Versatility of oxidoreductases in the remediation of environmental pollutants

Tukayi Kudanga¹, Stephanie Burton¹, Gibson S. Nyanhongo², Georg M. Guebitz²

¹Biocatalysis and Technical Biology Research group, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville, 7535, Cape Town, South Africa, ²Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12/1, A-8010, Graz, Austria

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Brief review of oxidative enzymes and reaction mechanisms
 3.1. Laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2)
 3.2. Tyrosinase (Tyros; E.C. 1.14.18.1, monophenol monooxygenase)
 3.3. Lignin peroxidase (LiP; EC: 1.11.1.14)
 3.4. Manganese peroxidase (MnP; EC 1.11.1.13)
 3.5. Coprinopsis cinerea peroxidase (CiP; EC 1.11.1.7)
 3.6. Versatile peroxidase (VP; EC 1.11.1.16)
 3.7. Heme-thiolate peroxidases
 3.8. Dye-decolorizing peroxidases (/DyP; EC 1.11.1.X)
 3.9. Secreted plant peroxidases (horseradish peroxidase (HRP, EC 1.11.1.7) and soybean peroxidase (SBP, EC 1.11.1.7)
4. Applications of oxidoreductases for environmental purposes
 4.1. Soil remediation
 4.2. Waste water treatment
 4.3. Decoloration of dyes
 4.3.1. Peroxidases in dye decoloration/degredation
 4.3.2. Laccases in dye decoloration/degredation
5. Perspective
6. Acknowledgements
7. References

1. ABSTRACT

Enzymatic transformation of recalcitrant and other pollutants is a promising eco-friendly alternative to physico-chemical methods in environmental remediation. This review summarizes some of the significant advances in applications of oxidative enzymes for treatment of xenobiotics. The review also discusses some of the underlying principles and enzyme reaction mechanisms in the detoxification or removal of xenobiotic compounds such as dyes, phenolic compounds, nitroaromatic compounds and polyaromatic hydrocarbons, as a way of remediating contaminated soils or wastewaters.

2. INTRODUCTION

Life on this planet depends entirely on the continuous recycling of elements among living organisms and their interaction with non-living things. Unfortunately, over the years, the massive mobilization of resources and the industrial synthesis of various chemicals have resulted in waste treatment problems leading to environmental pollution and limited incorporation of most of the synthesized molecules in the biological cycles. This is particularly true for many xenobiotic compounds which exhibit structural elements or substituents that are rarely found in nature. Thus environmental pollution is now a
Oxidoreductases for environmental purposes

major concern worldwide and has been linked to global warming, diseases and unbalanced ecosystem.

Nevertheless, advances in molecular biology, applied microbiology and enzyme technology over the past two decades have renewed hopes for the development of effective environmentally friendly processes for treatment of wastes at production sites as well as bioremediation of contaminated sites. This is driven by the desire to develop environmentally friendly waste processing technologies as alternative strategy to conventional chemical and physical methods. Enzyme-based methods are believed to have a minimal impact on ecosystems as compared to physicochemical methods. They also present some other interesting properties such as low energy requirements, easy process control and operation over a wide range of pH, temperature and ionic strength (1). For example, advances in metagenomics, a new emerging field that enables us to study microorganisms which were, until recently, unknown to us, is greatly helping scientists in identifying novel enzymes, since present estimations suggests that more than 99 % of the microorganisms in most ecosystems cannot be cultured in the laboratory (2,3) and thus very little is known about their enzymes.

Among enzymes being actively pursued for environmental purposes are oxidative enzymes. Oxidative enzymes are a large group of enzymes catalyzing oxidation/reduction reactions. The potential application of oxidative enzymes from bacteria, fungi and plants is increasingly being demonstrated and among these enzymes are peroxidases, laccases and phenoloxidases (tyrosinases) which are reviewed in this paper. Strategies being employed include activation of notorious xenobiotics and their subsequent coupling onto large polymers or polymerization thereby either immobilizing or detoxifying the xenobiotics or ring opening reactions (complete degradation of aromatic compounds) leading to less toxic or non toxic metabolites.

