrix pH and oxidants (73). Because these changes accompany Ca\(^{2+}\) overload combined with metabolic stress, this channel is thought to contribute to the collapse of \(\Delta\psi\) and release of mitochondrial factors that trigger apoptosis (74, 75). Arachidonic acid (76) and cytotoxic agents, such as doxorubicin (77), also activate the PTP. Agents that interact with cyclophilins inhibit the PTP (78). Cyclosporin A inhibits the PTP and calcineurin; N-Me-Val-4-cyclosporine is more selective for the PTP and FK506 selectively inhibits calcineurin aiding in the differentiation between the two cellular targets (79, 80). Carboxyatractylate promotes and bongkrekic acid and ADP inhibit opening of the PTP (45). Because these agents modulate the adenine nucleotide translocase, it has been suggested that the translocase forms the pore (81). The PTP appears to have a small conductance state that participates in physiological signaling in the form of Ca\(^{2+}\)-induced Ca\(^{2+}\)-release (46) and may underlie channel activity recorded from mitochondria in situ during synaptic
Modulating Ca\(^{2+}\) clearance from neurons

transmission (82). Mitochondrial Ca\(^{2+}\)-induced Ca\(^{2+}\)-release is activated by increases in matrix pH making it very sensitive to Ca\(^{2+}\)-induced increases in respiration (83). The Ca\(^{2+}\)-induced Ca\(^{2+}\)-release mode of the PTP is inhibited by the cyclosporin analog, SDZ PSC833. This drug decreased the amplitude of IP\(_i\) responses, suggesting that under certain conditions mitochondrial Ca\(^{2+}\) release will amplify cytosolic Ca\(^{2+}\), increases (84). Changing from this physiological small-conductance state to the large conductance state is triggered by an increase in [Ca\(^{2+}\)]\(_{mt}\) and is associated with mitochondrial toxicity (83). Inhibition of the high-conductance PTP affords neuroprotection in some excitotoxicity models (85).

Ca\(^{2+}\) release from mitochondria in sensory neurons is primarily via a Na\(^+/Ca\(^{2+}\) exchange process (44). Derivatives of the calcium channel blocker diltiazem, the most specific being CGP37157, inhibit this process (86, 87). As shown in Figure 1D, application of CGP37157 at most specific being CGP37157, inhibit this process (86, 87). As shown in Figure 1D, application of CGP37157, inhibits the cyclosporin analog, SDZ PSC833. This drug decreased the amplitude of IP\(_i\) responses, suggesting that under certain conditions mitochondrial Ca\(^{2+}\) release will amplify cytosolic Ca\(^{2+}\), increases (84). Changing from this physiological small-conductance state to the large conductance state is triggered by an increase in [Ca\(^{2+}\)]\(_{mt}\) and is associated with mitochondrial toxicity (83). Inhibition of the high-conductance PTP affords neuroprotection in some excitotoxicity models (85).

In summary, the separation of Ca\(^{2+}\) uptake, storage and release mechanisms provides a high degree of flexibility to mitochondrial control of [Ca\(^{2+}\)], enabling this organelle to differentially affect the amplitude and duration of [Ca\(^{2+}\)], increases and to adjust [Ca\(^{2+}\)]\(_{mt}\) levels. Identification of the proteins that actually transport Ca\(^{2+}\) across the inner membrane will be an important step in furthering our understanding of the modulation of Ca\(^{2+}\) handling by mitochondria and will aid in developing agents to selectively control mitochondrial Ca\(^{2+}\) uptake and release.

3.3. Modulating mitochondrial Ca\(^{2+}\) buffering alters neuronal function

Mitochondrial Ca\(^{2+}\) buffering inhibits Ca\(^{2+}\)-dependent processes triggered by intense stimuli that produce large increases in [Ca\(^{2+}\)], and enhances processes activated by prolonged exposure to modest increases in [Ca\(^{2+}\)]. For example, modulation of mitochondrial Ca\(^{2+}\) uptake and release alters Ca\(^{2+}\)-mediated toxicity and neurosecretory responses. Mitochondria within a cell form a surprisingly heterogeneous group in terms of ΔΨ, shape and distribution (90). Assuming this heterogeneity affects Ca\(^{2+}\) buffering then it seems likely that mitochondria are modulated individually by their local environment, for example by polyamines, [Na\(^+\)], or the availability of metabolic substrates, enabling them to create local Ca\(^{2+}\) signaling domains.

Inhibition of Ca\(^{2+}\) uptake into mitochondria with metabolic poisons will actually delay cell death triggered by glutamate-induced Ca\(^{2+}\) loads (91, 92). Protection likely results from a decrease in ΔΨ leading to decreased [Ca\(^{2+}\)]\(_{mt}\) and reduced formation of reactive oxygen species (93, 94). Bcl-2 and Bax are members of a family of proteins that inhibit and activate apoptosis, respectively (95). Bcl-2 is localized to ER, mitochondrial and nuclear membranes (96). Bcl-2 increases mitochondrial Ca\(^{2+}\) uptake (97), prevents the release of proapoptotic factors such as cytochrome C (98, 99) and affords protection from Ca\(^{2+}\)-triggered toxicity (100). Bax binds to Bcl-2 on the mitochondrial membrane (101) and may activate apoptosis by oligomerization to form ion channels (102).

Microdomains of [Ca\(^{2+}\)], on the order of 200-300 µM occur near the mouths of Ca\(^{2+}\) channels (103) and the vesicular release machinery in nerve terminals is linked to these channels (104). Inhibition of mitochondrial Ca\(^{2+}\) uptake increases secretion of catecholamines from adrenal chromaffin cells (18) and increased hormone release from pituitary gonadotropes (28), consistent with the idea that lost buffering capacity allows [Ca\(^{2+}\)], to reach higher levels and thus, more effectively trigger exocytosis. In nerve terminals the role of the mitochondrion is less clear. At some synapses mitochondria seem to affect [Ca\(^{2+}\)], indirectly by supplying ATP (33), while in other preparations inhibition of Ca\(^{2+}\) uptake with ruthenium red or by dissipating ΔΨ, reduces residual [Ca\(^{2+}\)], and impairs post-tetanic potentiation of neurotransmitter release (32, 105). Peptide release from sympathetic neurons is proportional to the time-integral of [Ca\(^{2+}\)], above a threshold, providing an example of exocytosis that is especially sensitive to the duration of elevated [Ca\(^{2+}\)], (106). The precise spatial relationship between the Ca\(^{2+}\) source, the mitochondria and the affinity of the neurosecretory machinery for Ca\(^{2+}\) determines the role of mitochondria in a given exocytic process. Mitochondria damp exocytosis of fast neurotransmitters triggered by large localized increases in [Ca\(^{2+}\)]. In contrast, release activated by prolonged elevation of [Ca\(^{2+}\)], to more modest levels is actually enhanced by the prolongation of the [Ca\(^{2+}\)], increase produced by mitochondrial Ca\(^{2+}\) buffering.

