VITAMIN D AND CANCER: AN UPDATE OF IN VITRO AND IN VIVO DATA

Paloma Ordonez-Moran, Maria Jesus Larriba, Natalia Pendas-Franco, Oscar Aguilera, Jose Manuel Gonzalez-Sancho, and Alberto Munoz

Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain

TABLE OF CONTENTS

1. Abstract
2. Introduction
 2.1. Vitamin D and cancer: an overview
 2.2. Anti-cancer effects and target genes of 1,25(OH)2D3
3. Effects of 1,25(OH)2D3 and analogs on cultured human cancer cells
 3.1. Colon cancer cells
 3.2. Breast cancer cells
 3.3. Prostate cancer cells
 3.4. Cancer cells of diverse origin
 3.4.1. Head and neck squamous carcinoma
 3.4.2. Pancreatic cancer
 3.4.3. Blood cancers
 3.4.4. Melanoma
 3.4.5. Miscellaneous
4. Anti-tumor action of 1,25(OH)2D3 and analogs in experimental animals
 4.1. Results in diet- or carcinogen-treated animal models
 4.2. Action of 1,25(OH)2D3 and analogs against tumor xenografts
 4.3. Results in genetically-modified mice
5. 1,25(OH)2D3 and analogs as anti-neoplastic agents in the clinic
 5.1. Clinical data
 5.2. Mechanisms of resistance to vitamin D compounds
6. Conclusions and perspectives
7. Acknowledgements
8. References

1. ABSTRACT

1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, Calcitriol) is a pleiotropic hormone with anti-proliferative, pro-apoptotic and pro-differentiation effects on numerous cell types, which suggest anti-cancer activity in addition to its classical regulatory action on calcium and phosphate metabolism. 1,25(OH)2D3 exerts its actions mainly via its high affinity receptor VDR through a complex network of genomic (transcriptional and post-transcriptional) and also non-genomic mechanisms, which are partially coincident in the different cells and tissues studied. Epidemiological and experimental in vitro and in vivo data support a cancer preventive role of 1,25(OH)2D3. The anti-cancer activity of 1,25(OH)2D3 and multiple analogs with reduced calcemic properties, which are thus less toxic, is under investigation in a long list of cultured cell types and in several in vivo models of wild-type and genetically-modified animals. Some vitamin D compounds have reached clinical trials, but results are still scarce.

2. INTRODUCTION

2.1. Vitamin D and cancer: an overview

The relation between vitamin D and cancer is the focus of very intense research. The active form of vitamin D, the seco-steroid hormone 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, Calcitriol) has pleiotropic effects in the organism, regulating calcium and phosphate metabolism and bone biology (classical actions) and also the proliferation, differentiation, apoptosis, invasiveness and/or angiogenic or metastatic potential of many cell types (non-classical actions). Because of these non-classical actions and also as a result of epidemiological studies indicating chemopreventive activity against colon, prostate cancer and other neoplasias (1-6), 1,25(OH)2D3 has received great interest as a candidate anti-cancer compound. Anti-tumor activity in experimental animals largely increased these expectations. However, toxicity resulting from the hypercalcemic effect of the doses required for in vivo activity has hampered the clinical anti-tumoral use of
1,25(OH)$_2$D$_3$. In parallel to investigations aimed to define acceptable administration schedules for 1,25(OH)$_2$D$_3$, a few thousand analogs generically termed deltanoids have been synthesized in the search for clinically useful compounds that retain the anti-cancer activity but are less toxic (7).

A number of excellent reviews deal with vitamin D biology, its gene regulatory effects and the mechanism of vitamin D receptor (VDR) action (8-12) or the pre-clinical and clinical development of 1,25(OH)$_2$D$_3$ and analogs against cancer (13-15). Here, we review the data on the mechanism of action of 1,25(OH)$_2$D$_3$ in human cancer cells and the situation and perspectives of its analogs in the clinic, with special emphasis on the use of animal models to investigate 1,25(OH)$_2$D$_3$ anti-tumoral action.

Vitamin D$_3$ is produced in the skin by the action of sunlight on 7-dehydrocholesterol or, to a much lesser extent, ingested in the diet. Vitamin D$_3$ is then hydroxylated at carbon 25 in the liver by the 25-hydroxylase enzyme encoded by the cytochrome CYP27A1 gene to form 25-hydroxyvitamin D$_3$ (25(OH)D$_3$). This is again hydroxylated to render 1,25(OH)$_2$D$_3$ in the kidney and several cell types, by the action of 25-hydroxyvitamin D$_3$ 1alpha-hydroxylase (product of the CYP27B1 gene). Over 30 cell types express VDR and are thus targets of 1,25(OH)$_2$D$_3$. The same pattern of expression is shared by the 24-hydroxylase enzyme encoded by the cytochrome CYP24 gene, which converts its substrates 1,25(OH)$_2$D$_3$ and 25(OH)D$_3$ respectively to 1,24,25(OH)$_3$D$_3$ and 24,25(OH)$_2$D$_3$. These compounds have much lower activity and are progressively oxidized to less active compounds, and finally to calcitroic acid, which is secreted (9, review). 1,25(OH)$_2$D$_3$ regulates its own synthesis and degradation through the induction of CYP24 and the repression of CYP27B1 genes. Parathyroid hormone is a sensor of low calcium and acts as a major inducer of CYP27B1 expression. The finding that 25-hydroxyvitamin D$_3$ 1alpha-hydroxylase and VDR are both expressed at early stages of colon tumor progression at higher levels than those found in normal mucosa or in undifferentiated tumors indicates that colon carcinoma cells can synthesize and respond to 1,25(OH)$_2$D$_3$ (16). Thus, 1,25(OH)$_2$D$_3$ behaves as a hormone-cytokine, acting in endocrine, paracrine and probably autocrine fashion.

2.2. Anti-cancer effects and target genes of 1,25(OH)$_2$D$_3$

The anti-cancer activity of 1,25(OH)$_2$D$_3$ is mostly based on the inhibition of proliferation and the induction of differentiation or apoptosis of cancer cells (Figure 1). The predominant effect depends on the type of cancer cells. 1,25(OH)$_2$D$_3$ also has several immunomodulatory actions that, unfortunately, are opposite to those expected of an anti-cancer agent. It inhibits differentiation and maturation,
and promotes apoptosis of antigen-presenting dendritic cells (17, review). Through these actions on dendritic cells, and also via direct inhibition of Th1 cells and potentiation of Th2 and regulatory T cells, 1,25(OH)₂D₃ attenuates T-cell response. In line with these immunosuppressive effects, 1,25(OH)₂D₃ analogs prevent autoimmune disorders and prolong allograft survival in experimental animals (17 and refs therein). Future work may clarify the putative clinical use of 1,25(OH)₂D₃ analogs against autoimmune diseases or allograft rejection and also if analogs with reduced immunosuppressive effects have improved anti-tumor activity.

Gene regulatory actions of 1,25(OH)₂D₃ and its analogs are mediated by the VDR, a member of the superfamily of nuclear receptors. VDR is a ligand-regulated transcription factor that binds to specific sequences termed vitamin D response elements (VDRE) in its target genes and modulates their expression (9-12). VDR interacts with DNA forming heterodimers with the retinoid X receptor (RXR) or, sometimes, other proteins. Genes that are induced via positive VDRE by 1,25(OH)₂D₃ remain silenced by unliganded VDR through recruitment of transcriptional co-repressors such as SMRT, N-CoR, or Alien/TRIP15. Hormone binding induces a conformational change in VDR that causes co-repressor release. Subsequently, VDR binds co-activators (SRC-1, ACTR, GRIP-1 and others) and interacts with the vitamin D-receptor interacting protein (DRIP) complex and chromatin remodeler complexes, which leads to gene activation (9-12). The mechanism by which 1,25(OH)₂D₃ represses the expression of target genes harboring negative VDRE is much less characterized. In some cases such as the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, VDR competes with the binding of other transcription factors (NFAT1) to their DNA binding sites, or alters their binding dynamics and/or transactivation activity (AP-1) via protein-protein interaction (18).

Several phosphorylated residues have been identified in human VDR located at the ligand- and DNA-binding domains, and the level of phosphorylation is increased by hormone binding (9). However, how specific phosphorylations affect VDR transcriptional activity or whether VDR is subjected to other post-translational modifications remains unclear.

In addition, 1,25(OH)₂D₃ induces rapid, gene-expression-independent (non-genomic) effects such as changes in the activity of ion (calcium, chloride) channels or some enzymes (kinases, phospholipases), which might be mediated by membrane or cytosolic VDR or by other unknown receptors (19-22). 1,25(OH)₂D₃ is a flexible molecule capable of rotation about its 6,7 single carbon bond, which can generate a potential series of ligand shapes ranging from 6-s-cis (6C) to 6-s-trans (6T). Strikingly, the 6-s-cis configuration favors activation of the non-genomic pathway, whereas the 6-s-trans preferentially mediates genomic responses (23). Supporting the dependence of genomic and non-genomic actions on VDR, both were abrogated in osteoblasts expressing a mutated VDR lacking the DNA binding domain (24), and recent data show that VDR is present in caveolae-enriched plasma membranes (25). The relation of non-genomic effects of 1,25(OH)₂D₃ to its anti-cancer activities is however poorly understood.

The anti-proliferative effect of 1,25(OH)₂D₃ is usually based on the induction of cell cycle arrest at the G1 phase through the increase in the expression of the cyclin-dependent kinase (CDK) inhibitors p21^{WAF1/CIP1} and p27^{KIP1} and the repression of cyclin D1 (^{CCND1}) and c-MYC genes (Figure 1). The mechanisms of these regulatory effects are different. While p21^{WAF1/CIP1} gene has been reported to have a VDRE and is induced in many cell types but inhibited in others (5, 26, 27), the induction of p27^{KIP1} gene lacking VDRE seems to be mediated by NF-Y and Sp1 transcription factors, and additional effects occur at the level of protein stability (28-31). These different data probably reflect the combination of differences among cell types and techniques (time of exposure, assay) used in the studies. Moreover, the repression of c-MYC in leukemic HL60 cells is due to the induction of HOXB4 and other proteins that bind to intron 1 sequences and cause transcription elongation block (32), whereas in SW480-ADH colon carcinoma cells 1,25(OH)₂D₃ blocks c-MYC activation by the beta-catenin-TCF4 complex (33). Other target genes involved in proliferation arrest of colon and head and neck squamous carcinoma cells such as growth-arrest and DNA damage 45 alpha (^{GADD45alpha}) have arisen from transcriptional profiling studies using 1,25(OH)₂D₃ or analogs (27, 34, 35). In mouse osteoblasts, one fifth of the genes down-regulated 12 h after treatment are genes associated with DNA replication such as those coding for subunits of several DNA polymerases (36).

Differentiation is often linked to proliferation arrest, but 1,25(OH)₂D₃ has specific pro-differentiation effects in several cell types through the induction of differentiation genes (Figure 1). For instance, in human head and neck, colon, prostate carcinoma and leukaemia cells 1,25(OH)₂D₃ and some analogs induce the expression of a vast array of candidate target genes responsible for the differentiated phenotype (34, 35, 37-43). In contrast, 1,25(OH)₂D₃ inhibits differentiation and activation of dendritic and Th1 cells respectively through the repression of interleukin (IL)-12 and co-stimulatory molecules CD40, CD80 and CD86 (and enhancement of IL-10 production) (44, 45), and of IL-2 and interferon (IFN)-gamma. Liganded VDR blocks human IL-2 gene by impairing the binding of NFAT to the promoter, whereas in the case of IFN-gamma it binds to a VDRE in the promoter region (46-48). Expectedly, transcriptional profiling studies using dendritic cells have also provided a number of candidate target genes of 1alpha,25(OH)₂-19-ene-23-yne-26,27-hexafluoro-19-nor-D₃ involved in immunoregulation including immunoreceptors, chemokines, cytokines, and receptors of both, some of which have been confirmed (MIP-1alpha and RANTES) (49, 50). The regulation of keratinocyte differentiation by 1,25(OH)₂D₃ seems to involve several signaling pathways including protein kinase C (PKC) and phospholipase C (PLC) activation (51), whereas the induction of myeloid differentiation of THP-1 cells requires the formation of complexes between VDR and the phosphatidylinositol 3-kinase (PI3K) and the
Anti-cancer activity of vitamin D compounds

activation of this enzyme (52). In human CaCo-2 colon cancer cells, 1,25(OH)₂D₃ increases differentiation through PKC-alpha- and JNK-dependent AP-1 activation (53).

