Alpha-galactosylceramide-driven immunotherapy for allergy

Yasuyuki Ishii\(^1\), Risa Nozawa\(^1\), Yukiko Takamoto-Matsui\(^2\), Annabelle Teng\(^3\), Haruka Katagiri-Matsumura,\(^2\) Hiroshi Nishikawa\(^2\), Hiroyuki Fujita\(^1,2\), Yuki Tamura\(^1\), Masaru Taniguchi\(^3\)

\(^1\)Laboratory for Vaccine Design, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, Japan 230-0045, \(^2\)Department of Environmental Immuno-Dermatology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan 236-0004, \(^3\)Laboratory for Immune regulation, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, Japan 230-0045

1. ABSTRACT

We report here that the delivery of both α-galactosylceramide (αGalCer), a representative ligand for invariant natural killer T (iNKT) cells, and an antigenic polypeptide to marginal zone B cells induces the differentiation of regulatory cells in vivo, and suppresses the secondary antibody responses in mice. Splenic CD21\(^+\)CD23\(^-\) B cells of mice treated with αGalCer-liposomes produce IL-10 when co-cultured with iNKT cells, whereas the cells treated with aqueous αGalCer fail to do so. Adoptive transfer of the B cells into syngenic mice leads to the expansion of splenic CD11c\(^{low}\)CD45RB\(^{high}\) cell population in vivo by the treatment of αGalCer-liposomes. Administration of αGalCer-OVA-liposomes into OVA-primed mice causes the development of CD4\(^{+}\)CD25\(^{high}\)Foxp3\(^{+}\) T cells in the presence of OVA\(_{323-339}\) peptide. Administration of αGalCer-OVA-liposomes into OVA-primed mice causes the development of CD4\(^{+}\)CD25\(^{high}\)Foxp3\(^{+}\) T cells that produce both IL-10 and IFN-γ, and induced the antigen-specific suppression of the secondary antibody responses when boosted with OVA alone. These results indicate that antigen-containing αGalCer-liposomes can facilitate the development of tolerogenic antigen-presenting cells and inducible regulatory T cells that are involved in the suppression of immune responses to antigens.

2. INTRODUCTION

It is generally accepted that polarization of an immune response towards the Th2 type is an important prerequisite for the generation of antigen-specific IgE formation involved with atopic disorders (1). Several approaches have been developed for the deviation of the T cell response to the Th1 type. Among these include chemical conjugation of CpG oligonucleotides (ODN) to antigen, which is a device to deliver CpG-ODN and antigen to the same antigen presenting cells. This proved to be a potent immunogen for priming Th1-biased immune response to the antigen (2). Repeated injections of a CpG-ragweed antigen conjugate to antigen-primed mice prevented the secondary IgE antibody response to this allergen (3). Clinical trials of this conjugate are in progress (4).

An alternative approach for the suppression of the IgE antibody response is to induce immune tolerance via the development of antigen-specific regulatory T (Treg)\(^1\) cells. It is well known that intravenous injection of denatured or modified antigen, which has lost the major B cell epitopes while maintaining the T cell epitope of the native antigen, into antigen-primed mice facilitates the differentiation of antigen-specific suppressor (regulatory) T
Treg cells (5, 6). This effectively suppresses the secondary IgE antibody response to the native antigen. More recently it was shown that administration of antigen along with heat-killed listeria monocytogenes (HKL) as an adjuvant reversed an established Th2 response and IgE antibody formation, and induced a Th1 type immune response to the antigen (7, 8).

Further studies on the cellular mechanisms of the immune deviation revealed that immunization with HKL and antigen, included in incomplete Freund adjuvant, induced not only a conventional Th1 response, but also the differentiation of antigen-specific Treg cells that produced IL-10 and IFN-γ (7). The Treg cells were responsible for inhibition of antigen-induced airway hyper-reactivity and for suppression of the IgE antibody response (7). A possible role of IL-10-producing Treg cells for the suppression of an IgE response is supported by the fact that transfer of OVA-specific Tr1 T cell clones concomitant with OVA immunization inhibited the primary IgE antibody response, whereas transfer of the same number of the antigen-specific Th1 clone failed to do so (8).

In an experimental model of anterior chamber-associated immune deviation (ACAID), Sonoda et al (9, 10) have shown that NKT cells are required for the development of systemic immune tolerance. They provided evidence that the NKT cells expressed an invariant Vα14-Jα281 chain, and that the NKT cell-derived IL-10 played a critical role for the development of antigen-specific Treg cells and immune tolerance. These findings suggested the possibility that stimulation of NKT cells with a specific epitope, i.e., α-galactosylceramide (αGalCer), at the time of (or prior to) antigen-presentation to naïve T cells may facilitate the differentiation of Treg, rather than Th, cells specific for the antigen.

In the present studies, we prepared liposomes that contained αGalCer in a lipid bilayer with encapsulated OVA and examined their effect on antigen-induced immune responses. The results show that administration of the αGalCer-OVA-liposomes induces the development of antigen-specific Treg cells in vivo, and that the treatment of mice with these liposomes is effective for suppressing secondary antibody responses.

3. MATERIALS AND METHODS

3.1. Mice

BALB/c and (C57BL/6 X DBA/2) BDF1 mice were purchased from Charles River Japan, Inc. Vα14 NKT-deficient (Ja281/-) mice were generated at Chiba University (11) and backcrossed for ten generations onto BALB/c background. OVA-specific TCR transgenic DO11.10 mice were kindly provided by M. Kubo (RIKEN Research Center for Allergy and Immunology). All mice were maintained under pathogen-free conditions in our animal facility. The institutional committee for animal care and use in RIKEN approved all experimental procedures.

3.2. Reagents

α-galactosylceramide (αGalCer), KRN7000, was purchased from Kirin Brewery Co., Ltd., Japan. Dioleoylphosphatidylcholine (DOPC) (Wako Pure Chemical Industries, Japan), choleryl β3-N- (dimethylamino)ethylcarbamate (DC-Chol) (Sigma-Aldrich), and 1,2-Distearoyl-sn-Glycero-3-Phosphethanolamine-N- (Methoxy (Polyethyleneglycol)-2000) (Ammonium Salt) (PEG-PE) (Avanti Polar Lipids, Inc.) were used for the formation of liposomes. Phorbol 12-Myristate 13-Acetate (PMA), ionomycin and OVA132, 339 peptide were purchased from Sigma-Aldrich. Crystalline ovalbumin (OVA) was purchased from Seikagaku Co., Japan. 2,4-dinitrophenyl derivatives of OVA (DNP-OVA) and keyhole limpet hemocyanin (DNP-KLH) were purchased from Cosmo Bio, Japan.

