Vaccines against human papillomavirus

Yen-Yu Lin 1, Hannah Alphs 1, Chien-Fu Hung 1,3, Richard BS Roden 1,2,3 and T-C Wu 1,2,3,4

Departments of 1 Pathology, 2 Obstetrics and Gynecology, 3 Oncology and 4 Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, Maryland, 21287 USA

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Prophylactic HPV vaccines
 3.1. Alternative routes of vaccine administration
 3.2. Live vector vaccines
 3.3. Polyvalent VLP prophylactic vaccines
 3.4. L2-based vaccines
4. Therapeutic HPV vaccines
 4.1. Live vector vaccines
 4.2. Peptide vaccines
 4.3. Protein vaccines
 4.4. DNA vaccines
 4.5. RNA replicon vaccines
 4.6. Dendritic cell-based vaccines
 4.7. Tumor cell-based vaccines
 4.8. Combined Approaches
5. Conclusion
6. Acknowledgement
7. References

1. ABSTRACT

Human papillomavirus has been identified as an etiological factor for cervical cancer, anogenital cancers and a subset of head and neck cancers. These important observations suggest that HPV vaccines have potential in the prevention and treatment of cervical cancer and other HPV-associated malignancies. The HPV genome encodes two HPV late genes, L1 and L2, which form the viral capsid. Early viral proteins support viral genome replication, two of which (E6 and E7) are important for HPV associated malignant transformation. Prophylactic HPV vaccines prevent infection by inducing neutralizing antibodies against HPV capsid proteins L1 and L2. However, because HPV-infected basal keratinocytes and HPV-transformed cells generally do not express L1 or L2, therapeutic HPV vaccines aim to treat established HPV infections and HPV-associated malignancies by targeting non-structural early viral antigens of HPV such as E6 and E7. Results from preclinical HPV vaccine studies have led to several HPV vaccine clinical trials. If these prophylactic and therapeutic HPV vaccines prove as successful in patients as they have in animal models, vaccination may provide for control and eventually eradication of oncogenic HPV infection and HPV-related cancers.

2. INTRODUCTION

Human papillomavirus (HPV) has been found to be associated with several important cancers, including cervical cancer (1), vaginal cancer, vulvar cancer, anal cancer (2), and a subset of head and neck cancer (3). Among these cancers, cervical cancer has the most significant morbidity and mortality and is the second most common cancer in women with approximately 493,243 new cases diagnosed each year worldwide (4). Over 100 human papillomavirus (HPV) genotypes have been identified, though only certain types of HPV, including types 16, 18, 31 and 45, have been reported to be associated with higher risk of carcinogenesis, and are thus deemed ‘high-risk’ types. These four types of HPV have been estimated to be the causal agents of approximately 80% of all cervical cancers (5, 6). Although as many as 22 high risk types have been isolated, HPV type 16 alone can be detected in half of all cervical cancers and is considered to be the most prevalent subtype (5). Persistent infection with a high-risk type HPV is considered a necessary cause of cervical cancer (1, 7, 8). Therefore, prophylactic or therapeutic vaccines targeting these high-risk HPVs may be beneficial for the prevention of HPV infection and the control of existing HPV infection and HPV-related lesions.
HPV vaccine

Studies have shown that the genomic organization and sequence of steps in the progression from HPV infection to HPV-associated cancer is evolutionarily conserved among the numerous subtypes of HPV. HPV is a non-enveloped, double-stranded, circular DNA virus belonging to the family Papovaviridae. High-risk HPV is sexually transmitted and targets the basal cells of the anogenital mucosa. The genes in the HPV genome can be categorized into 'early' and 'late' genes. Protein products of early genes have non-structural, regulatory functions. For example, early genes E1 and E2 can regulate viral DNA replication, E4 can disrupt the cytokeratin matrix, and E5, E6, and E7 can cause cellular transformation. E2 also regulates viral transcription. Protein products of the late genes (L1, L2) form the structural components of the viral capsid. As the infected basal epithelial cells differentiate, the viral expression program changes and the genome copy number is increased from ~10^2/cell to >10^3/cell. Late genes are only turned on when infected epithelial cells reach the superficial epithelium where they encapsidate the viral genome. The assembled virus can be released, a process that may be facilitated by the actions of E4 on cytokeratin networks, and transmitted sexually. While HPV DNA ordinarily replicates in an extra-chromosomal form, malignant progression is associated with integration of viral DNA into the host genomic DNA. Large deletions of the viral genome often occur upon integration. E2 is frequently deleted. E4, E5, L1, L2 are also often deleted, thus leaving E6 and E7 as the principle open reading frames found in high grade squamous intraepithelial lesions (HSIL) and invasive cancers. The E6 and E7 proteins have the capability to interact with p53 and Rb and influence normal cell cycle regulation resulting in cell cycle elongation, apoptosis suppression and genetic instability. These phenomena may all contribute to the development of invasive cancer (for a review, see reference (9)).

The design of both prophylactic and therapeutic vaccines requires an understanding of the virology detailed above. Prophylactic vaccines should stimulate the production of antibodies against L1 and L2, the structural components of infectious viral capsids, in order to achieve virus neutralization. On the other hand, therapeutic HPV vaccines generally target the virally encoded early proteins, such as E6 and E7, because while L1 and L2 are not expressed in the more basal cells of established HPV infections and HPV-associated malignancies, E6 and E7 are expressed at all levels of the infected epithelium. Several recent reviews discuss the different strategies of prophylactic vaccines or therapeutic vaccines (10-13). This review discusses HPV vaccines that aim both to prevent HPV infection and to control established HPV infections and HPV-associated malignancies, with special emphasis on current progress of HPV vaccine clinical trials.

3. PROPHYLACTIC HPV VACCINES

Preventing HPV infection would be an effective way to reduce and eventually eradicate the morbidity and mortality of cervical cancer and other HPV-associated diseases worldwide. Stimulating the production of neutralizing antibodies could sterilize the virus prior to infection of epithelial cells. Although the use of a live attenuated virus vaccine has been shown to be effective in the prevention of diseases such as measles, mumps and rubella, it has proven difficult to generate a live attenuated HPV vaccine for two reasons. Firstly, in vitro culture of HPV is hampered by their dependency on epithelial differentiation during the replication process, thus limiting the number of viral particles necessary for conventional live vaccine development. Secondly, vaccination with live attenuated HPV also carries considerable risk given the necessity of viral oncoproteins for the replication process which would inevitably be introduced into human body. An alternative solution, vaccination with HPV capsid proteins L1 and/or L2 in the absence of the oncogenic viral genome, has emerged as a safe and effective strategy for a prophylactic vaccine.

When the major capsid protein L1 is overexpressed in various cell types, these molecules spontaneously assemble into virus-like particles (VLPs) (14-18) which resemble native HPV virions. Although the viral genome and the minor capsid protein L2 are absent, the VLPs still possess similar morphology and antigenicity to natural virions. Parenteral vaccination with papillomavirus L1 VLPs has been shown to induce high titers of serum neutralizing antibodies in animal models. Passive transfer of immune serum could also protect naive animals from cutaneous or mucosal challenge with infectious papillomaviruses of homologous type (19-21). Importantly, in phase I, II and III clinical trials, intramuscular vaccination with HPV L1 VLPs in women was not only immunogenic but also safe (22-25). Table 1 lists these and other prophylactic vaccines in clinical trials.

