ROLE OF PROTEIN KINASES IN NEURODEGENERATIVE DISEASE: CYCLIN-DEPENDENT KINASES IN ALZHEIMER'S DISEASE

Edward A. Monaco III and Mary Lou Vallano

Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, 13210, USA

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Discussion
 3.1. Cyclin-dependent kinases and their regulation
 3.2. Cyclin-dependent kinases and the cell cycle
 3.3. Neuronal development and cyclin-dependent kinase 5
 3.4. Cell cycle reactivation in Alzheimer's disease
 3.5. Cyclin-dependent kinase 5 dysregulation in Alzheimer's disease
4. Conclusions and prospects
5. Acknowledgement
6. References

1. ABSTRACT

Cyclin-dependent kinases (Cdks) are serine/threonine kinases that regulate a number of cellular processes including the cell cycle and neuronal differentiation. Accumulating evidence indicates that two distinct Cdk pathways may have a role in the neuronal loss that is responsible for Alzheimer’s disease. One pathway involves the aberrant reactivation of the cell cycle, a process believed to be incompatible with neuronal function. A second involves dysregulation of Cdk5, a member of this kinase family with no known cell cycle functions, but prominently expressed in postmitotic neurons. Reports supporting the involvement of both pathways are plentiful, but the story is not yet complete. In particular, difficulties incorporating the extended latency of AD into model approaches persist. Despite this, the theory that Cdks are involved in the pathogenesis of AD has generated considerable interest.

2. INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative affliction characterized histopathologically by the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles (1). It is believed that between 1 and 5 million people in the United States have the disease, with around 360,000 new cases diagnosed each year (2, 3). Considering the rapid rate at which the aged population is growing, it is clear that this tremendous public health problem is becoming worse. However, clinical therapies for the prevention of AD do not exist and current treatments for symptomatology are inadequate, due to our limited understanding of the cause and effect relationships that underlie the neuronal loss that is central to AD pathology.

Over the last two decades, a theme that has generated much study is that aberrant activation of protein kinases, in particular those associated with various forms of cell stress, is an early event leading to neurodegeneration in AD (4-12). The cyclin-dependent kinase (Cdk) family, has garnered intense interest and is the focus of this review. There are 13 known Cdks encoded by the human genome, and they are well established regulators of the cell cycle (Cdks 1-4, 6, 7), but also have important roles in regulating transcription (Cdks 2, 7-9, 11), neuronal morphogenesis (Cdks 4, 5, 11), differentiation (Cdks 2, 5, 6, 9), and cell death (Cdks 1, 2, 4-6, 11). Cdk activity is normally tightly regulated by post-translational modification and the limiting availability of regulatory molecules. However, accumulating evidence indicates that cell cycle Cdks or Cdk5 can become dysregulated, the results of which are catastrophic, leading to neuronal demise. Herein, we discuss the data that implicate Cdk dysregulation as a causal element in the neuronal loss of AD.

3. DISCUSSION

3.1. Cyclin-dependent kinases and their regulation

Comprised of around 300 amino acids, Cdks are proline directed serine/threonine kinases that are activated on association with a regulatory partner, typically one of several cyclins, but also non-cyclin proteins (13, 14). Based on x-ray crystallographic studies, the general events surrounding Cdk activation have been elucidated (15-18). The binding of a regulatory partner initiates Cdk activation by inducing conformational changes, including movement of a segment of the protein, called the T-loop, away from a position blocking the catalytic domain. This also exposes a critical site (i.e. Thr160 of Cdk2) on the T-loop, and phosphorylation of this site by Cdk-activating kinase (CAK) is essential for full activation of the kinase as a result of further conformational changes. The binding of a regulatory partner initiates Cdk activation by inducing conformational changes, including movement of a segment of the protein, called the T-loop, away from a position blocking the catalytic domain. This also exposes a critical site (i.e. Thr160 of Cdk2) on the T-loop, and phosphorylation of this site by Cdk-activating kinase (CAK) is essential for full activation of the kinase as a result of further conformational changes. The CAK itself, is a Cdk/cyclin complex comprised of a Cdk7 and requires cyclin H as a binding partner (19).

Negative regulation of Cdks is accomplished in a number of ways, including alterations in the abundance of the regulatory cyclins/proteins. This process is important in shaping our understanding of Cdk dysregulation in neurodegenerative disease, and will be revisited later. Inhibitory phosphorylation of Cdks 1 and 2 (Thr14/Tyr 15) is
achieved by Wee1/Myt1 kinases (20). In this way, Cdk1 activity is kept ‘in check’ until it is dephosphorylated by the dual specificity phosphatase Cdc25. Dephosphorylation of the T-loop threonine residues offers another level of regulation, though its physiological relevance remains to be determined. Endogenous peptide Cdk inhibitors are another important mode of negative regulation. Through direct physical interactions, these proteins suppress Cdk function (21, 22). Two classes of the peptide inhibitors are known: the INK4 protein binding inhibitory (49), while phosphorylation of Tyr15 by the Wee1 kinase (48). Phosphorylation of Thr14 by an unknown kinase, purified from bovine thymus, is not a requirement for full Cdk5 activation (47, 48) and may actually hinder association with p35 (46). Threonine 14 and Tyr15 are also regulated sites of phosphorylation on Cdk5, but not by the Wee1 kinase (48). Phosphorylation of Thr14 by an unknown kinase, purified from bovine thymus, is inhibitory (49), while phosphorylation of Tyr15 by the c-Abl kinase or the src-family member Fyn is stimulatory (50, 51). p35 and p39 possess consensus sequences for post-translational myristoylation of their N-termini (37), which confers upon these proteins a membrane localization. Indeed, both are enriched in cellular membrane fractions (52-54). In this way, Cdk5 activity is normally limited to substrates that are co-localized near the cell membrane.