In summary, the specialized role of mitochondria in buffering large [Ca\(^{2+}\)], increases makes this organelle an important target for modulating processes activated by intense stimulation. The special role of mitochondria in damping amplitude and prolonging the duration of [Ca\(^{2+}\)], increases enables mitochondria to modulate rapid Ca\(^{2+}\)-induced exocytosis and the availability of vesicles for release. Thus, mitochondria are poised to influence the synaptic enhancement that follows repetitive presynaptic activity (105). While clearly an important regulator of physiological [Ca\(^{2+}\)], responses, some of the most significant roles for mitochondrial Ca\(^{2+}\) uptake are seen in response to toxic stimuli. Excessive accumulation of matrix Ca\(^{2+}\) triggers processes that lead to cell death. The exciting prospects of neuroprotective drugs or agents that modulate synaptic plasticity by acting on mitochondria must be balanced with the hazards of adversely affecting cellular energy supplies.
Modulating Ca\(^{2+}\) clearance from neurons

Figure 2. ER Ca\(^{2+}\) stores amplify or attenuate \([Ca^{2+}]_i\), increases depending on the refilling state of the store. A. Schematic shows ER Ca\(^{2+}\) regulation by 1, SERCA; 2, luminal binding proteins; and 3, Ca\(^{2+}\) release channels. B. Regenerative \([Ca^{2+}]_i\), transients were evoked in a rat sensory neuron with full Ca\(^{2+}\) stores. \([Ca^{2+}]_i\), transients were measured with indo-1 and elicited by 2 Hz trains of action potentials (APs) in the presence of 5 mM caffeine. Action potentials were evoked in current-clamp, and the number of action potentials in each stimulus train is indicated above the voltage trace. The horizontal dashed line indicates the threshold for \([Ca^{2+}]_i\), for triggering regenerative Ca\(^{2+}\)-induced Ca\(^{2+}\)-release. Trains of action potentials were evoked every three minutes. C. Action potential-induced \([Ca^{2+}]_i\) transients were elicited in indo-1 AM-loaded sensory neurons under three states of Ca\(^{2+}\) store refilling. \([Ca^{2+}]_i\) transients are compared before (full), after application of 5 mM caffeine (empty) and after application of 5 \(\mu\)M cyclopiazonic acid (CPA). The recovery phase of the \([Ca^{2+}]_i\), transients were well fit by a monoexponential equation with time constants of 6, 13 and 29 s for empty, full and CPA, respectively. D. Application of 5 \(\mu\)M cyclopiazonic acid to a sensory neuron evoked an increase in \([Ca^{2+}]_i\). Figures B, C and D were reproduced with permission from (107), (109) and (223), respectively.

4. ER

4.1. ER Ca\(^{2+}\) buffering and release – a capacity-dependent switch

ER Ca\(^{2+}\) stores, in contrast to mitochondria, are poised for rapid release of Ca\(^{2+}\) via ligand gated ion channels and take up Ca\(^{2+}\) via a relatively slow ATP dependent Ca\(^{2+}\) pump. The sarcoplasmic or endoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA) has a high affinity for Ca\(^{2+}\) enabling the ER to retain Ca\(^{2+}\) at high concentration (100 \(\mu\)M), even while \([Ca^{2+}]_i\), is low (100 nM). Stored Ca\(^{2+}\) can be rapidly released upon activation of ligand gated ion channels. The capacity of the ER to store Ca\(^{2+}\) is limited; this confers a marked state-dependence on the Ca\(^{2+}\) uptake and release process such that immediately following release the store is a powerful Ca\(^{2+}\) clearance mechanism, in contrast to full stores that are incapable of taking up Ca\(^{2+}\) and instead, are poised to amplify increases in \([Ca^{2+}]_i\) (107-111).

The SERCA, luminal buffering and Ca\(^{2+}\) release channels are all sites of modulation, and because of their interdependence, exert complex effects on the Ca\(^{2+}\) uptake properties of the ER as a whole (Figure 2A 1-3 respectively). Agents acting on these targets are listed in Table 2. The 1,4,5-inositol trisphosphate receptor (IP\(_3\)R) and ryanodine receptor (RyR) are Ca\(^{2+}\) release channels on the ER membrane. A full description of the pharmacology and modulation of these proteins is beyond the scope of this article and has been reviewed elsewhere (6, 112, 113). The feature of these channels that is of particular relevance to
Modulating Ca\(^{2+}\) clearance from neurons

Table 2. Modulation of ER Ca\(^{2+}\) uptake and release

<table>
<thead>
<tr>
<th>Target(^1)</th>
<th>Modulator (^2)</th>
<th>EC(_{50}, \mu M)</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SERCA (all isoforms)</td>
<td>thapsigargin</td>
<td>0.01-0.02</td>
<td>Inhibit</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>cyclopiazonic acid</td>
<td>0.4</td>
<td>Inhibit</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>tBHQ</td>
<td>0.4</td>
<td>Inhibit</td>
<td>131-133</td>
</tr>
<tr>
<td></td>
<td>CaM kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>calnexin (PKC-dependent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>calreticulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Capacity</td>
<td>oxalate</td>
<td>4 mM</td>
<td>Increase</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>pyrophosphate</td>
<td>5.8 mM</td>
<td>Increase</td>
<td>171</td>
</tr>
<tr>
<td>3. Ca(^{2+}) release channels(^2)</td>
<td>IP(_3)R</td>
<td>IP(_3)</td>
<td>0.24</td>
<td>Sensitizes to Ca(^{2+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ca(^{2+})](_i) ((in 2 \mu M IP(_3)))</td>
<td><0.2</td>
<td>Increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xestospongin</td>
<td>>0.2</td>
<td>Decrease</td>
</tr>
<tr>
<td></td>
<td>RyR</td>
<td>ryanodine</td>
<td>0.01-10</td>
<td>Sensitizes to Ca(^{2+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10</td>
<td>Inhibits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>caffeine</td>
<td>20 mM</td>
<td>Sensitizes to Ca(^{2+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dantrolene</td>
<td>25</td>
<td>Inhibit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ca(^{2+})](_i) ((in 500 \mu M ATP))</td>
<td>>100</td>
<td>Increase</td>
</tr>
</tbody>
</table>

\(^1\)Numbers preceding targets refer to figure 2A., \(^2\) Modulators of release channels were limited to a few key examples.

[Ca\(^{2+}\)]\(_i\) clearance mechanisms is sensitivity of the release process to Ca\(^{2+}\) within the lumen of the ER. The release channels are modulated by luminal Ca\(^{2+}\), possibly by Ca\(^{2+}\) binding proteins within the lumen (114-116). The degree to which the store refills alters the coupling of release channels by Ca\(^{2+}\)-induced Ca\(^{2+}\)-release. As shown in Figure 2B, action-potential-induced Ca\(^{2+}\) influx triggers regenerative Ca\(^{2+}\) release from ryanodine-sensitive Ca\(^{2+}\) stores in sensory neurons (107). This all-or-none response displays a discrete threshold for activation. The refilling state of the store is one factor that determines threshold and presumably results from the ability of Ca\(^{2+}\) released from one channel to activate neighboring sites.

When the ER is depleted of Ca\(^{2+}\) it can act as a powerful and highly localized Ca\(^{2+}\) clearance mechanism changing both the amplitude and duration of [Ca\(^{2+}\)]\(_i\) signals. In Figure 2C, action potential-evoked increases in [Ca\(^{2+}\)]\(_i\) from the same sensory neuron are superimposed. Each trace was recorded with the ER under a different state of refilling. When empty, the ER acted as a powerful Ca\(^{2+}\) clearance mechanism, consistent with increased Ca\(^{2+}\) uptake when Ca\(^{2+}\) levels in the lumen were low (109, 117-119). When the ER was allowed to refill, uptake was greatly reduced and [Ca\(^{2+}\)]\(_i\) recovery kinetics were slowed. Thus, a loss of ER Ca\(^{2+}\) storage capacity inhibited SERCA-mediated Ca\(^{2+}\) uptake resulting in slowed [Ca\(^{2+}\)]\(_i\) clearance kinetics.

In summary, the ER can act to buffer or amplify [Ca\(^{2+}\)]\(_i\) increases depending on refilling state. Modulation of Ca\(^{2+}\) uptake into the ER will favor a particular state and the resulting effect on [Ca\(^{2+}\)]\(_i\) will depend on whether the predominant influence of the ER was as a source or sink for Ca\(^{2+}\).