None of the animal models of papillomavirus infection mimic sexual transmission. A significant concern was that, because HPV can be transmitted through sexual intercourse, a prophylactic HPV vaccine might require mucosal secretion of neutralizing antibodies at the site of infection (i.e. at the cervical mucosa) for effective protection. Parenteral VLP vaccination is only capable of generating systemic and not local antibody response; however, human studies confirm that high titers of specific antibodies are present in cervical secretions of women receiving intramuscular HPV-16 VLP immunization (24). The transfer of systemic antibodies to the mucosa occurs via a process of transudation, which results in low levels of antibodies (as compared to the serum concentration) and the efficiency of which is known to vary across the menstrual cycle. It was thus a concern that these titers in the cervical mucosa might not be protective or that protection might occur at only particular phases of the menstrual cycle. An answer to these questions came from recent efficacy trials. A double-blind, randomized, controlled trial in 2392 women demonstrated that HPV-16 L1 VLPs are capable of protecting women from HPV infection and HPV-associated CIN (26). In this study, the incidence of persistent HPV-16 infection was 3.8 per 100 woman-years-at-risk in the placebo group and 0 per 100 woman-years-at-risk in the vaccine group. In short, the L1 VLP vaccine was 100% effective (CI = 90 to 100%) at preventing persistent HPV-16 infection in the population of...
HPV vaccine

Table 1. Prophylactic HPV Vaccine Clinical Trials

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Vaccine Type</th>
<th>Ag</th>
<th>Dose (adjuvant)</th>
<th>Vaccination schedule</th>
<th>Sponsor</th>
<th>Subject population</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-11</td>
<td>VLP</td>
<td>L1</td>
<td>3, 9, 30, 100 micro-g (alum)</td>
<td>0, 4, 16 wks</td>
<td>MedImmune</td>
<td>Phase I trial in healthy volunteers (22)</td>
</tr>
<tr>
<td>HPV-16</td>
<td>VLP</td>
<td>L1</td>
<td>10 or 50 micro-g (none, alum or MF59)</td>
<td>0, 4, 16 wks</td>
<td>NCI</td>
<td>Phase I trial in healthy volunteers (23)</td>
</tr>
<tr>
<td></td>
<td>VLP</td>
<td>H1</td>
<td>10, 25, 40, 80 micro-g</td>
<td>0, 2, 6 mos</td>
<td>2-yr randomized controlled multicenter clinical trial in healthy nonpregnant women aged 18 to 26 yrs (25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VLP</td>
<td>L1</td>
<td>50 micro-g (none)</td>
<td>0, 1, 6 mos</td>
<td>NCI</td>
<td>Phase II trial in healthy volunteers (27, 162)</td>
</tr>
<tr>
<td></td>
<td>VLP</td>
<td>L1</td>
<td>40 micro-g</td>
<td>0, 2, 6 mos</td>
<td>Merck</td>
<td>Randomized, placebo-controlled, multicenter trial in young women aged 16 to 23 years (26)</td>
</tr>
<tr>
<td>peptide</td>
<td>L2 (aa 108-120)</td>
<td>100 or 500 micro-g (none)</td>
<td>0, 4, 12 wks</td>
<td>Ministry of Education, Science, Culture and Sports of Japan</td>
<td>Placebo-controlled trial in healthy volunteers (55)</td>
<td></td>
</tr>
<tr>
<td>HPV-18</td>
<td>VLP</td>
<td>L1</td>
<td>80 micro-g (alum)</td>
<td>0, 2, 6 mos</td>
<td>Merck</td>
<td>Double-blind, randomized, placebo-controlled phase I trial in healthy women aged 16-23 years (163)</td>
</tr>
<tr>
<td>HPV-16, 18</td>
<td>VLP</td>
<td>L1</td>
<td>20 micro-g type 16, 20 micro-g type 18 (AS04)</td>
<td>0, 1, 6 mos</td>
<td>GlaxoSmithKline (GSK)</td>
<td>Phase II trial in healthy volunteers aged 15-25 years (40)</td>
</tr>
<tr>
<td>HPV-6, 11, 16, 18</td>
<td>VLP</td>
<td>L1</td>
<td>20 micro-g type 6, 40 micro-g type 11, 40 micro-g type 16, and 20 micro-g type 18</td>
<td>0, 2, 6 mos</td>
<td>Merck</td>
<td>Phase II trial in healthy volunteers (41)</td>
</tr>
</tbody>
</table>

aa, amino acids; VLP, virus-like-particle

females tested over this relatively short period. Additionally, new HPV-16-related CIN only occurred among the placebo recipients (26). These studies suggest that serum antibodies can in fact transfer from plasma to the cervical mucosa where they protect throughout the menstrual cycle against HPV infection. However the longevity of protection is currently under investigation.

It has been hypothesized that cell-mediated immunity may play a role in the protective effect of the VLP-based vaccine. Although the study result showed 100% protection against persistent HPV infections and CIN, some patients in the treatment group developed transient HPV infections which later resolved during the vaccine trial. L1-specific CD4+ and CD8+ T-cells were subsequently observed in these HPV-16 VLP vaccination experiments (27). These results indicate the possible contribution of cellular immunity in preventing persistent infection. Alternatively, cell mediated immunity may not be relevant to protection, and these transient PCR detections of HPV DNA may reflect detection of deposited but neutralized virus or aborted infections.

More clinical trials of VLP vaccines are currently under way (see Table 1), including a large, randomized, double-blind, placebo-controlled trial of HPV-16 and HPV-18 L1 VLPs in 21,000 Costa Rican women (28). An important aim of these trials is assessing the long-term protective efficacy of the VLP vaccination. While human and nonhuman primate studies suggest that these antibodies are quite durable (7, 29), tracking the level of the antibodies induced by the vaccines or natural infection in human subjects long-term is a critical direction in vaccine research. In particular, it will be important to define the threshold protective titer of neutralizing antibodies. Further studies in men are also critical, but await better assays of infection.

3.1. Alternative routes of vaccine administration

Although parenteral vaccination has been shown to be able to induce neutralizing antibodies in the cervical mucosa alternative routes of administration are under consideration in an effort to induce maximal mucosal immune response across the menstrual cycle while simultaneously decreasing invasiveness and cost of vaccination. Possible alternate routes include nasal and oral delivery. Mucosal immunoglobulin (Ig)G and IgA antibodies specific for HPV have been shown to be generated by nasal inoculation with VLPs in mice (16, 30). A clinical trial showed that inoculation by HPV-16 VLP nasal spray or aerosol can generate specific IgG and IgA antibodies in the cervical secretions of female subjects (31). A new clinical trial further confirms the efficacy of respiratory mucosal immunization, showing that the induced serum antibody titer is comparable to intramuscular vaccination (6). Oral vaccination was tested in yet another preclinical study and was demonstrated to induce levels of systemic HPV-specific IgG and IgA antibody response comparable to parenteral vaccination (32). An oral vaccine in development uses yeast as a vector (17). However, these edible vaccines still require more research to optimize their potency.

3.2. Live vaccine vectors

A preventative vaccine is most urgently needed in developing nations that lack the resources for cervical cytology screening programs. In settings that lack the necessary infrastructure and financial resources, the ability to vaccinate in the absence of a cold chain to maintain vaccine stability becomes important. Furthermore, vaccines that do not require the use of needles and provide immunity after a single dose are highly desirable. Live vaccine vectors offer these advantages, and also the possibility of simple, inexpensive manufacture. While live
vaccines have been used very successfully (e.g. vaccinia for smallpox), they may carry additional risk to the patients as compared to a subunit vaccine. This is particularly pertinent in immunocompromised individuals and the safety and ethics of this approach must be carefully considered. However, despite these issues, the potential advantages of live vectors warrant their consideration. One of the most attractive approaches is to incorporate papillomavirus antigen expression within already existing live vectors (e.g. measles) without reducing their original efficacy. An innovative vaccination strategy involves the use of adenovirus as a live vector carrying the papillomavirus L1 gene with production of VLPs in vivo. Adenovirus has been used as a vaccine by the US military for its recruits. A study using canine oral papillomavirus L1 gene showed that VLPs can be generated in large quantities while the adenovirus gene is expressed in culture cells (33). Furthermore, adenovirus can be administered orally, thus representing another potential noninvasive approach to vaccine administration. Experimentation in canine animal models has already shown protection against wart formation using this adenovirus vaccine model (34).

Adeno-associated virus has been used extensively in gene-therapy and is another candidate for in vivo VLP production. A report demonstrated that a single intramuscular co-injection with recombinant adeno-associated virus encoding HPV-16 L1 and recombinant adenovirus encoding GM-CSF can achieve the same vaccine effect as the VLP vaccine which requires three booster injections in mice (35). Vesicular stomatitis virus vector has similarly been shown to be effective in rabbits (36). Salmonella bacterium has also been proposed as a potential live vector and mouse experiments show that nasal or oral vaccination with HPV 16 L1-expressing Salmonella bacteria induces high titer of neutralizing antibodies (37).