Apoptosis induction by 1,25(OH)₂D₃ relies on the regulation of genes controlling cell death pathways. 1,25(OH)₂D₃ causes in a cell type-dependent fashion the activation of BAX and BAK and the inhibition of BCL-2 and IAP, which individually and coordinately potentiate the effect of apoptosis-inducing signals (5, and refs therein) (Figure 1). Additionally, Apaf-1 is regulated in prostate cells (42), and novel targets involved in apoptosis regulation such as Grim19 and Stat3 have recently been found in breast cancer cells (J. Welsh, unpublished data). Putatively, at least some of the effects on apoptosis, as well as on proliferation and differentiation in some cell types, might be linked to the regulation of genes coding for several insulin-like growth factor-binding proteins (IGFBP)-2, -3, -4 and -6 (35, 40, 54, 55). However, some controversy exists on the regulatory effect of 1,25(OH)₂D₃ on apoptosis. Thus, 1,25(OH)₂D₃ protects thyrocytes against the induction of apoptosis by either staurosporine or ultraviolet irradiation through the increase of BCL-2 expression (56). In addition, at pharmacological doses, 1,25(OH)₂D₃ and the 6-s-cis-locked 1,25(OH)₂dumisterol₃ analog protect murine osteoblasts and osteocytes and human HeLa cells from apoptosis by mechanisms mediated at least in part by Src, JNK and PI3K (57). At the same high (10⁻⁶ M) dose, 1,25(OH)₂D₃ also inhibits ultraviolet B-induced apoptosis of human primary keratinocytes reducing JNK activation and IL-6 production (58). Although the pro-apoptotic action is more general, these controversial reports indicate that the effects of 1,25(OH)₂D₃ on apoptosis are cell- and context-dependent.

The anti-invasive action of 1,25(OH)₂D₃ reported in several systems is probably based, at least in part, on the inhibition of genes encoding metalloproteinases such as MMP-2 and MMP-9, and urokinase and tissue-type plasminogen activators (59) (Figure 1). In contrast, the anti-angiogenic effect of 1,25(OH)₂D₃ in mice (60-62) is far from being understood, as in some cultured cells such as osteoblasts, head and neck squamous carcinoma cells and mouse embryo fibroblasts it induces the expression of the potent pro-angiogenic agent vascular endothelial growth factor (VEGF) (34, 63, 64). Supposedly, the anti-angiogenic effect is due to the regulation of other genes such as angiopoietin-2 in tumoral cells (65), or to anti-proliferative and/or pro-apoptotic effects on endothelial cells (62, 65, 66). In one study, 1,25(OH)₂D₃ and three analogs (Ro-25-6760, EB1089, ILX23-7553) were potent inhibitors of the proliferation of tumor-derived endothelial cells, and interestingly, 1,25(OH)₂D₃ showed less potency against normal endothelial cells (65). 1,25(OH)₂D₃ analogs also inhibit the formation of spontaneous metastasis in chemically-induced colon carcinogenesis in mice (67), which may result from a combination of effects at different stages of tumor progression. However, specific effects on the formation of bone metastasis may also be related to the regulation of other genes such as parathyroid hormone-related protein (PTPrP) in prostate cancer cells via a negative VDRE (68) or receptor activator of NF-kappaB ligand (RANKL) in osteoblasts via a positive VDRE (69).

Since a large number of genes respond to 1,25(OH)₂D₃, it is reasonable to assume that only a subset are direct transcription targets regulated via VDRE, while many others are secondary targets controlled in cascade at either the transcriptional or post-transcriptional level by the primarily-regulated genes, or by non-genomic mechanisms.

3. EFFECTS OF 1,25(OH)₂D₃ AND ANALOGS ON CULTURED HUMAN CANCER CELLS

3.1. Colon cancer cells

Colon cancer is the most frequent neoplasm in the United States and Europe for which no satisfactory therapy exists when surgery is not curative (70, 71). One of the earliest observations suggesting that vitamin D may play a role in colon cancer prevention and treatment was that people who lived at higher latitudes and so, received less solar radiation, had an increased risk of dying of colon cancer (72). It was also shown that low 25(OH)D₃ serum levels correlated with a higher risk of developing colon cancer (2, 73). These data have led to an increasing interest in the effects of 1,25(OH)₂D₃ on colon cancer cells. Numerous studies have shown that, as in other cancer cell types, 1,25(OH)₂D₃ and its non-hypercalcemic analogs inhibit cell growth and induce epithelial differentiation and apoptosis in cells of the large intestine (5, 13, 74).

In the human colon, normal epithelial cells express VDR and 25-hydroxyvitamin D₃ 1alpha-hydroxylase. Therefore, they can respond to 1,25(OH)₂D₃ and synthesize it from serum 25(OH)D₃ (16, 75, 76). Furthermore, VDR and 25-hydroxyvitamin D₃ 1alpha-hydroxylase are up-regulated in early stages of colon cancer progression, suggesting that the local production of this hormone could be a tumor response that affects its own progression (16, 75, 76). Up-regulation of VDR and 25-hydroxyvitamin D₃ 1alpha-hydroxylase can thus be considered as intrinsic tumor-suppressive functions. Unfortunately, this capacity is lost in late carcinomas, in which VDR and 25-hydroxyvitamin D₃ 1alpha-hydroxylase are down-regulated (16, 75-77). Accordingly, high VDR expression is considered a good prognosis marker in colon cancer (78, 79).

The first demonstration of the inhibitory role of 1,25(OH)₂D₃ on the growth of colon cancer cells was performed in LoVo cells (80). Similar effects were later observed in other human colon adenocarcinoma cell lines, such as CaCo-2, HT29 and SW480 (33, 81-86). Furthermore, the growth-inhibiting action of 1,25(OH)₂D₃ has also been confirmed in cultured primary human colon adenoma- and carcinoma-derived cells (87, 88). 1,25(OH)₂D₃ and some analogs reduce the high mitogenic rate of adenoma cells to that of normal colonocytes and significantly suppress the growth of carcinoma cells (87). In addition, 1,25(OH)₂D₃ inhibits the tumor cell capacity for anchorage-independent growth (81).
Anti-cancer activity of vitamin D compounds

Whereas 1,25(OH)₂D₃ concentrations from 10⁻⁸ to 10⁻⁷ M induce G0/G1 arrest and p21⁰⁰⁵⁴/CIP1 and p27⁰⁰⁵⁷/KIP1 expression in other cancer cell types (89, 90), they inhibit proliferation without arresting cell cycle in colon cancer cells (91, 92), and higher doses (10⁻⁶ M) are required for G0/G1 arrest and p21⁰⁰⁵⁴/CIP1 and p27⁰⁰⁵⁷/KIP1 modulation in these cells (86, 91-93). This may be explained by apoptotic effects or by a uniform retardation of the cell cycle (92). In contrast, concentrations from 10⁻¹⁰ to 10⁻⁸ M of some potent 1,25(OH)₂D₃ analogs can arrest colon cancer cells in G0/G1 and induce p21⁰⁰⁵⁴/CIP1 and p27⁰⁰⁵⁷/KIP1 (86, 91, 92). 1,25(OH)₂D₃ inhibits c-MYC expression in SW480-ADH cells (33) but a number of studies have shown that in CaCo-2 cells its anti-proliferative effect is independent of c-MYC down-regulation (83, 94, 95).

Growth inhibition of colon cancer cells by 1,25(OH)₂D₃ involves additional mechanisms, that include regulation of growth factor synthesis and signaling. One example is the effect of 1,25(OH)₂D₃ on the transforming growth factor (TGF)-beta pathway, which inhibits epithelial cell growth (74). Progression from colonic adenoma to carcinoma is accompanied by increasing resistance to TGF-beta action (96). Whereas the growth of normal colonic epithelial cells is inhibited by TGF-beta, most human colon cancer cells such as SW480 and CaCo-2, are resistant to TGF-beta action (97). Activation of the TGF-beta signaling pathway contributes to the anti-proliferative action of 1,25(OH)₂D₃ in colon cancer cells. First, 1,25(OH)₂D₃ sensitizes cells to the growth inhibitory action of TGF-beta by inducing type I TGF-beta receptor expression (35, 97). Second, 1,25(OH)₂D₃ increases the expression of type II insulin-like growth factor receptor (IGF-R), which facilitates the proteolytic activation of the inactive TGF-beta precursor (97). Additionally, SMAD3, a TGF-beta signaling downstream protein, binds to SRC-1 and acts as a co-activator of VDR, and therefore positively regulates 1,25(OH)₂D₃ target genes (5, 74, 98). This effect is abrogated by SMAD7, an inhibitory transducer of TGF-beta signaling (99).

IGF-I and IGF-II are among the most abundant growth factors in the body, acting as mitogens and survival factors (13). IGF-II has been described to be over-expressed in colorectal adenomas (100). Accordingly, HT29 adenocarcinoma colon cells secrete IGF-II, which stimulates their growth (101). It has been shown that 1,25(OH)₂D₃ and certain analogs inhibit IGF-II secretion in this cell line (55). Furthermore, they also increase the production of IGFBP-6, which negatively modulates the bioavailability of IGF-II by blocking its binding to type I IGF-R (35, 55). Moreover, the induction of type II IGF-R by 1,25(OH)₂D₃ also contributes to the blockade of the IGF-II pathway because binding of IGF-II to this receptor results in an accelerated degradation of IGF-II (97). It is therefore likely that interference with the IGF-II signaling pathway contributes to the anti-cancer action of 1,25(OH)₂D₃.

Epidermal growth factor (EGF) induces DNA synthesis and proliferation of colon epithelial cells. The stimulatory effect of EGF on cell division is effectively counteracted by 1,25(OH)₂D₃ in primary cultures of human colon adenocarcinoma as well as in CaCo-2 cells (88). 1,25(OH)₂D₃ reduces EGF receptor (EGFR) mRNA and protein expression and decreases the number of membrane EGFRs promoting their ligand-induced internalization (88). Thus, inhibition of EGFR signaling is part of the anti-mitotic action of 1,25(OH)₂D₃. However, EGF down-regulates VDR expression in CaCo-2 cells (84, 94). Therefore, activation of the EGF pathway could allow colon carcinoma cells to escape from the anti-mitogenic action of 1,25(OH)₂D₃ (84, 94).

The pro-differentiation effects of 1,25(OH)₂D₃ in human colon cancer cells have been widely studied. CaCo-2 and HT29 cells undergo enterocyte differentiation upon 1,25(OH)₂D₃ treatment, developing a prominent brush border membrane with high activity of alkaline phosphatase and other brush-border-associated enzymes (82, 83, 85, 86). In addition, the differentiated phenotype induced by 1,25(OH)₂D₃ involves an increase in the amount of intermediate filaments and desmosomes as well as the number of microvilli (83, 102). Alkaline phosphatase activity is also induced by 1,25(OH)₂D₃ in primary cultured colon carcinoma cells and in other colon cancer cell lines (87, 91). Results from our group have revealed that 1,25(OH)₂D₃ and several analogs induce epithelial differentiation in a subpopulation of SW480 cells that express VDR (SW480-ADH cells) (33) (Figure 2). This differentiation is linked to the induction of E-cadherin, the main component of the adherent junctions and important factor responsible for the maintenance of the epithelial phenotype, and other adhesion proteins such us vinculin, occludin, ZO-1 and ZO-2 (Figure 2). The Wnt/beta-catenin signaling pathway is deregulated in almost all colon cancers due to mutation of APC (Adenomatous Polyposis Coli) gene or, less frequently, the CTNNB1 gene coding for beta-catenin. These alterations lead to the nuclear accumulation of beta-catenin, which then forms complexes with the TCF4 transcription factor and regulates numerous genes involved in proliferation and invasiveness (103). 1,25(OH)₂D₃ represses beta-catenin transcriptional activity through at least two mechanisms: first, by direct interaction between ligand-bound VDR and beta-catenin in the nucleus, which prevents the formation of beta-catenin-TCF4 complexes; and, later, by inducing nuclear export of beta-catenin as a consequence of E-cadherin accumulation at the plasma membrane (33) (Figure 2). These effects of 1,25(OH)₂D₃ on E-cadherin expression and beta-catenin signaling have also been observed in other colon cancer cell lines such as CaCo-2, HT29 and SW1417 (33).

