VISUAL-SPATIAL ABILITY IN PARKINSON’S DISEASE

Gregory P. Crucian and Michael S. Okun

University of Florida Department of Neurology, P.O. Box 100236, Gainesville, FL 32610-0236, University of Florida Department of Neurology

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Summary of Literature on Visual-Spatial Ability in Parkinson’s Disease
4. Discussion of Methodological Limitations in the Literature
5. Recent Findings
6. Conclusions
7. References

1. ABSTRACT

Parkinson’s Disease (PD) has traditionally been viewed as primarily a disturbance of motor functioning, typically involving tremor, rigidity, hypokinesia, gait disturbance, and postural instability. More recently, decline in cognitive function has been recognized as a feature of PD. One prominent cognitive symptom of PD involves deficits on tasks of spatial ability. However, findings of visual-spatial deficits in individuals with PD have been inconsistent. There are several methodological issues in this area of research that potentially confound the interpretation of data and need to be taken into consideration, including subject characteristics (e.g., age, sex and education), duration of illness, the current level of disability, the presence of emotional depression, the current level of medications, and the presence of dementia. Further, the tests that have shown visual-spatial deficits in PD are often complex, showing sensitivity to other cognitive processes as well. Another problem in this area of research is the lack of a clear understanding of the brain mechanisms that underlie visual-spatial deficits in PD. One theory of cognitive dysfunction in PD suggests that these cognitive deficits are in some way related to disruption of frontal-basal ganglia neural circuits important in executive functions. However, frontal-basal ganglionic dysfunction does not appear to account entirely for the visual-spatial cognitive deficits seen in PD. Subtle differences in performance on executive function measures appear to dissociate individuals with frontal lobe damage from individuals with PD.

Findings from two recent studies indicate that PD is indeed associated with deficits in visual-spatial ability. These findings also indicate that the relationship between visual-spatial ability and frontal-executive function in PD is likely complex, and that the visual-spatial deficits in PD may be sensitive to the sex of the individual with PD.

2. INTRODUCTION

Parkinson’s Disease (PD), with its prominent symptoms of tremor, rigidity, bradykinesia, shuffling gait, posture disturbance, and imbalance, is typically thought of as strictly a movement disorder, with limited impact on other neurocognitive functions. This conceptualization of PD may be related, in part, to James Parkinson’s emphasis on the motor symptoms in his original explication of this disease (see 1 for review). As such, cognitive functions were generally considered to be unaffected in PD until more advanced stages of the disease process.

More recently, however, research in PD has revealed deficits in specific domains of cognitive function. Further, these deficits do not appear to be limited to the final stages of the disease. PD has been associated with cognitive difficulties in visual-spatial skills (2, 3), language (4), memory (see 5, 6 for reviews), and executive functions (7, 8, 9). Because PD is associated with dopamine depletion in nigrostriatal pathways that affect connections between the cortex (predominantly frontal regions) and the basal ganglia, these findings suggest that this dopamine dysfunction in some way affects these cognitive abilities. In particular, given the connectivity between the frontal lobes and basal ganglia, it has been suggested that the cognitive difficulties in PD are due, either directly or secondarily, to frontal-executive dysfunction (10, 11). The remainder of this paper will focus on the findings of visual-spatial deficits in PD, data substantiating these findings, and possible neuropsychological factors that may influence these findings.

3. SUMMARY OF LITERATURE ON VISUAL-SPATIAL ABILITY IN PARKINSON’S DISEASE

Although visual-spatial deficits are commonly thought to occur in PD (see 2), data supporting this supposition have been less than consistent. The reader is directed to two review articles that present a relatively thorough summary of the literature on visual-spatial ability in PD (12, 13). To briefly summarize the findings of Lazaruk (12), visual-spatial deficits were found on tasks involving disembedding target stimuli from a distracting background and on facial recognition. Deficits were also
found in individuals with PD on tasks involving the judgment of vertical and horizontal, as well as tests such as the Block Design and Object Assembly subtests of the Wechsler Adult Intelligence Scale – Revised. However, Lazaruk’s review indicated that these findings were not consistent, with discrepant results on tasks of facial recognition, and judging the angular orientation of lines.

