N-NITROSATIONS OF BASIC AMINO ACID RESIDUES IN POLYPEPTIDE

Wu-Nan Kuo, Dynisha Ivy, Luvina Guruvadoo, Atavia White and Latia Graham

Division of Science and Mathematics, Bethune-Cookman College, Daytona Beach, Florida 32114, USA

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and Methods
 3.1. Nitrosation of poly amino acids and histones
 3.2. Analysis by SDS-PAGE and Western blotting
4. Results and Discussion
5. Acknowledgements
6. References

1. ABSTRACT

Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the ε-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.

2. INTRODUCTION

Under certain physiological conditions, nitric oxide (NO) can react with superoxide free radicals and convert into peroxynitrite (PN) (1-3), a potent oxidative/nitrosative agent. Subsequently, PN can modify peptides/proteins in different ways. In addition to its tyrosine-nitration (1, 4-9) and S-nitrosation of thiols (1, 4, 5, 9-12), N-nitrosation of side chains (9, 12, 13) may also occur. The first indirect evidence of N-nitrosation was extracted via the observation that preincubation of poly basic amino acids with PN resulted in the significant alteration of UV spectra (12). Additionally, both N-nitrosation and denitrosation were suggested via the following findings: (i) increased immunoreactivity of ε-nitrosolysine in PN-preincubated histones H2A, H3 and H4; and (ii) decreased immunoreactivity in either subsequently dialyzed and stored or GSH- incubated histones (13). Thus far, the research of N-nitrosation is still in infancy because the detailed reaction-mechanism and the related biological significance are yet to be established. We, therefore, investigate whether the N-nitrosation of basic amino acids could lead to changes of electrophoretic patterns.

3. MATERIALS & METHODS

Poly-ε-Lysine (1.88 ~ 3.8 kDa and 68.6 ~ 75.9 kDa), Poly-ε-Arginine (7.5 ~ 14 kDa), Poly-ε-Histidine (39.2 kDa), sodium dodecyl sulfate (SDS), EDTA and anti-rat IgG-alkaline phosphatase (AP) conjugate were supplied by Sigma Chemical Company, St. Louis, MO, USA. Histones H1, H2A, H2B, H3 and H4 were purchased from Roche Applied Science, Indianapolis, IN, USA. Sodium nitrite was obtained from Fisher Scientific Company, Fair Lawn, NJ, USA. Reactive peroxynitrite (PN) and degraded PN were from Upstate Charlotte, Virginia, USA. Anti-nitrosolysine and anti-nitrosohistidine were purchased from Calbiochem-Novabiochem Corporation, San Diego, CA, USA. Western blotting reagents nitrocellulose membranes, anti-rabbit IgG-alkaline phosphatase conjugate and Coomassie Blue G-250 stain and Silver stain were provided by Bio-Rad Laboratories, Hercules, CA, USA.

3.1. Nitrosation of poly amino acids and histones

The pre-incubation mixture was in a final volume of 30 µl of 100 mM potassium phosphate buffer (pH 7.4) containing 1 mM EDTA, 1 mM FeCl₃⁺, 70~210 µM PN and approximately 30 µg of polypeptide. The reactions were carried out at 25°C for 15 minutes.

3.2. Analysis by SDS-PAGE and Western blotting

The above pre-incubated samples were subject to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (12%) at 4°C. The addition of reducing agent and the step of boiling were omitted in the sample treatment (5, 7, 9) to prevent the degradation of the nitroso group in SDS-PAGE. Coomassie brilliant blue G-250 and silver staining were employed to detect the intensity and/or mobility changes of modified polypeptide in the gels.

Additionally, Western blotting was performed to evaluate the sensitivity and specificity of commercial rabbit anti-nitrosolysine or rat anti-nitrosohistidine (0.2 µg/ml) after SDS-PAGE. The step of transferring required precooled tank buffer and prefrozen Towbin transfer buffer (5, 11). Anti-rabbit IgG-AP conjugate or anti-rat IgG-AP conjugate (0.1 µg/ml) was used as the secondary antibody.

4. RESULTS AND DISCUSSION

In this study, discrete defined bands were not observed because the polypeptide used was not homogenous and contained a wide range of molecular...
Polypeptide N-nitrosation

Figure 1. Modification of poly-L-lysine analyzed by SDS-PAGE with silver staining. Polylysine samples used in lanes 1 to 5, and lanes 6 to 10 were with the molecular mass 1.8 ~3.8 and 68.8~75.9 kDa, respectively. Lanes 1 and 6, controls; lanes 2 and 7, controls with the addition of 70 µM degraded PN (after preincubation and prior to SDS-PAGE); lanes 3 and 8, preincubated with degraded PN (70 mM); lanes 4 and 9, preincubated with reactive PN (70 µM); and lanes 5 and 10, preincubated with NaNO2 (10 mM).

Figure 2. Modification of polylysine (1.8~3.8 kDa) analyzed by SDS-PAGE with Coomassie blue G-250 staining. Lane 1, control; lane 2, control with addition of 70 µM degraded PN (after preincubation) prior to SDS-PAGE; lane 3, preincubated with degraded PN (10 mM); lane 4, preincubated with reactive PN (70 µM); and lane 5, preincubated with NaNO2 (10 mM).