Apoptosis induced by 1,25(OH)₂D₃ in colon adenoma and carcinoma cells seems to be subsequent to the induction of differentiation, since the apoptotic cells express enterocyte differentiation markers like alkaline phosphatase (91). In this system, 1,25(OH)₂D₃ and its analogs induce p53-independent apoptosis (13, 91). This is particularly relevant because a high percentage of colon tumors presents alterations in the TP53 tumor suppressor gene. In human colon adenoma and carcinoma cell lines the apoptotic action of 1,25(OH)₂D₃ is associated with an increase in BAK protein levels (91). However, the effect of
Anti-cancer activity of vitamin D compounds

Figure 2. Effects of 1,25(OH)$_2$D$_3$ on the phenotype and expression of E-cadherin and beta-catenin in human SW480-ADH colon cancer cells. Phase contrast (upper panels) and confocal (lower panels) microscopy images of cells treated with vehicle or 100 nM 1,25(OH)$_2$D$_3$ for 48 h. Immunofluorescence analysis using antibodies against E-cadherin, beta-catenin or beta-tubulin was performed before confocal microscopy to examine the expression and localization of these proteins. Nuclei were counterstained with DAPI (in blue).

1,25(OH)$_2$D$_3$ on the expression of other pro-apoptotic (BAX) or anti-apoptotic (BCL-2, BCL-X$_L$) proteins, which are regulated by 1,25(OH)$_2$D$_3$ in other systems (13), is not clear in colon cancer, and appears to be cell line specific (35, 91).

The gene expression profile associated with 1,25(OH)$_2$D$_3$ treatment of SW480-ADH cells is compatible with its anti-proliferative and pro-differentiation effects (35). The long list of target genes includes some involved in DNA synthesis and cell cycle, apoptosis, cytoskeleton and adhesion, transcription and translation, intracellular signaling and redox metabolism. This list partially overlaps with that obtained by transcriptional profiling in head and neck squamous carcinoma cells treated with 1,25(OH)$_2$D$_3$ or its analog EB1089 (24a,26a,27a-trihomo-22,24-diene-1alpha,25(OH)$_2$D$_3$; Seocalcitol) (34, 37). The differences could be due to the distinct set of genes expressed, the pathways activated or other alterations present in each cell type.

In summary, the anti-proliferative, pro-differentiation and pro-apoptotic effects of 1,25(OH)$_2$D$_3$ in colon cancer cells are well established and support a beneficial effect of its analogs in colon cancer prevention and treatment. However, down-regulation of VDR expression during colon tumor progression causes loss of responsiveness to 1,25(OH)$_2$D$_3$ and its analogs. VDR gene is subjected to a complex transcriptional regulation: a number of transcription factors such as Wilm’s tumor suppressor, Zeb-1, Cdx-2 and Sp1 induce human or rodent VDR gene expression (104-107). Recently, we have reported that the transcription factor SNAIL binds to the human VDR gene promoter and represses its expression leading to 1,25(OH)$_2$D$_3$ unresponsiveness in SW480-ADH cells (77). Furthermore, SNAIL gene up-regulation in human colon tumors correlates with VDR down-regulation (77), whose clinical implications will be discussed in section 5.2. Clearly, further studies are needed for a better understanding of VDR gene regulation in colon cancer cells.

3.2. Breast cancer cells

The mammary gland is responsive to 1,25(OH)$_2$D$_3$. Normal breast cells express VDR (108), and this expression is dynamically regulated during pregnancy and lactation (109, 110). Studies in animal models suggest that 1,25(OH)$_2$D$_3$ may play a role in differentiation and milk production (109, 110). Multiple data indicate that 1,25(OH)$_2$D$_3$ and its analogs may act as cancer-preventing factors in normal mammary epithelial cells, and epidemiological studies have suggested an association between vitamin D deficiency and breast cancer risk (111).

Colston and others have shown that VDR is also expressed in breast cancer cells and that 1,25(OH)$_2$D$_3$ has profound effects in this cell type, modulating cell growth, differentiation, and invasion (112-114). There appears to be an association between VDR levels and prognosis, as tumor receptor status may be positively related to disease-free survival (115-116). Moreover, a link between polymorphisms of the VDR gene and breast cancer risk has been reported (117-120). In contrast to its action in colon cells, EGF (also IGF-I and estradiol) induces VDR expression in MCF-7 breast cells (121). Also the phytoestrogens resveratrol and genistein, and the 12-O-tetradecanoylphorbol-13-acetate (TPA) phorbol ester have this same effect, as does activation of the JNK and p38 MAPK pathways (121-123). In contrast, treatment of MCF-7 cells with tamoxifen or a combination of estrogen and...
Anti-cancer activity of vitamin D compounds

tamoxifen decreases VDR levels (121). These results might explain the increased sensitivity to vitamin D compounds of estrogen receptor (ER)-positive breast cancer cells compared to ER-negative cells (114). In fact, ERalpha and VDR seem to regulate each other’s transcription in breast cancer cells (121, 124). The sensitivity to selective estrogen-receptor modulators (SERMs) and vitamin D analogs has been proposed to be inverse, indicating that the sensitivity to vitamin D analogs might increase after development of anti-estrogen resistance, and vice versa (125). Cooperative effects of sequential or combined treatment with vitamin D analogs and SERMs have been demonstrated in both MCF-7 and ZR75-1 cells (126, 127). Recently, Swami and colleagues have studied the gene expression patterns in ERalpha positive MCF-7 and ERalpha negative MDA-MB-231 human breast cancer cells following 1,25(OH)2D3 treatment using transcriptional profiling. The gene expression profiles of the two cell lines were different, with a few overlapping genes suggesting that different cellular pathways might be regulated by 1,25(OH)2D3 to trigger its actions in ERalpha positive and ERalpha negative cells (39).

1,25(OH)2D3 and certain of its analogs induce both cell cycle arrest and morphological and biochemical features of apoptosis in breast cancer cells (128-133). Arrest in G0/G1 has been associated with up-regulation of the cell cycle inhibitors p21WAF1/CIP1 (130, 133) and p27KIP1 (134, 135), down-regulation of cyclins A and D1, decreased Cdk2 and Cdk2-associated histone H1 kinase activity (134) and de-phosphorylation of the retinoblastoma protein (136). The effects of 1,25(OH)2D3 on the cell cycle have been linked to down-regulation of growth promoting signals, such as IGF-I or EGF, as well as up-regulation of negative growth regulators, such as TGF-beta (127, 135, 137-142). 1,25(OH)2D3 and analogs have been reported to increase IGFBP-3 in MCF-7 and Hs578t cells (141), while EB1089 enhanced the expression of IGFBP-5 mRNA and protein in MCF-7 cells (139, 140). In addition, 1,25(OH)2D3 and its analogs reduced the expression of type 1 IGF-R in these cells, although this is a late event and might not be relevant to the effects on the IGF-I signaling pathway (143, 144). In fact, the precise mechanism responsible for the attenuation by vitamin D compounds of IGF-I effects in breast cancer cells remains to be determined. 1,25(OH)2D3 also inhibits serum-induced activation of ERK-1 and ERK-2 kinases in MCF-7 cells through a non-genomic mechanism that involves Src tyrosine kinase phosphorylation and binding to VDR (145). Interestingly, the anti-proliferative effect of 1,25(OH)2D3 in MCF-7 (and also in some prostate) cancer cells has been associated with the induction of BRCA1 mRNA and protein via transcriptional activation (146).

While the molecular mechanisms by which vitamin D derivatives induce apoptosis in breast cancer cells are not fully understood, there is growing evidence of an involvement of the BCL-2 family of proteins. A decrease in the relative expression of anti-apoptotic BCL-2 and BCL-XL to pro-apoptotic BAX and BAK proteins has been reported in a number of systems in response to vitamin D compounds (130, 147). Overexpression of BCL-2 renders MCF-7 cells resistant to 1,25(OH)2D3 mediated apoptosis (148). Up-regulation of other pro-apoptotic related proteins, such as clusterin, cathespin B and TGF-beta, has also been reported in response to 1,25(OH)2D3 (130, 131, 147). Additionally, 1,25(OH)2D3 down-regulates the anti-apoptotic protein survivin in MCF-7 cells through a mechanism involving activation of the TGF-beta and p38 MAPK pathways. In turn, forced expression of survivin blocks 1,25(OH)2D3-mediated G1 arrest and increases S and G2/M populations (149).

Although caspase inhibitors block the late stages of 1,25(OH)2D3-induced MCF-7 cell apoptosis, the commitment to death occurs even if caspase activation is prevented (148). Induction of apoptosis by vitamin D compounds appears to be independent of TP53 gene as it occurs in T47D breast cancer cells which have a mutated TP53 (148). Cell death in MCF-7 cells treated with 1,25(OH)2D3 involves dissipation of mitochondrial membrane potential, a hallmark of apoptosis, and is associated with a release of cytochrome C and an increase in the generation of reactive oxygen species (ROS) (150). The increase in ROS after 1,25(OH)2D3 treatment is concomitant with the down-regulation of thioredoxin, a small redox protein that neutralizes ROS and can prevent oxidative stress-induced apoptosis (121). Interestingly, mitochondrial disruption in MCF-7 cells treated with 1,25(OH)2D3 persists even in the presence of caspase inhibitors, which in contrast can inhibit this process when it is induced by tumor necrosis factor (TNF)-alpha, a classical pro-apoptotic factor (150). Emphasizing the involvement of mitochondrial signaling in 1,25(OH)2D3-mediated apoptosis, the pro-apoptotic BAX protein translocated from the cytosol to the mitochondria in MCF-7 cells treated with the hormone (150). Cellular calcium has been implicated in the induction of apoptosis. Treatment of MCF-7 breast cancer cells with 1,25(OH)2D3 and its analogs induces a sustained increase in intracellular calcium leading to the activation of the calcium-dependent pro-apoptotic proteases microcalpain and caspase-12 (151). The selective inhibition of calcium binding sites of micro-calpain or the ectopic expression of the calcium-binding protein calbindin-D decreased apoptotic indices in 1,25(OH)2D3-treated cells (151, 152). Furthermore, 1,25(OH)2D3 treatment has been shown to enhance cellular sensitivity to other triggers of apoptosis such as anti-estrogens, TNF-alpha, interleukins, radiation and chemotherapeutic drugs, such as adriamycin and taxol (153-160). These findings suggest a novel apoptotic pathway in breast cancer cells treated with vitamin D compounds, and that cross-talk between distinct apoptosis pathways may occur.

1,25(OH)2D3 affects the invasive capacity of human breast cancer cells. ER-negative MDA-MB-231 cells respond poorly to vitamin D and its analogs when grown in monolayer culture. However, Hansen and colleagues demonstrated that 1,25(OH)2D3 and two of its analogs inhibit invasion of these cells in the Boyden chamber assay (161). Reduced invasiveness of MDA-MB-231 cells in response to 1,25(OH)2D3 is associated with
diminished activity of the metalloproteinase MMP-9 and the two serine proteases urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). These effects were associated with an increase in PA inhibitor 1 and MMP inhibitor 1 (59).

