JUNCTIONAL MEMBRANE STRUCTURE AND STORE OPERATED CALCIUM ENTRY IN MUSCLE CELLS

Jianjie Ma and Zui Pan

Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ

TABLE OF CONTENTS

1. Abstract
2. Introduction
 2.1. Ca\(^{2+}\) movements in muscle cells – intracellular release and extracellular entry
 2.2. Transient receptor potential proteins (TRP) and store-operated Ca\(^{2+}\) channel (SOC)
 2.3. Activation of SOC – cross talk between cell surface and intracellular membranes
3. Junctophilins and mitsugumins – linkers of junctional structure between cell surface and intracellular membranes
 3.1. Mitsugumin 29 and transverse tubule structure in skeletal muscle
 3.2. Junctophilin 1 and triad junction in skeletal muscle
 3.3. Junctophilin 2 and dyad junction in cardiac muscle
4. Ryanodine receptor-mediated activation of SOC
 4.1. Interaction between TRP and ryanodine receptor (RyR)
 4.2. Dysfunction of SOC in muscle cells lacking RyR1 and RyR3
5. Store-operated Ca\(^{2+}\) entry and muscle fatigue
 5.1. Involvement of extracellular Ca\(^{2+}\) entry in muscle fatigue
 5.2. Dysfunction of SOC and muscle fatigue in mg29(-/-) mice
6. Perspectives – emerging questions of SOC function in Ca\(^{2+}\) homeostasis of muscle cells
7. Acknowledgement
8. References

1. ABSTRACT

The store-operated Ca\(^{2+}\) channel (SOC) located on the plasma membrane (PM) mediates capacitative entry of extracellular Ca\(^{2+}\) following depletion of intracellular Ca\(^{2+}\) stores in the endoplasmic or sarcoplasmic reticulum (ER/SR). It plays important roles in a variety of cell signaling processes, including proliferation, apoptosis, gene regulation and motility. In skeletal muscle, the L-type Ca\(^{2+}\) channel on the surface membrane has slow kinetics of activation in response to voltage stimulation, and therefore does not support entry of extracellular Ca\(^{2+}\). Recent studies have provided functional evidence for the existence of SOC in muscle cells. Severe dysfunction of SOC is identified in muscle cells lacking either ryanodine receptors located on the SR membrane, or mitsugumin 29 - a membrane protein located in the triad junction of skeletal muscle. These results indicate that SOC activation requires an intact interaction between PM and SR, and is linked to conformational changes of ryanodine receptors. The cumulative entry of Ca\(^{2+}\) through SOC not only provides the mechanism for refilling of intracellular Ca\(^{2+}\) stores, but may also add to the Ca\(^{2+}\) needed for muscle contraction under conditions of intensive exercise and fatigue. The proper coupling of PM with ER/SR, in the triad junction in skeletal muscle or dyad junction in cardiac muscle, is essential not only for the membrane excitation-induced intracellular Ca\(^{2+}\) release but also for the store depletion-initiated capacitative Ca\(^{2+}\) entry.

2. INTRODUCTION

Ca\(^{2+}\) ions are important second messengers in many signal transduction pathways. They participate in essentially every cellular process, ranging from gene regulation and protein trafficking, to cell differentiation and apoptosis, to membrane excitability and cell motility. In general, there are two sources of this signaling ion in the cell: channels in the plasma membrane (PM) that open to allow external Ca\(^{2+}\) to flow into the cytoplasm, and internal stores in the form of endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) that release Ca\(^{2+}\) into the cytosol. The effective coupling of extracellular Ca\(^{2+}\) entry and intracellular Ca\(^{2+}\) release requires an intimate communication between PM and ER/SR.

In many excitable cells, entry of extracellular Ca\(^{2+}\) can be achieved via activation of voltage-gated Ca\(^{2+}\) channels by membrane depolarization. This initial Ca\(^{2+}\) signal is further amplified as the entering Ca\(^{2+}\) triggers additional mobilization of intracellular Ca\(^{2+}\) stores through activation of IP3 receptor or ryanodine receptor (RyR) channels, a process known as Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) (5, 19, 90). In most non-excitable cells, the initial Ca\(^{2+}\) signal usually originates from release of Ca\(^{2+}\) from internal stores via activation of IP3 receptors located on the ER. The entry of extracellular Ca\(^{2+}\) into non-excitable cells can be triggered by either direct activation through receptor molecules located on the PM or indirect activation by a
intracellular Ca\(^{2+}\) release from the SR and subsequent muscle contraction (E-C coupling) occurs in the junction between the transverse-tubular (T-tubule) invagination of PM and the terminal cisternae of SR in a structure known as the “triad junction”, where two major protein components are located: the dihydropyridine receptors (DHPR), which function as voltage sensors of the T-tubule membrane, and the RyRs, which function as the Ca\(^{2+}\) release channels in the SR (6, 7, 8, 22, 33, 68, 77) (see Figure 1). In skeletal muscle, the triad junction provides the structural framework for the interaction between DHPR and RyR that mediates direct signal transduction of voltage-induced Ca\(^{2+}\) release (VICR). The operation of VICR in skeletal muscle appears to involve a direct physical interaction between DHPR and RyR, without requiring the transmembrane movement of extracellular Ca\(^{2+}\) (95, 96, 99). In the heart, however, depolarization of PM initiates rapid Ca\(^{2+}\) influx through activation of the DHPR/L-type Ca\(^{2+}\) channel, which triggers opening of the RyR/Ca\(^{2+}\) release channel via CICR (18, 66, 124). Peripheral coupling between PM and SR in the form of dyad junction mediates efficient communication from DHPR to RyR in the cardiac muscle.