4.2. Modulation of SERCA

The SERCA-type Ca\(^{2+}\) pumps are responsible for Ca\(^{2+}\) uptake into the ER. The three SERCA genes display tissue-specific expression with type 2 and 3 expressed in brain (120-123). Alternative splicing of SERCA2 primary transcripts results in two isoforms (124, 125) of which only the “b” isoform is expressed in neurons (126). Both SERCA isoforms found in brain (2b and 3) are equally sensitive to currently available pharmacologic inhibitors.

Several membrane-permeant inhibitors of SERCA type Ca\(^{2+}\) pumps are available. They are highly selective for SERCA relative to PMCA type Ca\(^{2+}\) pumps. Thapsigargin is a sesquiterpene lactone isolated from the plant, Thapsia garganica. This compound is an irritant, probably resulting from its ability to activate mast cells (127). Thapsigargin is also a weak tumor promoter, although it does not activate protein kinase C (128). Thapsigargin inhibits SERCAs with a half-maximal potency of approximately 10-20 nM by binding irreversibly to stabilize the Ca\(^{2+}\)-bound state of the enzyme (129). Because this drug titrates available SERCA in one to one stoichiometry, potency is affected by pump density, exposure time and whether it is bath applied or perfused through a recording chamber (130). It is a highly lipophilic compound and has a tendency to adsorb to glass and plastic recording chambers. 2,5-Di(tert-butyl)hydroquinone (tBHQ) also inhibits SERCA-type Ca\(^{2+}\) pumps, although...
Modulating Ca2+ clearance from neurons

this compound appears to be less selective than other SERCA inhibitors (131-133). The mycotoxin cyclopiazonic acid is a selective inhibitor of SERCA type Ca2+ pumps having no detectable effects on Na+/K+ ATPase, H+/K+ ATPase or PMCA type pumps (134). Cyclopiazonic acid is less potent than thapsigargin, but is readily reversible, has fewer adsorption problems and has become a widely used tool for SERCA inhibition. Other non-specific inhibitors of SERCAs include vanadate and fluoride (124, 135-138).

When SERCA inhibitors are applied to resting cells with a full ER Ca2+ load, the compounds evoke a transient elevation of [Ca2+]i(Figure 2D). The [Ca2+]i, increase results from slow release of stored Ca2+ followed by influx of Ca2+ triggered by depletion of the store. This capacitative Ca2+ influx (139, 140) is pronounced in non-excitable cells and is mediated by a family of store-operated channels; some of these channels are homologues of the Drosophila transient receptor potential protein (141). In neurons, this secondary Ca2+ influx is small. In Figure 2D, capacitative Ca2+ influx contributed to the elevated basal [Ca2+]i, observed in the presence of cyclopiazonic acid (109, 142, 143). Interestingly, neurons expressing certain mutant presenilin proteins exhibit greatly enhanced capacitative Ca2+ entry (144, 145). Presenilins are localized to the ER and are known to modulate γ-secretase activity to yield mis-processed β amyloid proteins in Alzheimer’s disease (146, 147). How presenilins modulate capacitative Ca2+ influx is an open question.

SERCA inhibitors are useful tools for studying the Ca2+ clearance properties of the ER in neurons. Inhibition of SERCAs in sensory neurons with cyclopiazonic acid greatly slowed the recovery of [Ca2+]i, following a train of action potentials (Figure 2C). Thus, depending on the refilling state of the ER Ca2+ store and the pattern of stimulation, cyclopiazonic acid can reduce [Ca2+]i, due to impaired Ca2+-induced Ca2+-release or increase [Ca2+]i, due to lost Ca2+ uptake.

Physiological modulation of SERCA type pumps results from phosphorylation, inhibition by accessory proteins, inhibition by Ca2+ within the lumen of the ER and possibly by cyclic ADP ribose (cADPr). SERCA isoforms exhibit differential modulation by endogenous signaling pathways. SERCAs are modulated by phosphorylation directly and by phosphorylation of accessory proteins. SERCA type 2 is phosphorylated directly by calmodulin-dependent protein kinase, which causes an increase in pump activity without affecting affinity (148). Phospholamban, a homopentamer of 6 kDa proteins binds to and inhibits SERCA isoforms 1 and 2 (149). Phosphorylation of phospholamban by protein kinase A, C or G or Ca2+/calmodulin-dependent protein kinase inhibits phospholamban binding to SERCA resulting in stimulation of the pump (150). It appears that this type of modulation does not occur in nervous tissue because phospholamban is expressed exclusively in muscle. However, a peptide of unknown function with homology to phospholamban is expressed in developing brain (151). Calnexin and calreticulin are Ca2+-sensitive lectin chaperones that assist protein folding in the ER (152). SERCA2b differs from other Ca2+ pump isoforms in that it has a carboxyl-terminal glycosylation site that faces the lumen of the ER enabling this isoform to interact with lectins. Calreticulin and calnexin modulate the Ca2+ pumping activity of mature SERCA2b. Calreticulin inhibits Ca2+ pumping activity by interacting with SERCA2b from the lumen of the ER (153). Calnexin is localized to the ER membrane and has a luminal Ca2+ binding domain and a cytosolic site available for phosphorylation (154). When phosphorylated by protein kinase C, calnexin binds to SERCA2b and inhibits Ca2+ pump activity (155). Ca2+ release from the store leads to dephosphorylation of calnexin and relief of inhibition of SERCA2b. Calnexin and calreticulin bind N-glycosylated proteins in a manner sensitive to luminal [Ca2+]i and are expressed in brain (156-158). The work described above was performed with muscle preparations or heterologous expression systems; direct observation of endogenous modulation of SERCAs in neuronal preparations has not been reported.

cADPr lowers the threshold for Ca2+-induced Ca2+-release from ryanodine sensitive Ca2+ stores (159-162). The molecular site of action of cADPr is not known, but a recent study of cardiac myocytes found evidence that cADPr increased Ca2+ accumulation by cardiac sarcoplasmic reticulum microsomes suggesting an enhancement of SERCA activity (163). Because increased luminal [Ca2+]i enhances regenerative Ca2+ release, increased SERCA-mediated Ca2+ uptake into the ER could lower the threshold for Ca2+-induced Ca2+-release from ryanodine-sensitive stores.

In summary, selective inhibitors of SERCA such as thapsigargin and cyclopiazonic acid are useful tools for studying ER Ca2+ uptake. SERCAs are regulated endogenously by protein-protein interactions and signaling cascades. Modulation of SERCAs by endogenous signals likely occurs in neurons, although it has not yet been reported.

4.3. Modulation of ER Ca2+ storage capacity

Ca2+ within the lumen of the ER is in the millimolar range (164), a concentration well above the dissociation constant for Ca2+ release from the SERCA Ca2+ pump (165). Thus, as luminal [Ca2+]i increases Ca2+ pump activity decreases, reducing the rate of Ca2+ clearance from the cytoplasm. In neurons, luminal Ca2+ binds to reticular proteins such as calreticulin (166). Expression levels of these proteins are affected by many factors, including stress and disease (167, 168). However, dynamic post-translational regulation of their Ca2+ buffering properties does not appear to occur. The anionic composition of the ER lumen affects Ca2+ uptake capacity with weak organic acids increasing capacity by binding Ca2+ (169). Agents such as oxalic acid have been used as tools to increase the stored Ca2+ available for release (170). Similarly, pyrophosphate will reversibly bind Ca2+ within the ER to regulate Ca2+ uptake and release (171). We have noted that the anionic composition of solutions used in whole-cell patch-clamp recording has a significant effect on the Ca2+ store (Usachev and Thayer, unpublished).
Modulating Ca\(^{2+}\) clearance from neurons

observations). Luminal Ca\(^{2+}\) levels determine whether the store will act in release or uptake mode.