3.3. Polyvalent VLP prophylactic vaccines

One drawback of HPV L1 VLP vaccines is that although they can induce effective neutralizing antibodies, the antibodies are type-specific and induce very limited cross protection (20, 32). In the trial described by Koutsy et al., researchers observed type-specific protection, documenting equal numbers of non-HPV-16-related CIN in both the placebo and vaccine arms with HPV-16-positive CIN only in the placebo arm (26). Because there are at least 15 types of high-risk HPV, modification must be taken to broaden the protection range of the vaccine, polyvalent vaccines being a potential solution.

Two pharmaceutical companies, GlaxoSmithKline (GSK) and Merck, have begun clinical trials of polyvalent HPV L1 VLP vaccines to protect against multiple HPV types (see Table 1). The GSK vaccine contains both HPV-16 and HPV-18 L1 VLPs (38) while the Merck product currently undergoing clinical trial is tetravalent, containing HPV-6, -11, -16 and -18 L1 VLPs. Initial studies for the vaccines indicate that the vaccine is well tolerated and can generate neutralizing antibody titers to each of the HPV types in quantities similar to those produced by monovalent L1 VLP vaccines (39, 40). Recently, two clinical studies concluded that a polyvalent vaccine could substantially reduce the acquisition of infection and clinical disease caused by common HPV types (40, 41).

The use of plasmid-based vaccines is an intriguing possibility for highly polyvalent vaccines. Vaccination with CRPV L1 expressing plasmid DNA partially protects against experimental infections (42). However this approach requires extensive codon modification to provide high level L1 expression. Several advances in DNA delivery, such as gene gun, significantly boost the immunogenicity of these vaccines.

Another relatively new technology under investigation is hypervariable epitope constructs (HECs). HECs are composed of sequence variants of immunodominant B-cell epitopes of the major capsid protein, L1, of HPV. Mouse experiments show that antibodies generated by this kind of vaccine can cross-react with HPV-16 and 18 (43). With the continued clinical development of VLP vaccines for HPV types other than HPV-16 (HPV-6b (44) and HPV-11 (22, 45, 46)) and of polyvalent VLP vaccines and novel technologies such as HECs, protection may be possible against a wider range of HPV types. An alternative approach to polyvalent vaccines is the identification of a single, conserved antigen that confers broad immunity. In this regard L2 protein shows great promise, as detailed below.

3.4. L2-based vaccines

Although L1 is the immunodominant antigen in the generation of neutralizing antibodies in vivo (47), L2 has also arisen an important target for vaccine development (see Table 2). Several previous reports find that vaccination with L2 induces cross-neutralizing antibodies (47-49). Though the ability of L2 vaccination to provide cross type protection has not yet been demonstrated, vaccination with L2 peptides protects animals from experimental challenge with the homologous type papillomavirus (50-53) via neutralizing antibodies (54).

The possibility of an L2 VLP vaccine has recently been tested in preclinical and clinical situations. One clinical study demonstrated that nasal inoculation with an epitope of HPV-16 L2 produces L2-specific cross-neutralizing antibodies that bind both HPV-16 and HPV-52 L1/L2 capsids (55). However, despite superior cross-neutralization, immunization with L2 generally stimulates production of low titers of antibodies while L1 VLPs generate much higher titers (54, 56). If immunogenicity of L2 within VLPs and other L2-based vaccines can be improved, L2 vaccines may be an attractive alternative strategy to polyvalent vaccines to prevent multiple type HPV infection.

4. THERAPEUTIC HPV VACCINES

Although the HPV VLP and L2 vaccines have been shown to be highly protective, they are ineffective in the elimination of disease in the present population of infected women. Moreover, it is still possible that some
HPV vaccine

Table 2. Comparison of Preventative Vaccine Targeting HPV L1 and L2 Antigens

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Vaccine Approach</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| L1 | Protein VLP | 1. Safe, immunogenic and effective
2. Large scale production is possible in a number of systems
3. Not oncogenic
4. Elicits high titers of HPV neutralizing antibodies
5. HPV neutralizing antibodies reach the cervical mucosa
6. Nasal, aerosol, or oral inoculations have been used for non-invasive vaccination | 1. Limited cross-neutralizing power
2. Multivalent vaccines needed to protect against multiple types of HPV |
| L2 | Protein monomer, Peptide | 1. Safe
2. Elicits cross-neutralizing antibodies
3. Not oncogenic
4. Nasal inoculation has been used for non-invasive vaccination | 1. Immunologically sub-dominant to L1
2. Elicits low titers of neutralizing antibodies |

VLP, virus-like-particle

viruses may successfully breakthrough neutralizing antibodies induced by the vaccine and establish new infection. Given these potential shortcomings, additional measures to deal with established HPV infection and HPV-associated diseases are needed. Cell-mediated immunity is likely to be a solution. Current data provide evidence that cell-mediated immunity is important in anti-HPV immune response. Several studies report that HPV-related infection and malignancies have increased incidence in patients with impaired cell-mediated immunity, such as transplant (57) or AIDS patients (58-60). It has also been observed that when immunosuppressive therapy is discontinued in previously regressing HPV warts, HPV-associated warts often regress (61). In spontaneously regressing HPV warts, infiltrating CD4+ and CD8+ T-cells are often observed, while in non-regressing warts the T cells are rarely seen, thus indicating the role of T cells in anti-HPV immune response (62).

Though there is evidence to suggest a role for cell-mediated immunity with prophylactic type vaccines, generating cellular immunity from HPV VLPs is not an ideal strategy as the infected basal epithelial cells usually do not express L1 or L2 proteins. Additionally, the L1 and L2 genes are frequently lost in HPV-associated malignancies. In order to prevent the development of lesions, eliminate existing lesions or even eliminate malignancies, a therapeutic vaccine should target HPV antigens that are continuously expressed in the infected cells and cancer cells. The early viral proteins (E1 to E7) are potential target antigens as they are expressed early in viral infection and help regulate progression of the disease. During integration of HPV into the host genome, E2, a negative regulator of E6 and E7, is often deleted leading to upregulation of E6 and E7 in cervical cancer cells. E6 and E7 in particular are critical for HPV replication and cervical epithelial transformation, and are expressed throughout the viral life-cycle. This notion has popularized E6 and E7 as a favorite target for HPV therapeutic vaccines (63).

Live-vector vaccines, peptide or protein vaccines, nucleic acid vaccines, cell-based vaccines, and combined approach vaccines have all been tested in the development of HPV therapeutic vaccines. Table 3 is a summary of the advantages and disadvantages of these strategies. In the following sections, the current progress of these strategies will be discussed separately.

4.1. Live vector vaccines

Recombinant viruses and bacteria are the common candidates of live vector vaccines. The live vector vaccines, especially those that are capable of replication in the host, are generally highly immunogenic and can induce strong immune responses. There are a variety of live vectors available, and researchers have the ability to choose the ideal vector according to the target immune responses desired. For example, the Sal/monella bacterium is capable of delivering either antigen proteins or mammalian DNA expression vectors encoding the antigen of interest to antigen presenting cells (APCs) in the host organism. While properties like these make live vectors an attractive candidate for therapeutic vaccines, there are several concerns with this methodology, including the prevalence of pre-existing antiviral or antibacterial neutralizing antibodies. Pre-existing immunity may decrease the effectiveness of the vaccine and inhibit repeated vaccination. Additionally, vector antigens may become immunodominant over the HPV antigen carried on the vector, thus interfering with the formation of an efficacious anti-HPV immune response. Using live vectors that can replicate in the host carries the additional risk of toxicity. Recently, it was proposed that live vector vaccines may generate regulatory T cells which could potentially interfere with immune responses decreasing efficacy of the vaccine (64). However, another report shows that an adenoviral vector vaccine can be used to break the tolerance of tumor antigen (65). Taken together, it is clear that an effective and safe live vector vaccine for HPV treatment needs to be developed thoughtfully with careful control of these potentially adverse effects.