Figure 3. Modification of poly-L-arginine analyzed by SDS-PAGE with: A. Silver staining and B. Coomassie blue G-250 staining. Lane 1, control; lanes 2, 5 and 8, controls with addition of degraded PN, 70, 140 and 210 µM respectively (after preincubation and prior to SDS-PAGE); lanes 3, 6 and 9, preincubated with degraded PN 70 µM; lanes 4, 7 and 10, preincubated with NaNO2 (10 mM). Interestingly, the preincubation with reactive PN generated distinctive bands at low molecular mass (Figure 3B, lanes 4 and 7).

Likewise, the band intensity increased as the concentration of degraded PN was increased (Figure 4, lane 3, 6 and 9). Whereas, a decrease in band intensity was observed upon the increased concentration of reactive PN (Figure 4, lanes 4, 7 and 10) in both the silver stain and Coomassie blue gels. The differences in the number and the location/site of N-nitrosated amino acid residues, and the nitrosated nitrogen atoms in the side chain of these acid residues (with the exception of lysine which contains only one nitrogen atom in ε-amino group), all may account for the distinctive electrophoretic patterns exhibited in the preincubated samples.
Polypeptide N-nitrosation

Figure 4. Modification of poly-histidine analyzed by SDS-PAGE with: A. Silver staining and B. Coomassie Blue G-250 staining. Lane 1, control, lanes 2, 5 and 8, controls with addition of degraded PN, 70, 140 and 210µM respectively (after preincubation) prior to SDS-PAGE; lanes 3, 6 and 9, preincubated with degraded PN 70, 140 and 210µM respectively; and lanes 4, 7 and 10, preincubated with reactive PN, 70, 140 and 210µM respectively.

Figure 5. Probable N-nitrosation of histidine in PN-reacted histones detected by Western blot using anti-nitrosohistidine as a primary antibody. Lanes 1, 3, and 5 were controls for H1, H2A and H2B, respectively; lanes 2, 4, and 6 were PN-reacted H1, H2A and H2B, respectively.

Figure 6. Probable sites of N-nitrosation of (A) ε-amino group of lysine, (B) guanido group of arginine and (C) imidazole group of histidine residues in polypeptides. Sites of alternative N-nitrosation with less probability and stability.

The probable nitrosation of histidine is partially supported by Western Blot analysis using anti-nitrosohistidine (Figure 5). An increase in immunoreactivity was observed when histone H2A and H2B were preincubated with PN (Figure 5, lanes 4 and 5 respectively). Since histidine is absent from histone H1 (19), the immunoreactivity of anti-nitrosohistidine observed in the sample of H1, with or without PN preincubation (Figure 5, lanes 1 and 2), may be due to nonspecific immunoreactivity. In addition, the discrepancy of decreased immunoreactivity was found in PN preincubated the H3 and H4 (data not shown). Furthermore, the N-nitrosation of PN-preincubated polylysine or polyhistidine was undetectable by Western blot analysis (data not shown). Therefore, a novel approach to produce highly specific antibodies is necessary to gain insight of N-nitrosations.

Covalent modifications on basic amino acids are less common, but nevertheless found in certain proteins. These modified amino acids include 3-methylhistidine, ε-N-methyllysine, ε-N-acetyllysine and N-methylarginine (20). Accordingly, the most probable sites of N-nitrosation on lysine, arginine and histidine side chains of polypeptides are similarly proposed in figure 6. However, the sites of nitrosation may also occur at a different nitrogen atom in the imidazole group of histidine residues or in the guanido group of arginine. It is possible that these alternative sites of nitrosation account for the difference in the sensitivity of Coomassie blue and silver staining observed in this study. Moreover, the varied intensity of nitrosation on peptides may result in the complexity of electrophoretic patterns mentioned above.

There are multiple modifications by PN and its derivatives on the amino acid residues of polypeptides. The stability of those modifications may be in the order of nitrotyrosine > aminotyrosine > S-nitrosocysteine > N-nitrosated amino acids (9). Despite the instability of nitroso groups, N-nitrosations may still play a role in the absorption of nitrosative stress and relaying NO signals (12). It may also be involved in ‘transient’ regulation of the N-methylation of histidine, arginine and lysine, and the acetylation of lysine.

5. ACKNOWLEDGEMENTS

This work was supported by grant GM08119 from National Institutes of Health, USA and grant 59-0704726 from National Science Foundation, USA. The authors wish to thank Marjorie Chow for her insightful comments.

6. REFERENCES

Polypeptide N-nitrosation

Key words: N-Nitrosation; Peroxynitrite; Lysine; Arginine; Histidine

Send correspondence to: Wu-Nan Kuo, Division of Science and Mathematics, Bethune-Cookman College, 640 Dr. M.M. Bethune Blvd., Daytona Beach, Florida 32114, U.S.A.Tel: 386-481-2697, Fax: 386-481-2681, E-mail: kuow@cookman.edu