Given the tremendous effort over the past decade, this review summarizes some of the significant advances and state of the art applications of oxidative enzymes for treatment of xenobiotics. The review also discusses some of the underlying principles and enzyme reaction mechanisms in environmental detoxification of xenobiotic compounds such as dyes, nitroaromatic compounds, halogenated phenols and polycyclic aromatic hydrocarbons.

3. BRIEF REVIEW OF OXIDATIVE ENZYMES AND REACTION MECHANISMS

3.1. Laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2)

Laccase is a blue multicopper oxidoreductase capable of mono-electron oxidation of various substrates such as ortho- and para-diphenols, methoxy-substituted monophenols and aromatic and aliphatic amines while simultaneously reducing molecular oxygen to water. Structurally, laccases are monomeric, dimeric or tetrameric glycoproteins with four copper atoms (type 1 copper; type 2 copper and two type 3 copper atoms) at the active site of each monomeric unit. They are widely distributed in plants, prokaryotes and fungi (4,5,6,7,8) and have also been isolated in insects (9).

Laccase catalysis is accomplished by the cluster of the copper atoms in the active site. Type I copper, which has a higher oxidation potential, is the site where substrate oxidation occurs by removal of electrons to form radicals. Type 2 and Type 3 copper atoms form a trinuclear center to which the electrons are transferred and where reduction of molecular oxygen to water takes place. A full cycle of reaction involves oxidation of four substrate molecules to four radicals and concomitant reduction of one molecule of oxygen (by four removed electrons) to two molecules of water. The radicals can then undergo several reactions which include radical coupling to form dimers, oligomers or polymers, or radical mediated degradation of complex compounds or polymers by cleavage of covalent bonds.

3.2. Tyrosinase (Tyros; E.C. 1.14.18.1, monophenol monooxygenase)

Tyrosinase is a glycoprotein which contains a type 3 dinuclear copper in its active site. It catalyzes the α-hydroxylation of monophenols to yield o-diphenols (cresolase activity) and the subsequent oxidation of o-diphenols to o-quinones (catecholase activity). Like laccases, tyrosinases are ubiquitous in nature; they have been isolated in bacteria, fungi, plants and animals.

The catalytic mechanism of tyrosinase has been comprehensively reviewed (10). The model involves the three copper states of the active site and is based on an associative ligand substitution at the active site (10). Both the cresolase and catecholase activity use molecular oxygen. In a full cycle of the reaction, molecular oxygen is incorporated during hydroxylation to give an o-diphenol while the catecholase activity oxidizes two o-diphenols to two o-quinones with concomitant four electron reduction of molecular oxygen to two molecules of water.

3.3. Lignin peroxidase (LiP; EC: 1.11.1.14)

Lignin peroxidase (LiP) is a heme-containing glycoprotein oxidoreductase capable of catalyzing the oxidation of phenols and aromatic amines, aromatic ethers and polycyclic aromatic hydrocarbons. The bulk of LiPs in use today in processes such as bioremediation (11,12) and lignin degradation (13,14,15) are produced from the fungus Phanerochaete chrysosporium where it is secreted during secondary metabolism as a response to nitrogen limitation. However, many other fungi are also known to produce the enzyme (16).