3.3. Prostate cancer cells

Several studies support an association between 1,25(OH)2D3 and/or 25(OH)D3 and prostate cancer, while others have yielded conflicting results. 1,25(OH)2D3 has anti-proliferative and pro-differentiating effects in prostate cancer cell lines, and levels of circulating 25(OH)D3 may be important as prostate cancer cells possess 25-hydroxyvitamin D3 1-alpha-hydroxylase activity (162).

Campbell and co-workers (163) observed an inhibition of proliferation of LNCaP, PC3 and DU145 cells by a 19-nor-hexafluoride vitamin D3 analog, and a synergistic effect of this compound with a retinoid (SR11238) having anti-AP-1 activity. This effect involved the induction of p21WAF1/CIP1, p27KIP1 and E-Cadherin. EB1089 extensively inhibited the growth of LNCaP cells, causing accumulation in G0/G1 (164). 1,25(OH)2D3 analogs have also been used in combination with other compounds in order to check the effects on the proliferation of malignant prostate cancer cells. Thus, combination therapy with ketoconazole (a general inhibitor of P450 enzymes, some of which are necessary for androgen biosynthesis and the metabolism of vitamin D compounds) and calcitriol or EB1089 may enhance the anti-tumor activities of these compounds in prostate cancer and alleviate side effects of 1,25(OH)2D3 deficiency that may be associated with ketoconazole therapy (165).

Yang and co-workers (166) showed that 1,25(OH)2D3 inhibited G1-to-S progression in LNCaP prostate cancer cells through p27KIP1 stabilization and Cdk2 mislocalization to the cytoplasm. Using the same cell line, Rao et al (167) showed that 1,25(OH)2D3 and genistein cooperate to increase the stability of the VDR protein and to up-regulate the levels of p21WAF1CIP1. Bao et al (168) have shown that androgen signaling is required for 1,25(OH)2D3-mediated growth inhibition in human prostate cancer cells. They demonstrated that the androgen receptor (AR)-positive LNCaP and CWR22R cell lines are more sensitive than the AR-negative PC3 or DU145 lines. 1,25(OH)2D3 treatment inhibited Cdk2 activity and induced G0/G1 arrest. Supporting these data, 1,25(OH)2D3 inhibits fatty acid synthase (FAS) expression by stimulating the expression of long-chain fatty acid CoA ligase 3 (FACL3/ACS3) in LNCaP cells (169). This takes place through an androgen/AR-mediated pathway (170), which might be one of the mechanisms of the anti-proliferative effect of 1,25(OH)2D3 in LNCaP cells.

Another study has shown that combined treatment with 1,25(OH)2D3 and 9-cis-retinoic acid (9cRA) inhibits the transcription of the telomerase reverse transcriptase (TERT) gene in LNCaP and PC3 cells. TERT codes for the catalytic subunit of telomerase, and contains in its promoter a VDRE bound by the VDR-RXR heterodimer (171). In ALVA-31 cells, complete G0/G1 arrest and approximately 50% inhibition of tumor stromal cell growth has been observed (42). By transcriptional profiling, a number of genes related to potential mechanisms of prostate growth regulation have been found up- and down-regulated by 1,25(OH)2D3. These include those coding for ER, heat shock proteins 70 and 90, Apaf-1, HER-2/NEU, and paxillin (42).

The finding that normal prostate epithelial cells are acutely sensitive to the anti-proliferative action of 1,25(OH)2D3, while prostate cancer cell lines and primary cultures display a range of sensitivities suggests that cancer cells have a number of mechanisms (genetic, epigenetic, post-translational modifications) that inhibit the expression of VDR and its target genes. 1,25(OH)2D3 sensitivity (estimated as GADD45alpha induction) can be restored by co-treatment with low doses of histone deacetylase inhibitors such as trichostatin A (TSA), which is concordant with the finding that insensitive prostate cancer cell lines showed epigenetic repression of VDR transcription (172). A possible explanation for this finding is that PC3 and DU145 cells express respectively 1.8- and 2-fold higher level of the VDR co-repressor SMRT mRNA relative to normal prostate cells, which impedes GADD45alpha induction by 1,25(OH)2D3 (173). Additionally, prostate cancer cells have greatly decreased activity of 25-hydroxyvitamin D3 1-alpha-hydroxylase and are therefore very inefficient in the conversion of 25(OH)D3 into 1,25(OH)2D3 (174).

An interesting study has shown that 1,25(OH)2D3 enhances ionizing radiation (IR)-induced apoptosis of LNCaP cells, and that nanomolar doses of 1,25(OH)2D3 and 19-nor-lalpha,25(OH)D3 show synergistic inhibition of growth of LNCaP cells at radiobiologically relevant doses of IR (175). At higher doses of IR, the combination of 1,25(OH)2D3 and IR or 19-nor-lalpha,25(OH)2D3 and IR resulted in moderate antagonism.

3.4. Cancer cells of diverse origin

3.4.1. Head and neck squamous carcinoma

Early stage head and neck squamous cell carcinoma (HNSCC) is often treated with surgery and radiotherapy. However, a high percentage of patients develop second primary carcinomas. For this reason, there is an intense search for chemotherapeutic drugs for HNSCC treatment (176). 1,25(OH)2D3 and EB1089 have anti-proliferative, genoprotective and pro-differentiation effects in HNSCC cell lines (37, 177). Both inhibit proliferation by arresting HNSCC cells in G0/G1 phase rather than by inducing apoptosis (27, 34, 178, 179). However, the mechanism of this anti-proliferative action is not entirely clear. While p27KIP1 expression does not change after 1,25(OH)2D3 treatment in human head and neck SCC25 cells (34), 1,25(OH)2D3 increases p27KIP1 protein levels in mouse AT-84 and SCCVII/SF cell lines (27, 30, 178). It has been reported that EB1089 raises p27KIP1 levels by increasing p27KIP1 protein stability through the repression of cyclin kinase subunit 1 and F-box protein p45SKP2, which are components of the SCF(SKP2) ubiquitin ligase complex implicated in p27KIP1 proteasomal degradation (30). p45SKP2 repression is relevant because its over-expression is
Anti-cancer activity of vitamin D compounds

associated with a poor prognosis in HNSCC (180). On the other hand, 1,25(OH)2D3 does not change or even inhibits p21WAF1/CIP1 expression in HNSCC cell lines (27, 34, 178).

Transcriptional profiling has helped to identify novel target genes mediating the anti-proliferative effects of 1,25(OH)2D3 in HNSCC (34, 37, 177). One example is amphiregulin, a member of the EGF family that inhibits growth of SCC25 cells (34, 179). Amphiregulin induction by 1,25(OH)2D3 has also been observed in human breast and colon carcinoma cells (43, 179), and therefore may contribute in an autocrine or paracrine manner to the growth inhibitory effects of 1,25(OH)2D3 in different cell systems. In addition, transcriptome analyses have revealed that 1,25(OH)2D3 down-regulates the expression of several mitogenic factors in HNSCC cells including VEGF-related proteins, midkine and Cyr61, a growth factor implicated in mitogenic factors in HNSCC cells including VEGF-related systems. In addition, transcriptome analyses have revealed that 1,25(OH)2D3 down-regulates the expression of several mitogenic factors in HNSCC cells including VEGF-related protein, midkine and Cyr61, a growth factor implicated in angiogenesis and tumorigenesis (37, 177).

As in colon cancer and insulinoma cells (35, 181), 1,25(OH)2D3 induces the expression of GADD45alpha gene in HNSCC cells (27, 34). GADD45alpha promotes cell cycle arrest and DNA repair in response to p53 induction due to DNA damage, and is required for the maintenance of genomic stability. However, 1,25(OH)2D3 and its analogs are not DNA damaging agents and their induction of GADD45alpha is p53-independent (27, 34). As happens in colon SW480 cells (35), 1,25(OH)2D3 also induces the expression of enzymes that are implicated in the control of redox balance, implicating 1,25(OH)2D3 as an anti-oxidant agent (37, 177). The identification of several target genes has provided evidence that 1,25(OH)2D3 and EB1089 drive SCC25 cells towards a more differentiated state and revert their malignant phenotype (37, 177). EB1089 represses the expression of several markers associated with cancer progression, such as squamous cell carcinoma antigen (SCCA), tenascin C and N-cadherin. Repression of N-cadherin by EB1089 is associated with restoration of an epithelial phenotype (37, 177). In addition, EB1089 induces several genes associated with epithelial cell differentiation: cystatin M, protease M, type XIII collagen, desmoglein-3 and calmodulin-like protein. In view of these results, 1,25(OH)2D3 analogs could be considered as candidates for HNSCC treatment, alone or in combination with radiotherapy or other chemotherapeutic drugs.

3.4.2. Pancreatic cancer

There is an increasing interest in the study of possible effects of 1,25(OH)2D3 and analogs against this highly aggressive and incurable cancer. The effects of 9cRA and the vitamin D analogs EB1089 and CB1093 on three pancreatic adenocarcinoma cell lines (AsPc-1, Bx-PC-3, T3M-4) were investigated (182). All these compounds caused growth inhibition, but the vitamin D analogs were generally more potent. They were also more effective on their own than in combination with 9cRA. Growth arrest correlated with an increased proportion of cells in the G0/G1 phase. Apoptosis was induced in all three cell lines by 9cRA, whereas neither EB1089 nor CB1093 had this effect. Furthermore, addition of EB1089 or CB1093 together with 9cRA significantly reduced apoptosis.

Colston et al (183) observed that EB1089 inhibits the growth of the GER cell line expressing significant amounts of VDR, although the mechanism of action was not studied. More biochemical data were obtained by Kawa and co-workers (184). These authors analyzed the growth-inhibitory effect of 1,25(OH)2D3 and 22-oxa-1,25(OH)2D3. In responsive cells (Bx-PC-3, Hs 700T and SUP-1), there was marked up-regulation of p21WAF1/CIP1 and p27KIP1 after 24 h treatment and marked down-regulation of cyclins, Cdk5 and Cdk inhibitors seven days after treatment. In non-responsive cells (Hs 766T and Capan-1), no such changes were observed.

Remarkably, VDR has been found expressed in pancreatic tumors and in all cell lines established from primary cultures of them. VDR expression in cancer cells was higher (3-fold) than in normal pancreas, and treatment of the cancer cell lines with high doses (10-5 M or higher) of EB1089 decreased cell number (185). Recently, Ohlsson et al (186) reported that 1,25(OH)2D3 decreases the proliferation of several pancreatic cancer cell lines at low concentrations (10-10 M) and Schwartz et al (187) showed that the pro-hormone 25(OH)D3 inhibited the growth of three of the four lines tested in a manner that correlated with the level of induction of p21WAF1/CIP1 and p27KIP1, and with the induction of cell cycle arrest at the G1/S checkpoint. Furthermore, the anti-proliferative effect of 25(OH)2D3 is independent of the presence of mutated K-Ras gene.

3.4.3. Blood cancers

There is increasing evidence that 1,25(OH)2D3 and its analogs could be used in the prevention and treatment of several forms of blood-related cancer, although some of the results are slightly contradictory. Twenty years ago 1,25(OH)2D3 was found to induce the maturation of the promyelocytic leukemia HL60 cell line to macrophage-like cells (188). High doses (10-6 M) also induced differentiation in vitro of leukemia blasts from patients, though no enduring therapeutic effect could be seen (189). Remarkably, while cells from myeloid leukemic lines that contained relatively mature cells (HL60, U937, THP, HEL, M1) were induced to differentiate and were inhibited in their clonal growth, the myeloblast KG-1 line and normal human granulocyte-monocyte stem cells which depend on colony-stimulating factor were stimulated in their clonal proliferation by the hormone in the presence of suboptimal concentrations of this factor (190). Exposure of myeloid leukemia cells to 1,25(OH)2D3 analogs results in mononcytic-like maturation. It has been reported that brief treatment of HL60 cells with differentiation-inducing concentrations of 1,25(OH)2D3 makes these cells resistant to cell death by apoptosis, although Northern and Western blot analysis showed that the expression of BCL-2 proto-oncogene was rapidly reduced by 1,25(OH)2D3 (191). This anti-apoptotic effect of 1,25(OH)2D3 seems to be related with increased mitochondrial MCL-1 and RAF-1 proteins and reduced release of cytochrome C (192). Treatment of HL60 cells with various combinations of retinoids and 1,25(OH)2D3 resulted in cell differentiation to neutrophils or monocytes, or in a failure to differentiate and apoptosis (193). Combination of either 9cRA or all-trans RA and
1,25(OH)₂D₃ resulted in a different cell fate, which has important implications for the use of combinations of these agents in differentiation therapy. The combination of the 20-epi-vitamin D₃ analog KH1060 with 9cRA irreversibly inhibits clonal growth, decreases BCL-2 expression, and induces apoptosis in HL60 cells (194). CB1093 has proved to be the most efficient 1,25(OH)₂D₃ analog tested so far in inducing differentiation and inhibiting proliferation of HL60 cells (195).