4.4. Functional consequences of switching between Ca\(^{2+}\) release and uptake

As described above, there are multiple mechanisms that regulate ER Ca\(^{2+}\) signaling by acting on SERCAs to alter Ca\(^{2+}\) accumulation. Changes in the ER luminal Ca\(^{2+}\) concentration directly affect the folding and trafficking of proteins within the ER (152, 172). Indeed, prolonged blockade of SERCAs results in neuronal death (173) and massive release of Ca\(^{2+}\) stores mediates necrotic cell death (174). Ca\(^{2+}\) dysregulation associated with altered Ca\(^{2+}\) stores may contribute to the neurotoxicity associated with Alzheimer’s disease (175). Ca\(^{2+}\) release in peripheral neurons regulates cell excitability (176, 177) and the Ca\(^{2+}\) content of the ER also affects nuclear transport (178). Ca\(^{2+}\)-release from IP\(_{3}\)R and RyR contribute to neurotransmitter release in peripheral neurons (179-181). In contrast, glutamate release from presynaptic terminals in neurotransmitter release in peripheral neurons (179-181).

Depletion of Ca\(^{2+}\) stores enhances neurotransmitter release from chromaffin cells and hippocampal synaptic boutons by activating Ca\(^{2+}\) influx via store-operated Ca\(^{2+}\) channels (143, 183). Oscillations in [Ca\(^{2+}\)]\(_i\), produced by release from Ca\(^{2+}\) stores, play an important role in neurite outgrowth (184, 185).

Long-term potentiation and depression (LTP and LTD) of synaptic strength are both initiated by transient increases in [Ca\(^{2+}\)]\(_i\). Ca\(^{2+}\) stores have been implicated in both processes although their precise role is controversial (6, 186, 187). The parallel fiber input to Purkinje neuron dendrites in the cerebellum illustrates the type of role Ca\(^{2+}\) stores might play in synaptic plasticity. Repetitive stimulation of parallel fibers produces IP\(_{3}\)-dependent elevation of [Ca\(^{2+}\)]\(_i\) in Purkinje neuron dendritic spines (188, 189). Blockade of metabotropic glutamate receptors or treatment with thapsigargin prevents Ca\(^{2+}\) release and long-term depression (190). The release of Ca\(^{2+}\) from the store provides a spatially restricted increase in [Ca\(^{2+}\)]\(_i\), required for long-term changes in synaptic plasticity. LTD evoked in acutely dissociated cells or cell culture preparations did not require IP\(_{3}\)-mediated Ca\(^{2+}\) release (191), indicating that a complete understanding of the role of Ca\(^{2+}\) stores in synaptic plasticity has not been achieved.

Linking ER Ca\(^{2+}\) uptake to specific physiological processes has not been straightforward. Inhibition of SERCA-mediated Ca\(^{2+}\) uptake reduces neurotransmitter release at some synapses and impairs certain forms of synaptic plasticity, but these effects are thought to result from loss of Ca\(^{2+}\) release rather than impaired Ca\(^{2+}\) clearance. Indeed, Ca\(^{2+}\) stores preferentially refill with Ca\(^{2+}\) from the extracellular pool, a process aided by activation of capacitative Ca\(^{2+}\) entry (109, 192). However, there are several examples in which Ca\(^{2+}\) uptake by the ER does appear to be important in the control of Ca\(^{2+}\) in spatially restricted spaces within neurons. SERCA-mediated Ca\(^{2+}\) uptake reduces mitochondrial Ca\(^{2+}\) uptake of small [Ca\(^{2+}\)]\(_i\), increases, possibly as a result of competition with the importat at ER-mitochondrial junctions (193). In dendritic spines, ER Ca\(^{2+}\) pumps play a major role in clearing Ca\(^{2+}\) following stimulation (194). The hair cell efferent synapse provides an illustration of SERCA modulation of neuronal function (195). Ca\(^{2+}\) influx via postsynaptic nicotinic receptors leads to a rapid activation of Ca\(^{2+}\)-activated K\(^+\) channels. A second, slower hyperpolarization follows. This slow phase is potentiated by inhibition of SERCA with either cyclopiazonic acid or thapsigargin. SERCA inhibition also prevents the inactivation of the slow, Ca\(^{2+}\)-activated K\(^+\)-conductance, suggesting that Ca\(^{2+}\) uptake by SERCAs is necessary to terminate the response. Sridhar et al (195) hypothesize that prolonged stimulation of the cholinergic terminal leads to sufficient postsynaptic Ca\(^{2+}\) influx to trigger Ca\(^{2+}\)-induced Ca\(^{2+}\)-release that spreads to other sub-plasmalemmal cisternae, activating additional K\(^+\) channels. SERCA-mediated Ca\(^{2+}\) uptake appears to terminate the response. The slow response may protect the hair cell from over stimulation. Thus, when stimulation exceeds threshold, the Ca\(^{2+}\) influx that mediates the rapid response, also initiates Ca\(^{2+}\) release from the ER that is orders of magnitude slower and spreads to activate extra-synaptic K\(^+\) channels. The ER changes both the temporal and spatial properties of the Ca\(^{2+}\) signal.

Inhibition of SERCAs can inhibit [Ca\(^{2+}\)]\(_i\), responses resulting from blocked Ca\(^{2+}\)-induced Ca\(^{2+}\)-release or enhance [Ca\(^{2+}\)]\(_i\), responses due to lost uptake and increased capacitative Ca\(^{2+}\) influx. Thus, the physiological response to modulation of ER Ca\(^{2+}\) uptake depends on the Ca\(^{2+}\) content of the ER.

5. Ca\(^{2+}\) BINDING PROTEINS

Rapid [Ca\(^{2+}\)]\(_i\), buffering is primarily accomplished by Ca\(^{2+}\) binding proteins (196, 197). A large super family of proteins with the EF hand Ca\(^{2+}\) binding motif is of particular importance and includes calmodulin, parvalbumin, calbindin, S100 as well as many others (198-204). Mobile buffers account for over 80% of the Ca\(^{2+}\) binding sites in the nerve terminal (205). Because rapid modulation (sec to min) of Ca\(^{2+}\) binding has not been described, further discussion of this aspect of Ca\(^{2+}\) buffering will not be presented here. We note however, that altered expression of these proteins will have marked effects on the [Ca\(^{2+}\)]\(_i\), transients with consequences ranging from altered synaptic transmission (205) to neurotoxicity (206). Thus, pharmacologic or second-messenger modulation of Ca\(^{2+}\) binding affinity could theoretically have significant effects on neuronal function.

6. PMCA

6.1. Alternative splicing generates Ca\(^{2+}\) pump isoforms with unique properties

The large number of PMCA isoforms suggests unique and specialized roles for the Ca\(^{2+}\) pumps. All four PMCA gene products are expressed in brain (207-209) and PMCAs have been localized to dendritic spines of cerebellar Purkinje neurons (210). PMCA gene products are alternatively spliced to yield at least 30 Ca\(^{2+}\) pump isoforms. Alternative splicing affects the localization,
modulating Ca^{2+} clearance from neurons