3.3. Antibodies

For depletion of lineage-specific cells from spleens, biotinylated mAbs to CD3 (145-2C11), CD19 (1D3), CD49b (DX5), Ly-6G (Gr-1), TER-119 (BD Bioscience Pharmingen) and streptavidin-conjugated microbeads (Miltenyi Biotech) were used.

For flow cytometry, FITC-conjugated mAbs to IFN-γ (XMG1.2), and CD4 (RM4-5), PE-conjugated mAbs to CD25 (PC61) and CD45RB (HL3), biotinylated anti-CD4 (RM4-5) mAb and streptavidin-conjugated PerCP Cy5.5 were purchased from BD Bioscience Pharmingen. Anti-CD16/32 (2.4G2; BD Bioscience Pharmingen) mAb was used for blocking the Fcγ receptor. PE-conjugated anti-Foxp3 mAb (FJK-16s) and staining kit were purchased from eBioscience.

For ELISA, biotinylated anti-mouse IgE (6H5D5) was purchased from Seikagaku Co, Japan. Mouse IgE anti-DNP mAb H1 DNP-ε-26 and IgG1 anti-DNP mAb H1 DNP-γ-109 (12) was a gift from Dr. Fu-Tong Liu (University of California, Davis, CA). IgG2a anti-DNP mAb (MA-DNP-2) was purchased from Cosmo Bio, Japan. Horse radish peroxidase (HRP)-conjugated anti-IgG1 and IgG2a were purchased from Zymbiol.

3.4. Preparation of liposomes

Firstly, DC-Chol (0.83 mg), DOPC (0.77 mg), PEG-PE (0.029 mg), and α-GalCer (0.16 mg) were dissolved in chloroform and methanol (1:1). The dried films were suspended in 200 µl of PBS containing 400 µg/ml OVA, homogenized by sonication and mixed with 600 µl of dH2O. Uni-lamellar liposomes were prepared from multi-lamellar liposomes suspensions using a Liposofast-Basic extruder (Avestin Inc.) by 25 cycles of manual extrusion through a 100 nm pore size polycarbonate membrane. Loss of α-GalCer and lipids trapped in the extruder was less than 10% of the starting material as estimated by the weight of lipids recovered. OVA-encapsulated αGalCer-liposomes were concentrated in an Amicon Ultra-4 centrifugal filter PL-100 (Millipore) and washed with PBS until no OVA protein was detectable in the flow through fraction. The concentrations of α-GalCer and OVA in the final liposome preparations were 200µg/ml and 50µg/ml, respectively. Liposome formulations were stored at 4 °C until use.
3.5. Ab measurement by ELISA
Serum anti-DNP IgG1 and IgG2a antibodies were measured as described (13). Anti-DNP IgE Ab was measured with minor modifications. Briefly, microtiter plates (Corning) were coated overnight with 1 µg/ml rat anti-mouse IgE mAb (6H9S) at 4 °C. After blocking and washing, appropriate dilutions of serum samples or serial dilutions of anti-DNP IgE Ab as a standard were added. After incubation for 3 hr at 37 °C, plates were washed and 2.5 µg/ml biotinylated DNP-BSA (Cosmo Bio, Japan) in “Can Get Signal” immunoreaction enhancer solution (TOYOBO, Japan) was added to each well. The binding of biotinylated DNP-BSA was measured by HRP-conjugated streptavidin (Dako Cytomation) in “Can Get Signal” immunoreaction enhancer solution and TMB+ substrate system (Dako Cytomation).

3.6. Cell culture and culture medium
All cells were cultured in Click’s medium (Sigma-Aldrich) supplemented with 10% fetal bovine serum, 50 µM 2-mercaptoethanol, 10 mM Hepes (Sigma-Aldrich) and antibiotics. CD4+ naïve T cells were isolated from spleen cells of OVA-specific TCR transgenic DO11.10 mice by using CD4+ T cell isolation kit (Miltenyi Biotech). For the isolation of iNKT cells, dimeric rmCD1d:lg was loaded with molar excess of αGalCer according to the instruction manuals of BD Biosciences for 16 h at 37 °C. Spleen or lymph node cells were incubated with αGalCer-loaded rmCD1d:lg dimer for 30 min at 4 °C. After washing, the cells were incubated with rat anti-mouse IgG1 microbeads for 30 min at 4 °C. iNKT cells were recovered by the binding to magnet.

3.7. Preparation of splenic DCs
DCs were prepared as previously described (14). Briefly, spleens were swollen by infusion of 1 mg/ml collagenase D (Roche Molecular Biochemicals) in HBSS containing 10 mM Hepes buffer (pH 7), and incubated for 45 min at 37 °C. After cutting the spleen into small pieces, the cells were filtered through a 70 µm cell strainer (BD Bioscience), and suspended in 3 ml of 14.1% HistoDenz medium (BioWhittaker), the cell suspension was centrifuged at 1700 x g for 15 min and the low-density cell fraction was recovered. After incubation with a cocktail of biotinylated anti-CD3, CD19, CD49b, Ly-6G and TER119 antibodies, the cells were incubated with anti-CD16/CD32 mAb to prevent non-specific binding of Abs to cell Fc receptors. After washing with PBS containing 2% FCS and 0.09% sodium azide, the cells were incubated for 30 min at 4 °C with fluorescein-labeled mAbs. For staining of intracellular cytokines, cells were incubated with 50 ng/ml PMA and 500 ng/ml ionomycin for 4 h in the presence of 2 µM monensin (Protocol of BD Bioscience). Cells were fixed, and permeabilized by using Cytofix/Cytoperm in Perm/Wash buffer (BD Bioscience), and then incubated for 30 min at 4 °C with fluoro-labeled mAbs. Cytometric analysis and cell sorting were done using FACSCalibur, FACSVantage SE and FACSAnia (BD Bioscience).