The DHPR/L-type Ca\(^{2+}\) channel located in the T-tubules of skeletal muscle has slow activation kinetics (23, 29, 67), and does not support Ca\(^{2+}\) influx under normal physiological conditions. Therefore, the twitch force in skeletal muscle is triggered mainly by the acute release of Ca\(^{2+}\) from the SR, primarily via VICR, and secondarily amplified by CICR through activation of neighboring RyRs not directly coupled to DHPR (96, 99). The internal Ca\(^{2+}\) stores located in the SR of muscle cells and ER of other cells have a limited capacity for Ca\(^{2+}\) storage. As a result, cells possess the capability of SOCE as a means of renewing depleted intracellular Ca\(^{2+}\). Although evidence indicates that physical docking of ER with PM is involved in the activation of SOC, the molecules and/or signals that couple ER/SR Ca\(^{2+}\) depletion to opening of SOC remain largely unknown (82, 92, 93).

2.2. Transient receptor potential proteins (TRP) and store-operated Ca\(^{2+}\) channel

The initial leads to identify the molecular basis of SOCE were provided by the study of phototransduction in Drosophila melanogaster. Work in Drosophila photoreceptors showed that mutations in a protein encoded by the trp gene were associated with a defect in Ca\(^{2+}\) entry following light stimulation (70, 87, 128). Expression of TRP in a baculovirus system produced Ca\(^{2+}\) currents when intracellular Ca\(^{2+}\) stores were depleted with thapsigargin (TG), a result indicative of a role of TRP in mediating SOCE (85, 120). To date, seven mammalian homologues of the Drosophila TRP have been cloned and termed TRP-canonical or TRPC1-7 (9, 11, 14, 78, 79, 138, 139). A common characteristic of all TRPC proteins is that they form Ca\(^{2+}\)-permeable nonselective cation channels. Functional studies using various heterologous expression systems have provided evidence supporting the role of TRPCs in SOCE and/or ROCE. First, all TRPCs mediate Ca\(^{2+}\) entry in response to phospholipase C (PLC) stimulation by receptor agonists.
Store-Operated Ca\(^{2+}\) channel in muscle cells

(9). Second, TRPC1, 2, 4 and 5 are activated by TG (64, 88, 89, 121, 126). Third, activities of endogenous SOCs were inhibited by antisense TRPC1 oligonucleotides, by expression of antisense RNA of TRPCs (64, 86, 138), or by treatment with antibodies against TRPC1 or TRPC2 (130). Fourth, expression of the amino-terminus of TRPC3 inhibited the endogenous SOCE in human endothelium in a dominant-negative manner (41). Finally, TRPC4 knockout mice showed reduced vasorelaxation in association with diminished store-operated Ca\(^{2+}\) currents in aortic endothelium (35).

The conundrum is that TG does not always activate TRPC-based channels. In most cells, the channels formed by TRPC3, 6, and 7 appear to be largely insensitive to TG but respond very well to the stimulation of PLC (10, 78, 137). However, in chicken DT40 cells, heterologous expression of human TRPC3 seem to lead to TG-stimulated Ba\(^{2+}\) influx (122). TRPC4 and TRPC5 have been shown to be store-operated channels by some research groups (86, 126), but not by others (78, 98, 104). The discrepancies may reflect the complexity of SOCs both in subunit composition and in functional regulation. Native SOCs may contain four non-identical TRPC subunits or TRPC plus other unidentified subunits (54). Channels formed due to over-expression of a single TRPC type could have anomalous compositions, leading to abnormal single channel conductance, ion selectivity, pharmacological profiles, and sensitivity to some essential regulatory elements (93). In the case of Drosophila TRP-like and TRPγ, a SOC was formed when both were expressed together, but not when each TRP was expressed individually (129, 131). Thus, it remains a challenge to find the “right” mix of TRPC proteins to make a channel with the same properties as the Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) channel, the best characterized SOC (46, 81, 140).