The current experimental live vector vaccines for treatment of HPV mainly target viral E6 and E7 proteins and have mostly been tested in preclinical models. The examples of recombinant viral vectors in use include vaccinia virus, adenovirus, adeno-associated virus, alphavirus RNA replicon particles and HPV pseudovirions (for a review, see reference (66)). A new kind of virus vector, Semliki Forest virus (SFV), has been recently reported to be capable of inducing strong cell-mediated immunity and of breaking tolerance to HPV antigens (67, 68). Such feature of a vaccine may be especially valuable when treating advanced cancer. Another papillomavirus protein, E2, has also been tested in an adenoviral vaccine model. Therapeutic effect (reduced papilloma forming sites) of this vaccine has been observed in rabbits (69). Bacterial examples of live vector HPV vaccines include Listeria.
Table 3. Characteristics of HPV vaccine approaches

<table>
<thead>
<tr>
<th>Vaccine Approach</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector-based:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral (i.e. vaccinia, Adv, AAV, alphavirus)</td>
<td>1. Highly immunogenic
2. Different immunological properties of viruses
3. A wide variety of vectors are available
4. Can potentially be engineered to express cytokines or other stimulatory molecules</td>
<td>1. Risk of toxicity when using live viruses
2. Potential pre-existing immunity
3. Inhibited repeat immunization
4. Immunodominance of viral vector antigens over HPV tumor antigens</td>
</tr>
<tr>
<td>Vector-based:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial (i.e. Listeria, Salmonella, BGC, Lactococcus)</td>
<td>1. Highly immunogenic
2. Can deliver either engineered plasmids or HPV tumor proteins to APCs
3. A wide variety of vectors are available
4. Can induce DC maturation
5. Sustained expression of antigen on MHC-peptide complexes (compared to peptide/protein vaccines)</td>
<td>1. Cumbersome to prepare
2. Inhibited repeat immunization</td>
</tr>
<tr>
<td>Protein-based (incl. VLPs)</td>
<td>1. Easy to produce
2. Multiple known adjuvants
3. No HLA restriction
4. Can produce fusion proteins for enhanced immunogenicity
5. Sustained expression of antigen on MHC-peptide complexes (compared to peptide/protein vaccines)</td>
<td>1. Intrinsically weak immunogen
2. Concern of integration or cellular transformation
3. Inhibited repeat immunization
4. Possibility of tolerization by immature DCs
5. Do not necessarily home to draining lymph nodes
6. Possibility of superinfection</td>
</tr>
<tr>
<td>DNA</td>
<td>1. Easy to produce, store, and transport
2. Versatility in ability to add targeting and/or co-stimulatory genes
3. Capable of multiple immunizations
4. A variety of modes of administration exist: direct injection, gene gun, intranasal, and biojector
5. Sustained expression of antigen on MHC-peptide complexes (compared to peptide/protein vaccines)</td>
<td>1. Unstable to store and handle
2. Cumbersome to prepare
3. Difficult to prepare large amounts
4. Requires availability of tumor cell lines or autologous tumor cells
5. Safety concerns about injecting tumor cells into patients
6. Labor-intensive procedure
7. Variable quality control and a lack of standard criteria for quality of vaccines
8. Do not necessarily home to draining lymph nodes
9. Possibility of tolerization by immature DCs</td>
</tr>
<tr>
<td>RNA</td>
<td>1. Non-infectious and transient so no risks of chromosomal integration or cellular transformation
2. Capable of multiple immunizations
3. RNA replicons replicate within the cell to enhance antigen expression
4. Multiple vectors are available
5. Sustained expression of antigen on MHC-peptide complexes (compared to peptide/protein vaccines)</td>
<td>1. Labor-intensive, costly, ex vivo, individualized cell processing
2. Variable quality control and a lack of standard criteria for quality of vaccines
3. Do not necessarily home to draining lymph nodes
4. Possibility of tolerization by immature DCs
5. Safety concerns about injecting tumor cells into patients
6. Labor-intensive procedure
7. Weak antigen presentation by tumor cells
8. Requires availability of tumor cell lines or autologous tumor cells</td>
</tr>
<tr>
<td>Dendritic cell-based</td>
<td>1. Highly immunogenic; uses the most potent APC
2. Methods available to generate large numbers of DCs
3. Multiple methods of Ag loading are available
4. Potency can be enhanced by gene transduction or cytokine treatment</td>
<td>1. Labor-intensive, costly, ex vivo, individualized cell processing
2. Variable quality control and a lack of standard criteria for quality of vaccines
3. Do not necessarily home to draining lymph nodes
4. Possibility of tolerization by immature DCs
5. Safety concerns about injecting tumor cells into patients
6. Labor-intensive procedure
7. Weak antigen presentation by tumor cells
8. Requires availability of tumor cell lines or autologous tumor cells</td>
</tr>
<tr>
<td>Tumor cell-based</td>
<td>1. Useful if tumor antigen is unknown
2. Potency can be enhanced by gene transduction or cytokine treatment
3. Likely to express relevant tumor antigens</td>
<td>1. Possibility of tumor cell transformation
2. Weak antigen presentation by tumor cells
3. Requires availability of tumor cell lines or autologous tumor cells
4. Requires availability of tumor cell lines or autologous tumor cells
5. Safety concerns about injecting tumor cells into patients
6. Labor-intensive procedure
7. Weak antigen presentation by tumor cells
8. Requires availability of tumor cell lines or autologous tumor cells</td>
</tr>
</tbody>
</table>

Ag, antigen; APC, antigen presenting cell; CTL, cytotoxic T lymphocyte; DC, dendritic cells; HLA, human leukocyte antigen; MHC, major histocompatibility complex; VLP, virus-like particle

monocytogenes, Salmonella and bacillus Calmette-Guérin (BCG) (for a review, see reference (66, 70)). More recently, Lactococcus lactis has also been used as a vector for HPV vaccine development (71), and various methods of E7 expression have been developed (72). These bacterial vaccines are also mainly under development in preclinical models.

In the preclinical models, the live vector vaccines usually can generate strong E7-specific T-cell-mediated immune responses and antitumor effects. Their potency can be further enhanced by various adjuvants and fusion-protein strategies. For example, Listeria monocytogenes has recently been engineered to secrete HPV-16 E7 fused to the Listeria protein ActA (Lm-ActA), a protein necessary for the assembly of the actin filaments that propel Listeria to the periphery of an infected cell. Intraperitoneal administration of Lm-ActA-E7 elicited strong E7-specific cytotoxic T-lymphocyte (CTL) responses and caused the complete regression of HPV-positive tumors in mice (73). Fusion to another Listeria protein, listerioliyisin (LLO), has also been shown to be able to enhance anti-tumor immunity through facilitation of proteasome digestion (74). This enhancement is shown to be correlated with the stimulating effect of LLO on dendritic cells (75). Another example is recombinant vaccinia virus. It has been shown that the potency of a vaccinia live vector vaccine can be further enhanced by expressing the immunogenic E7 protein linked with calreticulin to promote MHC class I antigen presentation (76). An adenoviral vaccine carrying E7 and recombinant IL-12 was also reported to induce stronger anti-tumor immunity (77).
Table 4. Therapeutic HPV Vaccine Clinical Trials