3.9. RT-PCR
Total RNA was isolated using RNeasy MinElute Cleanup kit (Qiagen). For the amplification of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), Foxp3 and IL-21, specific primers were synthesized as follows: 5’-gccagtctgaaagttgtgctgacgg-3’ (forward for G3PDH); 5’-tcacaacctgtgctgctgta-3’ (reverse for G3PDH); 5’-gggcaatcagtgatgagtcagcag-3’ (forward for Foxp3); 5’-cctctctgtctgctgctgctgctg-3’ (reverse for IL-21) and 5’- atccaaggaagggcatttagc-3’ (reverse for IL-21). RT-PCR was performed for 30 cycles at 57 °C for annealing.

3.10. Statistical analysis
The statistical significance of differences between the experimental groups was determined by nonparametric Mann-Whitney U test.

4. RESULTS
4.1. Suppression of T cell priming by pretreatment of mice with αGalCer-liposomes
In order to test possible effects of the liposome-formulation of αGalCer (αGC-liposomes) on the antibody response, either αGC-liposomes containing 2 µg αGalCer or αGC-OVA-liposomes containing 2 µg αGalCer and 0.5 µg OVA was injected intraperitoneally into groups of BDF1 mice 3 days prior to immunization with alum-absorbed DNP-OVA. Control groups received aqueous αGalCer or liposomes alone prior to immunization. As shown in Figure 1A, primary anti-DNP IgE, IgG1 and IgG2a antibody responses were completely suppressed by pretreatment with αGC-liposomes or αGC-OVA-liposomes, but not by the pretreatment with aqueous αGalCer. Total serum immunoglobulin levels were not affected by either of the pre-treatments (data not shown). We wondered whether the lack of the antibody responses in the αGC-liposomes-treated mice was due to suppression of T cell priming. To test this possibility, we treated groups of BDF1 mice with an intraperitoneal injection of αGC-liposomes or aqueous αGalCer, and then immunized the mice with alum adsorbed DNP-OVA three days later. Splenic CD4+ T cells were obtained from each group of the mice 7 days after the immunization, and the cells were cultured for 48 hr with irradiated syngenic splenocytes in the presence of DNP-OVA of various concentrations. As shown in Figure 1B, the pretreatment with αGC-liposomes prevented IL-2 production and cell proliferation, whereas pretreatment with aqueous αGalCer rather enhanced them. It was also noted that antigen-nonspecific proliferation of CD4+ T cells induced by PMA/ionomycin was also substantially inhibited following αGC-liposome-treatment (Figure 1B). To elucidate the mechanism for the prevention of T cell priming, cytokine production of splenic CD4+CD25+ T cells from αGC-liposome-treated mice were analyzed 7, 10 and 14 days after the immunization with...
Inkt-mediated immunotherapy for allergy

Figure 1. Suppression of primary antibody responses by administration of αGC-liposomes. (A) Groups of BDF1 mice (n=5) received an intraperitoneal injection of αGC-liposomes or αGC-OVA-liposomes containing 2 µg α-GalCer, the same dose of aqueous αGalCer, or liposome alone. Three days later, they were immunized with alum-absorbed DNP-OVA (0.1 µg), and the concentration of anti-DNP Abs in their sera was determined by ELISA at day 14. ** p < 0.001 for αGC-liposome and αGC-OVA-liposome groups versus saline group. (B) Groups of BDF1 mice were pretreated with the same dose of aqueous αGalCer, αGC-liposomes, or saline, and then immunized with alum-adsorbed DNP-OVA 3 days later. Their splenic CD4⁺ T cells were obtained 7 days after the immunization, and aliquots (2 x 10⁵ cells) of the cells were cultured with serial dilutions of DNP-OVA together with irradiated syngenic splenocytes (1 x 10⁶ cells) or in the presence of 50 ng/ml PMA and 500 ng/ml ionomycin. After 48 h, IL-2 in the culture supernatants was assessed by ELISA. The cell proliferation was assessed by using the uptake of methylthiazole tetrazolium (MTT). Stimulation index represents the ratio of absorbance of samples versus that of a negative control. (C) Groups of BDF1 mice were pretreated with the same dose of αGC-liposomes or saline, and then immunized with alum-absorbed DNP-OVA three days later. Splenic CD4⁺CD25⁺ T cells of non-treated mice were obtained 7 days after the immunization (lane 1). The cells of αGC-liposome-treated mice were obtained 7 (lane 2), 10 (lane 3) and 14 days (lane 4) after the immunization. Total RNAs were extracted from each cell fraction. Expression of IFN-γ, IL-4, IL-10, Foxp3 or GAPDH mRNAs was analyzed by RT-PCR.
that the difference between B cells from the liposome-treated mice and those from the aqueous of aqueous responsible for the production of IL-10. In contrast, B cells associated alone did not contain a detectable amount of IL-10 (results CD1d antibody, and culture supernatants of the B cells normal spleen cells was prevented by the addition of anti-CD11c-coupled microbeads. The rest of the splenocytes were then fractionated by histodenz gradient, and B cells in both the high density (HD) and low density (LD) fractions were recovered by using anti-B220-coupled microbeads. The HD-B cells and LD-B cells were then cultured with normal spleen cells as the source of iNKT cells, and cytokines in the supernatants were determined. As shown in Figure 2B, only LD-B cells induced the formation of IL-10, whereas neither IL-4 nor IFN-γ was detected in the culture supernatant. Absence of both IL-4 and IFN-γ indicates that the formation of IL-10 in this system was not due to contamination of the B cell fraction with DCs. Moreover, LD-B cells were further fractionated into CD21high CD23cell, CD21middle CD23high cell or CD21low CD23cell fraction by flow cytometry. Each fraction was cultured with normal spleen cells, from which B cells had been depleted by using anti-B220-coupled microbeads. IL-10 production was detected in the culture supernatants of CD23-negative cell fractions at substantially higher amounts than that in that of CD23-positive cell fraction (Figure 2C). To determine the cell source of IL-10 in this system, LD-B cells were obtained from the spleen of αGC-liposome-treated mice by the method described above, and the cells were cultured with normal spleen cells, from which B cells had been depleted. After 48 hr culture, supernatants were collected to confirm the presence of IL-10, and the cells were fractionated into B220− cell and αGC/CD1d-Ig− cell fraction. Each cell fraction was analyzed for the presence of IL-10 mRNA by RT-PCR. As shown in Figure 2D, IL-10 mRNA was detected in B220− B cell fraction more than in αGC/CD1d-Ig− cell fraction which contains iNKT cells. Taken together, the results suggested that presentation of αGalCer on CD23-negative LD-B cells to iNKT cells induced the formation of IL-10.