The catalytic cycle involves initial oxidation of the enzyme by \(\text{H}_2\text{O}_2 \) to form a two-electron deficient intermediate termed compound I which comprises an Fe (IV) oxoferryl centre and a porphyrin-based cation radical. Compound I then oxidizes substrates by one electron and forms compound II, a more reduced Fe (IV) oxoferryl intermediate which can in turn oxidize substrates by one electron and return the enzyme to its resting state (17).
Oxidoreductases for environmental purposes

3.4. Manganese peroxidase (MnP; EC 1.11.1.13)

Manganese peroxidase (MnP) is a heme-containing glycoprotein oxidoreductase which preferentially uses Mn$^{2+}$ as the electron donor (reductant). A comprehensive review of sources of this enzyme shows that MnP production appears to be limited to certain basidiomycete fungi (18) with no records of isolation in bacterium, yeast mold or mycorrhiza-forming bacidiomycete (19). The first phase of the catalytic cycle involving 2 electron oxidation of enzyme by H$_2$O$_2$ to compound I and subsequent reduction to compound II by oxidation of suitable substrate (various monomeric and dimeric phenols, including phenolic lignin model compounds) or Mn$^{3+}$, is similar to that of other peroxidases. However, unlike other peroxidases, compound II strictly requires Mn$^{2+}$ as electron donor (20).

3.5. Coprinopsis cinerea peroxidase (CIP; EC 1.11.1.7)

Coprinopsis cinerea peroxidase is a haem-containing extracellular peroxidase isolated from the ink cap fungus Coprinopsis cinerea (Coprinus cinereus). It readily oxidizes phenols and smaller dye molecules but unlike LiP it is unable to oxidize veratryl alcohol (21) and readily oxidizes phenols and smaller dye molecules but Mn$^{2+}$ is oxidized to Mn$^{3+}$ using the MnP reaction. At the surface of the enzyme (which would act as the redox mediator (25). At the manganese oxidation site the lignin polymer, large aromatic substrates or complex redox mediators (26,27,28) are oxidized by other peroxidases (39). This has led to the suggestion that they incorporate hydrolytic fission capability to normal peroxidase function (33,34), making them extremely important in the bioremediation of high redox potential anthraquinone-type dyes. They are also structurally different from all other peroxidases - show little sequence similarity (0.5–5%) to classic fungal peroxidases and lack the typical heme-binding region, which is conserved in the plant peroxidase superfamily (one proximal Histidine, one distal Histidine, and one essential Arginine) (33,34,40).

The typical characteristic of DyP-type peroxidases is their ability to oxidize the high-redox potential anthraquinone-type dyes which are hardly oxidized by other peroxidases (39). This has led to the suggestion that they incorporate hydrolytic fission capability to normal peroxidase function (33,34), making them extremely important in the bioremediation of high redox potential anthraquinone-type dyes. They are also structurally different from all other peroxidases - show little sequence similarity (0.5–5%) to classic fungal peroxidases and lack the typical heme-binding region, which is conserved in the plant peroxidase superfamily (one proximal Histidine, one distal Histidine, and one essential Arginine) (33,34,40).

3.9. Secreted plant peroxidases (horseradish peroxidase (HRP, EC 1.11.1.7) and soybean peroxidase (SBP, EC 1.11.1.7))

The most important plant peroxidases in bioremediation are horseradish peroxidase (HRP, EC
Oxidoreductases for environmental purposes