Figure 3. Phosphorylation elicits isoform-specific effects on Ca^{2+} pump activity. A. Scheme shows the general structure of the 4 PMCA gene products. Site C is within the calmodulin-binding domain (yellow) and has been expanded to show alternative splicing. The a variants include an exon (hatched box) that produces a frameshift. Alternative splicing alters the presence and position of phosphorylation sites for PKA and PKC resulting in isoform-specific effects on pump activity (\uparrow - stimulation, \downarrow - inhibition). A consensus site for phosphorylation by PKA is present in isoforms 1b and 2b (218, 234). PKA stimulation of Ca^{2+} efflux from red blood cells and cardiac myocytes has been observed, but has not been demonstrated with well-defined samples of these isoforms. The exon included in isoforms 2a, 3a and 4a encodes a site that when phosphorylated by PKC, inhibits calmodulin binding in isoforms 2a and 3a but does not affect activity in isoform 4a (218, 232). Phosphorylation of PMCA4b at a site outside of the calmodulin-binding domain stimulates Ca^{2+} pump activity (295). B. Ca^{2+} efflux rate was studied in indo-1 AM loaded sensory neurons. Small Ca^{2+} loads were elicited in cyclopiazonic acid-treated (5 μM) cells before (control) and after treatment with 0.5 μM phorbol dibutyrate (PDBu). Recordings are from non-transfected cells (naive) and cells expressing antisense to PMCA4 (AS4). C. Membrane potential was recorded from rat sensory neurons using the perforated-patch technique. Depolarizing current injections (3-5 s, 5-10 Hz) evoked a burst of action potentials (truncated) followed by a Ca^{2+}-dependent slow afterhyperpolarization. Bradykinin (300 nM) accelerated the recovery of the afterhyperpolarization. The PKC antagonist, GF109203x (GF, 5 μM), blocked this effect. D. A model for acceleration of Ca^{2+} efflux by bradykinin and ATP. Binding of bradykinin to B$_2$ or ATP to P2Y$_1$ receptors activates G$_{q}$ and phospholipase C. This leads to production of diacylglycerol and activation of PKC. PKC phosphorylates PMCA4b near the carboxyl terminus, resulting in acceleration of Ca^{2+} transport by the pump. Changes in Ca^{2+} efflux alter activation of $[\text{Ca}^{2+}]_{i}$-dependent K$^+$ channels. Reproduced with permission from (223).

modulation and basal activity of the pump (211, 212). PMCA isoforms are heterogeneously expressed in the nervous system, suggesting specialized functions unique to particular cell types (213). The discussion here will focus on the results of splicing that alters the sequence of the calmodulin binding domain, referred to as site C (214, 215)(Figure 3A). In the absence of Ca^{2+}/calmodulin, the carboxyl tail of the PMCA protein acts as an autoinhibitory
Modulating Ca\(^{2+}\) clearance from neurons

Table 3. The a and b isoforms of PMCA4 have different sensitivities to Ca\(^{2+}\)/calmodulin

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Basal activity (V(_{\text{max}}) %)</th>
<th>Ca(^{2+}) affinity (K(_{\text{i/2}}), μM)</th>
<th>Ca(^{2+})/Calmodulin activation rate (t(_{1/2}), s)</th>
<th>Inactivation rate (t(_{1/2}), min)</th>
<th>CaM affinity (K(_{\text{i/2}}), nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>39</td>
<td>0.84</td>
<td>20</td>
<td><1</td>
<td>126</td>
</tr>
<tr>
<td>4b</td>
<td>8.1</td>
<td>0.29</td>
<td>60</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

Basal activity data are from (239), Ca\(^{2+}\) and calmodulin affinity data from (214) and activation/inactivation rates from (217).

domain that blocks Ca\(^{2+}\) translocation (216). The binding of Ca\(^{2+}\)/calmodulin to the carboxyl tail prevents this intramolecular interaction, stimulating Ca\(^{2+}\) pumping activity. Alternative splicing of site C affects the affinity of the resulting PMCA isoform for Ca\(^{2+}\)/calmodulin (Table 3)(217). Phosphorylation by protein kinases A and C affects Ca\(^{2+}\) pump activity in an isoform specific manner (Figure 3A) (218, 219).

6.2. PMCAs provide high affinity Ca\(^{2+}\) extrusion

PMCA isoforms with signaling cascades are summarized in Figure 3A. PKC-dependent phosphorylation inhibits the activity of the 2a and 3a isoforms by decreasing the affinity of the pump for calmodulin (232, 233). Phosphorylation of PMCA4a does not alter pump activity, presumably because this site is within a hairpin structure that does not participate in calmodulin binding to this isoform (218). The 1b isoform is phosphorylated by PKA and the 2b isoform also contains a consensus sequence for phosphorylation by PKA (218, 234).

6.3. Pharmacologic modulation of PMCA isoforms

Agents acting directly and selectively on the PMCA to modulate Ca\(^{2+}\) pumping are limited. Lanthanum acts at an intracellular site to inhibit PMCA function, but this cation is not specific and inhibits many Ca\(^{2+}\)-dependent processes including Ca\(^{2+}\) channels (225, 226). Carboxyxyeosin is more selective and inhibits PMCA function at micromolar concentrations (IC\(_{50}=0.2-1\) μM). It acts at an intracellular site; thus, for studies on intact cells, the esterified form is more effective, but also more difficult to reverse (227-230). Screening of a peptide library identified caloxin, an apparently selective PMCA inhibitor (231). Caloxin acts on an extracellular site at millimolar concentrations. Clearly, potent and selective inhibitors of PMCA function will be useful tools for research and, if isoform-selective agents were developed, might have therapeutic potential.

6.4. Selective modulation of PMCA isoforms by endogenous signaling pathways

Recent work from our laboratory has examined the influence of signaling cascades on PMCA function in sensory neurons. An example of modulation of PMCA mediated [Ca\(^{2+}\)]\(_i\) recovery is shown in Figure 3B. With SERCA type Ca\(^{2+}\) pumps blocked, small increases in [Ca\(^{2+}\)]\(_i\), recovered to basal levels via PMCA 2 and 4, the predominant isoforms expressed in these cells (223). Activation of PKC accelerated [Ca\(^{2+}\)]\(_i\) recovery kinetics via a process that was blocked by PKC inhibitors and absent in cells expressing antisense to PMCA4. Thus, activation of metabotropic receptors that couple to phospholipase C, with subsequent activation of PKC, would be predicted to stimulate Ca\(^{2+}\) efflux. We found this to be true for sensory neurons in which bradykinin and ATP accelerated PMCA4b-mediated Ca\(^{2+}\) efflux kinetics via activation of PKC.

Other potential interactions for the a and b PMCA isoforms with signaling cascades are summarized in Figure 3A. PKC-dependent phosphorylation inhibits the activity of the 2a and 3a isoforms by decreasing the affinity of the pump for calmodulin (232, 233). Phosphorylation of PMCA4a does not alter pump activity, presumably because this site is within a hairpin structure that does not participate in calmodulin binding to this isoform (218). The 1b isoform is phosphorylated by PKA and the 2b isoform also contains a consensus sequence for phosphorylation by PKA (218, 234). Phosphorylation of these isoforms may contribute to enhanced Ca\(^{2+}\) efflux from eAMP-stimulated red blood cells and cardiac myocytes (235-237). Protein kinases A and C phosphorylate PMCA isoforms in the CNS in a region specific manner (238). Ca\(^{2+}\)/calmodulin stimulates all PMCA isoforms expressed in neurons (211). However, alternative splicing of the particular gene products influences the association and dissociation kinetics of calmodulin binding to the PMCA (Table 3). For example, PMCA isoform 2a rapidly binds Ca\(^{2+}\)/calmodulin, enabling its activity to closely track changes in [Ca\(^{2+}\)]\(_i\), (239). Alternatively, calmodulin dissociates very slowly (t\(_{1/2}=\) >20 min) from isoform 4b enabling the pump to “remember” an increase in [Ca\(^{2+}\)]\(_i\), (240). In sensory neurons, PMCA activity remains enhanced for as long as an hour following a large increase in [Ca\(^{2+}\)]\(_i\), (241).