4.3. Expansion of CD11c−CD45RBhigh cell population in vivo by the treatment of αGalCer-liposomes

Since αGC-liposomes are captured by LD-B cells in the spleen, when it was injected intraperitoneally (cf. Figure 2), we determined as to whether the transfer of the LD-B cells pulsed with αGC-liposomes prior to the priming might induce the suppression of antibody responses. LD-B cells were obtained from the spleen of normal BDF1 mice, and incubated for 18 hr with αGC-liposomes. After washing, these cells or un-pulsed LD-B cells were transferred intravenously into normal BDF1 mice and then immunized with DNP-OVA in alum. As shown in Figure 3A, primary anti-DNP IgE, IgG1 and IgG2a antibody responses were completely suppressed by the transfer of αGC-liposome-pulsed LD-B cells, but not by that of LD-B cells alone.
Figure 2. Uptake of αGC-liposomes by antigen-presentation cells. Splenocytes of BDF1 mice were obtained 24 h after an intraperitoneal injection of aqueous αGalCer (2 µg) or αGC-liposomes containing 2 µg α-GalCer. (A) Dendritic cells (DC) were purified from the splenocytes by using microbeads conjugated with anti-CD11c mAb. B cells were recovered from the residual cells using microbeads conjugated with anti-B220 mAb. Aliquots of normal spleen cells were then co-cultured with the purified DC or B cells. IFN-γ, IL-4 and IL-10 in the culture supernatants were determined by ELISA. ND; not detected. (B) Splenocytes of BDF1 mice were obtained 24 hr after an intraperitoneal injection of αGC-liposomes. After the depletion of CD11c+ cells, the rest of the splenocytes were then fractionated by histodenz gradient, and B cells in the high density (HD) and low density (LD) fractions were recovered by using anti-B220-coupled microbeads. The HD-B cells and LD-B cells were then cultured with normal spleen cells depleted B220+ cells for 24 hr. IFN-γ, IL-4 and IL-10 in the culture supernatants were determined by ELISA. (C) LD-B cells were stained with both FITC-labeled anti-CD21 and PE-labeled anti-CD23 mAbs, and sorted into CD21high CD23- cell (a), CD21middle CD23high cell (b) or CD21low CD23- cell (c) fraction by flow cytometry. Each fraction was co-cultured with normal spleen cells depleted B220+ cells for 24, 48 and 72 hr. (D) The cultured cells in (C) were fractionated into B cell (B220+) and iNKT cell (αGC/CD1d-Ig+) fractions. Each cell fraction was analyzed for the presence of IL-10 mRNA by RT-PCR.
Figure 3. Preferential increase in CD11c$^{\text{low}}$CD45RB$^{\text{high}}$ cells in mouse spleen by the treatment with αGC-liposomes. (A) LD-B cells were obtained from the spleen of normal BDF1 mice, and incubated for 18 hr with 100 ng/ml of αGC-liposomes. After washing, these cells (6×10^5 cells), un-pulsed LD-B cells (6×10^5 cells) or saline were transferred intravenously into normal BDF1 mice (n=5) and immunized with alum-adsorbed DNP-OVA (0.1 µg). The concentration of anti-DNP Abs in their sera was determined by ELISA at day 14. * p < 0.05 and *** p < 0.005 for αGC-liposome-LD-B cell-transferred groups versus saline group. (B) αGC-liposome-pulsed LD-B cells (6×10^5 cells) or un-pulsed LD-B cells (6×10^5 cells) were transferred intravenously into normal BDF1 mice (n=5), of which splenocytes were obtained after three days. After depletion of erythrocytes, T cells, B cells, granulocytes, and macrophages, the reminder was stained with both APC-labeled anti-CD11c and PE-labeled anti-CD45RB mAbs, and the cells were analyzed by flow cytometry. Circles indicate the population of CD11c$^{\text{low}}$CD45RB$^{\text{high}}$ cells and CD11c$^{\text{high}}$ cells. The proportion (%) of the cells is shown in panel. (C) CD11c$^{\text{low}}$CD45RB$^{\text{high}}$ and CD11c$^{\text{high}}$ cells in the spleen of αGC-liposome-treated mice were sorted by flow cytometry, and examined by phase contrast microscopy. The sorted cells were stained with FITC-conjugated mAb to I-A^d, CD40, CD80 or CD86, and were analyzed by flow cytometry. (D) The sorted cells (2×10^5) were cultured in the Click’s medium containing 10% FCS supplemented with 1 µg/ml LPS (+) or without LPS (-) in the presence of 10 ng/ml rmGM-CSF. After 24 hr, culture supernatants were recovered and assessed for IL-10 and IL-12 by ELISA.
To clarify the suppression mechanism, we next analyzed splenic CD11c-positive cells three days after the transfer of αGC-liposome-pulsed LD-B cells. To enrich CD11c DCs in the spleen cells, CD3, CD19, CD49b, Gr-1, or TER-119 positive cells were depleted by using the microbeads conjugated with specific mAbs. The results of flow cytometry of the DC-enriched fraction were shown in Figure 3B, and the average numbers of CD11c^{low}CD45RB^{high} DCs and CD11c^{high}CD45RBlow DCs recovered per spleen of the recipients were included in Table 1. The results clearly showed that the transfer of αGalCer-liposome-pulsed LD-B cells induced a selective increase in CD11c^{low}CD45RB^{high} cells in the spleen of the recipients.