Collectively, this multifaceted system of regulation highlights the importance of strictly controlling Cdk/cyclin complex activity to maintain cellular homeostasis. As such, it is not difficult to appreciate that dysregulation of these processes could be catastrophic. Although classically associated with cell cycle regulation, Cdks also have important roles in transcription, neuronal development, differentiation, and cell death. Aberrant reactivation of cell cycle Cdks (1-4, 6, 7) and dysregulation of the Cdk that functions in mature neurons (Cdk5) are associated with human neurodegenerative diseases like AD.

3.2. Cyclin-dependent kinases and the cell cycle

Cell division is a carefully orchestrated sequence of events that ensures the faithful replication and conduction of genetic material from parent to daughter cell. It is typically divided into four phases beginning with the first gap phase (G1), proceeding to a DNA replication phase (S), a second gap phase (G2), and ultimately mitosis (M) (55). Regulation of these events is a function of Cdk/cyclin complex activity (55, 56) and much work has contributed to the elucidation of a basic sequential framework by which they subserve this role since their initial discovery over two decades ago (57) (Figure 1). In general, during different phases of the cell cycle, unique
Cyclin-dependent kinases in Alzheimer’s

Cdk/cyclin complexes are formed and catalyze phosphorylation of a discrete subset of substrates (58-60). The temporal control of their subsequent degradation by the ubiquitin proteosome pathway (61, 62) is necessary to proceed through to the end of mitosis (63). Extrinsic mitogenic factors activate signaling cascades, inducing D-type cyclin expression (64-68). Transition from quiescence (G_0) into early G_1 is marked by the formation of complexes between these D-type cyclins and Cdns 4 or 6 (69). Their major function is to inactivate the retinoblastoma protein (pRb) by altering its phosphorylation state. In general, pRb can exist in two states: hypophosphorylated or hyperphosphorylated. When hypophosphorylated, pRb physically interacts with members of the E2F family of transcription factors and suppresses their transcriptional activity (70). Upon phosphorylation by activated Cdns 4 and 6, the affinity of pRb for E2F is reduced, E2F is released, and E2F-mediated gene expression required for advancement through later cell cycle phases occurs (71). This critical regulatory function of Cdk4-6/cyclin D complexes is confirmed by the observation that, in cells lacking pRb, this early G_1 phase Cdk activity is not required for cell cycle progression (72). These early pRb-related events constitute the ‘restriction point’, the point after which mitogenic stimuli are no longer required for completion of cell cycle events (73).

Later in G_1, a second wave of Cdk activity ensues as cyclin E/Cdk2 complexes form (74, 75). By further phosphorylating pRb (76) and regulating centrosome duplication (77), these complexes contribute to the G_1/S transition. Near the beginning of S phase, cyclin E is degraded (78) and cyclin A replaces it in a complex with Cdk2. Cdk2/cyclin A phosphorylates a number of substrates that are critical for the regulation of DNA replication. For instance, Cdc6, a regulator of initiation of DNA replication, is phosphorylated by Cdk2/cyclin A (79). The result is that Cdc6 translocates from the nucleus to the cytoplasm, constraining DNA replication to one round. Near the end of G_2, cyclin A is degraded and Cdk1/cyclin B complexes are generated to regulate the transition into M phase. Cyclin B must eventually be degraded to complete mitosis and enter into another round of replication or proceed to quiescence (G_0). Ultimately, successful production of daughter cells requires that the sequential activity of Cdk/cyclin complexes be tightly coordinated by checkpoints, such that initiation of subsequent steps requires completion of the previous.