6.5. PMCAs are sites where signaling pathways converge

The heterogeneous expression of PMCA isoforms that differ in sensitivity to modulation by Ca\(^{2+}\), diacylglycerol, and eAMP signaling cascades identify plasma membrane Ca\(^{2+}\) pumps as dynamic regulators of [Ca\(^{2+}\)]\(_i\), recovery kinetics in neurons. PMCA isoforms specialize in particular neuronal functions, especially those triggered by sub-plasmalemmal increases in [Ca\(^{2+}\)]\(_i\), such as neurotransmitter release and membrane excitability. For example, sensory neurons exhibit a pronounced slow afterhyperpolarization following bursts of action potentials that is mediated by Ca\(^{2+}\)-activated K\(^+\) channels (242, 243). Bradykinin, which acts on metabotropic receptors to stimulate PKC, accelerated PMCA activity. The reduced duration of the [Ca\(^{2+}\)]\(_i\) increase produced a corresponding decrease in the duration of the afterhyperpolarization.
Modulating Ca2+ clearance from neurons

(Figure 3B-D). This excitatory effect may underlie the inhibition of spike frequency accommodation produced by bradykinin (243). Thus, neuronal PMCs are susceptible to cross talk with other signaling pathways and modulation of a particular splice variant controls a specific Ca2+-sensitive neuronal function. PMCs are poised to integrate diverse input signals to alter the duration of [Ca2+]\textsubscript{i}-sensitive membrane events.

7. PLASMAEMMAL Na+/Ca2+ EXCHANGE

All three Na+/Ca2+ exchange gene products (NCX) are expressed in brain with NCX1 most abundant (244). At least three isoforms of the K+-dependent Na+/Ca2+ exchanger (NCKX) are also expressed in brain (245, 246), although little is currently known about their functional role in neuronal Ca2+ regulation. Alternative splicing of NCX1 transcripts can yield 12 isoforms (247). The alternatively spliced NCX transcripts display tissue specific expression suggesting functional specialization of the NCX proteins. However, unique roles for most isoforms have not yet been identified.

7.1. Na+/Ca2+ exchange provides low affinity high turnover Ca2+ extrusion

The Na+/Ca2+ exchanger has an approximately 10-fold lower affinity for Ca2+ and an approximately 10-50-fold higher turnover rate than the PMCA (244). Thus, the Na+/Ca2+ exchanger is well suited to the rapid removal of large Ca2+ loads. Pioneering work on the squid giant axon showed that Ca2+ and Na+ transport across the membrane were coupled and reversible (248). Subsequently, Na+-dependent modulation of [Ca2+]\textsubscript{i} recovery has been reported in neuronal somata (249), including sensory neurons (250), although separating the role of Na+/Ca2+ exchange across the plasma membrane from that resulting from exchange across the mitochondrial inner membrane complicates interpretation of many studies. Immunohistochemistry has shown particularly high levels of NCX-like protein in nerve terminals, consistent with the most robust demonstration of neuronal Na+/Ca2+ exchange in preparations of nerve endings (224, 251, 252). Catecholamine release from adrenal chromaffin cells is an established model for studying neurosecretory processes with properties similar to adrenergic nerve terminals. Figure 4A shows an example from Tang et al (253) in which Na+/Ca2+ exchange operates to lower [Ca2+]\textsubscript{i} in a chromaffin cell. The recording shows recovery from depolarization-induced increases in [Ca2+]\textsubscript{i} in the presence and absence of extracellular Na+. Na+-dependent Ca2+ efflux plays a significant role in removing Ca2+ from the cytoplasm of these cells (253). Factors that modulate Na+/Ca2+ exchange in neurons are presented in Table 4.

7.2. Thermodynamic modulation of Na+/Ca2+ exchange

The Na+/Ca2+ exchanger is electrogenic; 3 Na+ are transported in exchange for each Ca2+ moved across the membrane. Thus, changes in [Na+]\textsubscript{i} and membrane potential (V\textsubscript{m}) provide an important means to modulate Ca2+ flux via Na+/Ca2+ exchange. Indeed, because Na+ influx accompanies intense electrical activity, Na+/Ca2+ exchange is reduced and even reversed following high frequency stimulation in crayfish neuromuscular junction (224). Na+ loads introduced by activation of ligand-gated channels contribute to Ca2+ influx and impair [Ca2+]\textsubscript{i}, recovery in central neurons (23, 254, 255). Thus, modulation of [Na+]\textsubscript{i} can profoundly affect Ca2+ clearance in neurons.

7.3. Modulation of Na+/Ca2+ exchange by second messengers

Intracellular ATP levels modulate Na+/Ca2+ exchange even though ATP hydrolysis is not required for catalytic activity of the exchanger (256). Phosphorylation of the Na+/Ca2+ exchanger by protein kinase C accelerates both Ca2+ efflux and influx in rat brain synaptosomes (257). Activation of PKC with phorbol esters stimulates Na+/Ca2+ exchange in a number of tissues, including heart (258). However, phorbol esters failed to stimulate Na+/Ca2+ exchange in some neuronal preparations (259), possibly because of differential sensitivity of splice variants to phosphorylation (260). Nitric oxide donors and cGMP analogs stimulate Na+/Ca2+ exchange in rat brain slices and synaptosomes (261). A neuronal isoform of NCX1 is stimulated by PKA when expressed in Xenopus oocytes (262). In some tissues, modulation of Na+/Ca2+ exchange by kinases appears to be mediated by phosphorylation of an accessory protein (263, 264); it is not clear whether this indirect mechanism occurs in mammalian neurons. Genistein inhibited Na+/Ca2+ exchange in cortical neurons in culture, suggesting stimulation by tyrosine phosphorylation as well (259). Clearly, phosphorylation modulates Na+/Ca2+ exchange in neurons. The sensitivity of each isoform varies and likely accounts for some of the discrepant reports. Phosphatidylinositol-4,5-bisphosphate (PIP\textsubscript{2}) also modulates Na+/Ca2+ exchange. In heart, elevated ATP increases the formation of PIP\textsubscript{2} with subsequent stimulation of Na+/Ca2+ exchange (265). PIP\textsubscript{2} may bind directly to the autoinhibitory domain on the exchanger (266). In summary, ATP stimulates Na+/Ca2+ exchange by direct phosphorylation of the exchanger and indirectly via phosphorylation of accessory proteins and phospholipids.

Ca2+ and Na+ binding to high affinity regulatory sites also modulate Na+/Ca2+ exchange. As mentioned in section 7.2, elevated [Na+]\textsubscript{i} stimulates Ca2+ entry via the Na+/Ca2+ exchanger due to thermodynamic effects. The outward current produced during Ca2+ entry rapidly inactivates to a new steady state as a result of a Na+- and time-dependent process (267). [Ca2+]\textsubscript{i} also exerts both thermodynamic and regulatory effects on Na+/Ca2+ exchange. [Ca2+]\textsubscript{i} is required for Ca2+ entry via Na+/Ca2+ exchange demonstrating a regulatory role (268). A large intracellular loop of the exchanger is required for regulation by both Na+ and Ca2+ (258). Ca2+ binds to a regulatory site on the loop; a discrete binding site for Na+ has not been identified. In summary, increases in [Ca2+]\textsubscript{i} and [Na+]\textsubscript{i} produce opposite regulatory effects on Na+/Ca2+ exchange, [Ca2+]\textsubscript{i} stimulates and [Na+]\textsubscript{i} inhibits.