Jung et al (196) showed EB1089-induced inhibition of HL60 cell proliferation, with up-regulation of the expression of type I and II TGF-beta receptors and TGF-beta1, suggesting synergistic action of TGF-beta1 and EB1089. Combined treatment of EB1089 and TGF-beta1 increased expression of p27KIP1 protein compared to either ligand alone. Moreover, EB1089 induces apoptosis via a p53-independent mechanism involving p38 MAPK activation and suppression of ERK activity in B-cell chronic lymphocytic leukemia cells in vitro (197). Additionally, 1,25(OH)₂D₃ and bryostatin-1 synergistically induce monocytic differentiation of NB4 acute promyelocytic leukemia cells by modulating cell cycle progression (198). The combined treatment decreases expression of CDK2, CDK1, CDK4, Cyclins E and D3, and RB binding protein (RBBP) (199).

NB4 and HL60 cell growth is also inhibited by the analog 21-(3-methyl-3-hydroxy-butyl)-19-norD₃ (Gemini-19-nor). This compound induces differentiation and apoptosis, strongly inducing the expression of CD11b and CD14 on HL60 cells, and also of p27KIP1 and PTEN (200). The combination of Paricalcitol (19-nor-1alpha,25(OH)₂D₃) with arsenic trioxide (As₂O₃) shows marked enhanced anti-proliferative effect and induces monocytic differentiation of NB4 and HL60 cells, probably because As₂O₃ increases the transcriptional activity of Paricalcitol by increasing its intracellular levels via the reduction of the function of the 24-hydroxylase (201).

The effects of 1,25(OH)₂D₃ analogs have also been explored in myeloma cells. Puthier and co-workers (202) showed that 1,25(OH)₂D₃ and EB1089, alone and in synergy with dexamethasone, leukemia inhibitory factor and Oncostatin M, induced cell growth arrest and apoptosis in LP1, NCI-H929, RPMI 8226 and SBN1 cells. EB1089 down-regulated the expression and production of soluble interleukin-6 receptor alpha chain (gp80), and inhibited its deleterious up-regulation by dexamethasone. In FO mouse myeloma cells, 1,25(OH)₂D₃ decreased cell count and increased apoptosis (203).

3.4.4. Melanoma

In 1981 Colston K., Colston M. J. and Feldman D. described the presence of specific, high-affinity receptors for 1,25(OH)₂D₃ in malignant melanoma and that the growth of human melanoma cells in vitro was inhibited by the hormone. This was the first demonstration of an action of 1,25(OH)₂D₃ on tumor cells (204). Melanoma cells show cell-type specific responses to 1,25(OH)₂D₃. MeWo and WM1341 cells express similar amounts of VDR mRNA and show functional gene regulatory effects of 1,25(OH)₂D₃ but, nevertheless, only WM1341 cells undergo apoptosis (205). Further investigations indicated that physiological concentrations of 1,25(OH)₂D₃ did not induce apoptosis in primary melanocytes despite a cell growth inhibitory effect (206). 1,25(OH)₂D₃ treatment renders melanocytes resistant to several apoptosis inducers including TNF-alpha and ultraviolet radiation. This anti-apoptotic effect was completely abolished by the addition of N,N-dimethylsphingosine, which blocks the formation of the sphingolipid degradation product sphingosine 1-phosphate (S1P), suggesting a crucial role for this sphingolipid in 1,25(OH)₂D₃-mediated cytoprotection (206). This anti-apoptotic effect of S1P contrasts with its reported mitogenic action in fibroblasts and other cells types. In contrast, again, to what happens in epithelial cells, neither 1,25(OH)₂D₃ nor S1P altered the BCL-2/BAX ratio in melanocytes.

High RNA expression of VDR, CYP27A1, CYP27B1 and CYP24 has been found in MeWo, SKMEL28 and BU47HOM cells (207). In these cell lines, 1,25(OH)₂D₃ and several analogs suppressed proliferation, but did not induce apoptosis, by mechanisms that include induction of VDR and 24-hydroxylase expression as well as histone deacetylation and calpain activity.

3.4.5. Miscellaneous

Studies on 1,25(OH)₂D₃ action in human liver cancer cells are scarce. Liver has long been considered negative for VDR expression. However, recent studies have shown expression of functional VDR in some liver cell types and human hepatocarcinomas (208). Accordingly, Morris’ group (209-211) has reported that EB1089 and CB1093 profoundly inhibit the proliferation of HepG2 cells in vitro.

Data on 1,25(OH)₂D₃ effects on bladder cancer are still rather preliminary. Nevertheless, it has been reported to inhibit proliferation and induce apoptosis in at least two human bladder cancer cell lines, 253J and T-24, by unknown mechanisms (212).

4. ANTI-TUMOR ACTION OF 1,25(OH)₂D₃ AND ANALOGS IN EXPERIMENTAL ANIMALS

Studies with experimental animals play a pivotal role in late pre-clinical agent optimization, and guide the selection of candidates for phase I clinical trials. The anti-cancer activity of 1,25(OH)₂D₃ and its analogs has been demonstrated in vitro and in vivo by evaluating their activity and toxicity in different animal models. Four models have been used: mice/rats fed with high-fat diets or subjected to carcinogenic treatment (Table 1), immunodeficient mice implanted with human tumor xenografts (Table 2), and mice with germline mutations in genes involved in the process of carcinogenesis or in vitamin D biology (VDR, CYP27B1).

4.1. Results in diet- or carcinogen-treated animal models

Epidemiological and laboratory studies have suggested that a high-fat diet, with low levels of vitamin D,
Anti-cancer activity of vitamin D compounds

Table 1. Effects of vitamin D compounds on animal models of chemical carcinogenesis

<table>
<thead>
<tr>
<th>Organ</th>
<th>Carcinogen</th>
<th>Treatment</th>
<th>Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>DMBA</td>
<td>Vitamin D deficient diet</td>
<td>Increase in the incidence of mammary lesions</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1alpha(OH)D$_3$</td>
<td>Reduction of tumor incidence and multiplicity</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1alpha(OH)D$_2$</td>
<td>Tumor inhibition if treatment during the promotion phase</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB1089</td>
<td>Tumor regression, partially due to apoptosis</td>
<td>221, 222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9cRA + 1,25(OH)$_2$D$_3$</td>
<td>Decrease of mammary cancer incidence</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>MNU</td>
<td>Ro24-5531</td>
<td>Reduction of tumor incidence</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ro24-5531 + tamoxifen</td>
<td>Reduction of total tumor load and prevention of carcinogenesis</td>
<td>224</td>
</tr>
<tr>
<td>Colon</td>
<td>MNU</td>
<td>Vitamin D deficient diet</td>
<td>Abolition of the protective effects of calcium supplementation</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>DMH</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>Tumor incidence reduced if treatment prior to the carcinogen</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24R,25(OH)$_2$D$_3$</td>
<td>Decrease of ACF incidence if treatment in the post-initiation phase</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>AOM</td>
<td>Ro24-5531</td>
<td>Reduction of cyclin D1 increase and E-cadherin decrease in ACF</td>
<td>231</td>
</tr>
<tr>
<td>Skin</td>
<td>DMBA/TPA</td>
<td>1,25(OH)$_2$D$_3$ or 1alpha(OH)D$_3$</td>
<td>Decrease of proliferation and angiogenesis</td>
<td>59</td>
</tr>
</tbody>
</table>

Table 2. Xenograft models showing anti-tumor activity of vitamin D compounds

<table>
<thead>
<tr>
<th>Tumor cell type</th>
<th>Cell line injected</th>
<th>Treatment</th>
<th>Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>MDA-MB-231</td>
<td>EB1089</td>
<td>Prevention of metastatic bone lesions</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
<td>EB1089/EB1089 + IR</td>
<td>Induction of apoptosis</td>
<td>153, 244</td>
</tr>
<tr>
<td></td>
<td>BT-474</td>
<td>1alpha(OH)D$_3$</td>
<td>Analog crosslinked to HER-2 antibody</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>UISO-BCA-4</td>
<td>1alpha(OH)D$_3$</td>
<td>Absence of hypercalcemia</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>MX-1/MCF-7</td>
<td>OCT</td>
<td>Injected ER-negative and ER-positive breast cells</td>
<td>123, 250</td>
</tr>
<tr>
<td></td>
<td>SAP-7</td>
<td>OCT + tamoxifen</td>
<td>Injected ER-positive breast cells</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>MCF-7/MDA-435S</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>MCF-7 overexpressing VEGF/tumors less vascularized</td>
<td>59</td>
</tr>
<tr>
<td>Colon</td>
<td>SW480-ADH</td>
<td>EB1089</td>
<td>Ineffective for SW480-R cells (VDR-negative)</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>LoVo</td>
<td>EB1089</td>
<td>Hypercalcemia</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>HT29</td>
<td>Ro25-6760</td>
<td>Ineffective for SW620 expressing very low levels of VDR</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>HT29</td>
<td>Paricalcitol</td>
<td>Reduction of tumor growth</td>
<td>247</td>
</tr>
<tr>
<td>Prostate</td>
<td>LNCaP</td>
<td>EB1089</td>
<td>Reduction of tumor growth</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Mat-LyLu</td>
<td>EB1089</td>
<td>Reduction of lung metastases</td>
<td>260</td>
</tr>
<tr>
<td>Pancreas</td>
<td>GER</td>
<td>EB1089</td>
<td>Absence of hypercalcemia</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Bx-PC-3</td>
<td>OCT</td>
<td>Absence of hypercalcemia</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>FA-6, PAN-7</td>
<td>OCT</td>
<td>Effective for treatment of cancer-associated hypercalcemia</td>
<td>252</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>Y-79</td>
<td>16,23-D$_3$</td>
<td>Effective in large tumor study, but not in long-term study</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Y-79</td>
<td>1alpha(OH)D$_3$</td>
<td>Effective in large tumor study and in long-term study</td>
<td>249</td>
</tr>
<tr>
<td>Squamous</td>
<td>KCC-1, LC-6, PHA-1</td>
<td>OCT</td>
<td>Effective for treatment of cancer-associated hypercalcemia</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>HPK1Azus</td>
<td>EB1089</td>
<td>Reversal of hypercalcemia</td>
<td>245</td>
</tr>
<tr>
<td>Liver</td>
<td>SKHEP-1</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>Absence of hypercalcemia</td>
<td>254</td>
</tr>
<tr>
<td>Thyroid</td>
<td>WRO</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>Restores differentiation and prevents metastatic growth</td>
<td>255</td>
</tr>
<tr>
<td>Melanoma</td>
<td>COLO 239F</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>Ineffective for RPMI 7932 cells (VDR-negative)</td>
<td>253</td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>KS Y-1</td>
<td>1,25(OH)$_2$D$_3$</td>
<td>Tumor growth retardation</td>
<td>256</td>
</tr>
</tbody>
</table>

increases the risk of cancer development in the pancreas, prostate, colon, and breast (213). In long-term studies, it has been reported that wild-type mice fed with a Western-style diet (high fat and phosphate and low vitamin D and calcium content) showed hyperproliferation in epithelial cells of these tissues in the absence of carcinogen exposure (213-216). Short periods (12 weeks) on these diets were sufficient to induce colon-crypt hyperplasia (217). Furthermore, these effects were markedly suppressed when Western-style diets were supplemented with calcium and vitamin D, suggesting that hyperproliferation could be prevented by increasing dietary calcium and vitamin D (213). The effects of a Western-style diet were also tested in mutant Apccm^{min} mice, a model of intestinal carcinogenesis that develops multiple neoplasias throughout the intestinal tract within a few weeks of birth. Mice used in this study carried a truncated Apc allele with a nonsense mutation in exon 15 (Apc^{1638}). The numerous polyps that developed in normal conditions (standard AIN-76A diet) were significantly increased when the mice were fed the...
Western-style diet, and their survival diminished (218). Apc^{min} mice were also treated with 1,25(OH)₂D₃ and the synthetic analog Ro26-9114 (1alpha,25(OH)2-16-ene-19-nor-24-oxo-D₃). After 10 weeks of treatment tumor number was not significantly affected, although there was a significant decrease in total tumor load (sum of all polyp areas) over the entire gastrointestinal tract. In the group treated with the vitamin D analog there was a 36% decrease in total tumor load, with no severe toxic side effects, while the reduction was 46% in the 1,25(OH)₂D₃-treated group, which showed significantly increased calcemia (219). Another study in different tissues (skin, liver, colon, stomach) of normal mice, demonstrated that 1,25(OH)₂D₃ inhibited the induction by tumor promoters of ornithine decarboxylase (ODC) (220). Importantly, ODC is the rate-limiting enzyme in the polyamine biosynthetic pathway, and its activity increased in normal proliferating cells and also in intestinal cells of carcinogen-treated rats (221) and Apc^{min} mice (222).