3.3. Neuronal development and cyclin-dependent kinase 5

Based on its distinct binding partners, substrate specificity profile, and mode of regulation, it is clear that Cdk5 is a unique member of the Cdk family. Cdk5 was first identified from bovine brain (80) and by virtue of its ~60% homology to Cdk 1 (81). While several Cdns have prominent roles in cell division, Cdk5 is highly expressed and active in post-mitotic neurons (82-84). A crucial role for Cdk5 in the developing mammalian nervous system is evidenced by the disturbances that result in its absence. Cdk5 knockout mice demonstrate perinatal mortality associated with perturbed cortical laminar organization and cerebellar foliation, as well as abnormal neuronal migration and neuronal pathology (85). p35 knockouts display a similar, albeit less severe phenotype (86), consistent with the functional redundancy of Cdk5 activation provided by p39. These observations indicate that neurons are dependent upon Cdk5 activity to establish normal nervous system patterning. However, much subsequent work demonstrates the multifunctional nature of this kinase, as it phosphorylates substrates that are critical for processes as diverse as synaptic neurotransmission and the maintenance of cellular architecture (Table 1). In light of this ever increasing list of potential substrates, it becomes important to consider the temporal and spatial patterns of Cdk5 activity within a cell. In other words, Cdk5 can be expected to regulate distinct processes at distinct times during neuronal maturation, and a unique subset of substrates will be targeted at particular developmental phases.

3.4. Cell cycle reactivation in Alzheimer’s disease

It is widely accepted that the symptomatology of AD is the result of the extensive neuronal loss occurring in discrete brain regions over the course of many years, not merely the presence of senile plaques or NFTs. Elucidating the root causes of the death process inspires the efforts of many scientists. Neurons differ from many other cell types because their highly specialized functions require that their population be long-lived and relatively static. This enables them to subserv the complex task of controlling an organism’s response to its environment. Not surprisingly then, one of the longest enduring dogmas of neuroscience is that neurons, once born, lose their proliferative capacity as they acquire highly specialized functions. Indeed, cancers of the CNS of neuronal origin are virtually unknown. Moreover, experimental work in which neuronal cell division was artificially induced by the addition of an oncogene (SV40 Large T antigen) or a mutant tumor suppressor gene (pRb) to transgenic mice shows that, unlike other tissues in which these genetic alterations would be expected to produce uncontrolled cellular proliferation, developing neuronal populations undergo substantial cell death (87-92). These observations led to the theory that neurons, once postmitotic, are incapable of sustaining cell cycle activity, and instead enter a default death pathway. On this basis, a little more than a decade ago, it was hypothesized that aberrant reactivation of the cell cycle is part of a death effector pathway in irreversibly postmitotic neurons (93). An abundance of experimental evidence, both in vitro and in vivo, supports this hypothesis.

Following NGF withdrawal in neurally differentiated PC12 cells, an apoptotic stimulus, cyclin D1 expression is induced early in the process of cell death (94). The aberrant expression of cyclin D1 suggested that G_1 phase cell cycle events (i.e. phosphorylation of pRb by Cdns 4 and 6) could be occurring. Consistent with this, overexpression of the endogenous Cdk inhibitor p16INK4a or dominant negative mutants of Cdns 4 and 6 are neuroprotective (95, 96), indicating that Cdk activity is critical for death. Likewise, KCI withdrawal in cerebellar granule neurons, another apoptotic stimulus, generates increases in the amounts of cyclins D and E, as well as their associated Cdk activities, prior to evidence of cell death (97). Moreover, this aberrant cell cycle activity corresponds
Table 1. Reported Cdk5 Substrates