Since the CD11c^{low}B220⁺ Gr-1⁺ plasmacytoid DCs should have been depleted from the spleen cells in the process of the enrichment of CD11c cells, we wondered whether the CD11c^{low} cells might represent CD45RBlow tolerogenic DCs. To confirm whether the expansion of CD11c^{low}CD45RB^{high} cells depends on the treatment of αGC-liposomes, BDF1, BALB/c and V^α14NK-T-deficient BALB/c-background mice received an intraperitoneal injection of αGC-liposomes, αGalCer-OVA-liposomes, or the same dose of aqueous αGalCer, and their splenocytes were recovered 3 days later. The proportion of CD11c^{low}CD45RB^{high} cells in the total DCs in the BDF1 and BALB/c splenocytes increased by the treatment with αGC-liposomes or αGalCer-OVA-liposomes. In the V^α14 NK⁺ cells-deficient mice, however, the proportion of the CD11c^{low} cells did not change by the treatment, indicating that V^α14 NK⁺ cells were indispensable for the expansion of the CD11c^{low}CD45RB^{high} cell population (40). The numbers and the proportion of CD11c^{low}CD45RB^{high} cells and CD11c^{high}CD45RB^{low} cells recovered from the BDF1 spleen cells were calculated. The results summarized in Table 1 indicated that the treatment with αGC-liposomes induced a marked increase in CD11c^{low}CD45RB^{high} cells without affecting the number of CD11c^{high}CD45RB^{low} cells, whereas the treatment with aqueous αGalCer rather induced a significant increase in CD11c^{high} DCs.

Characteristics of the DCs developed by the αGC-liposome-treatment were determined. The CD11c^{low}CD45RB^{high} cells and CD11c^{high}CD45RB^{low} cells were recovered by cell sorting from the splenocytes of BDF1 mice 3 days after the injection of αGC-liposomes. Microscopic examination revealed that the CD11c^{low}CD45RB^{high} cells had plasmacytoid-like morphology, while the CD11c^{high}CD45RB^{low} cells were typical dendritic cells (Figure 3C). Analysis of the cell surface molecules of the sorted cells by flow cytometry showed that the expression level of I^A, CD40 or CD80 on the CD11c^{high}CD45RBlow cells were significantly lower than those on the CD11c^{low}CD45RB^{high} cells, while the expression of CD86 was comparable in the two populations (Figure 3C). Upon stimulation with LPS, the CD11c^{low}CD45RB^{high} population produced IL-10 but no IL-12, while the CD11c^{high}CD45RBlow population secreted IL-12 but no IL-10 (Figure 3D). The results collectively indicated that the DC population of the CD11c^{low}CD45RB^{high} phenotype might represent tolerogenic DCs described by Wakkach et al. (15), and that this population expanded in vivo by the injection of αGC-liposomes, but not aqueous αGalCer.

Table 1. αGC-liposomes preferentially augment the absolute number of CD11c^{low}CD45RB^{high} cells relative to CD11c^{high} DCs in the spleens of BDF1 mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total cells –Lineages<sup>1</sup></th>
<th>CD11c<sup>low</sup>CD45RB<sup>high</sup></th>
<th>CD11c<sup>high</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>29.7</td>
<td>1.5 (4.9%)</td>
<td>5.6 (18.8%)</td>
</tr>
<tr>
<td>LD-B<sup>2</sup></td>
<td>43.1</td>
<td>1.8 (4.1%)</td>
<td>11.4 (26.5%)</td>
</tr>
<tr>
<td>LD-B pulsed with αGC-liposomes<sup>3</sup></td>
<td>76.1</td>
<td>10.6 (14.0%)</td>
<td>9.4 (12.4%)</td>
</tr>
<tr>
<td>Injection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>26.3</td>
<td>1.5 (5.5%)</td>
<td>3.9 (14.9%)</td>
</tr>
<tr>
<td>αGalCer</td>
<td>51.7</td>
<td>3.6 (6.9%)</td>
<td>8.1 (15.7%)</td>
</tr>
<tr>
<td>Liposomes</td>
<td>44.1</td>
<td>2.9 (6.5%)</td>
<td>6.8 (15.3%)</td>
</tr>
<tr>
<td>αGC-liposomes<sup>4</sup></td>
<td>121.6</td>
<td>30.8 (25.3%)</td>
<td>4.5 (3.7%)</td>
</tr>
</tbody>
</table>

Results represent the number of cells (x 10⁶) per mouse spleen. ¹Total cells-Lineages represent the numbers of enriched cells after depletion of CD3, CD19, CD49b, Gr-1, or TER-119-positive cells. ²LD-B represents low-density B cells. ³LD-B pulsed with αGC-liposomes.

4.4. Differentiation of Treg cells in vitro by antigen-pulsed CD11c^{low}CD45RB^{high} cells

Since the injection of αGC-liposomes promoted the development of CD11c^{low}CD45RB^{high} tolerogenic DCs in the spleen, the next experiments were carried out to confirm that the cells developed by the liposome-treatment facilitate the differentiation of Treg cells. BALB/c mice received an intraperitoneal injection of αGC-liposomes, and the CD11c^{low}CD45RB^{high} cells and CD11c^{high}CD45RB^{low} DCs in their spleens were purified by cell sorting following the procedures described in the previous section (cf. Figure 3C). Naïve CD4⁺ T cells were purified from the spleen cells of RAG2^{-/-}DO11.10 mice, and the T cells were cultured either with the CD11c^{low}CD45RB^{high} cells or with CD11c^{high}CD45RB^{low} DCs in the presence of OVA₃₂₃₋₃₃₉ peptide. After 7 days culture, CD4⁺ T cells were recovered, and stimulated again for 7 days with the peptide in the presence of freshly isolated DCs from the αGC-liposome-treated mice. T cells recovered after three cycles of the culture were stained with anti-CD4 and anti-CD25 mAbs on their cell surface, and then with anti-Foxp3 mAb intracellularly. Flow cytometric analysis showed that CD4⁺CD25⁺ T cells co-cultured with CD11c^{low}CD45RB^{high} cells expressed Foxp3 protein much...
4.5. Differentiation of Treg cells