Channel-like proteins distantly related to TRPCs have also been cloned. They are now collectively called members of the TRP superfamily and are further classified according to their sequence homology into four subfamilies: TRPV, TRPM, TRPP, and TRPML (20, 71). Some of them have been suggested to participate in the formation of SOCs. For example, TRPV6 (CaT1) was shown to be similar to the CRAC channel when expressed in HEK 293 cells (135). However, a more recent study argues that it may contain four non-identical TRPC subunits or TRPC with the same properties as the Ca\(^{2+}\) channel in muscle cells (126), but not by others (78, 98, 104). The discrepancies may reflect the complexity of SOCs both in subunit composition and in functional regulation. Native SOCs may contain four non-identical TRPC subunits or TRPC plus other unidentified subunits (54). Channels formed due to over-expression of a single TRPC type could have anomalous compositions, leading to abnormal single channel conductance, ion selectivity, pharmacological profiles, and sensitivity to some essential regulatory elements (93). In the case of Drosophila TRP-like and TRPγ, a SOC was formed when both were expressed together, but not when each TRP was expressed individually (129, 131). Thus, it remains a challenge to find the “right” mix of TRPC proteins to make a channel with the same properties as the Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) channel, the best characterized SOC (46, 81, 140).

The conundrum is that TG does not always activate TRPC-based channels. In most cells, the channels formed by TRPC3, 6, and 7 appear to be largely insensitive to TG but respond very well to the stimulation of PLC (10, 78, 137). However, in chicken DT40 cells, heterologous expression of human TRPC3 seem to lead to TG-stimulated Ba\(^{2+}\) influx (122). TRPC4 and TRPC5 have been shown to be store-operated channels by some research groups (86, 126), but not by others (78, 98, 104). The discrepancies may reflect the complexity of SOCs both in subunit composition and in functional regulation. Native SOCs may contain four non-identical TRPC subunits or TRPC plus other unidentified subunits (54). Channels formed due to over-expression of a single TRPC type could have anomalous compositions, leading to abnormal single channel conductance, ion selectivity, pharmacological profiles, and sensitivity to some essential regulatory elements (93). In the case of Drosophila TRP-like and TRPγ, a SOC was formed when both were expressed together, but not when each TRP was expressed individually (129, 131). Thus, it remains a challenge to find the “right” mix of TRPC proteins to make a channel with the same properties as the Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) channel, the best characterized SOC (46, 81, 140).

Channel-like proteins distantly related to TRPCs have also been cloned. They are now collectively called members of the TRP superfamily and are further classified according to their sequence homology into four subfamilies: TRPV, TRPM, TRPP, and TRPML (20, 71). Some of them have been suggested to participate in the formation of SOCs. For example, TRPV6 (CaT1) was shown to be similar to the CRAC channel when expressed in HEK 293 cells (135). However, a more recent study argues that it has a quite distinct pore property from the CRAC channel (123). Members of the TRPV subfamily form heat-activated channels (capsaicin receptor, TRPV1, and TRPV2) (16, 17), stretch-inactivated or osmalority-regulated channels (OTRPC4 or TRPV4) (103, 108, 127), a growth factor-regulated channel (GRC, the same sequence as TRPV2) (52), and Ca\(^{2+}\) transporting epithelial channels (ECaC or CaT; TRPV5 and TRPV6) (45, 83, 84). A number of TRP proteins are implicated in etiology of human diseases, such as autosomal dominant polycystic kidney disease (PC2 or TRPP1) (117), metastatic melanoma (melastatin, or TRPM1) (44), and mucolipidosis type IV (mucolipin or TRPML1) (3, 106).

2.3. Activation of store-operated Ca\(^{2+}\) channel – crosstalk between cell surface and intracellular membranes

The activation mechanism of SOCs is an unresolved problem. Three major hypotheses have been proposed. First, a small diffusible factor may be responsible for activating SOCs. A Ca\(^{2+}\) influx factor seems to be present in the acid extracts of activated Jurkat cells and platelets, or a Ca\(^{2+}\) store-depleted yeast mutant strain (24, 94, 116), but its identity has not been determined. Second, IP\(_3\)Rs may directly bind to the SOCs and activate them through a conformational coupling mechanism (48), in a manner similar to the activation of skeletal muscle RyR by the DHPR in E-C coupling (95, 96, 99). Third, insertion of preformed channel-containing vesicles in the PM in a fashion similar to the secretion of neurotransmitters may be required for the activation of SOCs (133).