<table>
<thead>
<tr>
<th>Cdk5 Substrate</th>
<th>Putative Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tau</td>
<td>Regulation of microtubule stability (170, 171)</td>
</tr>
<tr>
<td>Microtubule associated protein 2</td>
<td>Regulation of microtubule stability (129)</td>
</tr>
<tr>
<td>Synapsin 1</td>
<td>Regulation of synaptic transmission (172)</td>
</tr>
<tr>
<td>Neurofilament</td>
<td>Maintenance of cytoskeletal structure (173, 174)</td>
</tr>
<tr>
<td>Microtubule associated protein 1b</td>
<td>Regulation of microtubule stability (39, 41)</td>
</tr>
<tr>
<td>Retinoblastoma protein</td>
<td>Neuronal differentiation and apoptosis (175)</td>
</tr>
<tr>
<td>PAK1</td>
<td>Regulation of PAK1 activity, actin dynamics (176, 177)</td>
</tr>
<tr>
<td>Munc18</td>
<td>Disrupts Munc18/syntaxin 1A interaction (178, 179)</td>
</tr>
<tr>
<td>p35/p39</td>
<td>Promotes ubiquitin-mediated degradation (40, 52)</td>
</tr>
<tr>
<td>c-Src</td>
<td>Regulation of cell adhesion, actin dynamics, integrin signaling (180)</td>
</tr>
<tr>
<td>DARPP-32</td>
<td>Regulation of dopaminergic-mediated PKA signaling (181)</td>
</tr>
<tr>
<td>NUDEL</td>
<td>Regulates dynein-mediated axonal transport (53, 182)</td>
</tr>
<tr>
<td>beta-amyloid precursor protein</td>
<td>Regulation of APP localization (145)</td>
</tr>
<tr>
<td>Pgamma</td>
<td>Regulation of retinal phosphodiesterase activity (183, 184)</td>
</tr>
<tr>
<td>Cables</td>
<td>Regulation of interaction with c-Abl (50)</td>
</tr>
<tr>
<td>beta-catenin</td>
<td>Regulation of Presinilin 1 binding (147)</td>
</tr>
<tr>
<td>ErbB</td>
<td>Regulation of signaling at the neuromuscular junction (54)</td>
</tr>
<tr>
<td>NMDA receptor subunit 2a</td>
<td>Up-regulates NMDA receptor activity (185, 186)</td>
</tr>
<tr>
<td>Protein phosphatase 1 inhibitor-1</td>
<td>Modulation of cAMP-mediated signaling (187)</td>
</tr>
<tr>
<td>Amphyphlin</td>
<td>Regulation of synaptic vesicle endocytosis (188)</td>
</tr>
<tr>
<td>Protein phosphatase 1 inhibitor-2</td>
<td>Activation of inhibitor-2 (189)</td>
</tr>
<tr>
<td>Disabled 1</td>
<td>Regulation of cell positioning (190)</td>
</tr>
<tr>
<td>Presenilin 1</td>
<td>Regulation of Presinilin 1 metabolism (146)</td>
</tr>
<tr>
<td>P/Q-type Ca²⁺ channel</td>
<td>Downregulates channel activity (191)</td>
</tr>
<tr>
<td>c-Jun N-terminal kinase 3</td>
<td>Inhibition of JNK/c-Jun signaling (192)</td>
</tr>
<tr>
<td>Petaire1</td>
<td>Enhances kinase activity³ (193)</td>
</tr>
<tr>
<td>MAP kinase kinase-1</td>
<td>Inhibition of kinase activity (194)</td>
</tr>
<tr>
<td>p53</td>
<td>Regulates stability and transcriptional activity (195)</td>
</tr>
<tr>
<td>Canoe</td>
<td>Regulation of Canoe function (196)</td>
</tr>
<tr>
<td>Myocyte enhancing factor 2</td>
<td>Inhibits prosurvival transcriptional activity (197)</td>
</tr>
<tr>
<td>Nestin</td>
<td>Modulation of nestin dynamics (198)</td>
</tr>
<tr>
<td>Cdk5/p35 regulated kinase</td>
<td>Inhibition of kinase activity (199)</td>
</tr>
<tr>
<td>Ezrin</td>
<td>Regulation of membrane-cytoskeletal signaling (200)</td>
</tr>
<tr>
<td>Focal adhesion kinase</td>
<td>Regulation of neuronal migration (201)</td>
</tr>
<tr>
<td>Dynamin 1</td>
<td>Regulation of synaptic vesicle endocytosis (202)</td>
</tr>
<tr>
<td>Synaptojanin</td>
<td>Regulation of synaptic vesicle endocytosis (202)</td>
</tr>
<tr>
<td>Outer dense fibers</td>
<td>Regulation of sperm tail development (203)</td>
</tr>
<tr>
<td>Postsynaptic density 95</td>
<td>Regulation of PSD-95 clustering (204)</td>
</tr>
</tbody>
</table>

with increases in pRb phosphorylation (97), an event consistent with the transition from G₀ to G₁. A trophic withdrawal paradigm has also been modeled in vivo. In two mouse neurological mutants, staggerer and lurcher, the absence of Purkinje neurons in the cerebellar cortex results in massive granule neuron death (98-100). Further, the resulting target deprived granule neuron death is accompanied by cyclin D expression and evidence of cell cycle activity (101). These are but a few examples of the myriad death stimuli that yield evidence of neuronal cell cycle reactivation, including: DNA damage (102, 103), cerebral ischemia and excitotoxicity (104-107), and oxidative stress (108). For these examples to be relevant to the pathogenesis of AD, evidence of cell cycle reactivation must be detectable in AD tissue. Numerous investigators have established the presence of cell cycle markers in AD brains (Table 2). Indeed, several cyclins (109-111), CdkS (110-112), and endogenous Cdk inhibitors (112-114), as well as other markers of the cell cycle (111, 115, 116), are significantly increased AD versus controls. These differences occur in brain regions known to be affected by AD, are predictive of neuropathology, and correspond to the presence NFTs. Moreover, in individuals with mild cognitive impairment, a putative prodromal stage of AD, evidence of lethal cell cycle changes is also evident (117). These cell cycle changes are not simply unrelated artifactual events, as they are sufficiently coordinated to allow for DNA replication (118). Thus, the preponderance of evidence supports a role for cell cycle dysregulation as a marker of AD, though causation has not been shown. For example, the events leading to abnormal cell cycle reactivation remain to be determined. Also, the data do not address how reactivation of cell cycle-elements mediates neuronal pathology. Several theories regarding these points are noteworthy.

Heintz proposed that abortive cell cycle reactivation in neurons is triggered in response to tumorogenic
Cyclin-dependent kinases in Alzheimer’s

Figure 2. A simplified model depicting dysregulated cell cycle Cdk activity. Neuronal stress, evoked by various stimuli, triggers aberrant G1 phase Cdk activity. pRb becomes phosphorylated, releasing E2F. E2F-regulated genes are both derepressed (i.e., B- and C-myb) and transactivated (i.e., Cdk1), resulting in further lethal cell cycle progression and the post-translational modification of pro-apoptotic proteins.