In vitro by administration of αGalCer-liposomes encapsulated an antigen

Development of Treg-like cells from the RAG2-/-DO11.10-naïve CD4+ T cells by the repeated stimulation with antigen (epitope)-pulsed CD11clowCD45RBhigh cells from the αGC-liposome-treated mice suggested the possibility that injections of αGC-OVA-liposomes might induce the development of antigen-specific Treg cells in vivo. The next experiment was undertaken to prove the presence of the antigen-specific Treg cells. Three groups of BDF1 mice received three weekly injections of αGalCer-liposome or αGalCer-OVA-liposome. Their spleen cells were obtained 7 days after the last injection of the liposome, and the CD4+ T cells were recovered. Ten million CD4+ T cells from each group or normal CD4+ T cells were intravenously transferred into the BDF1 mice, which had been immunized with alum-absorbed DNP-OVA and boosted with DNP-OVA. As shown in Figure 5A, the CD4+ T cells from the αGC-OVA-liposome-treated mice significantly suppressed not only the IgE anti-DNP antibody response after the second boosting but also the ongoing antibody formations and the antibody responses of both IgG1 and IgG2a isotypes in the recipients, while the CD4+ T cells from the αGC-liposome-treated mice failed to do so.

The rest of the CD4+ T cells were cultured for 6 days with OVA-pulsed irradiated splenocytes, and were analyzed for intracellular Foxp3, IL-10 and IFN-γ. Most of CD4+ CD25low cells from mice treated with αGC-liposomes expressed high level of Foxp3 but not IL-10 or IFN-γ (a in Figure 5B). In contrast, the treatment with αGC-OVA-liposomes induced the development of CD4+ CD25high cells, of which the majority expressed the low level of Foxp3 protein and both IL-10 and IFN-γ (b in Figure 5B). In the spleen of non-treated mice, CD4+CD25high cells which expressed high level of Foxp3, but no cytokines, were only detected (c in Figure 5B). The results suggested that CD4+ T cells producing both IL-10 and IFN-γ might represent inducible Treg cells generated by the treatment with αGC-OVA-liposomes.

4.6. Antigen-specific suppression by the treatment with αGC-OVA-liposomes

BDF1 mice were immunized with alum-absorbed DNP-OVA and, after detection of the primary anti-DNP IgE antibody responses at 2 weeks, either αGC-liposomes or αGC-OVA-liposomes was injected intraperitoneally into the DNP-OVA-primed mice at day 21, 28 and 35. Seven days after the last injection of the liposomes, booster immunization of DNP-OVA was given to all groups, and the secondary anti-DNP-antibody response was assessed at 7 days after the booster. As shown in Figure 6, anti-DNP antibody response of all Ig isotypes examined was markedly suppressed by the treatment with αGC-OVA-liposomes. The treatment with αGC-liposomes slightly suppressed both the IgG1 and IgG2a antibody responses, but failed to affect the IgE antibody response. To determine the carrier-specific nature of the suppression by the treatment with αGC-OVA-liposomes, separate groups of BDF1 mice were immunized with alum-absorbed DNP-KLH; one group was treated by three intraperitoneal injections of αGC-OVA-liposomes, and another group was treated with αGC-liposomes. The results of the secondary antibody responses to DNP-KLH, given at 7 days after the liposome treatment, indicated that the treatment with αGC-liposomes slightly suppressed the secondary IgG1 and IgG2a antibody responses, but encapsulation of OVA in the liposomes did not enhance the suppressive effect. Neither αGC-liposomes nor αGC-OVA-liposomes suppressed the secondary IgE antibody response to DNP-KLH (Figure 6).

5. DISCUSSION

Data presented in this study clearly showed that pretreatment of BDF1 mice with αGC-liposomes suppressed the T cell priming, the primary antibody response to the antigen used for subsequent immunization, and the development of IL-10-producing CD4+ CD25+ T cells, while the pretreatment of the mice with the same dose of aqueous αGalCer rather enhanced the T cell priming (cf. Figure 1). The difference between the effects of αGC-liposomes and those of aqueous αGalCer on the immune response is probably ascribed to the difference in the antigen-presenting cells involved. It is well known that presentation of αGalCer by DCs to iNKT cells induces the production of large amounts of IFN-γ and IL-4 (17), and that the production of IFN-γ by the NKT cells in this system requires the formation of IL-12 by the DCs (18, 19). Since aqueous α-GalCer was presented by DCs, but not B cells (cf Figure 2A), naïve CD4+ T cells were preferentially differentiated into helper T cells by virtue of cytokine productions from activated iNKT cells and DCs. As expected from previous reports on liposomes (20), formulation of αGalCer in liposome appears to enhance the uptake of αGalCer by DCs, and resulted in an increase in the formation of the cytokines by iNKT cells (Figure 2A).
Inkt-mediated immuno therapy for allergy