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Vaccine Type</th>
<th>Ag</th>
<th>Done (Adjuvant)</th>
<th>Vaccinatio n Schedule</th>
<th>Sponsor</th>
<th>Patient Population</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-16 and 18</td>
<td>Recombinant Vaccinia Virus -- TA-HPV</td>
<td>E6 and E7 mutated to inactivate Rb binding</td>
<td>Variable</td>
<td>variable</td>
<td>Xenova/ Cantab</td>
<td>(79): Phase I trial in patients with early-stage cervical cancer; (78): Phase I/II trial in patients with high-grade VIN or VgIN; (82): Clinical trial in patients with high grade VIN</td>
<td>78, 79, 81, 82</td>
</tr>
<tr>
<td>HPV-16 and 18</td>
<td>Recombinant Vaccinia Virus -- MVA E2</td>
<td>E2</td>
<td>10^6 viruses per dose</td>
<td>0, 1, 2, 3, 4, 5 weeks</td>
<td>Instituto Mexicano del Seguro Social (IMSS)</td>
<td>Phase II trial in patients with VIN1-3</td>
<td>84</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Peptide</td>
<td>E7 (HLA-A*0201 CTL epitopes a.a. 11-22 and 86-95) and pan-DR binding T helper peptide</td>
<td>100 micro-g, 300 micro-g, or 1000 micro-g (Montanide ISA 51)</td>
<td>0, 3, 6, 9 weeks</td>
<td>Netherlands National Institute of Public Health and Environmental Protection</td>
<td>(87): Phase II trial in patients with cervical cancer; (88): Phase II trial in patients with advanced cervical cancer</td>
<td>87, 88</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Peptide</td>
<td>E7 (a.a. 12-20 alone or a.a. 12-20 mixed with a.a. 86-95 linked to a T-cell epitope peptide)</td>
<td>Escalating doses (Montanide ISA 51)</td>
<td>0, 3, 6, 9 weeks</td>
<td>NCI</td>
<td>Phase II trial in patients with VIN2/3 or VIN2/3</td>
<td>89</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Peptide (lipopeptide)</td>
<td>Lipidated E7 (HLA-A*0201-restricted epitope, a.a. 86-93 lipopeptide)</td>
<td>n/a</td>
<td>0, 3, 6, 9 weeks</td>
<td>NCI</td>
<td>Phase I trial in patients with cervical or vaginal cancer</td>
<td>90</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Fusion Protein -- PO-E7 or DP65E7</td>
<td>E7 linked to the first 108 a.a. of Haemophilus influenzae protein D</td>
<td>n/a (AS02B)</td>
<td>0, 2, 4 weeks</td>
<td>GlaxoSmithKline</td>
<td>Phase II trial in patients with VIN1 or 3</td>
<td>98</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Fusion Protein -- SGN-00101 or HepE7</td>
<td>E7 linked to HSV156 from Mycobacterium bovis</td>
<td>500 micro-g (none)</td>
<td>0, 4, 8 weeks</td>
<td>StressGen</td>
<td>Phase III trial in patients with AIN and Phase II trial in patients with AGW and RRP</td>
<td>100</td>
</tr>
<tr>
<td>HPV-16</td>
<td>DNA -- ZYC101</td>
<td>E7 epitope (a.a. 83-95)</td>
<td>50, 100, 200, or 400 micro-g encapsulated in biodegradable polymer microparticles</td>
<td>0, 3, 6, 9 weeks</td>
<td>Zycos, Inc.</td>
<td>(127): Phase I trial in patients with anal HSIL; (128): phase I trial in patients with CIN2/3</td>
<td>127, 128</td>
</tr>
<tr>
<td>HPV-16 and 18</td>
<td>DNA -- ZYC101a</td>
<td>E6 and E7 epitopes</td>
<td>100 or 200 micro-g (DNA encapsulated in biodegradable polymer microparticles)</td>
<td>0, 3, 6 weeks</td>
<td>Zycos, Inc.</td>
<td>Phase II trial in patients with CIN2/3</td>
<td>129</td>
</tr>
<tr>
<td>HPV-16</td>
<td>DNA</td>
<td>E7 contained in the pNGVL4a-Sig/E7(detox)/HSP70 plasmid</td>
<td>Done escalating</td>
<td>n/a</td>
<td>NCI</td>
<td>Clinical trials have begun for patients with CIN2/3</td>
<td>C Trimble, personal communication</td>
</tr>
<tr>
<td>HPV-16</td>
<td>DNA</td>
<td>E7 contained in the pNGVL4a-Sig/E7(detox)/HSP70 plasmid</td>
<td>Done escalating</td>
<td>n/a</td>
<td>NCI</td>
<td>Clinical trials to begin soon for patients with advanced HNSCC</td>
<td>M Gillison, personal communication</td>
</tr>
<tr>
<td>HPV-16</td>
<td>DCs pulsed with HPV +ve tumour lysate</td>
<td>HPV positive tumor lysate (E6 and E7)</td>
<td>107 DCs per injection</td>
<td>6x weekly</td>
<td>n/a</td>
<td>Phase IIb trial in patients with advanced cervical cancer</td>
<td>148</td>
</tr>
<tr>
<td>HPV-18</td>
<td>DCs pulsed with E7 protein</td>
<td>E7</td>
<td>3 to 5 million DCs per injection</td>
<td>Vaccination s 1-5 at intervals of 10-14 days; vaccination s 6-14 at intervals of 30-60 days</td>
<td>n/a</td>
<td>A case report of a single patient with cervical cancer</td>
<td>147</td>
</tr>
</tbody>
</table>

a.a., amino acids; AGW, anogenital warts; AIN, anal intraepithelial neoplasia; CIN, cervical intraepithelial neoplasia; CRT, calreticulin; CTL, cytotoxic T lymphocyte; DCs, dendritic cells; HLA, human leukocyte antigen; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; HSIL, high grade squamous intraepithelial lesion; HSP, heat shock protein; n/a, not available or not applicable; NCI, national cancer institute; RRP, recurrent respiratory papillomatosis (warts of the upper airways); VgIN, vaginal intraepithelial neoplasia; VIN, vulvar intraepithelial neoplasia

Encoding HPV-16 and HPV-18 E6/E7 (called TA-HPV) was tested in phase I/II clinical trials and was shown to be well tolerated. T cell immune responses were observed after vaccination in some patients with CIN-3, early invasive cervical cancer, and even advanced cervical cancer (78-80). The vaccine was also given to patients with HPV-associated vulvar or vaginal intraepithelial neoplasia with specific immune responses observed (81, 82). In a study conducted by Baldwin and colleagues, five out of 12 patients had at least a 50% reduction in lesion diameter over 24 weeks, and one patient showed complete regression of lesion after vaccination (81). Another study tested a prime-boost strategy on patients with high grade HPV 16-associated vulvar intraepithelial neoplasia (VIN). The researchers primed the patients with TA-HPV and boosted their immune responses with a HPV 16 L2E6E7 fusion protein. Nine out of the ten patients developed HPV 16-specific proliferative T-cell and/or serological responses and three showed lesion shrinkage or symptom relief (83). Another recombinant vaccinia virus encoding E2 (called MVA E2) has also been tested in patients with CIN-1, CIN-2, or CIN-3, though presently it is too early to conclude whether the vaccine can generate an E2-specific immune responses (84). Table 4 lists these and other therapeutic vaccines in clinical trials.
HPV vaccine

4.2. Peptide vaccines

HPV antigenic proteins are processed by antigen presenting cells (APCs) in the body into peptides. These peptides become associated with major histocompatibility complex (MHC) molecules on the surface of the APCs, which together, stimulate lymphocytes to mount an immune response against the pathogen. Viral peptides have thus been considered as potential candidates for vaccine development. Peptides are easy to manufacture, safer and more stable than live vector vaccines. Though several groups have attempted to utilize these beneficial properties to develop HPV therapeutic vaccines, several limitations have been encountered. The first is that peptide vaccines are MHC specific. A specific vaccinated peptide can only be presented by a specific type of MHC molecule. Since the human MHC molecules are highly polymorphic, a single peptide may not be able to induce immune response in all the recipients of the vaccine, and not every HPV-derived peptide will be immunogenic for a single person. During the vaccine developmental process, different peptides specific for different common human MHC types must be defined and considered as possible components of the vaccine. It is even possible to select peptides that direct either T-helper and/or CTL immune responses. An additional limitation to peptide vaccines is their weak immunogenicity. Addition of adjuvants, such as cytokines, chemokines or costimulatory molecules may be essential for therapeutic efficacy. Epitope enhancement, which increases the affinity of the peptide for the MHC molecules, increasing T-cell receptor binding, creating a booster vaccination schedule, preventing peptide degradation or linking peptides to lipids are additional strategies which have been considered to enhance peptide HPV vaccine potency (for a review, see reference (66)).