Table 1. Application of oxidative enzymes in soil remediation

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Mode of remediation</th>
<th>Enzyme: source of enzyme</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>Oxidative coupling to guaiacol</td>
<td>Laccase: Pyricularia oryzae, Trametes versicolor</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td>Oxidative coupling to catechol</td>
<td>Laccase: Trametes villosa, Trametes modesta</td>
<td>(52,53,54,55)</td>
</tr>
<tr>
<td></td>
<td>Oxidative coupling to Syringaldehyde, syringic acid, protocatechuic acid, phenol, or caffeic acid</td>
<td>Laccase: T. villosa, T. modesta</td>
<td>(53,54,55)</td>
</tr>
<tr>
<td></td>
<td>Coupling to ferulic acid, guaiacol</td>
<td>Laccase: T. modesta</td>
<td>(54,55)</td>
</tr>
<tr>
<td>Halogenated phenols</td>
<td>Coupling to soil organic matter; oxidative coupling accompanied by dehalogenation</td>
<td>Laccase: T. versicolor, Pycnoporus cinnabarinus, Pyricularia oryzae, T. villosa, Rhizoctonia pratitica</td>
<td>(56,57,58,59,60,61,62,63,64,65,66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manganese peroxidase: shepherd’s purse root</td>
<td>(67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horseradish peroxidase: horseradish roots</td>
<td>(65,68)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyrosinase: mushroom</td>
<td>(65)</td>
</tr>
<tr>
<td>Chlorinated phenols</td>
<td>Oxidative coupling accompanied by dehalogenation</td>
<td>Horseradish peroxidase: horseradish</td>
<td>(63)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyrosinase: mushroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupling to syringic acid, ferulic acid, vanillic acid, or guaiacol</td>
<td>Laccase: R. praticola</td>
<td>(62)</td>
</tr>
<tr>
<td>4 Chloroaniline</td>
<td>Coupling to ferulic acid</td>
<td>Laccase: Ceriporsopsis Subvermispora, Phanerochaete chryosporum</td>
<td>(69)</td>
</tr>
<tr>
<td>Halogen-, alkyl-, and alkoxysubstituted anilines</td>
<td>Coupling to guaiacol</td>
<td>Laccase: R. praticola and T. versicolor</td>
<td>(70)</td>
</tr>
<tr>
<td></td>
<td>Oligomerisation</td>
<td>Laccase: T. versicolor, R. praticola (only active with p-methoxyaniline),</td>
<td>(71)</td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethane (DDT)</td>
<td>Degradation of DDT</td>
<td>Laccase: white rot (polyporous)</td>
<td>(72)</td>
</tr>
<tr>
<td>Bisphenol A, nonylphenol</td>
<td>Polymerization and precipitation to water insoluble products</td>
<td>Laccase: fungus (family Chaetomiaceae)</td>
<td>(73,74)</td>
</tr>
<tr>
<td>1-Naphthol, 2-naphthol</td>
<td>Polymerization</td>
<td>Laccase: Polyporus pinsitus, Myceliophthora thermophilia, Coprinus cinereus, Rhizoctonia solani</td>
<td>(75)</td>
</tr>
<tr>
<td>Herbicide Dymron; postharvest fungicide imazalil</td>
<td>Mediator assisted degradation</td>
<td>Laccase: Trametes sp.</td>
<td>(76,77)</td>
</tr>
<tr>
<td>Herbicide Bentazon</td>
<td>Coupling to humic monomers guaiacol and ferulic acid</td>
<td>Laccase: Polyporus pinsitus</td>
<td>(78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horseradish peroxidase: Horseradish</td>
<td></td>
</tr>
<tr>
<td>2,5-Diaminobenzene sulfonic acid</td>
<td>Oxidative coupling to catechol</td>
<td>Laccase: T. villosa</td>
<td>(79)</td>
</tr>
<tr>
<td>Poly cyclic Aromatic Hydrocarbons (PAHs): acenaphthylene, acenaphthylene, anthracene, and fluorene Nitrobenzene anthracene</td>
<td>Mediator assisted oxidative degradation</td>
<td>Laccase: Trametes trogii, T. versicolor, Nematoloma frowdardii</td>
<td>(80,81,82,83,84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lignin peroxidase, Manganese peroxidase: Nematoloma frowdardii</td>
<td>(84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horseradish peroxidase: horseradish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyrosinase: mushroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laccase: Cladosporium sphaeroperpemdum</td>
<td>(85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manganese peroxidase, Lignin peroxidase: Phanerochaete laevis</td>
<td>(86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. chrysosporium</td>
<td></td>
</tr>
<tr>
<td>Catechol, methyl catechol, tyrosol, hydroxytyrosol</td>
<td>ABTS mediated oxidation/ Simple oxidation</td>
<td>Laccase: Cerrena unicolor</td>
<td>(87)</td>
</tr>
<tr>
<td>Halogenated pesticides (pentachlorophenol, dichlorophen, bromoxyynil)</td>
<td>Oxidative transformation</td>
<td>Versatile peroxidase: Bjerkandera adusta</td>
<td>(88)</td>
</tr>
</tbody>
</table>