Figure 4. Differentiation of antigen-specific IL-10-producing T cells in vitro by antigen-pulsed CD11clowCD45RBhigh cells. (A) CD4+ T cells from RAG2-/-DO11.10-mice were stimulated three rounds with CD11chigh conventional DCs or CD11clowCD45RBhigh cells in the presence of OVA\textsubscript{323-339} peptide OVA peptide (600 nM). CD4+ cells were enriched from the cultured cells, and stained with FITC-conjugated CD4 mAb and APC-conjugated CD25 mAb. The cells were permeabilized, and then stained with PE-conjugated anti-Foxp3 mAb. Results of cytometric analysis are shown. (B) Total RNA of CD4+ T cells cultured with CD11chigh conventional DCs (lane a) or CD11clowCD45RBhigh cells (lane b) in the presence of the OVA peptide was analyzed by RT-PCR method using primers for Foxp3, IL-21 or G3PDH. (C) The CD4+ T cells co-cultured with CD11clowCD45RBhigh cells in the presence of the OVA peptide were stained with FITC-conjugated anti-CD4 mAb and PE-conjugated anti-CD25, anti-CD28, or anti-ICOS. Aliquots were carried out intracellular staining with anti-CTLA-4 mAb. Histograms show FITC-positive cells among CD4+ cells. (D) The cells were stained with biotinylated anti-CD4 mAb and streptavidin-conjugated PerCP Cy5.5. After the stimulation with both PMA and ionomycin for 4 h, intracellular cytokines were stained by using FITC-anti-IFN-\textgamma, PE-labeled anti-IL-4 and APC-labeled anti-IL-10 mAbs (Cytokine-specific mAb), or FITC-IgG1 (rat), PE-IgG1 (rat) and APC-IgG2b (rat) mAbs (Isotype control mAb). Figure shows intracellular staining of CD4+ cells. (E) BALB/c mice received an intravenous transfer of naïve CD4+ T cells (2 X 106 cells; I) or the cultured CD4+ T cells with CD11clowCD45RBhigh cells (4 X 105 cells; II, 2 X 106 cells; III) and then immunized with alum-adsorbed DNP-OVA (10 \textmu g). The concentration of anti-DNP Abs in their sera was determined by ELISA at day 14. * p < 0.05 and ** p < 0.001 for the cultured CD4+ T cell-transferred group versus naïve CD4+ T cell-transferred group.
Figure 5. Generation of antigen-specific Treg in vivo by repeated injections of αGC-OVA-liposomes. (A) The CD4⁺ T cells (1 X 10⁷ cells/mouse) from the mice treated with αGC-OVA-liposome (○) or those of mice treated with αGC-liposome (▲), or CD4⁺ T cells of untreated mice (●) were intravenously transferred into the treated BDF1 mice (n=5) at day 42, which had been immunized with alum-absorbed DNP-OVA at day 0 and boosted with DNP-OVA at day 39. The mice were then boosted with DNP-OVA at day 88. Anti-DNP Abs were measured by ELISA at day 0, 14, 39, 55, 88 and 96. * p < 0.05 αGC-OVA-liposome group versus saline group. (B) The CD4⁺ T cells were cultured with irradiated syngenic splenocytes in the presence of 100 µg/ml OVA for 6 days, and were stained with biotinylated anti-CD4 mAb plus streptavidin-conjugated PerCP Cy5.5 and PE-conjugated anti-Foxp3 mAbs. The cells were permeabilized, stained with PE-conjugated anti-Foxp3 mAb, or with FITC-conjugated anti-IFN-γ and APC-conjugated anti-IL-10 mAbs, and then analyzed by flow cytometry. Expression of Foxp3 and cytokine production were analyzed in each of the squared cell populations.
However, the present experiments also showed that αGC-liposomes, injected intraperitoneally, was captured not only by splenic DCs but also by LD-B cells, and that the presentation of αGalCer by the B cells to iNKT cells resulted in the formation of IL-10 (Figure 2B). Since marginal zone B cells, which are included in the LD-B cell fraction, express high levels of CD1d and CD21 (21), one may expect that αGalCer associated with CD1d molecules on the B cells will be presented to iNKT cells. Indeed, coculture of sub-cellular fractions in LD-B cells from the αGC-liposome-treated mice with normal spleen cells resulted in the formation of IL-10 mainly from CD21^{high} CD23^{−} cell and CD21^{low} CD23^{−} cell fractions, but not from CD21^{mid} CD23^{high} cell fraction which includes follicular B cells (Figure 2C). It is known that marginal zone B cells produce IL-10 upon bacterial stimulation (22). The present experiments actually showed that IL-10 was derived from LD-B cells rather than iNKT cells, when LD B cells presented αGalCer to NKT cells (Figure 2E). In view of the finding by Colgan et al (23) that ligation of intestinal epithelial CD1d induced the formation of IL-10, we suspect that ligation of CD1d-associated αGalCer on the B cells by invariant Vα14 TCR induced the formation of IL-10 by the B cells.

It is well known that blood-borne particulate antigen is transported to marginal zone of the spleen, where DCs, marginal zone B cells and macrophages exist (24, 25). Fujii et al. (26) have shown that intravenously injected αGalCer was captured by splenic DCs within 1 to 4 hrs after the injection, and that adoptive transfer of the splenic DCs into naïve mice induced selective activation of iNKT cells and maturation of DCs in the recipients. However, pretreatment of the recipient mice with aqueous αGalCer prior to the adoptive transfer of the αGalCer-pulsed DCs rendered inNKT cells unresponsive to the DCs, suggesting that presentation of αGalCer to iNKT cells by non-DCs inhibited the response of IFN-γ producing inNKT cells to αGalCer-bearing DCs (27). Direct evidence for the hypothesis was obtained by using DC-depleted mice. Bezbradica et al (28) demonstrated that B cell-iNKT cell interactions in vivo appear to suppress DC-mediated αGalCer-induced activation of NKT cells and DC maturation. We suspect that immunoregulatory effects of αGC-liposomes are due to uptake of the liposomes by CD1d^{high} B cells, such as marginal zone B cells.

Exact mechanisms for the B cell-mediated regulation of DC maturation are unknown. It was suggested, however, that B cells interact with DCs, and lower the level of IL-12 released by the DCs (29). Since IL-10 inhibits the production of IL-12 by DCs (30), one might speculate that B cell-derived IL-10 is involved in the regulatory function of B cells. Indeed, production level of IL-12 from splenic CD11c^{+} DCs treated with αGC-liposomes was much lower than that with aqueous αGalCer (data not shown). When both DCs and marginal zone B cells captured αGC-liposomes and presented αGalCer to iNKT cells, formation of IL-10 by the B cells preceded the formation of IFN-γ and IL-4 by NKT cells (Figure 2A). Absence of IFN-γ and IL-4 in the culture supernatant of LD-B cells suggests that iNKT cells were not activated in the culture, probably due to failure of marginal zone B cells to produce IL-12. We speculate that early release of IL-10 in the marginal zone may affect maturation of DCs in the environment. Such cellular mechanisms of immune suppression by αGC-liposomes may be shared by the mechanism of immune tolerance in ACAID, in which antigen injected into anterior chamber is transferred exclusively through blood stream to the marginal zone in the spleen (31). Accumulated evidence indicated that both iNKT cells (8) and marginal zone B cells (32, 33) are required for the induction of immune tolerance by the injection of protein antigen into anterior chamber.