During the past few years, increasing evidence has accumulated supporting the conformational coupling hypothesis, owing mainly to studies conducted on TRPC channels. Functional coupling by IP\(_3\)Rs was first shown for TRPC3 expressed in HEK293 cells (55) and then for a native SOC found in A431 epithelium (53). These were followed by the demonstration that IP\(_3\)Rs and TRP proteins coimmunoprecipitated in several systems (10, 56, 65, 97) and finally the identification of IP\(_3\)-TRPC binding domains (10, 115, 136). Additional evidence also suggests that RyRs could substitute for the IP\(_3\)Rs to activate TRPC3 and native SOCs (57, 58). Moreover, the binding of IP\(_3\)Rs to TRPCs is inhibited by calmodulin, which prevents the channels from being spontaneously active, and inactivates the channels after they are activated (115, 136). Therefore, Ca\(^{2+}\) release channels, IP\(_3\)Rs and RyRs, and calmodulin appear to control the gating of SOCs through direct interaction with TRPC proteins.

3. JUNCTOPHILINS AND MITSUGUMINS – LINKERS OF JUNCTIONAL STRUCTURE BETWEEN CELL SURFACE AND INTRACELLULAR MEMBRANES

Perhaps the best studied example of Ca\(^{2+}\) signaling is that defined by VICR in skeletal muscle. Research over the past 30 years or so has defined certain key molecular components involved in E-C coupling (see Figure 1), and has also begun to elucidate the machinery underlying the signal transduction step from activation of DHPR to activation of RyR (77). A central focus in current E-C coupling research is to understand the molecular and structural components that define the close T-tubule/SR interaction, and to study the roles of accessory proteins that may interact with DHPR or RyR to modulate the VICR, CICR, and SOCE.

In addition to DHPRs and RyRs, other proteins of the T-tubule/SR junction also play critical roles in muscle E-C coupling. Transgenic mice that lack expression of either DHPRs or RyRs still form seemingly normal triad junctions (32, 47), indicating that structural components other than the DHPR/RyR interaction are needed for a close apposition of T-tubules and SR membranes. Chinese hamster ovary (CHO) cells transfected with both DHPR and RyR cDNAs showed neither Ca\(^{2+}\) release in response to membrane depolarization, nor close association between the PM and ER (105, 107, 109). Thus, the DHPR/RyR
interaction is neither necessary nor sufficient for the formation of triad and dyad junctions. Although several transmembrane proteins with no established physiological roles have been identified as components of triad junctions (42, 50), none appears to be a candidate molecule for mediating the physiological coupling of the junctional complex. Furthermore, the gap size between T-tubule and SR was reduced when the triad lacked RyRs (from ~12 nm in normal muscle to ~7 nm in ryr1(-/-) ryr3(-/-) muscle) (47), suggesting an elastic property of the proposed bridge between the two junctional membranes.

In an attempt to identify structural components supportive of triad junction-like membrane arrangements, Takeshima and colleagues have used a combination of monoclonal antibody immunocytochemistry and cDNA library screening techniques, and identified a group of novel membrane proteins termed mitsugumins and junctophilins that in cardiac and skeletal muscle are exclusively localized to the triad and dyad junctions, respectively (75, 76, 113, 114).

3.1. Mitsugumin 29 and transverse tubule structure in skeletal muscle

Mitsugumin29 (MG29) is a synaptophysin-family member protein, with a molecular weight of 29 kDa, localized specifically in the triad junction of skeletal muscle, and to a lesser extent also present in the tubular membranes of the kidney (113). In mature skeletal muscle, MG29 is present predominantly on the T-tubule membrane (12, 59). Similar to other synaptophysin family proteins, MG29 forms an oligomeric structure - a homohexamer (13), that may be essential for the function of MG29 in muscle development and contraction.

To examine the physiological function of MG29, Nishi et al have created a mutant mouse with targeted disruption of the mg29 gene (75). Abnormalities of membrane ultrastructure around the triad junction were detected in skeletal muscle from the mg29(-/-) mice: the T-tubules were swollen and sometimes missing from the A-I junction, and the SR networks were poorly formed with vacuolated and fragmented structures, leading to misalignment of triad junctions. In the mg29(-/-) muscle, apparently normal tetanus tension was observed, whereas twitch tension was significantly reduced. Interestingly, the mutant muscle showed faster decrease of twitch tension under Ca2+-free conditions compared with the control muscle (75). The morphological and functional abnormalities of the mutant muscle indicate that MG29 is essential for both refinement of the membrane structure and effective E-C coupling in skeletal muscle.

3.2. Junctophilin type 1 (JP1) and triad junction in skeletal muscle

A family of membrane proteins named junctophilins (JP) was identified as the major protein components at junctional membrane complexes in excitable cells (114). Three subtypes of JP have been identified, JP1, JP2 and JP3, which exhibit tissue specific distribution. JP1 is predominantly expressed in skeletal muscle, JP2 is distributed in both skeletal and heart muscles, and JP3 is abundantly expressed in the brain and testis. The lung and stomach, tissues containing smooth muscle, showed weak hybridization signals with the JP2-specific probe, suggesting expression of JP2 in smooth muscle cells as well (114).