1.11.1.7) and soybean peroxidase (SBP, EC 1.11.1.7). They are both heme-containing enzymes that utilize hydrogen peroxide to oxidize a wide variety of organic and inorganic compounds. HRP is secreted from horseradish (*Armoracia rusticana*) roots and is now produced on a large scale for commercial purposes. It is the most widely used of the plant peroxidases mainly because of its high stability in aqueous solution (41). SBP is obtained from soybean seed coats. SBP has, until recently, been neglected despite being a viable alternative to HRP; it shows an unusually high thermal stability and is less susceptible to haem loss (42) and permanent inactivation by hydrogen peroxide (43) than HRP. SBP and HRP are homologous - very similar in their amino acid sequence and overall three-dimensional structure (including active sites) (44). However, SBP has higher haem affinity than HRP (42) which explains its higher thermal stability. They also have the same catalytic mechanism, which is similar to that of other peroxidases. The first step in the catalytic cycle is the reaction between H₂O₂ and the Fe (III) resting state of the enzyme to generate compound I, a compound which is two oxidizing equivalents above the resting state. In the next step, a reducing substrate reduces compound I by one electron reduction to compound II which is one oxidizing equivalent.
Table 2. Application of oxidative enzymes in waste water treatment¹

<table>
<thead>
<tr>
<th>Pollutant removed</th>
<th>Mode of remediation</th>
<th>Enzyme: source of enzyme</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>Polymerisation and precipitation of simple phenols</td>
<td>Laccase: Panus tigrinus, Coriolus versicolor, Trametes pubescens, Basidiomycete Euc-1</td>
<td>(89,90,91,92,93)</td>
</tr>
<tr>
<td></td>
<td>Precipitation and degradation</td>
<td>Laccase: Streptomyces psmannicus</td>
<td>(96)</td>
</tr>
<tr>
<td></td>
<td>Degradation in presence of mediator (HBT)</td>
<td>Laccase: Coriolopsis rigida</td>
<td>(97)</td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
<td>Manganese peroxidase: Panus tigrinus</td>
<td>(89)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyrosinase: Agaricus bispors</td>
<td>(98)</td>
</tr>
<tr>
<td>Phenol and aromatic amine</td>
<td>Enzymatic treatment and precipitation by a coagulant (chitosan)</td>
<td>Tyrosinase: mushroom</td>
<td>(99,100,101,102)</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td>Mediator assisted oxidative degradation</td>
<td>Laccase: Pleurotus ostreatus</td>
<td>(103)</td>
</tr>
<tr>
<td></td>
<td>Oligomerisation through oxidative coupling</td>
<td>Laccase: P. versicolor, T. versicolor, Nematoloma frowardii</td>
<td>(80,81,82,83,84)</td>
</tr>
<tr>
<td>PAHs: anthracene, phenanthrene, fluorine, pyrene, fluoranthene and perylene</td>
<td>Oxidative degradation</td>
<td>Manganese peroxidase, Lignin peroxidase: P. laevis, P. chrysosporium</td>
<td>(84)</td>
</tr>
<tr>
<td>Bisphenol A, triclosan nonylphenol, octylphenol, ethynylestradiol</td>
<td>Mediator assisted Oxidative transformation</td>
<td>Laccase: Clavariopsis aquatica, fungal strain coded as UHH 1-6-18-4; Coriolopsis polzyona, T. villosa, Pycnoporus coccineus, T. versicolor, P. ostreatus</td>