The present experiments have shown that both an adoptive transfer of αGC-liposome-pulsed LD-B cells and an injection of αGC-liposomes could induce the development of CD11c^{low}CD45RB^{high} DCs in the spleen (Figure 3A & 3B). Yield of splenic DCs from the αGalCer-treated mice suggested that the treatment with aqueous αGalCer increased the number of CD11c^{high} DCs in the spleen, whereas the treatment with αGC-liposome induced the selective increase in CD11c^{low}CD45RB^{low} cells (cf. table 1). These cells were similar to the tolerogenic DCs described by Wakkach et al (15), in terms of plasmacytoid morphology, cell surface markers, low expression levels of co-stimulatory molecules, such as CD80, CD40 and I-A, and production of IL-10, rather than IL-12, upon stimulation with LPS (Figure 3C). In view of their findings that the CD11c^{low}CD45RB^{low} tolerogenic DCs could be obtained by culture of bone marrow cells with GM-CSF in the presence of IL-10, and that the proportion of this subset in all DCs was significantly high in the spleen of IL-10 transgenic mice, one may suspect that IL-10 released from the marginal zone B cells and iNKT cells in the spleen of the αGalCer-liposome-treated mice promoted the development of the tolerogenic DCs. However, marked increase in the number of CD11c^{low}CD45RB^{high} tolerogenic DCs in their spleens may not be explained by IL-10 alone. Svensson et al (34) reported that spleen-derived stroma cells promoted selective development of CD11c^{low}CD45RB^{high} tolerogenic DCs from progenitor cells, and that the stroma cells from the mice injected with Leishmania donovani were more effective than normal stroma cells for directing the development of the tolerogenic DCs. In the course of the present experiments for the enrichment of DCs in the spleen, we realized that the number of non-lineage cells, which include both DCs and stroma cells, markedly increased after an injection of αGalCer-liposome, and that the increase of the non-lineage cells could not be explained by the increase of CD11c^{low}CD45RB^{low} tolerogenic DCs alone (cf. Table I). One might speculate that the liposome either increase or activate the stroma cells through unknown mechanisms, such as active TGF-β1 production, and promoted the differentiation of progenitor cells towards tolerogenic DCs. Further studies are required for elucidation of the mechanisms for the selective increase in the population of the tolerogenic DCs by an injection of αGC-liposomes. Nevertheless, the findings that transfer of αGC-liposome-pulsed LD-B cells into normal mice induced the development of tolerogenic DCs in the spleen
of the recipients (cf. Figure 3A) indicate that the presentation of αGalCer by marginal zone B cells to iNKT cells was responsible for the generation of CD11c^{low}CD45RB^{high} DCs in the spleen.

Previous studies on the tolerogenic DCs have shown that antigen-pulsed tolerogenic DCs facilitate the development of IL-10-producing Treg (IL-10 Treg or Tr1) cells in vitro, and antigen-specific tolerance in vivo (15, 34, 35). The present experiments actually showed that stimulation of naïve CD4⁺ T cells from RAG2-deficient DO11.10 mice with antigen-pulsed CD11c^{low}CD45RB^{high} tolerogenic DCs from the αGC-liposome-treated mice induced the differentiation of naïve T cells to CD4⁺CD25⁺ Treg cells, which produce IL-10 upon antigen stimulation (Figure 4D). The Treg cells driven by the injections of αGalCer-OVA-liposomes do not express CTLA-4 (Figure 4C), which is consistently expressed on naturally occurring CD4⁺CD25⁺ Treg cells (36, 37). Expression of Foxp3 in Treg cells is controversial. Typical IL-10 producing Treg cells, which were developed by stimulating naïve DO11.10-CD4⁺ T cells with antigen-pulsed CD11c^{low}CD45RB^{high} DCs of the mice immunized with αGC-OVA-liposomes (35), we believed that generation of the antigen-specific iTreg cells was responsible for the suppression of the secondary antibody response. In the recent studies, we clarified that the CD11c^{low}CD45RB^{high} cell population was at least consisted of two populations, of which one is a NK-cell phenotype of CD49b-positive cells expressing both IL-10 and TGF-β, and the other is an immature DC phenotype of CD180-positive cells expressing both TGF-β and MHC class II but not IL-10 (40). The result may suggest that both the CD4⁺ and CD180⁺ cells in the CD11c^{low}CD45RB^{high} cell population expanded by a single injection of αGC-liposomes cooperate in the generation of iTreg cells.

Recent clinical studies on allergy called much attention to possible role of iTreg cells in prevention of allergic diseases. Ling et al (41) have shown that CD4⁺CD25⁺ cells from the majority of non-atopic donors gave proliferative response and IL-5 production upon stimulation with allergen-pulsed antigen presenting cells, and that the responses were prevented by the addition of autologous CD4⁺CD25⁺ cells. In the active allergic pollinosis patients, however, the inhibitory effect of the autologous CD4⁺CD25⁺ cells was substantially less than that observed in non-atopic individuals. Subsequent studies by Akdis et al (42) identified allergen-specific Th1, Th2 and Th1 CD4⁺ cells, which produce IFN-γ, IL-4 and IL-10, respectively, upon antigenic stimulation in the peripheral blood of both atopic and healthy individuals, and found that Th1 cells are dominant subset in healthy individuals.
proposed the hypothesis that balance between allergen-specific Th2 and Tr1 cells would determine the development of healthy or allergic immune response. These findings support our expectations that αGC-liposomes containing an appropriate allergen would be a useful tool for the immunotherapy of allergic patients.

6. ACKNOWLEDGEMENTS

The authors thank Kimishige Ishizaka for helpful discussions and critical reading of the manuscript.

7. REFERENCES

20. I. Gursel, M. Gursel, K. J. Ishii and D. M. Kliman: Sterically stabilized cationic liposomes improve the uptake
Inkt-mediated immunotherapy for allergy

Abbreviations: αGalCer or αGC, α-galactosylceramide; DCs, dendritic cells; iNKT, invariant natural killer T cells; OVA, ovalbumin; Treg, regulatory T cells

Key Words: Innate immunity, IgE, Allergy, Dendritic Cells, DC, natural killer T cells, iNKT, α-galactosylceramide, GalCer, Immune Tolerance, Suppression, Anergy, Regulatory T cells, Treg, IL-10, Tolerogenic

Send correspondence to: Yasuyuki Ishii, Laboratory for Vaccine Design, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, Japan 230-0045, Tel: 81-45-503-7016; Fax: 81-45-503-7015, E-mail: ishiyas@rcai.riken.jp