The primary amino acid sequence of JP proteins revealed a unique secondary structure with a large cytoplasmic region and a carboxyl-terminal transmembrane segment spanning the SR/ER. The cytoplasmic region of JP contains repeated motifs of 14 amino acid residues termed “membrane occupation and recognition nexus” or MORN motifs, and exhibit selective binding affinity to the plasma membrane. The MORN motif is a novel protein-folding module shared by functionally different proteins and probably having a specific physiological role.

Electron microscopy revealed junctional complexes between the ER and PM in cells expressing JP1 (114). The average gap size between PM and ER in the junctional structure was ~7.6 nm. When a soluble form of JP1 lacking the carboxy-terminal transmembrane segment was expressed, immunolabeling was detected specifically at the PM, but lacked ER-PM junction. This demonstrates a specific binding affinity of the cytoplasmic domain of JP1 for the PM. The JP1 mediated junctional complexes showed structural characteristics similar to those of the peripheral coupling detected commonly in muscle cell types. The gap between T-tubule and SR in the triad junction from normal muscle is ~12 nm, whereas the mutant muscle lacking RyR has a gap size of ~7 nm. This suggests that RyR likely restricts the gap size. Since the “foot” structure of RyR is absent in heterologous cells expressing JP1, the gap size of 7.6 nm probably correspond to that of the mutant triad junction lacking RyR. Together, these studies suggest that the JP family proteins, by their nature of specific anchorage to the SR/ER membrane and selective interaction with the PM, may play essential roles in the formation of junctional membrane complexes.

To examine the physiological role of JP1 in skeletal muscle, Ito et al (49) have generated mutant mice lacking JP1. The JP1 knockout mice showed no milk suckling and died shortly after birth. Ultrastructural analysis demonstrated that triad junctions were reduced in number, and that the SR was often structurally abnormal in the skeletal muscles of the mutant mice. The mutant muscle developed less contractile force evoked by low-frequency electrical stimuli and showed abnormal sensitivities to extracellular Ca2+. These data indicate that JP1 contributes to the construction of triad junctions and is essential for the efficiency of signal conversion during E-C coupling in skeletal muscle.

3.3. Junctophilin type 2 (JP2) and dyad junction in cardiac muscle

JP2 is abundantly expressed in the heart. It appears to be essential for dyad junction formation because disruption of its expression in mice produces embryonic lethality, as a result of defective junctional membrane coupling and unsynchronized intracellular Ca2+ transients (114). To survey functional abnormalities in the.jp2(-/-)
mice, the hearts from E9.5 embryos were subjected to Ca\(^{2+}\)-imaging analysis using an intracellular Ca\(^{2+}\) indicator. In wild-type hearts, all of the myocytes showed spontaneous and synchronized Ca\(^{2+}\) transients, and the transients disappeared in a Ca\(^{2+}\)-free bathing solution, because cardiac E-C coupling requires Ca\(^{2+}\) influx via DHPR. However, in mutant hearts from the \(p_2\)-(-) embryos, a large number of myocytes showed irregular Ca\(^{2+}\) transients that were not synchronized with heartbeats and occurred randomly. The random transients were even retained in the Ca\(^{2+}\)-free bathing solution, albeit with reduced frequency. Therefore, the abnormal Ca\(^{2+}\) transients in the mutant hearts are primarily independent of Ca\(^{2+}\) influx through DHPR.

Deficiency of peripheral coupling, observed in the mutant myocytes prior to cardiac arrest, supports the notion that JP proteins contribute to the formation of junctional membrane complexes in various cell types. Generation of the junctional structure may require at least two processes: first the SR and PM must approach each other, and then the JP proteins anchor the two membranes together in a stable complex. A few peripheral couplings retained in the \(p_2\)-(-) myocytes might correspond to an unstable form of the junctional membrane complexes that is junctophilin-independent. Alternatively, other JP subtypes might contribute to the formation of the peripheral coupling in the \(p_2\)-(-) myocytes, i.e. low levels of JP1 expression in the adult hearts were suggested by Northern blot analysis.

The deficient junctional membrane structure and abnormal intracellular Ca\(^{2+}\) transients observed in cardiac myocytes of the JP2 knockout mice resemble some of the functional changes associated with diseased human heart, i.e., widening of the dyadic membrane cleft and reduced efficiency of intracellular Ca\(^{2+}\) release measured in congestive heart failure (CHF) (40, 43). Although the pathogenesis of CHF is probably multi-factorial, alterations in E-C coupling are a central finding in all animal models of CHF and in failing human heart. Presumably, mutations or altered expression of mitsugumins might induce human diseases by affecting the Ca\(^{2+}\) signaling of excitable cells.