To briefly summarize the findings of Waterfall and Crowe (13), a meta-analysis was conducted on the scientific literature published between 1965 and 1993, from which reported data was derived from 70 studies. In this meta-analysis, these investigators found that deficits have reliably been found on standardized tests of visual-spatial ability such as the Block Design and Object Assembly subtests of the Wechsler Adult Intelligence Scale – Revised, as well as Raven’s Progressive Matrices. However, other tests that have traditionally been considered measures of visual-spatial ability, such as the Judgment of Line Orientation and the Embedded Figures Test, have not revealed consistent deficits in individuals with PD (but see also 14). Further, these investigators found that tests of facial recognition, visual-spatial memory (Logical Memory from the Wechsler Memory Scale – Revised), and “visual integration” (e.g., Hooper Visual Organization Test) also did not reveal consistent deficits in individuals with PD. Taken together, the discrepant data presented in these reviews suggests that further supporting results are needed before we can assume that PD is associated with primary visual-spatial deficits. The remainder of this paper will highlight methodological issues that likely contribute to the inconsistent findings in the literature, address emerging theoretical issues in the conceptualization of these cognitive findings in PD, and review recent findings in the study of visual-spatial ability in PD.

4. DISCUSSION OF METHODOLOGICAL LIMITATIONS IN THE LITERATURE

Several methodological issues likely contribute to the inconsistent findings of visual-spatial deficits in PD. With respect to subject selection, Waterfall and Crowe (13) point out in their review that many studies of visual-spatial ability in PD failed to characterize their subjects with respect to sex, duration of illness, current level of disability, current level of medications, presence of depression, or presence of dementia. For example, although reports vary widely, it is conservatively estimated that approximately 20% to 25% of individuals with PD also experience other dementing neurodegenerative disease processes as well (e.g., Senile Dementia of the Alzheimer’s Type) (15, 16, 17, 18, 19, 20). Given this prevalence of dementia, failure to adequately screen and characterize PD subjects has obvious implications on the representativeness of these subjects, as well as the generalizability of these findings to the study of cognitive function in PD. Adequate selection and characterization of the PD symptomatology is necessary because, not only does dementia screening minimize the possibility of including subjects with other co-morbid neurodegenerative disease processes, information regarding predominant symptom presentation may provide some insight into the underlying mechanisms that produce cognitive dysfunction in PD. Both symptom laterality (e.g., right versus left) and symptom presentation (e.g., tremor versus rigid-akinesia) have been shown to have some relationship with cognitive function in PD (21, 22, 23, 24). These symptom characteristics may reveal neuropsychological factors that mediate performance on visual-spatial tasks in PD. In addition, approximately 50% of individuals with PD experience symptoms of depression (19), and emotional dysfunction may also affect cognitive function (25). Although the effects of emotional dysfunction on cognition in PD remains unclear (19, 24, 26, see also 27, 28), it would be methodologically beneficial to take this factor into consideration.

Another methodological issue involves the demographics of the research participants. Tests of visual-spatial ability are often sensitive to subject characteristics such as age (29, 30), sex (31), and handedness (32). Level of education also likely has an influence on visual-spatial ability (see 33 for a review). Suffice it to say, failure to take these subject characteristics into consideration may distort the visual-spatial test presentation of the individuals with PD. Moreover, having a control group that is appropriately matched on these subject characteristics is necessary for the experimental control for the influence of these factors on visual-spatial ability.

When dealing with visual-spatial functions in PD, it is important to take into consideration issues of basic visual perceptual acuity. Because dopamine, which is produced by amacrine cells, is also involved in retinal function, dopaminergic dysfunction may also affect basic visual acuity. Supporting this notion, visual disturbances have been reported in PD (34, 35, 36, 37). However, these visual disturbances have been shown to be responsive to dopaminergic treatment, and are minimized when the individual with PD is appropriately medicated. Nevertheless, it may be methodologically beneficial to include a control task of basic visual perception to assess and account for possible limitations in visual acuity that may otherwise confound test results.