Table 2. Select Reports of Cell Cycle Dysregulation in AD

| Re-expression of Cdns in AD (110-112, 205) |
| Cdk1 |
| Cdk4 |
| Cdk7 |
| Re-expression of Cyclins in AD (109-111) |
| Cyclin B |
| Cyclin D |
| Cyclin E |
| Re-expression of Endogenous Cdk Inhibitors in AD (113, 114) |
| p16^{INK4a} |
| p15^{INK4b} |
| p18^{INK4c} |
| p19^{INK4d} |

stimuli that would cause proliferation in other tissues (93). In this context, he compared cancer and neurodegeneration. Both demonstrate remarkable cellular specificity, and just as distinct etiologic agents produce unique molecular lesions to yield cell-type specific transformation, similar insults could trigger abortive cell cycle in particularly vulnerable neuronal populations. Both cancer and neurodegeneration exhibit differential latencies, indicating that multiple insults may have to accumulate before disease is demonstrable. Finally, both cancer and neurodegenerative diseases can occur in either a familial or spontaneous manner. Like cancer, spontaneous neurodegeneration may be derived from numerous somatic genetic lesions, while familial disease could result from the combination of a pre-existing germ-line mutation coupled with a second lesion. An alternative, proposed by Arendt and Herrup, posits that neurons in AD affected regions persist in the tenuous position between differentiation and plasticity (8, 119). Both states are necessary, not mutually exclusive, and likely result in a condition of incomplete differentiation. Differentiation allows for specialization of function and durability of critical synaptic connections. In contrast, plasticity allows for adaptation to successfully conduct the complex tasks of learning and forming new memories. To remain plastic, neurons must successfully integrate complex extrinsic signals from the environment. In other tissues, these signals would modulate positional and proliferative processes, but in neurons they regulate plasticity. Disturbing the delicate balance between these two states by any number of ill-defined insults could cause neurons to revert to an ineffective program of de-differentiation, and ultimately die. This notion is consistent with similarities in the factors and signaling systems governing both proliferation and plasticity in neuronal systems (8, 119). A particularly appealing feature of this model is the extended latency of the death process, which has not been successfully modeled in cell culture or animal models.

With regard to the final executioners of the death process, as indicated, pRb serves as the guardian of the restriction point by sequestering and suppressing the activity of E2F family transcription factors. Consistent with this, adenovirus mediated overexpression of E2F1 in cerebellar granule neurons is sufficient to trigger apoptotic death (120), whereas dominant negative interference of E2F activity attenuates cortical and sympathetic neuron death in response to DNA damaging stimuli. E2F can function both as a transcriptional activator and repressor. Evidence from experiments in which a mutant E2F1 construct, only possessing repressor functions, was tested in several cell culture paradigms indicates that it can promote death by derepressing the expression of pro-apoptotic genes (121, 122). Two genes in particular, which encode the transcription factors B- and C-myb, may be involved, as their overexpression is sufficient to induce neuronal apoptosis (121). On the other hand, release of E2F may regulate the death pathway via transactivation of additional cell cycle genes. For instance, KCl withdrawal in cerebellar granule neurons results in E2F1-mediated expression of Cdk1 (123). Using this same paradigm, it has been shown that Cdk1 phosphorylates BAD, a pro-apoptotic member of the Bcl-2 family of proteins, rendering it resistant to sequestration and degradation (124). Collectively, these observations suggest that aberrant cell cycle activity in neurons results in both altered patterns of gene expression and the post-translational modification of signaling molecules that are responsible for neuronal death (Figure 2).

3.5. Cyclin-dependent kinase 5 dysregulation in Alzheimer’s disease

One of the first indications that Cdk5 may have a
Cyclin-dependent kinases in Alzheimer’s disease (AD)

Neuronal Stress
(b-amyloid, trophic factor withdrawal, ischemia)

Calcium / Ca2+

Calpain

Cdk5

Phosphorylation of Non-physiologic Substrates (tau)

Apoptosis

Figure 3. A simplified model depicting dysregulated Cdk5 activity. Following neuronal stress, calcium homeostasis is disturbed, resulting in activation of calpain, and calpain-mediated proteolysis of p35 to p25. This triggers increased and sustained Cdk5 activity that can access a wider array of previously unavailable substrates (i.e. tau). Altered regulation of these substrates results in apoptosis.

The role in AD neuropathology was the identification of the microtubule associated protein tau as a substrate (125). In vitro analyses have extended these initial findings and identified several proline-directed Ser/Thr sites on tau that are targets of Cdk5 phosphorylation: Ser202, Thr205, Thr212, Ser235, Ser396, and Ser404 (126-128). Moreover, many of the tau sites phosphorylated by Cdk5 in vitro are the same sites known to be phosphorylated in tau from paired helical filaments (PHFs) (129). Further support is provided by data indicating that increased Cdk5 and Cdk5-mediated phospho-tau immunoreactivity are found in neurons in the early stages of neurofibrillary tangle (NFT) formation (130, 131). These findings generated considerable enthusiasm for the theory that Cdk5 contributes to the early derangement of neurons in AD.