<td>(59,74,105,106,107,112,113,114,115,116,117)</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>Oxidative polymerization</td>
<td>Coprinus cinereus peroxidase: Coprinus cinereus</td>
<td>(118)</td>
</tr>
<tr>
<td>1-Naphthol, 2-naphthol</td>
<td>Polymerization</td>
<td>Laccase: T. versicolor, Pyricularia oryzae, R. pratcula, Polyporus pinsitus, Myelophythora thermophila, Coprinus cinereus, Rhizoctonia solani</td>
<td>(64,75,119,120)</td>
</tr>
<tr>
<td>Herbicide Dymron</td>
<td>ABTS-mediated degradation</td>
<td>Laccase: F. tropigli</td>
<td>(76)</td>
</tr>
<tr>
<td>Fungicide Imazalil</td>
<td>Mediator-assisted degradation</td>
<td>T. versicolor, T. villosa, Lentinula edodes Botryis cinerea, Lentinula edodes</td>
<td>(77)</td>
</tr>
<tr>
<td>Phenolic effluent</td>
<td>Oxidative coupling to form insoluble precipitates/mediator assisted degradation</td>
<td>Laccase: T. versicolor, T. villosa, Lentinula edodes Botryis cinerea, Lentinula edodes</td>
<td>(121,122,123,124,125,126,127,128)</td>
</tr>
<tr>
<td>Alkylated, hydroxylated, halogenated and amino phenols</td>
<td>Oxidative coupling to form insoluble precipitates</td>
<td>Coprinus cinereus peroxidase: C. cinereus</td>
<td>(94)</td>
</tr>
<tr>
<td>Benzylic alcohol and 1-phenylethyl alcohol</td>
<td>TEMPO-mediated oxidation</td>
<td>Laccase: T. versicolor</td>
<td>(129)</td>
</tr>
<tr>
<td>Halogenated phenols</td>
<td>Oxidative dehalogenization</td>
<td>Laccase: C. versicolor, T. villosa</td>
<td>(66,67,130)</td>
</tr>
<tr>
<td>Chlorinated phenols</td>
<td>Coupling to coniferyl alcohol/phenol</td>
<td>Laccase: R. pratcula and C. unicolor</td>
<td>(131,132)</td>
</tr>
<tr>
<td>2,5-Diaminobenzene sulfonic acid</td>
<td>Oxidative coupling to catechol</td>
<td>Laccase: T. villosa</td>
<td>(79)</td>
</tr>
<tr>
<td>Syringaldazine, o-dianisidine, and 2,6-dimethoxyphenol</td>
<td>Oxidative polymerization</td>
<td>Laccase: P. ostreatus</td>
<td>(133)</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>Oxidative oligomerisation</td>
<td>Laccase: commercial (Sigma-Aldrich)</td>
<td>(134)</td>
</tr>
<tr>
<td>Guaiacol, catechol and m-cresol, xylene</td>
<td>Oxidative precipitation</td>
<td>Laccase: Novozyn 51003 from genetically modified Aspergillus spp; Trametes sp.; T. versicolor</td>
<td>(135,136,137)</td>
</tr>
<tr>
<td>N,N,N- (Dimethyl)-N-(2- hydroxyphenyl)urea</td>
<td>Oxidative precipitation</td>
<td>Laccase: T. versicolor</td>
<td>(138)</td>
</tr>
<tr>
<td>Catechol, methyl catechol, tyrosol, hydroxytyrosol</td>
<td>ABTS mediated oxidation</td>
<td>Laccase: C. unicolor</td>
<td>(87)</td>
</tr>
<tr>
<td>Polychlorinated biphenyls (PCBs)</td>
<td>Oxidative degradation</td>
<td>Laccase, Lignin peroxidase, manganese peroxidase: P. chrysosporium, T. versicolor, Coriolopsis polzyona, and P. ostreatus</td>
<td>(139)</td>
</tr>
</tbody>
</table>

¹Treatment of dye effluents not included
Oxidoreductases for environmental purposes

above the resting state. A second one-electron reduction step, involving oxidation of another substrate, returns compound II to the resting state of the enzyme (45).