4. RYANODINE RECEPTOR-MEDIATED ACTIVATION OF STORE-OPERATED Ca\(^{2+}\) CHANNEL

Conformation coupling between IP\(_3\) receptors and SOCs is analogous to E-C coupling between DHPRs and RyRs in skeletal muscle. A retrograde interaction between RyR and DHPR also exists in skeletal muscle, as the absence of RyR hinders the function of DHPR (30, 73). Of the three known RyR isoforms, RyR1, expressed in skeletal muscle, is the only one capable of interacting with DHPR. RyR2, the cardiac isoform, is not capable of coupling to DHPR (74, 112). RyR3, widely expressed in both excitable and nonexcitable cells and whose main function appear to be limited to CICR, is not known to interact directly with a DHPR (21, 31, 102, 125, 132).

Growing evidence suggests that Ca\(^{2+}\) stores of many nonmuscle cells, including neurons (2), neuroendocrine (4), lymphocytes (39, 100) and epithelial cells (62) express RyRs. Thus, pharmacological agents such as caffeine and the second messenger cADPR (61) can release Ca\(^{2+}\) from internal stores of these cells. Furthermore, Ca\(^{2+}\) release by activation of RyRs in nonmuscle cells activates SOCE in a manner similar to Ca\(^{2+}\) release from the IP\(_3\)-sensitive stores (4, 119). The functional coupling between RyR and SOC, if it exists, is likely to be influenced by the structural interaction between PM and SR. In the case of muscle cells, those proteins participate in the formation of dyad and triad junction, e.g. mitsugumins and junctophilins may modulate the interaction between RyR and SOC and the overall Ca\(^{2+}\) signaling process.

4.1. Interaction between TRP and ryanodine receptor

Using co-expression and reconstitution studies, Kiselyov et al. (57) provided direct evidence supporting a conformational coupling between RyR and SOC in non-excitatory cells. Ca\(^{2+}\) release from RyR-sensitive stores was shown to activate TRPC3 channels in electrophysiological measurements. And the RyR-TRPC3 complex can be demonstrated in co-immunoprecipitation studies. Furthermore, the coupling appears to be specific for RyR1, since RyR2 did not appear to interact with TRPC3 and to gate the channel. The data show that regulation of SOC or ROC by RyRs is not unique to skeletal muscle. Thus, the gating of PM Ca\(^{2+}\) channels by intracellular Ca\(^{2+}\) release channels may be viewed as a general and widespread paradigm in Ca\(^{2+}\) signaling.

4.2. Dysfunction of SOC in muscle cells lacking RyR1 and RyR3

The first direct demonstration of SOCE in skeletal muscle was provided by Kurebayashi and Ogawa (60). They used muscle fibers isolated from the extensor digitorum longus (EDL) of adult mice, and depleted the SR Ca\(^{2+}\) stores by repetitive treatments with high-K\(^{+}\) solutions in combination with inhibitors of the SERCA Ca\(^{2+}\) pump. The SOCE in skeletal muscle was sensitive to blockade by Ni\(^{2+}\), resistant to nifedipine, and suppressed by plasma membrane depolarization. This SOCE pathway is sufficient to refill the depleted SR Ca\(^{2+}\) store within several minutes in skeletal muscle fibers. The Mn\(^{2+}\) influx through SOC measured by quenching of Fura-2 fluorescence was observed only when the SR was severely depleted of Ca\(^{2+}\). The voltage-dependence of SOCE in skeletal muscle exhibited inward rectification, which was similar to the CRAC current described in other preparations (46).

To test the putative regulation of SOC by RyR in muscle cells, we used primary cultured myotubes derived from neonates of the \(r_{yr1}\)(-/-)\(r_{yr3}\)(-/-) and \(r_{yr1}\)(+/-)\(r_{yr3}\)(-/-) mice (110, 111). It is known that deletion of either RyR1 or RyR3 does not disrupt the triad junction structure (47). Furthermore, the mutant myocytes prior to cardiac arrest, supports the gating of PM Ca\(^{2+}\) channels by intracellular Ca\(^{2+}\) release channels may be viewed as a general and widespread paradigm in Ca\(^{2+}\) signaling.
Store-Operated Ca\(^{2+}\) channel in muscle cells

Figure 2. Ryanodine receptor-mediated activation of store-operated Ca\(^{2+}\) channel in skeletal muscle. In ryr1(+/−)ryr3(−/−) myotubes, inhibition of the SERCA Ca\(^{2+}\) pump by 10 µM thapsigargin (TG), or activation of RyR/Ca\(^{2+}\) release channel by caffeine and ryanodine resulted in depletion of SR Ca\(^{2+}\), and triggered store-operated Ca\(^{2+}\) entry (SOCE) after addition of 2 mM (Ca\(^{2+}\))\(_o\). A large component of SOCE was sensitive to blockade by 20 µM SKF-96365 but not by 50 µM verapamil. In ryr1(−/−)ryr3(−/−) cells, caffeine could not induce Ca\(^{2+}\) release from SR due to the lack of RyR1 and RyR3. The amplitude of SOCE in ryr1(−/−)ryr3(−/−) myotubes was significantly smaller than that in ryr1(+/−)ryr3(−/−) myotubes, when the SR Ca\(^{2+}\) store was completely depleted with TG.