Interestingly, physiological Cdk5/p35 activity is unlikely to be substantially directed against tau. For example, COS-7 cells co-transfected with a human tau construct and Cdk5/p35, display little detectable AT8 (Ser202, Ser205) or PHF-1 (Ser396, Ser404) phospho-tau immunoreactivity (37). Also, triple transgenic mice overexpressing p35, Cdk5, and human tau do not demonstrate increased tau phosphorylation (132). In marked contrast, Cdk5 efficiently phosphorylates these tau epitopes when complexed with p25 (37), indicating that p25 alters the regulation of Cdk5 activity. p25 is a 208 amino acid carboxy-terminal fragment of p35 derived from proteolysis by the calcium-dependent cysteine protease calpain (133-135). While p25 is sufficient to activate Cdk5, it lacks the N-terminal myristoylation that localizes Cdk5 to cellular membranes and likely restricts its potential substrate profile to those located in this subcellular region (37). A similar process can occur with p39, producing the truncated p29 (38). When complexed with p25, Cdk5 demonstrates a profoundly different cellular distribution. Instead of being located near the cellular periphery, Cdk5/p25 is diffusely distributed in the cytoplasm (37), thus allowing access to a wider array of potential substrates. The kinetics of Cdk5 catalysis may also be enhanced by association with p25 (127). In vitro, phosphorylation of human tau by Cdk5/p25 occurs at a faster rate when compared to Cdk5/p35 (p25cat/mk/p35cat/mk) (127). Furthermore, Cdk5/p25 phosphorylates tau with greater stoichiometry than Cdk5/p35 (3.3 vs. 2.3 moles per mol tau). Collectively, these observations indicate that dysregulation of Cdk5 by p25 is the result of enhanced and sustained kinase activity that is mislocalized and directed against substrates that are not normally targeted, ultimately bringing about neuronal death. Consistent with this, expression of Cdk5/p25 complexes in transfected cells and primary neurons results in increased tau phosphorylation on AD specific phosphoepitopes (37). Furthermore, cortical neurons expressing these complexes demonstrate morphological and cytoskeletal disruptions, ultimately leading to apoptosis (37).

But what is the trigger for conversion of p35 to p25? As calpain mediates the pathogenic cleavage of p35, it is predictable that insults triggering Ca2+ dyshomeostasis would be involved. Indeed, neurotoxic injury by maitotoxin, ischemia, and glutamate excitotoxicity, all known to perturb Ca2+ regulation, results in calpain activation and the generation of p25 (133-135). It is important to note that these insults may not always lead to tau phosphorylation. Treatment of cultured hippocampal neurons with N-methyl-D-aspartate, glutamate, or a Ca2+ ionophore, ionomycin increases p25 levels and Cdk5 activity, but does not change the phosphorylation state of tau (136). β-amyloid, the primary component of senile plaques (137), also appears to affect p35 regulation. Application of fibrillogenic β-amyloid peptides to neuronal cultures results in neurotoxicity accompanied by calpain activation, p25 generation, and tau hyperphosphorylation (133, 138, 139). However, neuronal pathology in the aged brain likely precedes the detectable formation of β-amyloid plaques (140-143). Data regarding soluble β-amyloid, representing a pre-deposit paradigm, indicate that it too triggers p35 cleavage, increased Cdk5 activity, and tau hyperphosphorylation (144). Consistent with the involvement of a Ca2+ mediated process, disturbances of Cdk5 regulation are largely attenuated by the calcium channel blocker, verapamil, and calpain inhibitor I (144). Incidentally, Cdk5 recognizes substrate proteins involved in β-amyloid processing: β-amyloid precursor protein (βAPP) (145), Presenilin-1 (146), and β-catennin (147) (Table 1), but it is not known whether these interactions are involved in the genesis of senile plaques. This collection of observations is summarized by the model depicted in Figure 3, linking neuronal stress, calpain activation, and cleavage of p35 to p25.
Cyclin-dependent kinases in Alzheimer’s

| Table 3. Select Transgenic Mouse Models of Cdk5 AD Neuropathology |
|-----------------------------------|------------------|
| **Transgenic Model** | **AD Associated Neuropathology** |
| Human Cdk5/p35/tau(132) | None |
| βAPP Mutant (Tg2576)(149) | β-amyloid plaques, ↑ tau phosphorylation, ↑ p25, astrogliosis, neuronal loss |
| Double βAPP Mutant (TgCRND8)(150) | No changes in Cdk5, p35, p25 immunoreactivity |
| Human p25(151) | ↑ tau & neurofilament phosphorylation, ↑ Cdk5 activity, cytoskeletal disruptions |
| Human p25(152) | ↑ Cdk5 activity, axonal degeneration, ↑ tau phosphorylation, focal tau accumulation |
| Bovine p25(153) | None |
| Human p25 (p35 knockout background)(155) | None |
| Mouse p25(154) | None |
| Human p25/mutant (P301L) tau(156) | ↑ Cdk5 activity, ↑ tau phosphorylation, NFTs, GSK-3-tau co-localization |
| Inducible human p25(160) | ↑ Cdk5 activity, ↑ tau phosphorylation, NFTs, cortical & hippocampal neuronal loss, forebrain atrophy, astrogliosis, caspase-3 activation |