Prevention of colorectal, breast, and prostate cancer may depend on optimal synthesis of 1,25(OH)₂D₃. Soy feeding or, more effectively, genistein feeding for 4 months increased CYP27B1 and reduced CYP24 expression in the mouse colon, which resulted in high 1,25(OH)₂D₃ levels (223). These results are consistent with the extremely low incidence of prostate, breast, and possibly colon cancer in countries such as China and Japan, which have a traditional Asian diet, rich in Soybean products containing high levels of genistein and other phytoestrogens (224).

As common laboratory rodents do not develop cancer spontaneously, they are usually treated with an initiator to induce the neoplasia so that any influence of dietary factors can be observed. The effects of vitamin D compounds on experimental carcinogenesis have mainly been studied in the mammary gland, colon and skin (Table 1). The carcinogens most frequently used to induce mammary adenocarcinomas in rats are 7,12-dimethylbenzanthracene (DMBA) and N-methyl-N-nitrosourea (MNU), with nearly 100% incidence (225). Initial studies showed that DMBA-treated female Sprague-Dawley rats fed with a high-fat diet, low in calcium and vitamin D, showed an increase in the incidence of mammary lesions from 31% to 55%, and a significant increase in average lesion burden/rat (226).

Synthetic analogs have also been tested in chemical carcinogenesis protocols, showing that they are potent inhibitors of the development of neoplastic lesions and less toxic than 1,25(OH)₂D₃. 1alpha(OH)D₃ inhibited the development of DMBA-induced pre-neoplastic lesions in mammary glands in organ culture (227). Similar results showing significant reduction of tumor incidence and multiplicity were obtained in MNU-induced rat mammary carcinogenesis (228). In a recent study using MNU, diet supplementation with 1alpha(OH)D₃ provided no protection during the initiation phase, but it did provide protection during the promotion phase, leading to 37% inhibition of mammary cancer incidence. These results show for the first time that the effects of this analog may be mediated selectively during the promotion or progression phases of carcinogenesis (229). EB1089 causes regression of MNU-induced rat mammary tumors due at least in part to the induction of apoptosis, as tumor sections showed a marked loss of cellularity, only few mitotic cells and a considerable nuclear DNA fragmentation (230, 231). In the same model, the combination of 9cRA and 1,25(OH)₂D₃ caused a statistically significant decrease of 44% in mammary cancer incidence in comparison with a 23% decrease obtained with 9cRA alone (232). Ro24-5531 (1alpha,25(OH)₂-16-ene-23-yne-26,27-hexafluoro-D₃) extended tumor latency and reduced tumor incidence in MNU-treated rats without raising serum calcium levels. Its combination with tamoxifen enhanced the reduction of total tumor load and prevention mammary carcinogenesis, suggesting that these two compounds act through independent mechanisms (233).

Similar beneficial results were obtained using the carcinogens MNU, 1,2 dimethylhydrazine (DMH) and azoxymethane (AOM) in models of colon carcinogenesis. Colonic tumorigenesis induced by the chronic treatment with MNU in rats was reduced by oral supplementation of 1alpha(OH)D₃ (234). Around one-third of the colonic carcinomas induced by DMH had mutated K-ras oncogene (235); however, no mutations were detected in the tumors developed by rats fed with calcium-supplemented diet. In this model, concomitant vitamin D deficiency abolished the anti-mutagenic effect of dietary calcium supplementation, abolishing the protective effects of calcium on tumor formation (236, 237). Further studies have shown that 1,25(OH)₂D₃ administered prior to (but not simultaneously to or after) DMH significantly reduced (50%) the incidence of colon tumors (221). 24R,25(OH)₂D₃ was used in this same experimental model, causing a dose-dependent decrease in the number of aberrant crypt foci (ACF) only when administered in the post-initiation phase (238). In DMH-treated rats, Ro25-5317 (1alpha,25(OH)₂-16,23Z-diene-26,27-hexafluoro-D₃) and more potently Ro25-9022 (1alpha,25(OH)₂-16,23E-diene-26,27-hexafluoro-9-nor-D₃) inhibited tumor incidence and the rate of spontaneous metastaases (67). In another study, the analog Ro24-5531 demonstrated chemopreventive effect in AOM-treated rats, reducing the incidence of tumors, most of which were benign adenocarcinomas, by 70% (239). AOM-induced hyperproliferation was accompanied by a 5-fold increase in cyclin D1 and >50% decrease in E-cadherin protein in ACF. These alterations were significantly inhibited by Ro24-5531 in ACF and tumors. Likewise, the up-regulation of cyclooxygenase-2 and inducible nitric oxide synthase in AOM-induced tumors were also blocked by this analog (240). Moreover, this compound blocked the changes in PKC-zeta expression induced by AOM in adenomas and carcinomas and induced PKC-epsilon, which may underlie its ability to prevent malignancy (241). In addition, 1,25(OH)₂D₃ decreased proliferation and angiogenesis in AOM-treated rats, as reflected by a decrease in microvessel counts and immunohistochemical VEGF staining (61).

Topically administered 1,25(OH)₂D₃ during the promotion phase halved the formation of chemically-induced (DMBA as initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoter)
tumors in the mice skin (242). The analogs 1beta-hydroxymethyl hybrid and 24- or 25-t-butyl sulfones, lacking the 25-hydroxyl group, efficiently inhibited the incidence and multiplicity of papilloma formation in a similar protocol. The greatest efficacy was shown by the hybrid analog, with reduction in tumor incidence (28%) and multiplicity (63%) (243).

Taken together, these data confirm that vitamin D compounds are preventive and therapeutic agents in animal tumor models, but very few mechanistic studies have been carried out in vivo. In one of them, VDR has been defined as a potential bicalcic acid sensor in the enteric tract, where elevated concentrations of the secondary bicalcic lithocholic acid (LCA), which promotes colon carcinogenesis, may activate VDR (244). High-fat diet leads to LCA accumulation in the colon, which induces DNA damage and inhibits DNA repair enzymes. Accordingly, LCA promotes colon cancer in animals and high levels of LCA have been found in colorectal cancer patients (245). To confirm the results in vitro, Makishima et al. treated mice with agonists for VDR (1,25(OH)2D3 and EB1089), pregnane X receptor (PXR) (pregnenolone-16alpha-carbonitrile) and farnesoid X receptor (LCA as a pan-agonist for all three receptors) (244). CYP3A11, a cytochrome P450 enzyme that detoxifies LCA in colon cells, increased its mRNA expression in response to both VDR- and PXR-specific ligands, as well as to LCA. In contrast, the VDR-specific target gene calbindin 9K was activated by LCA and also by the VDR-selective agonists, indicating that LCA can function as a VDR agonist in vivo. Activation of VDR by LCA or 1,25(OH)2D3 induced CYP3A11 transcription in a feed-back mechanism that results in colon LCA degradation (244, 246, 247). Therefore, this mechanism of LCA detoxification could partly explain the protective action of 1,25(OH)2D3 against colon cancer. This protection may be overridden when the detoxification is saturated, for example by increased levels of LCA provided by Western-style diet (5, 244).

In rats, EB1089 caused a marked prostate regression accompanied by an increase in the expression of IGFBP-2,-3,-4, and -5 mRNA and IGF-I gene expression. Furthermore, a significant increase in the number of apoptotic cells was observed (248). These findings suggest an interfering effect of ligand-activated VDR with the IGF-I signaling pathway that correlate with results obtained in cultured cells (35, 54, 55, 139-141).

4.2. Action of 1,25(OH)2D3 and analogs against tumor xenografts

Human tumor xenografts implanted subcutaneously into immunosuppressed mice play a significant role in pre-clinical anti-cancer drug development. Studies using human cancer cells in athymic (nude) mice were first performed with 1,25(OH)2D3 and 24R,25(OH)2D3, and rendered optimal results of tumor growth inhibition, induction of differentiation and activation of apoptosis, but unfortunately with a simultaneous hypercalcemic effect (249, 250).

Studies from our laboratory have shown that EB1089 inhibits (30%) the growth of tumors generated by VDR-positive SW480-ADH cells, but not those generated by VDR-negative SW480-R human colon cancer cells implanted in severely immunosuppressed SCID mice (77, and unpublished results) (Table 2). EB1089 also shows activity against other human colon (LoVo) (251), breast (MDA-MB-231, MCF-7) (156, 252, 253), pancreas (GER) (153), squamous (HPK1-Aras) (254), and prostate (LNCaP) (164) xenografts. It causes apoptotic regression of MCF-7 cells (156, 253) and prevents skeletal metastasis originated by MDA-MB-231 cells in nude mice (252). Furthermore, EB1089 acts in synergy with the effects of ionizing radiation against xenografts of breast MCF-7 cells (156).

In addition, long-term administration of EB1089 significantly decreases the incidence of spontaneous hepatocellular carcinoma in C3H/Sy mice, which indicates chemopreventive activity (255). Other non-toxic analogs, Paricalcitol and Ro25-6760 (1alpha,25(OH)-16-ene-23-yne-26,27-hexafluoro-19-nor-D3), tested in colon HT29 xenografts, have similar anti-tumoral effects (256, 257). In retinoblastoma xenografts (Y-79 cells), 16,23-D3 (1alpha,25(OH)-16-ene-23-yne-D3) and 1alpha(OH)D2 were successfully used in a large-tumor study, but effective doses of both compounds caused toxic effects and an increase in mortality (258). OCT (22-oxa-1alpha,25(OH)2D3) has an anti-tumor effect against xenografts generated by ER-negative and ER-positive breast cells and pancreatic carcinoma cells (126, 259, 260). This analog has been used alone and in combination with AHPrBP, a biphosphonate that inhibits osteoclastic bone resorption, against cancer-induced hypercalcemia in xenografts of pancreatic (FA-6, PAN-7) and squamous cell carcinoma of the lung (KCC-1, LC-6) and pharynx (PHA-1) cells (261). OCT has synergistic action with tamoxifen against ER-positive breast cancer xenografts (126). Studies using malignant melanoma, liver, thyroid and Kaposi sarcoma cells have demonstrated anti-tumoral action of 1,25(OH)2D3 in xenotransplanted nude mice (262-265). In the case of thyroid carcinoma, the reduction in tumor burden and prevention of metastatic growth after 1,25(OH)2D3 administration was associated with a marked accumulation of p27kip1 in the cell nucleus (264).