Various MHC restricted CD4+ and CD8+ T-cell epitopes of HPV early proteins, such as E2, E6 and E7, have been identified in both mice and humans. Several potency enhancement strategies, including the addition of adjuvants and the formation of lipopeptides, have been tested in preclinical models, (for a review, see reference (66)). One group has recently reported the effect of vaccination of mice with an HPV-16 E5 peptide emulsified with CpG oligodeoxynucleotide (CpG ODN). CpG ODN is a nucleotide sequence found in bacterial DNA which has been shown to induce a series of immune responses, including the induction of antigen-specific CD8+ T-cells. The peptide vaccine emulsified with CpG ODN has been shown to be effective in eradication of E5-containing tumor growth. Additionally, the induced CTL response was found to be stronger than E5 peptide vaccine emulsified with the traditional Freund’s adjuvant (85). A new study using a recombinant protein, HPV-16 E7 peptide (amino acids (aa) 38 to 61) linked with an immunoglobulin G fragment, found that a recombinant vaccine could induce E7-specific immune responses and protect mice against challenge of HPV16-positive tumor. The vaccine was also found to be effective for eradicating developed tumor (86), validating the notion that a peptide vaccine can be created to achieve both protective and therapeutic effects.

As predicted by the nature of peptide vaccine strategy, experimental HPV peptide vaccines have been shown to be both safe and well tolerated in humans in recent Phase I/II clinical trials (87, 88). In one study, women were vaccinated with HPV-16 E7 peptides, either amino acids (aa) 12 to 20 alone, or an 12 to 20 mixed with aa 86 to 93 covalently linked to a T-helper stimulating peptide. Three of the 18 patients with high-grade cervical or vulvar intraepithelial neoplasia had their dysplasia cleared, and six of the same group showed measured regression of lesions (89). A clinical trial using lipidated HPV-16 E7 peptide also demonstrated that CTL responses could be generated in some patients with HPV-associated cancer. However, the vaccine did not elicit regression of the tumor burden (90).

4.3. Protein vaccines

Protein-based vaccines possess some similar advantages, such as safety and stability, to peptide vaccines. Moreover, protein vaccines can potentially overcome the limited specificity of MHC responses with peptide-based vaccines by nature of a protein’s more abundant MHC epitopes. In an individual patient’s cells, peptides suitable for their own MHC molecules can be generated such that neither the antigen’s immunogenic epitope nor the patient’s MHC type need to be determined prior to vaccination. Many of the strategies used to enhance peptide vaccine potency can also be applied to protein vaccines, such as adding liposome-polycation-DNA adjuvant (91), ISCOMATRIX (92) or B. pertussis adenylate cyclase (93). Strategies aimed at promoting protein uptake by APCs are also important as exogenously administered protein vaccines are not usually efficiently engulfed and presented by APCs. Fusing antigens of interest with special proteins, such as heat shock proteins (Hsp), may help target antigen to APCs. Because protein-based vaccines may elicit better antibody responses than CTL responses, researchers interested in the protein-based vaccine for therapeutic purposes against HPV infection and HPV-associated neoplasia must consider mechanisms to strengthen CTL responses.

Protein-based HPV vaccines have been tested in HPV oncogenic protein-expressing preclinical tumor models (such as the TC-1 and C3 tumor models), and E7 protein vaccine induced CTL responses have already been reported. Many researchers are currently focusing on strategies to improve therapeutic potential of E7 vaccination. Addition of adjuvants, fusion proteins and other approaches have been applied to these preclinical models (for a review, see reference (94)).

The most promising strategies shown in preclinical protein vaccine studies have been translated into clinical trials. One example is the fusion protein containing HPV capsid proteins and HPV early proteins. These fusion vaccines can potentially induce both prophylactic and therapeutic immune responses. The current trials testing the efficacy of fusion protein vaccines are listed in Table 5. One of the experimental vaccines, TA-GW, a fusion of HPV-6 L2 and E7 adsorbed onto Alhydrogel, has been tested in two clinical trials and was found to be well tolerated and effective in clearing HPV genital warts in a subset of patients (95, 96). Another protein vaccine, TA-
than peptide or protein vaccines. Several methods can be engineered to express tumor antigenic peptides or proteins. The stability and purity of DNA vaccines are even higher than peptide and protein vaccines. Various strategies have been employed to increase the amount of antigen delivered to the immune system is used to specifically target the delivery of DNA vaccines to APCs, thus enhancing the antigen presentation to T cells and increasing the vaccine efficacy (for a review, see reference (102)). DNA vaccines can produce antigenic proteins and peptides in the APCs continuously such that the major limitation of the DNA vaccines is their low immunogenicity. Unlike live vector vaccines, naked DNA vaccines cannot replicate or spread from one cell to another. Additionally, they evoke fewer innate immune responses. A further concern is the possibility that the DNA vaccines may integrate into chromosomal DNA of the transfected cell, carrying the undesirable risk of cellular transformation.

The potency of HPV DNA vaccines have been significantly improved in animal models using several strategies. An important example of such a strategy is targeted delivery of DNA vaccines to the most potent professional APCs, dendritic cells (DCs). DCs can present antigens via both the MHC-I and MHC-II pathways, thus enhancing the antigens presentation to T cells. Numerous strategies have been developed to specifically target the delivery of DNA vaccines to APCs, thus enhancing the antigen presentation to T cells and increasing the vaccine efficacy (for a review, see reference (102)).

Table 5. Prophylactic/Therapeutic HPV Vaccine Clinical Trials

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Vaccine Type</th>
<th>Ag</th>
<th>Dose (Adjuvant)</th>
<th>Vaccination Schedule</th>
<th>Sponsor</th>
<th>Patient Population</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-6</td>
<td>Fusion Protein -- TA-GW</td>
<td>L2/E7</td>
<td>0, 3, 30, or 300 µg (Alhydrogel)</td>
<td>0, 1, 4 weeks or 0, 4, 8 weeks</td>
<td>Xenova/Cantab</td>
<td>Phase 1 trial in healthy volunteers</td>
<td>95</td>
</tr>
<tr>
<td>HPV-6</td>
<td>Fusion Protein -- TA-GW</td>
<td>L2/E7</td>
<td>300 µg (Alhydrogel)</td>
<td>0, 1, 4 weeks</td>
<td>Xenova/Cantab</td>
<td>Phase IIa trial in patients with genital warts</td>
<td>96</td>
</tr>
<tr>
<td>HPV-16</td>
<td>Fusion Protein -- TA-CIN</td>
<td>L2/E6/E7</td>
<td>25, 125, or 500 µg (none)</td>
<td>0, 4, 8 weeks</td>
<td>Xenova/Cantab</td>
<td>Phase 1 trial in healthy volunteers</td>
<td>97</td>
</tr>
<tr>
<td>HPV-16 and 18</td>
<td>Prime boost -- Fusion protein (TA-CIN) + recombinant vaccinia virus (TA-HPV)</td>
<td>L2/E6/E7 (TA-CIN) + E6 and E7 mutated to inactivate Rb binding (TA-HPV)</td>
<td>n/a</td>
<td>n/a</td>
<td>Xenova</td>
<td>Phase IIa trial in patients with AGIN</td>
<td>82</td>
</tr>
</tbody>
</table>

AGIN, ano-genital intraepithelial neoplasia

CIN, a fusion of HPV-16 L2, E6 and E7, was also shown to be safe in a clinical trial. Antibodies were induced in all the women tested, and T cell immunity was produced in a subgroup of them (97). In order to further enhance vaccine potency, a ’prime-boost’ strategy, which combined TA-CIN and TA-HPV (vaccinia virus encoding HPV 16/18 E6E7) vaccinations, was tested in ten women with HPV 16-positive high-grade vulvar intraepithelial neoplasia (VIN). They first received a TA-HPV vaccine and then were boosted three times with TA-CIN. HPV 16-specific proliferative T-cell and/or serological responses were observed in nine of the women, and three women showed lesion shrinkage or symptom relief. However, no direct correlation between clinical and immunological responses was observed (83).