AD demonstrates extended latency, with disease manifestation typically apparent during the later decades of life. As such, in any theory of AD neuropathology latency must be incorporated. As indicated, one level of Cdk5 regulation involves the availability of p35. This is, in part, the function of Cdk5 itself, in the form of a negative feedback loop in which it phosphorylates p35, thereby targeting it for degradation by the ubiquitin-proteasome pathway (40). The result is a protein with a half-life of ~30 minutes and limited Cdk5 activity. In contrast, p35 possesses a half-life 5-10 times longer (37). Curiously, the regulation of p35 phosphorylation, and thus its proteolysis, appear to be developmentally regulated. For example, p35 in fetal brain tissue is phosphorylated on two distinct sites (148). One site promotes proteosomal degradation, while the other confers resistance to calpain-mediated cleavage. In adult brain, p35 is not detectably phosphorylated (148). Thus, neurons in the adult may become susceptible to dysregulation as a result of an intrinsic maturation-dependent phenomenon.

A number of transgenic mouse models have been developed in an attempt to model the contribution of Cdk5/p25 to AD-like pathology, but results have been conflicting (Table 3). As mentioned previously, overexpression of p35 in transgenic mice does not induce tau hyperphosphorylation or brain pathology, despite increasing Cdk5 activity (132). Again, this supports the notion that p25 confers upon Cdk5 unique properties, including distinct substrate availabilities. Mice possessing a mutant transgene for βAPP (Tg2576) exhibit Cdk5-dependent tau phosphorylation and p25 accumulation that accompanies neuronal loss and astrogliosis (149), consistent with the existence of pathological β-amyloid/p25 signaling. On the other hand, no changes in Cdk5 regulation are detectable in another transgenic mouse strain which expresses a double mutant form of βAPP (TgCRND8) (150). Two different p25 overexpressing transgenic mice show increases in Cdk5 activity and tau phosphorylation, as well as cytoskeletal disturbances and axonal degeneration (151, 152). However, in both of these models, there is no evidence of NFTs, PHFs, or neuronal loss, indicating that while Cdk5 dysregulation may contribute to tau hyperphosphorylation, and related changes, it is, by itself, insufficient to generate NFTs. It is noteworthy that three additional and independently generated p25 transgenic mice fail to show significant tau hyperphosphorylation or neuropathology (153-155), but in two of these cases this could be attributed to the relatively low levels of p25 expression produced (154, 155). A double transgenic mouse overexpressing p25 and mutant (P301L) human tau exhibits similar Cdk5-mediated tau changes, but these are accompanied by the presence of silver-stained NFTs (156). Interestingly, in this transgenic background, insoluble tau was also co-localized with glycogen synthase kinase-3 (GSK3), supporting the theory that phosphorylation by a number of distinct kinases might contribute to tau derangement (157, 158). This result is also consistent with evidence supporting a role for GSK3 in tau hyperphosphorylation and AD neuropathology (i.e. ref. (159)). More recently, a transgenic animal was developed utilizing a tetracycline-controlled transactivator system to generate inducible forebrain expression of p25 during the postnatal period. In this background, a more complete recapitulation of AD neuropathology is achieved including: increases in Cdk5 activity; accumulation of hyperphosphorylated tau; NFT formation; astrogliosis; and substantial brain atrophy including neuronal degeneration of the hippocampus and cerebral cortex (160).

If a Cdk5-mediated process is responsible for neurodegeneration in AD, then the most difficult studies to reconcile are those in which postmortem human tissue has been analyzed (Table 4). The first study to examine postmortem human tissues surveyed samples from 8 patients with AD, 1 with Huntington’s disease, and 4 controls (37). In this study, p25 was found to be more abundant in AD tissue, and it was present in neurons with NFTs. Also, despite equivalent levels of Cdk5 protein in AD and control brains, immunoprecipitated Cdk5 kinase activity against histone H1 was increased in AD samples. This group also performed a larger study on samples from 28 AD patients and 25 age-matched controls (161). Again, Cdk5 dysregulation correlated with AD, evidence by increased mean ratios of p25 to p35 in AD versus controls across all brain regions investigated. These results lend support to previous *in vitro* analyses and transgenic mouse models, but have proven difficult to reproduce. For example, a second group independently examined 8 AD samples and 9 age-matched controls (162), but were unable to discern any differences in the level of p25 between the two groups. Four additional studies also reported no significant increases in p25 in AD (150, 153, 163, 164). One of these reports (150) used the same protocol, antibodies, and antisera as the original study (37). Thus, we are left to ponder the source of these conflicting data.
Cyclin-dependent kinases in Alzheimer's