When dealing with cognitive function in PD, in general, another issue to take into consideration involves fatigue. PD is frequently associated with significant sleep disturbances and excessive daytime fatigue (38, 39, 40, 41, 42). Although the nature of these sleep disturbances in PD remain somewhat unclear (see 38, 40 for review and discussion), chronic sleep deprivation and daytime fatigue have an obvious detrimental impact on cognitive function (43). Consequently, it may be beneficial to assess research volunteers for sleep disturbances and excessive daytime fatigue as a possible confound in their cognitive function.

Another issue involves the specific task used in the assessment of visual-spatial ability in PD. As noted above, deficits have reliably been found on tests such as the WAIS-R Block Design and Object Assembly subtests, but not on tests such as the Judgment of Line Orientation or Embedded Figures test. However, it should be noted that tasks such as the Block Design and Object Assembly subtests are considered to be cognitively complex, likely
Visual Spatial Ability in PD

reflecting the summation of several cognitive processes in
the production of an overt behavioral response (see 33 for a
discussion). Consequently, it should not be surprising that
the Block Design subtest shows a high correlation with
verbal ability \(r = 0.61 \), as does the Object Assembly
subtest to smaller extent \(r = 0.49 \) (29). Thus, findings of
deficits on these tasks, in the absence of converging data,
may not reflect isolated deficits in visual-spatial ability, but
rather, deficits in cognitive function other than visual-
spatial ability being tapped by these measures as well.

Similarly, visual-spatial ability is likely not a
single process, but rather, involves several distinct
cognitive processes (31, 44, 45). For example, Ekstrom et
al. (44) identify six different cognitive factors that
predominantly involve visual-spatial processes: 1.) Closure
Flexibility (e.g., the ability to disembed target information
from distracting background information), 2.) Figural
Fluency (e.g., the ability to generate different figural
designs), 3.) Spatial Orientation (e.g., the ability to
perceive/maintain spatial patterns from different visual
perspectives), 4.) Visualization (e.g., the ability to
transform spatial patterns/visual images into different
images or patterns), 5.) Spatial Scanning (e.g., visual
exploration of a complex visual stimulus), and 6.) Visual
Memory (e.g., memory for visual-spatial information).
Notably, these visual-spatial processes have been identified
differently as distinct abilities through factor analysis (44).
Because visual-spatial ability involves different cognitive
processes, it is possible that individuals with PD may
exhibit deficits on some visual-spatial tasks, but not others.
Thus, findings of visual-spatial deficits in individuals with
PD may appear inconsistent due to the different types of
tests being used that may or may not be sensitive to
cognitive dysfunction in PD.

Another issue that needs to be taken into
consideration in the study of visual-spatial ability in PD is
the limited understanding of the dysfunctional
neuropsychological mechanisms that produce this cognitive
presentation. As noted above, cognitive deficits in PD are
commonly thought to be due, either directly or secondarily,
to frontal-executive deficits resulting from frontal-striatal
dysfunction (10, 11). Alexander and colleagues (46, 47)
identify five distinct neural circuits that incorporate the
basal ganglia. These parallel circuits include: 1.) the motor
circuit which appears to be involved in movement
preparation and execution, 2.) the oculomotor circuit which
is involved in eye movements, 3.) the limbic circuit which
is thought to be involved in emotional and motivational
processes, and the prefrontal circuit which is comprised of
two subcircuits, 4.) the dorsolateral prefrontal circuit and
5.) the lateral orbitofrontal circuit. For the purposes of this
paper, the dorsolateral prefrontal and lateral orbitofrontal
circuits appear to be the most relevant to the study of
visual-spatial ability in PD, and only this circuit will be
discussed further.

Alexander and his colleagues (46, 47) indicate
that the dorsolateral prefrontal circuit is comprised of the
dorsolateral prefrontal cortex, dorsolateral head of the
caudate nucleus, the globus pallidus, subthalamic nucleus,
function in other brain regions. This supposition is consistent with other findings in the literature that indicate that posterior brain regions, usually involving the right hemisphere, are dominant for visual-spatial ability (see 33, 53, 54 for reviews).