caffeine alone, but the extent of SOCE was significantly larger. TG, a potent inhibitor of the SR Ca\(^{2+}\) pump, produced sustained depletion of Ca\(^{2+}\) from SR and induced even greater activation of SOCE in ryr1(+/−)ryr3(−/−) cells. Near complete inhibition of SOCE in ryr1(+/−)ryr3(−/−) cells was observed upon addition of 20 µM SKF 96365, a knock blocker of SOC (63, 69). The ryr1(−/−)ryr3(−/−) myotube, lacking both ryr1 and ryr3, failed to respond to caffeine or ryanodine, but contained TG-sensitive SR Ca\(^{2+}\) store similar to that present in ryr1(+/−)ryr3(−/−) cells. SOC activity in ryr1(−/−)ryr3(−/−) cells, however, was significantly smaller than that in ryr1(+/−)ryr3(−/−) cells. After depletion of SR Ca\(^{2+}\) with thapsigargin, ryr1(−/−)ryr3(−/−) cells exhibited a residual component of SOCE (~40% of that present in ryr1(+/−)ryr3(−/−) cells), which was partially sensitive to inhibition by SK&F 96365 (Figure 2).

Our data provide direct evidence for a RyR-coupled activation of SOC in skeletal muscle. Based on the different degree of SOCE triggered by caffeine, caffeine and ryanodine, or TG in ryr1(+/−)ryr3(−/−) cells, we conclude that SOCs in skeletal muscle can function in a graded manner depending on the SR Ca\(^{2+}\) content or the conformation of RyR (80).

5. STORE-OPERATED CA\(^{2+}\) ENTRY AND MUSCLE FATIGUE

5.1. Involvement of extracellular Ca\(^{2+}\) entry in muscle fatigue

Fatigue is an important functional property of skeletal muscle, and is defined as a reversible decrease in the isometric contractile force in response to an increase in the frequency or duration of stimulation (1). Optimal muscle performance revolves around the maintenance of intracellular Ca\(^{2+}\) homeostasis, such that inadequate Ca\(^{2+}\) release from the SR would lead to reduced force output observed in muscle fatigue. The decline in intracellular Ca\(^{2+}\) release could result from improper coupling between DHPR and RyR, reduction of the SR Ca\(^{2+}\) content, direct modification of RyR function, or dysfunction of SOCE.

Experiments with intact muscle fiber show that the size of the Ca\(^{2+}\) store declines during fatigue and
It is well known that Ca^{2+} influx is essential for priming of the DHPR/voltage sensor in the active state (15), but the demonstration of a functional role for extracellular Ca^{2+} influx in skeletal muscle E-C coupling has eluded detection despite being well studied. Although the twitch force initiated by a single electrical stimulation does not depend on the movement of extracellular Ca^{2+}, the fatigue pattern of isolated muscle fibers shows a clear dependence on extracellular Ca^{2+} (Figure 3). Changing the bath solution from 2 mM Ca^{2+} to 0 Ca^{2+} significantly increased the fatigability of the muscle, as indicated by the reduction in the sustained force output at the end of the tetanic stimulation. The reduction of SR Ca^{2+} stores associated with muscle fatigue can trigger the activation of SOCE, which could play a role in the overall Ca^{2+} handling properties of skeletal muscle. By blocking the SOCE pathway with SKF-96365, one observes a significant change in the fatigue behavior of skeletal muscle (Figure 3).

5.2. Dysfunction of SOC and muscle fatigue in mg29(-/-) muscle

Unlike the normal skeletal muscle whose E-C coupling machinery does not rely on the entry of extracellular Ca^{2+}, skeletal muscle from the mutant mg29(-/-) mice exhibits clear dependence on extracellular Ca^{2+} for contraction (75, 80). As MG29 is involved in the coupling between T-tubule and SR, presumably the expression of MG29 will have functional impact on the RyR-mediated activation of SOC in muscle cells.

A distinct phenotype of the mg29(-/-) mice is their failure to complete an endurance test, i.e., their skeletal muscles exhibit increased susceptibility to fatigue. Nagaraj et al (72) showed that muscle fibers isolated from the mg29(-/-) not only fatigued to a greater extent, but also recovered significantly less than the wild type muscles. Following fatigue, the mutant EDL and soleus muscles produced lower twitch forces than the wild-type muscles. Additionally, fatiguing produced a rightward shift in the force-frequency relationship in the mutant mice compared with the wild type controls.