1alpha(OH)D2, which is non-toxic in short-term studies but calcemic in long-term treatments, inhibited the growth of breast UIOSO-BCA-4 cancer cells in athymic mice (266). Mehta and colleagues have investigated the therapeutic potential of targeted delivery of this analog to HER-2 overexpressing BT-474 breast cancer cells. The growth of BT-474 cells transplanted into athymic mice was significantly inhibited by 1alpha(OH)2D2 covalently linked to an anti-HER-2 antibody (267).

Xenograft tumors have several limitations. They cannot be used to study anti-metastatic and anti-angiogenic strategies, since many of the components involved are of murine, rather than human, origin (268). One approach to a suitable model is the use of the androgen-insensitive metastatic rat Mat-LyLu prostate cells. 1,25(OH)2D3 and EB1089 caused not only inhibition of tumor growth, but also a significant reduction in the number and size of lung
Anti-cancer activity of vitamin D compounds

Figure 3. vdr ablation accelerates mammary gland development and delays post-lactational involution. Mammary glands from age-matched wild-type (vdr+/+) and vdr knock-out (vdr−/−) mice were compared during puberty (six weeks of age), pregnancy (day 9 after timed mating) and involution (day 4 after pup withdrawal). Left panels show whole mounted glands to visualize ductal development. Middle and right panels show glands that were formalin fixed, sectioned, and stained with hematoxylin and eosin. Adapted from refs. 276 and 307.

metastases generated by cells injected in Copenhagen rats. The effect of 1,25(OH)2D3 was accompanied by hypercalcemia and loss of body weight, while EB1089 was less toxic and did not induce severe weight loss (269). Anti-angiogenic activity in vivo has been investigated in MCF-7 cells overexpressing VEGF, which were xenografted subcutaneously together with MDA-435S cells into nude mice. The administration of 1,25(OH)2D3 for eight weeks produced tumors that were less vascularized than those forming in mice treated with vehicle alone, although tumor volume was not significantly altered probably due to the low dose of 1,25(OH)2D3 used (62). These results highlight the potential use of 1,25(OH)2D3 in both the prevention and regression of conditions characterized by pathological angiogenesis.

4.3. Results in genetically-modified mice

Transgenic mouse models have been used successfully to elucidate the molecular and cellular processes that lead to cancer initiation, progression and metastasis, and are often appropriate for therapeutic and chemopreventive trials (270).

To examine the functional role of VDR and the effects of disruption of the vitamin D signaling pathway, four independent strains of vdr-deficient mice were generated by different targeting strategies: Demay’s group generated animals lacking exons 3-5 of the vdr gene encoding the second zinc finger of the DNA-binding domain (271), while Kato’s group ablated exon 2 of the gene, which encodes the first zinc finger of the same domain (272). Later, Carmeliet’s group (273) generated mice lacking exons 1 and 2 encompassing the ligand-independent transactivation domain and the first zinc-finger. Also, Balling et al (24) have generated mice expressing a VDR protein lacking the first zinc-finger of the DNA-binding domain, which abrogates genomic and non-genomic hormonal actions. None of four types of homozygous mutant mice shows defects in development or growth before weaning, irrespective of the reduced expression of vitamin D target genes. After weaning, however, mutants fail to thrive, and developed alopecia, hypocalcemia, secondary hyperparathyroidism, osteomalacia, rickets and elevated serum 1,25(OH)2D3. In addition, bone formation was severely impaired, a typical feature of vitamin D-dependent rickets type II (VDDR II) (271, 272). Studies in these mice confirmed a marked impairment in duodenal calcium absorption (273). However, differences have been observed between the different vdr-deficient mice. Homozygous null mice of Demay’s group were fertile, and survived for six months without complications (271). Also, mice generated by Balling’s group showed normal uterine, testicular, and seminal vesicle weight (24). In contrast, mice generated by Kato’s group had a shorter lifespan, and female animals showed uterine hypoplasia and impaired ovarian folliculogenesis, and male animals had also reproductive dysfunction (272). Altogether, these findings establish a critical role for VDR in promotion of intestinal calcium absorption, growth and bone formation (271, 272). In addition, mice lacking VDR display cardiac hypertrophy (274) enhanced thrombogenicity (275) and, as reviewed below, altered sensitivity to tumorigenesis.

Mammary glands from vdr knock-out mice are heavier and exhibit enhanced growth, as evidenced by the higher number of terminal end buds, greater ductal outgrowth, and enhanced secondary branch points compared with mammary glands from age- and weight-matched wild-type mice (276). Moreover, in the absence of VDR it has been observed accelerated glandular development during pregnancy and a delayed post-lactational involution (277) (Figure 3). In addition, their
proliferative response to exogenous estrogen and progesterone, both in vivo and in organ culture, is stronger (276). Disruption of VDR signaling is associated with accelerated mammary tumor development, supporting the idea that 1,25(OH)2D3 and VDR participate in pathways that inhibit proliferation and induce differentiation in the mammary gland (277). Experiments in which vdr-deficient mice were crossed with mouse mammary tumor virus (MMTV)-neu transgenic mice showed that the loss of either one or both copies of vdr was associated with increased incidence of pre-neoplastic lesions and abnormal ductal morphology (278). Another study analyzed the sensitivity of vdr knock-out and wild-type mice to DMBA. Although the protocol was optimized for the induction of mammary tumors, 85% of vdr knock-out mice developed persistent skin tumors within 60 days of carcinogen exposure. Most of these skin tumors were classified histologically as sebaceous, squamous, or follicular papillomas. In contrast, no papillomas or any other skin lesions were observed in wild-type mice, suggesting that VDR may act as a tumor suppressor gene in the epidermis (279). In addition, there was higher percentage of DMBA-induced pre-neoplastic mammary lesions in glands from vdr knock-out than in wild-type mice. Furthermore, the histopathologic features of mammary tumors developed by vdr knock-out mice (primarily pilar tumors) were different from those of wild-type mice (primarily myoepithelial tumors) (277).

vdr-deficient mice have confirmed the protective function of VDR against colon tumor progression. These mice display enhanced proliferation in colon descendens, a tissue whose malignant transformation is particularly sensitive to diet. The inverse relationship between VDR levels and proliferation was determined by measuring the levels of proliferating cell nuclear antigen (PCNA) and cyclin D1. In parallel to enhanced proliferation, a highly significant increase of oxidative stress was determined with the marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, which was significantly augmented in vdr null mice (76, 280). In the prostate, these animals showed fat necrosis and apoptosis in the periprostatic adipose tissue, but there were no gross differences between the experimental and control group (281). Taken together, these results confirm that disruption of VDR signaling predisposes to neoplasia, enhancing sensitivity to tumorigenesis, and that vdr knock-out mice are an excellent model in which to examine induction and prevention of pre-malignant changes.

Several studies have used vdr knock-out mice to investigate the anti-metastatic effect of 1,25(OH)2D3. The metastatic capacity of Lewis lung carcinoma cells expressing the green fluorescent protein (LLC-GFP) was strongly reduced in vdr null mice fed a normal or high calcium diet as compared to wild-type mice (282, 283). The reasons are unclear: the authors propose that the inhibition of metastasis must be due to a factor(s) that is enhanced or suppressed by vdr deficiency, but the possibility that the very high levels of circulating 1,25(OH)2D3 in these animals due to the overexpression of the lalphahydroxylase gene may act through other uncharacterized receptors cannot be ruled out. As expected, wild-type mice displayed an inverse relationship between the circulating levels of serum 1,25(OH)2D3 and tumorigenesis by LLC-GFP cells.

Another interesting animal model was generated by targeted inactivation of the 25-hydroxyvitamin D3 lalpha-hydroxylase (CYP27B1) gene (284). Homozygous CYP27B1 null mice are phenotypically normal at birth, but progressively develop the symptoms of pseudovitamin D-deficiency rickets (PDDR): hypocalcemia, hypophosphatemia, hyperparathyroidism and, in the young adults, marked osteomalacia (284). 1,25(OH)2D3 is not detected in these animals, which show a reduction in the expression of skin epidermal differentiation markers (285). However, no studies on tumor susceptibility have been reported to date.

The results obtained with vitamin D compounds in different animal models demonstrate their ability to inhibit the formation of chemically-induced tumors, cause regression of tumors, prevent the development of metastases and inhibit angiogenesis. Further work to substantiate their value as chemopreventive and chemotherapy agents for clinical application should be encouraged.

5. 1,25(OH)2D3 AND ANALOGS AS ANTI-NEOPLASTIC AGENTS IN THE CLINIC

5.1. Clinical data

Based on their effects in vitro and in experimental animals, 1,25(OH)2D3 and certain analogs have been used in a number of clinical studies. Originally, Calcitriol was mainly used in leukemia and myelodysplasia and although there was some evidence of response, the results were largely disappointing (286, 287). The therapeutic application of 1,25(OH)2D3 has been hampered by predictable hypercalcemia when it is given daily, but recently several groups have demonstrated that high-dose intermittent therapy with Calcitriol is safe (288-290). Beer and colleagues developed a phase I trial where they reported that weekly dosing of oral 1,25(OH)2D3 permitted substantial dose escalation with minimal toxicity. Weekly high-doseCalcitriol (0.5 microg/kg) was then combined with weekly docetaxel in a phase II clinical trial carried out in 37 men with metastatic androgen-independent prostate cancer (AIPC). Treatment resulted in prostate specific antigen (PSA) response (defined as a confirmed 50% reduction) in 81% of the patients. This level of activity, as well as the median time to progression of 11.4 months and median survival of 19.5 months, compared favorably to results with docetaxel alone and has led to the development of a randomized trial of docetaxel with Calcitriol or placebo in the same patient population (291-293). Calcitriol has also been used in combination with paclitaxel and carboplatin in phase I studies (294, 295). In a phase II trial, 17 patients with AIPC were treated weekly with Calcitriol (0.5 microg/kg) and carboplatin. However, only one patient achieved a confirmed PSA response and four had PSA reductions ranging from 24% to 38%, which is similar to that obtained with carboplatin alone (296). In another phase
Anti-cancer activity of vitamin D compounds

II study, Trump and colleagues combined three doses per week of Calcitriol with a weekly dose of dexamethasone in 43 patients with AIPC. 80% of the men showed a lower rate of PSA rise and 34% had stable disease or decrease in PSA (50% reduction) (297).

Much effort has been directed to identifying new analogs with potent cell regulatory effects but with a weaker calcemic effect than 1,25(OH)2D3. One of the most widely used up to now is EB1089 (298). A phase I trial was designed to evaluate the calcemic effect of EB1089 in 36 patients with advanced breast and colorectal cancer. On the basis of this study, the estimated maximum tolerated dose was found to be seven microg/m^2/day for prolonged use. Six patients on treatment for more than 90 days showed stabilization of disease (299). In a phase II study, 56 patients with advanced hepatocellular carcinoma were included in an uncontrolled study of oral EB1089 treatment for one year. EB1089 was shown to reduce tumor dimensions and induce complete remission in two out of 33 evaluable patients, while 12 had stable disease and 19 had progressive disease (300). This is important because most patients with this malignant tumor are inoperable and most chemotherapy agents have minimal activity on this disease. Likewise, EB1089 has been used against inoperable cancer of the exocrine pancreas, which responds poorly to most conventional anti-cancer agents. However, the data obtained from a phase II study with 36 patients with advanced pancreatic cancer who received once-daily oral treatment with dose escalation every two weeks showed that EB1089 is well tolerated but has no objective anti-tumor activity and is ineffective in advanced pancreatic cancer (301).

Phase I (302) and phase II (303) studies using 1alpha-hydroxyvitamin D3 in patients with AIPC have been reported. The compound was well tolerated, with no unexpected toxicity. 30% of the evaluable patients (six out of 20) experienced stable disease for more than six months suggesting possible cytostatic activity.

25(OH)D3 was used in a phase IB study in patients with head and neck squamous cell carcinoma (HNSCC). Two groups of six patients were orally administered 20 or 40 microg/day 25(OH)D3 for six weeks. Although no clinical responses were observed, results of these pilot studies showed that 25(OH)D3 reduced the presence of immune suppressive CD34+ cells and improved immune competence of HNSCC patients (304).