Taken together, findings of visual-spatial deficits in individuals with PD appear to be inconsistent, likely due to methodological issues in the study of this phenomenon, as well as a limited understanding of the pathological processes in PD that affects this higher cognitive function. Two studies were recently conducted at this institution to further examine the relationship between visual-spatial ability and PD, taking into consideration the methodological issues discussed above. Findings from these studies will now be reviewed.

5. RECENT FINDINGS

In the first study, we attempted to examine visual-spatial ability in PD using the Piagetian Water Jar Test which measures visual-spatial perception and disembedding (55). In this task, the subject is presented with a drawing of an empty water jar that is either titled or upright, and the subject’s task is to draw a line to show what the water level would look like if the glass were half full. Because vestibular dysfunction is also thought to accompany PD and because this dysfunction may impact visual-spatial ability (56, 57), we also examined the influence of manipulating vestibulo-propriocceptive input by having the subjects complete the Water Jar Test with their head tilted as well as upright. In this study, we found that the medicated, non-demented PD subjects were less accurate than control subjects on the tilted jars but not the upright jars, indicating that tilting the stimulus interfered with the PD subjects’ ability to determine horizontal. No effect was found for head tilt, indicating that vestibulo-propriocceptive processes did not contribute to the visual-spatial deficits in PD. Further, in a correlational analysis between Water Jar Test performance and traditional measures of frontal-executive function, the PD subjects exhibited a pattern of utilization, approach behavior on this task that is indicative of frontal-executive dysfunction (58, 59). Moreover, findings from the study of mental rotation in PD suggest that the relationship between frontal-executive function and visual-spatial ability may also depend on the sex of the individual with PD.

In summary, findings from these recent studies indicate that PD is associated with deficits in visual-spatial ability involving visual-spatial closure and visual-spatial orientation. Further, these findings indicate that the relationship between visual-spatial ability and frontal-executive function in PD is likely complex. Whereas no relationship was found between Water Jar Test performance and traditional measures of frontal-executive function, the PD subjects exhibited a pattern of utilization, approach behavior on this task that is indicative of frontal-executive dysfunction (58, 59). Moreover, findings from the study of mental rotation in PD suggest that the relationship between frontal-executive function and visual-spatial ability may also depend on the sex of the individual with PD.

Additional research on visual-spatial ability in PD will be needed to confirm these findings, as well as elaborate on the dysfunctional neuropsychological mechanisms in PD. The various aspects of visual-spatial ability (e.g., Figural Fluency, Visualization, Spatial Scanning, Visual Memory) need to be further evaluated to determine if PD affects these abilities as it does with visual-spatial closure and orientation. The relationship between visual-spatial ability and frontal-executive function also requires further study to elaborate the nature of this complex relationship. Whereas frontal-executive dysfunction that accounts for the visual-spatial deficits found in PD would be consistent with current theories of cognitive deficits in PD, findings of visual-spatial deficits in PD that are independent of frontal-executive dysfunction would suggest that other neuropsychological processes are being affected by PD. Additional study is needed to elucidate the influence of sex on visual-spatial ability in PD, and the implications this relationship may have on daily function. Further study is also needed in examining the relationship between visual-spatial ability and dopamine function in PD. Findings that dopamine function
directly influences visual-spatial ability would be consistent with current theories on PD, whereas findings that visual-spatial ability is not affected by dopamine would suggest that other neurological processes are involved in the cognitive deficits in PD. This research is needed to clarify the underlying mechanisms associated with PD that affect cognition, as well as to identify those factors that mediate these effects, hopefully leading to better treatments for this medical condition.

7. REFERENCES

Visual Spatial Ability in PD

57. Proctor, F., Ricklan, M., Cooper, I.S., Teuber, H.: Judgment of visual and postural vertical by parkinsonian patients. Neurology 14, 287-293 (1964)

Key Words: Nervous System, Neuron, Parkinson’s Disease, Visual-Spatial Ability, Object Mental Rotation, Sex Differences, Review

Send correspondence to: Gregory P. Crucian, PhD, University of Florida Department of Neurology, P.O. Box 100236, Gainesville, FL 32610-0236, Tel: 352-392-3491, Fax: 352-392-6893, E-mail: crucigp@neurology.ufl.edu