Other fusion protein vaccines that have been tested in clinical trials include fusion of *Haemophilus influenzae* lipoprotein D and HPV-16 E7, fusion of HPV-16 E6 and HPV-16 E7, fusion of BCG Hsp65 and HPV-16 E7, and HPV-16 L1/L2/E2-E7 chimeric VLPs (see Table 4). *Haemophilus influenzae* lipoprotein D and HPV-16 E7 fusion protein (called PD-E7 or D16E7) with adjuvant was administered in a small phase I/II clinical trial. The vaccination was shown to induce potent E7-specific CD8+ T-cell responses. Regression of lesions could be observed in some patients with CIN-1 or CIN-3 (98). An E6E7 fusion protein complexed with ISOMATRIX adjuvant was shown to be safe and immunogenic in a phase I study (99). HspE7 (Stressgen Biotechnologies Corp), the fusion of BCG Hsp65 and HPV-16 E7, is now also being tested in patients with HPV-associated anal dysplasia (100). Chimeric VLPs containing HPV-16 L1/L2/E2-E7 are in production and being prepared for a phase I clinical trial [D Lowy and J Schiller, personal communication]. The chimeric VLP vaccine will be incorporated into the present Costa Rican HPV-16 VLP clinical trial (for a review, see reference (101)).

4.4. DNA vaccines

DNA vaccines, most common in the form of naked DNA expression plasmids, have several beneficial features for HPV therapeutic vaccine development. The DNA vectors, which are easily producible, can be engineered to express tumor antigenic peptides or proteins. The stability and purity of DNA vaccines are even higher than peptide or protein vaccines. Several methods can be
HPV vaccine

promote antigen targeting to DCs. E7 antigen and Hsp70 (Sig/E7/Hsp70), a vaccine utilizing such a strategy, has been found to lead to secretion of the E7 antigen-Hsp70 fusion protein by transfected cells. Enhanced CTL response and antitumor activity have been observed in mice vaccinated with this construct (105-107).

In addition to the extracellular DC-targeting strategies, intracellular targeting strategies to enhance antigen presentation via the MHC-I and MHC-II pathways are also important methods to strengthen the induced T cell response. Generally, cytosolic or nuclear proteins are presented via the MHC-I pathway and can stimulate CD8+ T cells, while extracellular proteins are processed in the lysosomes of professional APCs and presented via the MHC-II pathway, stimulating CD4+ T cells. Linking the HPV antigen to various proteins that target antigen to proteasomes for degradation, or to the endoplasmic reticulum, generally enhance the MHC-I presentation of the vaccine antigens (108-112). Fusing the HPV antigen with the sorting signal of the lysosomal-associated membrane protein type 1 or other MHC-II targeting molecules can redirect the antigen to the MHC-II presentation pathway (for a review, see reference (102)). Another way to enhance antigen presentation is to use a single-chain trimer (SCT) molecule as a vaccine. A SCT molecule is composed of the antigenic peptide, beta2-microglobulin (beta2m) and MHC class I heavy chain. This kind of vaccine can bypass antigen processing and lead to stable presentation of peptides by the antigen presenting cells. Animal study has shown that this kind of vaccine can achieve improved tumor control potency (113). The protein expression level of the antigen from the DNA vaccine is also important, and codon optimization has been shown to be effective in increasing the CTL response induced by DNA vaccine (114, 115). Furthermore, polyepitopes can be coded in the DNA vaccine to broaden the effect of induced immune response (116). Each of these is a possible method under consideration to enhance the antigen presentation of the DNA HPV therapeutic vaccines.

Improving the interaction between DCs and T-cells is yet another way to enhance DNA vaccine potency. Co-stimulatory molecules play an important role in the activation of naive T-cells by MHC-peptide complexes on DCs. Transflecting DCs with co-stimulatory molecule genes or adding cytokines to stimulate co-stimulatory signals can enhance the co-stimulatory environment (117, 118). In addition, other strategies such as linking the E7 gene with an E. coli beta-glucuronidase could improve vaccine potency (119). Prolonging the survival of DCs may increase the time and frequency of DC-naive T cell interaction, thus augmenting the immune response generated. This strategy has been used by vaccinating mice with DNA encoding HPV antigens and anti-apoptotic molecules such as Bcl-xL. The anti-apoptotic proteins helped DCs to resist effector T-cell induced apoptosis activated by the DCs themselves, thus prolonging the DC survival and enhancing E7-specific CD8+ T-cells activation (104, 120-125). (For a review, see references (66, 126)).

Several experimental DNA vaccines have proceeded into clinical trials. A phase I clinical trial in patients with high-grade anal intra-epithelial lesions (127) and another phase I trial in CIN-2/3 patients (128) tested a plasmid DNA vaccine, ZYC-101 (ZYCOS Inc), which encodes multiple HLA-A2-restricted epitopes derived from the HPV-16 E7 protein encapsulated in biodegradable polymer microparticles. No subjects in any dosage group tested showed problems with tolerating the vaccine. The immune response to the peptide epitopes encoded within the DNA vaccine was increased in ten of the 12 individuals with anal dysplasia (127). Five out of 15 women with CIN-2/3 had complete histological responses and 11 out of 15 women with CIN-2/3 had human papillomavirus-specific T-cell responses (128). The next generation ZYC-101 vaccine, ZYC-101a (ZYCOS Inc), contains a plasmid DNA encoding both HPV-16 and HPV-18 E6 and E7 epitopes. A recent phase II trial demonstrates that a prospectively defined subgroup of younger women have a significantly higher rate of disease resolution when treated with ZYC-101a than when administered placebo (129). However, when comparing the effect of placebo and ZYC-101a in the whole population studied, no significant difference was observed. Another clinical trial at Johns Hopkins Hospital tested a DNA vaccine encoding E7 linked to Mycobacterium tuberculosis Hsp70 (PNGV4a-Sig/E7(detox)/Hsp70). Present results show that the vaccine is well tolerated [C Trimble, personal communications].

4.5. RNA replicon vaccines

Naked RNA molecules that replicate within transfected cells are called RNA replicons. RNA replicons express the encoded antigen at high levels, can be immunized in patients repeatedly, and persist in the transfected cells for long periods of time (130-132), making these molecules more immunogenic than conventional DNA vaccines. Furthermore, unlike DNA vaccines, RNA replicons don’t raise concerns of cell transformation, which is especially important to consider given the use of potentially oncogenic proteins such as HPV E6 and E7. RNA replicons are, however, less stable than DNA and transfected cells ultimately go through apoptosis due to the activity of the replicon. In order to combine both the benefits of DNA vaccines and RNA replicon, researchers have created naked ‘suicidal’ DNA encoding the RNA replicon. This kind of vaccine is not only stable and efficiently transfected but also has the strong potency and safety of RNA replicon (130).

Several preclinical studies of HPV vaccines have used an alpha-virus RNA replicon administered as either RNA or DNA encoding HPV-16 E7. Researchers showed that they could induce strong immune responses. If combined with fusion protein strategies to enhance intracellular localization of antigen or intercellular spread of antigen, tumor eradication has been observed (133-137). Combination of E6 and E7 genes is also a plausible strategy to enhance the potency of alpha-virus RNA replicon-based vaccines (138). Additionally, a new replicon system utilizing a stable, non cytopathic RNA replicon, flavivirus Kunjin (KUN), has been recently created. Vaccination of mice with HPV-16 E7 CTL epitope expressing KUN replicons could induce specific T-cell responses and
HPV vaccine

protection from tumor challenge (139). One important advantage of KUN replicon based vaccines over alphavirus replicon based vaccines is that KUN replicon does not initiate cell death. This may increase the time during which antigen presentation can occur while still maintaining a low risk of cell transformation (140).

4.6. Dendritic cell-based vaccines

As mentioned above, DCs are the most potent antigen presenting cells. Extensive studies have revealed the mechanisms of the development of DCs, the process of antigen presentation and DCs’ migration and maturation control signals. This understanding has become the basis for the development of DC-based vaccines (for a review, see reference (141)). To create a DC-based HPV vaccine, it is necessary to load DCs with viral antigens and deliver them into the patients. Antigen-loading strategies include pulsing DCs with synthetic peptides or tumor lysate or transferring nucleic acids encoding tumors antigens directly into DCs. Infected DCs with tumor antigen-expressing vaccinia virus (142) or fusing DCs with tumor cells (36) has also been shown to be plausible. Reagents such as CpG oligonucleotides or sorbitol may be added to stimulate DCs to enhance their immunogenicity (143, 144). Introducing co-stimulatory molecule or cytokine genes into DCs can enhance the DC-T cell interaction, which may also stimulate a stronger immune response. However, preparing a DC-based vaccine is labor intensive. Cells must be cultured ex vivo for each individual patient. The culture process as well as the antigen loading and administration methods may bring great variation in quality of DC vaccines. An even more serious concern is that immature DCs that are mixed in the DC vaccine may potentially result in antigen tolerance (for a review, see reference (145)).