Moreover, Wieder and colleagues have reported a phase I clinical trial with another 1,25(OH)2D3 analog, ILX23-753 (1,25(OH)2-16-ene-23-yne-D3) (305). This compound has pre-clinically demonstrated anti-tumor and differentiating effects and diminished hypercalcemic effects. The drug is safe and has potential benefits at serum concentrations assessed in patients with a variety of advanced malignancies. Further studies are needed with a reformulated higher unit dose compound to determine the safety and efficacy of higher serum concentrations.

Clearly, the available clinical data on vitamin D compounds as anti-cancer agents are unsatisfactory. However, studies have been limited to a few compounds and it is evident that this therapy is still in its infancy. Ongoing and future studies will define whether any vitamin D analog can be useful in the treatment of human neoplasias.

5.2. Mechanisms of resistance to vitamin D compounds

Resistance to vitamin D compounds can appear de novo or be acquired by a panel of mechanisms that among others may include VDR repression or mutation, deficient 1,25(OH)2D3 synthesis by attenuated 25-hydroxyvitamin D3 1alpha-hydroxylase expression or activity, accelerated 1,25(OH)2D3 elimination by 24-hydroxylase over-expression, and abnormal pattern of expression of co-repressors or co-activators.

The clinical response to 1,25(OH)2D3 and analogs requires the expression of VDR in tumoral cells, and so the diminished levels found at late stages of colon cancer progression may be responsible for the limited number of responses found in this and perhaps other types of neoplasias. Importantly, the up-regulation of the transcription factor SNAIL has been associated with diminished VDR RNA expression in a series of 32 colon cancer patients (77). This result has been confirmed in a larger series of 114 individuals (F. Bonilla, unpublished data). Since SNAIL is up-regulated in advanced colon cancers, these data suggest that 1,25(OH)2D3 analogs could be used, if toxicity is acceptable, as chemopreventive and chemotherapeutic agents to be administered during the early stages of carcinogenesis (306). In addition, the possibility that the up-regulation of SNAIL reported in cancers other than colon (melanoma, breast, gastric, hepatocellular) can be linked to VDR down-regulation, and so to unresponsiveness to vitamin D compounds, deserves to be studied.

In cultured cancer cells, other agents have been found to regulate VDR, CYP24 or CYP27B1 expression. Among them, EGF, IGF-I, estradiol, tamoxifen and phytoestrogens (84, 94, 121-123, 223, 224). Whether they modulate VDR levels, and thus vitamin D sensitivity in tumor cells in vivo is not well established.

6. CONCLUSIONS AND PERSPECTIVES

In recent years, there have been an increasing number of studies in vitro, in cultured cells, and in vivo, in animal models, aimed to elucidate the anti-cancer action and therapeutic potential of 1,25(OH)2D3 and its analogs with reduced calcemic properties. Results indicate that these compounds are strong regulators of many processes involved in cancer initiation and progression, and thus candidates for clinical use. The use of genetically-modified mice deficient for VDR or enzymes involved in 1,25(OH)2D3 metabolism are and will be in the near future, important to our understanding of the array of vitamin D activities. Undoubtedly, clinical studies will finally establish their definitive position among the anti-cancer armamentarium. In this regard, the development of analogs with additional reduced immunosuppressive effects
remains mostly unexplored. It is also obvious that a better knowledge of the molecular mechanism of action of these compounds will allow the rational design of combined treatments with other drugs and of compounds with more potent and useful biological activities.

VDR is critical for the action of 1,25(OH)2D3 and its analogs. Therefore, the elucidation of the agents and conditions controlling its expression in normal and tumoral cells is crucial for the selection of patients suitable to receive vitamin D compounds as chemopreventive and chemotherapeutics agents.

7. ACKNOWLEDGEMENTS

The authors apologize to the many investigators whose primary research publications could not be cited because of space constraints. We thank Dr. J. Welsh for providing us with Figure 3, Dr. H. G. Palmer for help with Figure 2, Drs. J. Welsh and F. Bonilla for communicating unpublished results, and Robin Rycroft for his valuable assistance in the preparation of the English manuscript. The work of the authors is supported by Grants from Fundación Científica de la Asociación Española contra el Cáncer, Fundación de Investigación Médica Mutua Madrileña, Instituto de Salud Carlos III (FIS03-C03/10) and Ministerio de Educación y Ciencia (SAF04-01015) of Spain.

8. REFERENCES

Anti-cancer activity of vitamin D compounds

Anti-cancer activity of vitamin D compounds

Anti-cancer activity of vitamin D compounds

Anti-cancer activity of vitamin D compounds

139. Rozen F., X. F. Yang, H. Huyhn & M. Pollak: Antiproliferative action of vitamin D related compounds and
Anti-cancer activity of vitamin D compounds

169. Qiao S. & P. Tuohimaa: Vitamin D3 inhibits fatty acid synthase expression by stimulating the expression of long-chain
Anti-cancer activity of vitamin D compounds

198. Song X. D. & A. W. Norman: Bryostatin-1 and 1alpha,25-
dihydroxyvitamin D3 synergistically stimulate the differentiation of
NB4 acute promyelocytic leukemia cells. Leukemia 13, 275-
281 (1999)
199. Clark C. S., J. E. Konyer & K. A Meckling: 1alpha,25-
dihydroxyvitamin D3 and malignant melanoma: the presence of
1,25-Dihydroxyvitamin D3 induced cell cycle arrest in the
nuclear receptor in nonparenchymal and biliary epithelial cells.
Zalzal, & A. Nanci: The normal liver harbors the vitamin D
systemic inhibition of tumor promoter-induced ornithine
decarboxylase in 1alpha-hydroxyvitamin D3-treated animals.
Cancer Res 47, 5031-5035 (1987)
H. P. Koeffler: Novel vitamin D3 analog, 21-(3-methyl-3-
hydroxy-buty1)-19-nor D3, that modulates cell growth, differentiation, apoptosis, cell cycle, and induction of PTEN in
201. Kumagai T., L. Y. Shih, S. V. Hughes, J. C. Desmond, J.
O’Kelly, M. Hewinson & H. P. Koeffler: 19-Nor-1,25(OH)2D3
(a novel, noncalcemic vitamin D analogue), combined with
arsenic trioxide, has potent antitumor activity against myeloid
Harousseau, A. Ponzo, N. Robillard, J. Wijdenes & M. Amiot:
Myeloma cell growth arrest, apoptosis, and interleukin-6
receptor modulation induced by EB1089, a vitamin D3
derivative, alone or in association with dexamethasone. Blood
88, 4659-4666 (1996)
203. Ozdemir F., N. Esen, E. Ovali, Y. Tekelioglu, M. Yilmaz,
F. Aydin, H. Kavgaci, & C. Boruban: Effects of dexamethasone, all-trans retinoic acid, vitamin D3 and interferon-alpha on FO
204. Colston K., M. J. Colston & D. Feldman: 1,25-
Dihydroxyvita min D3 and malignant melanoma: the presence of
receptors and inhibition of cell growth in culture. Endocrinology
108, 1083-1086 (1981)
205. Danielsson C., K. Fehsel, P. Polly & C. Carlberg: Differential apoptotic response of human melanoma cells to 1
Differ 5, 946-952 (1998)
206. Sauer B., L. Ruwisch & B. Kleuser: Antiapoptotic action of
Differ 1alpha,25-dihydroxyvitamin D3 in primary human melanocytes.
207. Reichrath J., M. Rech, M. Moinei, V. Meineke, W. Tilgen
& M. Seifert: Modulation of vitamin D-induced growth
inhibition in melanoma cell lines: implications for an important
function of vitamin D receptor (VDR) and 1,25-
dihydroxyvitamin D-24-hydroxylase (24-OHase) expression, histone deacetylation, and calcipain activity. Exp Dermatol 14,
154 (2004)
208. Gascón-Barré M., C. Demers, A. Mirshahi, S. Néron, S.
Zalzal, & A. Nanci: The normal liver harbors the vitamin D
nuclear receptor in nonparenchymal and biliary epithelial cells.
Hepatology 37, 1034-1042 (2003)
human primary liver cancer cell line HepG2. Hepatol Res 26,
1,25-dihydroxyvitamin D3 in HepG2 cells. Anticancer Res 20,
4257-4260 (2004)
211. Akhter J., Y. Lu, I. Finlay, M. H. Pourgholami & D. L.
Morris: 1alpha,25-Dihydroxyvitamin D3 and its analogues, EB1089 and CB1093, profoundly inhibit the in vitro
proliferation of the human hepatoblastoma cell line HepG2. ANZ
A. Meyers, T. S. Nguyen, P. Hershberger, M. R. Shurin, C. S.
213. Xue L., M. Lipkin, H. Newmark & J. Wang: Influence of
dietary calcium and vitamin D on diet-induced epithelial cell
hyperproliferation in mice. J Natl Cancer Inst 91, 176-181
(1999)
214. Xue L., K. Yang, H. Newmark & M. Lipkin: Induced hyperproliferation in epithelial cells of mouse prostate by a
Western-style diet. Carcinogenesis 18, 995-999 (1997)
Rivlin & M. Lipkin: Mammary ductal epithelial cell
hyperproliferation and hyperplasia induced by a nutritional stress
diet containing four components of a Western-style diet.
Carcinogenesis 15, 2645-2648 (1994)
216. Risio M., M. Lipkin, H. Newmark, K. Yang, F. P. Rossini,
V. E. Steele, C. W. Boone & G. J. Kelloff: Apoptosis, cell
replication, and Western-style diet-induced tumorigenesis in
217. Newmark H. L., M. Lipkin & N. Maheshwari: Colonic
hyperplasia and hyperproliferation induced by a nutritional stress
diet with four components of Western-style diet. J Nutr Cancer
82, 491-496 (1990)
Newmark, R. Kucherlapati & M. Lipkin: Dietary modulation of
carcinoma development in a mouse model for human familial
M. R. Uskokovic & D. M. Harris: 1alpha,25(OH)2-D3 and its
synthetic analogue decrease tumor load in the Apcmin Mouse.
220. Hashiba H., M. Fukushima, K. Chida & T. Kuroki:
Systemic inhibition of tumor promoter-induced ornithine
decarboxylase in 1alpha-hydroxyvitamin D3-treated animals.
Cancer Res 47, 5031-5035 (1987)
Lamprecht: A protective role of 1,25-dihydroxyvitamin D3 in
chemically induced rat colon carcinogenesis. Carcinogenesis
13, 2293-2298 (1992)
Kelloff, E. T. Hawk & R. A. Lubet: Chemopreventive efficacy of
combined piroxicam and difluoromethylornithine treatment of
Apc mutant Min mouse adenomas, and selective toxicity against
223. Källay E., H. Adlercreutz, H. Farhan, D. Lechner, E. Bajna,
W. Gerdenitsch, M. Campbell & H. S. Cross: Phytoestrogens
regulate vitamin D metabolism in the mouse colon: relevance for
colon tumor prevention and therapy. J Nutr 132, 3490S-3493S
(2002)
Watanabe, K. Wäihäli, M. Landström, E. Lundin, A. Bergh, J.-E.
Damber, P. Arman, A. Widmark, A. Johansson, J.-X. Zhang &
G. Hallmans: Phytoestrogens and prostate disease. J Nutr
130, 6585S-6595S (2000)
Anti-cancer activity of vitamin D compounds

Anti-cancer activity of vitamin D compounds

Key Words: Vitamin D, Vitamin D analogs, Cancer, Animal studies, Xenografts, Genetically-modified animals, Clinical studies, Review

Send correspondence to: Professor Alberto Muñoz, Instituto de Investigaciones Biomédicas “Alberto Sols”, Arturo Duperier 4, 28029 Madrid, Spain, Tel: 34915854451, Fax: 34915854401, E-mail: amunoz@iibh.uam.es

http://www.bioscience.org/current/vol/10.htm