The time following death after which tissue is obtained is known as the postmortem interval (PMI). During this time, depending on its length, a number of changes occur within tissue that could confound analyses (i.e. proteolysis, pH alterations). Thus, it is likely that PMIs could affect evidence of Cdk5 dysregulation as determined by the abundance of p25 or p25/p35 ratios. Patrick and colleagues (37) suggest that after long PMIs (i.e. 24-hrs), once detectable alterations in the p25/p35 ratio between AD samples and controls can diminish, or disappear altogether. Indeed, after as little as one hour post mortem, and peaking around 14 hours, p35 is degraded to p25 by artifactual reactivation, Cdk5 dysregulation has not been reproducibly detected in AD brain. The reasons for this have yet to be convincingly explained. What is clear, though, is that the extended latency of AD persists as a major experimental obstacle that must be overcome if we are to authentically model the disease and develop rational therapeutics for AD sufferers. Despite these difficulties, Cdk5s remain an attractive therapeutic target and a number of potent pharmacologic agents and molecular approaches have already been identified to inhibit their activity (167-169). For Cdk5 dysregulation in particular, it is unclear whether such approaches would be efficacious considering its multifunctionality and broad substrate specificity. Targeted disruption of Cdk5 would likely affect both normal and pathologic substrates and could yield undesirable consequences. Thus, we must acknowledge that additional study is necessary to develop a complete picture of how Cdk5s are involved in this devastating neurodegenerative illness.

4. CONCLUSIONS AND PROSPECTS

Cdk5s subserve numerous and diverse cellular processes. As we have discussed, mounting evidence indicates that when dysregulation of cell cycle Cdk5s occurs, neuronal survival is compromised. However, it still remains to be determined if investigators’ attempts to recapitulate this process are adequately predictive of human neuropathology. Specifically, it is important to recognize that much of the experimental evidence of cell cycle dysregulation has been limited to the analysis of young, developing neurons both in vivo and in vitro. In these paradigms, cell cycle dysregulation results in rapid cell death, within hours (i.e. (94, 124)). In contrast, aberrant cell cycle expression and ensuing neuronal death in AD brain appears to occur over an extended duration, likely days to months to years, as evidenced by the relatively high percentages of neurons (4-9%) with detectable cell cycle changes (111, 118). The same concern can be expressed with regard to the observations pertaining to Cdk5. Moreover, it is rather curious that unlike aberrant cell cycle reactivation, Cdk5 dysregulation has not been reproducibly detected in AD brain. The reasons for this have yet to be convincingly explained. What is clear, though, is that the extended latency of AD persists as a major experimental obstacle that must be overcome if we are to authentically model the disease and develop rational therapeutics for AD sufferers. Despite these difficulties, Cdk5s remain an attractive therapeutic target and a number of potent pharmacologic agents and molecular approaches have already been identified to inhibit their activity (167-169). For Cdk5 dysregulation in particular, it is unclear whether such approaches would be efficacious considering its multifunctionality and broad substrate specificity. Targeted disruption of Cdk5 would likely affect both normal and pathologic substrates and could yield undesirable consequences. Thus, we must acknowledge that additional study is necessary to develop a complete picture of how Cdk5s are involved in this devastating neurodegenerative illness.

5. ACKNOWLEDGEMENT

This work was supported in part by PHS NS40582 from the National Institute of Neurological Disorders and Stroke, NIH.

6. REFERENCES

Cyclin-dependent kinases in Alzheimer's

8. Arendt, T: Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the 'Dr. Jekyll and Mr. Hyde concept' of Alzheimer's disease or the yin and yang of neuroplasticity. Prog Neurobiol 71, 2-3, 83-248 (2003)

32. Sherr, C. J. and J. M. Roberts: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes...
Cyclin-dependent kinases in Alzheimer’s

56. Morgan, D. O.: Cyclin-dependent kinases: engines,
Cyclin-dependent kinases in Alzheimer’s

78. Won, K. A. and S. I. Reed: Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. *EMBO J* 15, 16, 4182-93 (1996)

83. Tsai, L. H., T. Takahashi, V. S. Caviness, Jr. and E.
Cyclin-dependent kinases in Alzheimer’s

Cyclin-dependent kinases in Alzheimer’s

132. Van den Haute, C., K. Spittaels, J. Van Dorpe, R.
Cyclin-dependent kinases in Alzheimer’s

144. Angelo, M., F. Plattner, E. E. Irvine and K. P. Giese: Improved reversal learning and altered fear conditioning in...

201. Xie, Z., K. Sanada, B. A. Samuels, H. Shih and L. H.
Cyclin-dependent kinases in Alzheimer’s

Tsai: Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. *Cell* 114, 4, 469-82 (2003)

Key Words: Neuroscience, Kinase, Cyclin-dependent kinase, Alzheimer's, Cell cycle, Cdk5, Review

Send correspondence to: Mary Lou Vallano, Ph.D., Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA, Tel: 315-464-7969, Fax: 315-464-7712, E-mail: vallanom@upstate.edu

http://www.bioscience.org/current/vol10.htm