7.4. Pharmacologic modulation of Na+/Ca2+ exchange

Chemical analogs of amiloride, such as 3',4'-dichlorobenzamil will inhibit the exchanger at micromolar
Modulating Ca\(^{2+}\) clearance from neurons

Figure 4. Na\(^{+}\) dependence of [Ca\(^{2+}\)], decay and catecholamine release from chromaffin cells. A. Depolarization (75 mM K\(^{+}\), 1 s, \(\Upsilon\)) induced [Ca\(^{2+}\)]\(_i\) increases in Oregon Green loaded chromaffin cells. Recordings in the presence (+Na) and absence of extracellular Na\(^{+}\) (-Na; Na\(^{+}\) replaced with N-methylglucamine) recovered with half times of 5.6 and 12.7 s, respectively. B. Amperometric detection of rate of catecholamine release in the presence of Na\(^{+}\). Exocytotic current spikes are shown from a single chromaffin cell stimulated five times at 90-s intervals with 75 mM K\(^{+}\) in the presence of Na\(^{+}\) (top). Current traces in upper panel were integrated to show charge as a function of time (bottom). C. Same as B above but in the absence of extracellular Na\(^{+}\). Note the different scales in B versus C and the increase in catecholamine release with repetitive stimulation in the absence of Na\(^{+}\). Reproduced with permission from author and publisher of (253).
concentrations (269, 270). These compounds inhibit both Ca\(^{2+}\) entry and Ca\(^{2+}\) efflux modes of the exchanger (271) and have additional non-selective inhibitory effects on ion channels at high concentrations (272, 273). The antiarrhythmic drug bepridil also inhibits Na\(^{+}/Ca\(^{2+}\) exchange (274). KB R7943 preferentially inhibits Na\(^{+}/Ca\(^{2+}\) exchange in the Ca\(^{2+}\) entry mode (275, 276). The selectivity of this compound for inhibition of Ca\(^{2+}\) entry versus Ca\(^{2+}\) efflux mode depends on the experimental conditions (277). Inorganic cations such as Zn\(^{2+}\) also inhibit Ca\(^{2+}\) efflux via Na\(^{+}/Ca\(^{2+}\) exchange (278). La\(^{3+}\) is not effective at concentrations that spare other influx and efflux mechanisms (226). Currently available drugs that inhibit Na\(^{+}/Ca\(^{2+}\) exchange are effective but neither potent nor selective.

7.5. Functional consequences of modulating Na\(^{+}/Ca\(^{2+}\) exchange in neurons

Na\(^{+}/Ca\(^{2+}\) exchange appears to play a major role in excitation-secretion coupling in neuronal tissue, analogous to its role in excitation-contraction coupling in heart. The Na\(^{+}/Ca\(^{2+}\) exchanger acts in either of two modes depending on the activation state of the cell. It serves as a low affinity, high capacity Ca\(^{2+}\) extrusion mechanism when [Na\(^{+}\)] is low. When [Na\(^{+}\)], is high and/or the membrane depolarized, the Na\(^{+}/Ca\(^{2+}\) exchanger provides a route for Ca\(^{2+}\) entry.

Blockade of Ca\(^{2+}\) efflux via Na\(^{+}/Ca\(^{2+}\) exchange enhances neurotransmitter release from rat brain synaptosomes (252), adrenal chromaffin cells (253, 279) and cultured hippocampal neurons (280, 281). For an extensive list of studies that demonstrate Na\(^{+}\)-dependent modulation of synaptic transmission see Blaustein and Lederer (244). Figure 4 shows an example from Tang et al (253) in which Na\(^{+}/Ca\(^{2+}\) exchange operates to lower [Ca\(^{2+}\)]\(_i\), in a chromaffin cell. Thus, its inhibition by removal of extracellular Na\(^{+}\) resulted in a slowed return to basal [Ca\(^{2+}\)]\(_i\), following a depolarizing stimulus. Depolarization-induced release of catecholamines was greatly enhanced in the absence of extracellular Na\(^{+}\) (Figure 4B and C). Repetitive application of depolarizing stimuli in the absence of Na\(^{+}\), evoked progressively more release of catecholamines measured by cyclic voltametry. This is consistent with impaired Ca\(^{2+}\) efflux allowing [Ca\(^{2+}\)]\(_i\) to accumulate and more effectively trigger secretion. This result is consistent with the prominent role of Na\(^{+}/Ca\(^{2+}\) exchange in clearing Ca\(^{2+}\) from active secretory zones.

Table 4. Modulation of Na\(^{+}/Ca\(^{2+}\) exchange

<table>
<thead>
<tr>
<th>Modulator</th>
<th>EC_{50} μM</th>
<th>Effect</th>
<th>Mode</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB R7943</td>
<td>0.3-2</td>
<td>Inhibit</td>
<td>Ca(^{2+}) entry</td>
<td>275, 276</td>
</tr>
<tr>
<td></td>
<td>17-30</td>
<td>Inhibit</td>
<td>Ca(^{2+}) efflux</td>
<td></td>
</tr>
<tr>
<td>3',4'-dichlorobenzamil</td>
<td>17</td>
<td>Inhibit</td>
<td>Ca(^{2+}) entry & efflux</td>
<td>269, 270</td>
</tr>
<tr>
<td>bepridil</td>
<td>30</td>
<td>Inhibit</td>
<td>Ca(^{2+}) entry (partial) & efflux</td>
<td>274</td>
</tr>
<tr>
<td>Zn(^{2+})</td>
<td>15</td>
<td>Inhibit</td>
<td>Ca(^{2+}) influx</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>$>$30</td>
<td>Inhibit</td>
<td>Ca(^{2+}) efflux</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>depolarize V_m</td>
<td></td>
<td>Inhibit</td>
<td>Ca(^{2+}) efflux</td>
<td>244</td>
</tr>
<tr>
<td>$\uparrow [\text{Na}^+]_o$</td>
<td></td>
<td>Stimulate</td>
<td>Ca(^{2+}) entry</td>
<td>244</td>
</tr>
<tr>
<td>Signaling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKC</td>
<td>-</td>
<td>Stimulate</td>
<td>Ca(^{2+}) entry & efflux</td>
<td>257</td>
</tr>
<tr>
<td>PKA</td>
<td>-</td>
<td>Stimulate</td>
<td>Ca(^{2+}) efflux</td>
<td>262</td>
</tr>
<tr>
<td>PIP$_2$</td>
<td><50</td>
<td>Stimulate</td>
<td>Ca(^{2+}) influx</td>
<td>265</td>
</tr>
<tr>
<td>[Ca(^{2+})](_i)</td>
<td>0.01-1</td>
<td>Stimulate</td>
<td>Ca(^{2+}) influx & efflux</td>
<td>268</td>
</tr>
<tr>
<td>[Na(^{+})](_o)</td>
<td>>40 mM</td>
<td>Inhibit</td>
<td>Ca(^{2+}) influx</td>
<td>267</td>
</tr>
</tbody>
</table>

In crayfish motor terminals, the Na\(^{+}/Ca\(^{2+}\) exchanger actually mediates Ca\(^{2+}\) influx. Thus, inhibition of Ca\(^{2+}\) entry with KB R7943 reduced the accumulation of Ca\(^{2+}\) during tetanus, resulting in decreased post-tetanic potentiation of the neuromuscular junction (224). In amacrine cells, prolonged depolarization induces Ca\(^{2+}\) influx via the Na\(^{+}/Ca\(^{2+}\) exchanger and evokes GABA release; repolarization induces Ca\(^{2+}\) efflux via the exchanger and terminates neurotransmitter release (282, 283). There are clearly situations in which Ca\(^{2+}\) enters the nerve terminal via Na\(^{+}/Ca\(^{2+}\) exchange; however, it remains unclear whether these findings can be generalized broadly.

Because Na\(^{+}/Ca\(^{2+}\) exchange mediates Ca\(^{2+}\) entry during intense stimuli that depolarize and/or elevate [Na\(^{+}\)], drugs such as KB R7943 that selectively block Ca\(^{2+}\) entry may prove effective in preventing excessive excitation in neuronal systems. KB R7943 reduced phospholipase activity following cerebral ischemia (284) and protected hippocampal slices from hypoxic/hypoglycemic injury (285). The neuroprotective effects of some Na\(^{+}\) channel blockers may also result in part from reduced Ca\(^{2+}\) influx via Na\(^{+}/Ca\(^{2+}\) exchange (286). However, KB R7943 did not protect cortical neurons from glutamate-induced neurotoxicity (255), suggesting that during prolonged glutamate exposure Ca\(^{2+}\) influx via the Na\(^{+}/Ca\(^{2+}\) exchanger is not a major factor. Other studies have found that inhibition of Na\(^{+}/Ca\(^{2+}\) exchange potentiates neurotoxicity, suggesting that the exchanger operating in Ca\(^{2+}\) efflux mode helps to protect neurons from Ca\(^{2+}\) overload (287-289). The role of the Na\(^{+}/Ca\(^{2+}\) exchanger in neuronal injury varies with the preparation and type of insult. Thus, the utility of drugs that modulate Na\(^{+}/Ca\(^{2+}\) exchange as neuroprotective agents is not clear.
Modulating Ca\(^{2+}\) clearance from neurons

In summary, the low affinity, high turnover rate, and reversibility of the Na\(^+/Ca^{2+}\) exchanger make it well suited to participate in the control of neurosecretion. The relative contribution of the exchanger to both Ca\(^{2+}\) entry and Ca\(^{2+}\) efflux appears to vary between release sites. Although the role of Na\(^+/Ca^{2+}\) exchange in neurotoxicity is presently unclear, further investigation may determine conditions in which Na\(^+/Ca^{2+}\) exchange inhibitors improve neuronal survival.