In the vaccine production process, most preclinical DC vaccine researchers either pulse the ex vivo cultured DCs with HPV antigen or transfet HPV antigen-coding DNA, RNA or viral vector into the cultured cells. Both strategies have been shown to be able to induce specific CTL immune responses in mice, and regression of pre-established tumors was also observed in some cases. Various routes of DC vaccine administration have also been studied in preclinical models. Among intramuscular, subcutaneous or intravenous delivery of E7-expressing DC vaccine, Wang et al discovered that intramuscular administration is the most efficient way to generate large number of E7-specific CD8+ T-cell precursors and antitumor immunity (146). (For a review, see reference (66)).

The DC-based vaccines are just beginning to be translated into clinically relevant studies. A recent case report pointed out that an HPV-18 E7 protein-pulsed DC vaccine inhibited tumor progression in a female patient with metastatic cervical cancer. Complete remission didn’t occur but the patient’s health status was improved and no significant side effects were observed (147). A recent clinical trial used DCs from nine patients with advanced cervical cancer pulsed with tumor lysate. The DCs were prepared as autologous vaccines for the patients, and the patients received six weekly subcutaneous injections. CTL responses were generated in some patients, and the DCs were well tolerated by their original donor (148). Other clinical trials have employed a similar strategies (149).

4.7. Tumor cell-based vaccines

Tumor cells, with some modification (i.e. transfection with cytokine genes), may become immunogenic and serve as a form of cancer vaccine. The cytokine genes that have been used in HPV-transformed tumor vaccine development include IL-2 (150), IL-12 (151, 152) or granulocyte-macrophage colony-stimulating factor (GM-CSF) (152, 153). Many of these constructs have been shown to generate antitumor effects in mouse models. One benefit of tumor cell-based vaccines is the convenience that tumor antigens need not be clearly identified, though in the case of HPV-associated cervical cancer, tumor antigens are well known. Using tumor cell-based vaccines, however, carries the risk of introducing new cancers, which is not acceptable for relatively healthy HPV carrier or patients with mild cervical neoplasia. The application of tumor cell-based vaccines may thus be limited to patients with advanced cancers. Additionally, for the tumor vaccines to be most effective, developing the vaccine from the patients' own tumor cells is thought to be ideal, limiting the ability to achieve large scale production. The process of isolating tumor cells from patients is very challenging in itself. The number and uniformity (including antigen presentation and transformation) of the cells is important as is preventing contamination of fibroblasts infiltrating tumor. Additional work, such as transfecting the cells with cytokines, is required to enhance the immunogenicity of the tumor cells to the immune system. Thus, autologous tumor vaccines are impractical for clinical use. The development of allogenic tumor cell lines that express common tumor antigens is a possibility for tumor cell-based vaccines to be widely useful, though using adjuvants or engineering tumor cells to express cytokines or co-stimulatory molecules is still required to make the vaccine immunogenic.

4.8. Combined approaches

Priming and boosting the immune system with different kinds of HPV vaccines may generate better immune responses than using a single vaccine modality. For example, priming the immune system with an HPV DNA vaccine and subsequently boosting the immune system with a live viral vector vaccine has been shown to achieve stronger anti-tumor effects than either vaccine alone (154, 155). Priming with DNA vaccine and boosting with tumor vaccine has also been reported to moderately increase immune response (156). RNA replicon boosted with vaccinia vector is another combination that has been tested. Mice were primed with replication-defective alphavirus replicon particles encoding the HPV-16 E7 antigen, and received HPV E7 vaccinia virus boosters. This combination elicited E7-specific CD8+ T-cells and antitumor effects in mice (157). In addition, strategies that combine DNA vaccination or tumor cell vaccination with antiviral or anticancer agents, such as those tested for treatment of rabbit papillomas and mouse tumor models, may also be useful for treating HPV infections (158-160). However, a prime-boost treatment experiment using a TA-
HPV vaccine

CIN (HPV-16 L2/E6/E7 protein) vaccine combined with vaccinia HPV-16/18 E6/E7 boosting showed that although the regimen is immunogenic, no simple relationship can be observed between induction of HPV-16-specific immunity and clinical outcome (161). Future study is required to optimize the combinatorial vaccination strategy.

5. CONCLUSION

Eradication of cervical cancer and other HPV-related anogenital cancers is an exciting possibility because a necessary causal agent, high-risk human papillomavirus, has been identified and characterized. Therefore, prophylactic and therapeutic vaccines against HPV hold great promises in decreasing worldwide morbidity and mortality associated with the virus. The L1 VLP vaccines have achieved a high efficacy regarding prevention of HPV infection in clinical trials. The potentially cross-protective L2 vaccines are also showing promising development. Efforts in dealing with established HPV infection and potential breakthrough infection in preventive vaccinated women have been the focus of therapeutic vaccine studies. Several of different types of these therapeutic vaccines, including live vector vaccines, peptide or protein vaccines, nucleic acid vaccines, cell-based vaccines and combined approach vaccines, have been shown to induce HPV-specific cellular immunity and antitumor responses in preclinical animal models. The most promising strategies have even been pushed into clinical testing with mixed results, possibly reflecting immune tolerance in patients with persistent HPV infection and disease. Thus, optimizing the immunotherapy against HPV and HPV-associated malignancies requires further study.

Research of the next generation of prophylactic HPV vaccines will probably focus on protection against multiple HPV types and development of inexpensive, heat-stable, single dose formulations for use in low resource settings. Although many of the therapeutic vaccine studies are still trying to elucidate the anti-HPV immune response generated by the vaccinations in preclinical models, completion of the many head-to-head clinical trials of various therapeutic vaccine types will help determine which strategies are best suited for use in humans. It is quite plausible, that in the future, we may be able to control HPV infection and HPV-associated disease in humans through the dual protection of both prophylactic and therapeutic HPV vaccines.

Finally, a useful HPV vaccine should meet the requirements of the people who need it most. That is the population in developing countries, wherein 78% of all cervical cancers occur. Vaccine delivery, cost, requirement of a cold chain system for storage and transportation may all become potential obstacles for the vaccine to be available for these people in need. Future vaccine development must take these criteria into consideration, and safety should not be compromised in these vulnerable populations.

6. ACKNOWLEDGMENTS

This review is not intended to be an encyclopedic one and the authors apologize to those not cited. Special thanks go to Drs Keerti V Shah and Robert J Kurman for their helpful discussions and Mr. David Boyd for his critical review of the manuscript.

7. REFERENCES

HPV vaccine

HPV vaccine

HPV vaccine

HPV vaccine

125. Kim, T. W., J. H. Lee, L. He, D. A. Boyd, C. F. Hung & T. C. Wu: DNA vaccines employing intracellular targeting strategies and a strategy to prolong dendritic cell life generate a higher number of CD8+ memory T cells and better long-term antitumor effects compared with a DNA prime-vaccinia boost regimen. *Hum Gene Ther*, 16, 26-34 (2005)

HPV vaccine

Key Words: Cervical Cancer, Cytotoxic T-Lymphocyte, Human Papillomavirus, Immunotherapy, L2, Tumor Immunology, Tumor-Specific Antigens, Vaccine, Virus-Like Particles, Review

Send correspondence to: Dr. T-C Wu, Department of Pathology, the Johns Hopkins University School of Medicine, Ross 512H, 720 Rutland Avenue, Baltimore, Maryland 21205, Tel: 410-614-3899. Fax: 443-287-4295, E-mail: wutc@jhmi.edu

http://www.bioscience.org/current/vol12.htm