Quantitative measurements of intracellular Ca^{2+} with Fura-2 fluorescent indicator in individual myotubes derived from different mutant mice enabled us to identify a defective regulation of SOC in mg29(-/-) cells, and begin to define the mechanism of SOC operation in skeletal muscle (80). As shown in Figure 4, treatment of cells with TG in 0 Ca^{2+} solution induced measurable SOCE in both control and mg29(-/-) cells after addition of 2 mM Ca^{2+}. Note that the extent of SOCE in mg29(-/-) cells is less than 40% of that seen in control cells. SKF-96365, a known blocker of SOC, blocked this SOCE in control cells by >90%. In contrast, the SKF-sensitive component of CCE is severely compromised in mg29(-/-) cells. Further studies show that the mg29(+/+) and mg29(-/-) muscles showed comparable responses to fatigue stimulation at 0 Ca^{2+} and after inhibition of SOC with SKF-96365. This suggests that the increased susceptibility to fatigue stimulation is likely a consequence of dysfunction of SOC in mg29(-/-) muscle cells.
6. PERSPECTIVE – EMERGING QUESTIONS OF SOC FUNCTION IN Ca\(^{2+}\) HOMEOSTASIS OF MUSCLE CELLS

In recent years, much research has focused on the mechanism linking depletion of intracellular Ca\(^{2+}\) stores to the activation of plasma membrane Ca\(^{2+}\) channels. Most of the studies were performed with non-excitable cells. There is considerable evidence for a conformational coupling mechanism by which depletion of intracellular Ca\(^{2+}\) stores induces a conformational change in IP\(_3\) receptor or RyR, which interacts with and activates a plasma membrane Ca\(^{2+}\) channel. A close association between T-tubules of PM and terminal cisternae of SR not only determines the spatial coupling between DHPR and Ca\(^{2+}\) release channel, but also fine tunes the efficacy of Ca\(^{2+}\) signaling in muscle cells. It remains to be studied how the JP proteins affect the retrograde Ca\(^{2+}\) signaling in muscle and other excitable cells.

At present, the TRPs remain the most popular candidate protein for SOC. There is evidence that channels formed by TRP proteins can be gated by Ca\(^{2+}\) store depletion, although this is not consistent in all studies. However, it seems clear that none of the TRPs so far studied shows the properties required for \(I_{\text{TRPC}}\). The key missing property is Ca\(^{2+}\) selectivity, which has not been observed for any TRPC family member. It is highly possible that the molecular entity determining SOC may consist of a macromolecular complex that spans the cell surface and intracellular membranes, i.e. a multimeric structure.

In summary, significant progresses have been made in elucidating the physiological roles of SOCE and ROCE. In particular, in the process of cell proliferation, apoptosis and smooth muscle contraction, the role of SOCE has been well documented. In striated muscle cells, we now know that SOC participates in muscle fatigue. We do not yet know how alteration of SOC could affect long term muscle development and gene adaptation. Identification of the molecular components of SOC remains the key task for future studies.

7. ACKNOWLEDGEMENT

We greatly appreciate our previous and present collaborators for their contribution to this study. In particular, we thank Dr. Mike Zhu for sharing his initial thoughts on the study with TRP channels with us. Our studies were supported by grants from the National Institutes of Health (RO1-AG15556, RO1-CA95379, and RO1-HL69000), and the American Heart Association.

8. REFERENCES

Store-Operated Ca\(^{2+}\) channel in muscle cells

malignant hyperthermia-susceptible patients have an increased sensitivity to skeletal muscle ryanodine receptor activators. J Biol Chem. 276: 48077-82. (2001)

48. Irvine, R.F.: 'Quantal' Ca2+ release and the control of Ca2+ entry by inositol phosphates--a possible mechanism. FEBS Lett. 263, 5-9 (1990)

60. Kurebayashi N and Ogawa Y.: Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol. 553, 185-99. (2001)

Store-Operated Ca2+ channel in muscle cells

Store-Operated Ca2+ channel in muscle cells

97. Rosado, J.A. and Sage, S.O.: Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem. J. 350, 631-635 (2000)

Store-Operated Ca2+ channel in muscle cells

119. Usachev, Y.M., and Thayer, S.A.: Ca2+ influx in resting rat sensory neurons that regulates and is regulated by ryanodine-sensitive Ca2+ stores. J. Physiol. 519, 115–130. (1999)

124. Wang SQ, Song LS, Lakatta EG, Cheng H.: Ca2+ signaling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature. 410(6828), 592-6. (2001)

Store-Operated Ca\(^{2+}\) channel in muscle cells

capacitative Ca\(^{2+}\) entry in vascular smooth muscle cells. Circulation 95, 2567-2572. (1997)

Key Words: Ryanodine Receptor, Excitation-Contraction Coupling, Junctophilin, Trp, Sarcoplasmic Reticulum, Calcium Homeostasis, Muscle Fatigue, Review

Send correspondence to: Dr Jianjie Ma, Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, Tel.:732-235-4494, Fax: 732-235-4483, E-mail: maj2@umdnj.edu