8. PERSPECTIVES

8.1. Competing for Ca\(^{2+}\) - the integrated response

The various Ca\(^{2+}\) uptake and efflux processes compete for cytoplasmic Ca\(^{2+}\). The predominant process is determined by affinity, rate, capacity and location relative to the Ca\(^{2+}\) source. Drugs and second messengers principally modulate the affinity and rate with resulting effects on the amplitude, duration, and spatial distribution of the [Ca\(^{2+}\)] signal. The inherent redundancy in Ca\(^{2+}\) clearance mechanisms can make these effects subtle. The cell’s ability to compensate for the reduced function of one element of the Ca\(^{2+}\) clearance machinery complicates study of the modulation of these processes (290). Sorting out the overlapping and dynamic contributions of Ca\(^{2+}\) regulatory processes will be important for determining the specific roles of the individual processes and how their modulation by drugs and second messengers affect the cellular response.

8.2. Future directions

The increasingly apparent diversity of the molecular entities that make up the [Ca\(^{2+}\)] regulatory system reveals new sites for modulation and links particular [Ca\(^{2+}\)] clearance processes to specific cellular functions. The diversity and specialization of the PMCA isoforms created by alternative splicing was the specific example discussed here, but heterogeneity in Na\(^+/Ca^{2+}\) exchange (247), SERCAIs (124, 125), RyR and IP\(_i\) (291, 292) and mitochondria (60, 90, 293) have been described. These Ca\(^{2+}\) regulatory mechanisms are expressed in combinations tailored to the needs of specific cell-types and even particular regions within a cell. Future elucidation of the types of signaling in which these molecular targets participate will identify means to modulate specific functions. For example, drugs that reduce mitochondrial Ca\(^{2+}\) uptake might protect neurons from Ca\(^{2+}\)-induced apoptosis (38, 91). In failing heart, decreased SERCA activity can be restored by ectopic expression of SERCA1a, enhancing contractility and providing a potential therapeutic approach to heart failure (294). As shown in Figure 3, phosphorylation of a particular PMCA isoform alters the excitability of sensory neurons (223). Inhibition of Na\(^+/Ca^{2+}\) exchange impaired short-term plasticity of the crayfish neuromuscular junction (224). These recent findings support our contention that specialized Ca\(^{2+}\) clearance mechanisms participate in unique cellular functions and thus, represent important targets for pharmacological and physiological regulation of the neuron.

Modulation of [Ca\(^{2+}\)] clearance mechanisms can influence cell functions ranging from excitability to death. The complex array of proteins that make up the Ca\(^{2+}\) clearance system would seem to present attractive pharmacologic targets for modulation of neuronal function. However, compounds discovered to date tend to be toxic and their use limited to research applications. Development of highly selective agents could yield drugs with the potential to alter synaptic transmission, to adjust electrical excitability and afford neuroprotection.

9. ACKNOWLEDGEMENTS

The National Science Foundation (IBN0110409) and the National Institutes of Health (DA07304, DA11806) supported the preparation of this article.

10. REFERENCES

Modulating Ca\(^{2+}\) clearance from neurons

17. Rizzuto, R., M. Brini, M. Murgia & T. Pozzan: Microdomains with high Ca\(^{2+}\) close to IP\(_{3}\)-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744-747 (1993)

31. Arnaudeau, S., W. L. Kelley, J. V. Walsh & N. Demaurex: Mitochondria recycle Ca\(^{2+}\) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 279, 29430-29439 (2001)

47. Kristal, B. S. & J. M. Dubinsky: Mitochondrial permeability transition in the central nervous system -
Modulating Ca\(^{2+}\) clearance from neurons

63. Litsky, M. L. & D. R. Pfeiffer: Regulation of the mitochondrial Ca\(^{2+}\) uniporter by external adenine nucleotides - the uniporter behaves like a gated channel which is regulated by nucleotides and divergent cations. Biochem. 36, 7071-7080 (1997)
78. Griffiths, E. J. & A. P. Jalestrape: Further evidence that cyclosporin A protects mitochondria from calcium overload

Modulating Ca2+ clearance from neurons

156. Michalak, M., P. Mariani & M. Opas: Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum. *Biochem Cell Biol* 76, 779-785 (1998)

161. Empson, R. M. & A. Galione: Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. *J. Biol. Chem.* 272, 20967-20970 (1997)

163. Lukyanenko, V., I. Gyorke, T. F. Wiesner & S. Gyorke: Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. *Circ. Res.* 89, 614-622 (2001)

Modulating Ca\(^{2+}\) clearance from neurons

226. Shimizu, H., M. L. Borin & M. P. Blaustein: Use of La3+ to Distinguish Activity of the Plasmalemmal Ca2+ Pump From Na+/Ca2+ Exchange in Arterial Myocytes. *Cell Calcium* 21, 31-41 (1997)
230. Green, A. K., P. H. Cobbold & C. J. Dixon: Effects on the Hepatocyte [Ca2+], Oscillator of Inhibition of the Plasma Membrane Ca2+ Pump By Carboxyeosin or Glucagon-(19-29), *Cell Calcium* 22, 99-109 (1997)
Modulating Ca2+ clearance from neurons

241. Portor, W. J. & S. A. Thayer: Enhanced Ca2+ pump activity following exposure to elevated [Ca2+], accelerates Ca2+ efflux from rat sensory neurons. Soc. Neurosci. Abst. 27 (2001)

247. Quednau, B. D., D. A. Nicoll & K. D. Philipson: Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in Rat. Am J Physiol 41, C1250-C1261 (1997)

264. Iwamoto, T., Y. Pan, T. Y. Nakamura, S. Wakabayashi & M. Shigekawa: Protein kinase C-dependent regulation of Na+/Ca2+ exchanger isoforms NCX1 and NCX3 does not require their direct phosphorylation. Biochem. 37, 17230-17238 (1998)

Modulating Ca\(^{2+}\) clearance from neurons

306. Du, G. G., X. Guo, V. K. Khanna & D. H. MacLennan: Ryanodine sensitizes the cardiac Ca\(^{2+}\) release channel (ryanodine receptor isoform 2) to Ca\(^{2+}\) activation and dissociates as the channel is closed by Ca\(^{2+}\) depletion. *Proc Natl Acad Sci U S A* 98, 13625-13630. (2001)

Key Words: Intracellular Ca\(^{2+}\) concentration, Neuron, plasma membrane Ca\(^{2+}\) ATPase, PMCA, Sarcoplasmic and endoplasmic reticulum Ca\(^{2+}\) ATPase, SERCA, Mitochondrion, Na\(^+\)/Ca\(^{2+}\) exchange, NCX, Phosphorylation, Brain, Alternative splicing, Ca\(^{2+}\) signaling, Review

Send all correspondence to: S. A. Thayer, Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S. E., Minneapolis, MN 55455, Tel: 612-626-7049, Fax: 612-625-8408, E-mail: thayer@med.umn.edu