4. APPLICATIONS OF OXIDOREDUCTASES FOR ENVIRONMENTAL PURPOSES

The ability of oxidoreductases to catalyze coupling reactions through C-C, C-O- and C-N-coupling (sometimes coupled with polymerization reactions, demethylations and dehalogenations) or to create reactive radicals which can cleave covalent bonds forms the basis for their application in environmental pollution control. These reactions allow the enzymes to act on specific recalcitrant pollutants by precipitation and transforming to other products which are either non-toxic, less-toxic or can easily be removed in subsequent treatment procedures. Several reports have therefore been written on potential application mainly in soil bioremediation and industrial waste water remediation. Although intracellular systems that are generally present in most fungi, such as cytochrome P-450 monooxygenase, may also be involved in organopollutant degradation (46), ligninolytic enzymes produced by white rot fungi are active extracellularly, making them better candidates for the bioremediation of highly apolar pollutants than non-ligninolytic microorganisms (47). Therefore the main enzymes that have been utilized are laccases and secreted peroxidases while limited applications have been carried out with tyrosinases and catechol oxidases. The main applications of oxidoreductases reviewed here are in the areas of soil remediation, waste water treatment and dye decoloration using mainly peroxidases and laccases.

4.1. Soil remediation

Anthropogenic land pollution has become a serious issue especially in this 21st century, mainly due to an increase in environmental consciousness and the manifestations of its effects. Industrial activities, munitions waste and agricultural practices have been identified as the three main sources of pollution (48). Although various industrial processes have improved human life, many of the products and by-products contain toxic materials which accumulate in soils – many of which are carcinogenic and/or mutagenic (49). This has necessitated research into enzymatic modification of toxic materials to less or non-toxic materials or their coupling to other molecules rendering them less toxic or easier to degrade. Following suggestions by Bollag and Liu (50) that laccase can mediate xenobiotic binding and incorporation into the humus, several studies have reported successful coupling of xenobiotics to humic substances using oxidative enzymes as a way of remediating soils contaminated with toxic compounds. Table 1 summarizes some of the reports on the potential application of oxidative enzymes in soil remediation.

Research findings have demonstrated that both chlorinated phenols and anilines can be dechlorinated by oxidative coupling mediated by laccase or HRP (63). However, in tyrosinase-mediated polymerization of chlorophenols, chloride ions were removed from the formed o-quinones during nucleophilic attack by phenoxide ions (63). Ahn et al. (60) demonstrated the oxidative dehalogenation of 2,4-dichlorophenol using immobilized laccase. Although much less enzyme was required than with free laccase, there was a 23% loss in enzyme activity during the immobilization process (60).

4.2. Waste water treatment

Waste water treatment has recently become an area of major scientific interest as indicated by the large quantity of related research output. Although a number of technologies have been developed, only a few have been accepted by industry mainly because they are either energy intensive and therefore expensive, unsustainable or detrimental to the environmental. Therefore biotechnological applications in particular oxidative enzymes have been attracting a lot of interest as alternative technologies in water treatment or as pretreatment agents. The bulk of recalcitrant compounds in wastewaters are phenolic compounds many of which originate from industrial processes such as chemical plants, pulp and paper plants, food industries, petroleum refining, coking and coal conversion, and foundries. Successful bioremediation of phenolic wastewater by oxidative enzymes relies on many factors but mainly oxidative oligomerisation or precipitation to water insoluble products which are removed by sedimentation or filtration while in mediator assisted systems xenobiotics are removed mainly by oxidative degradation. Research reports in this regard have continued to increase over the years. Table 2 summarizes research output over the last two decades. Remediation of dye effluents has been deliberately excluded as it is covered separately in section 3.3.

4.3. Decoloration of dyes

Dyes are now an integral part of industrial wastewaters due to extensive usage mainly in the textile, paper, printing, and ceramic industries. It is estimated that between 2 and 15% (140,141,142) of the 7×10^10 tonnes of 100 000 different dyestuffs produced annually (143) may be found in wastewater. Many of the dyes have a synthetic origin and complex aromatic molecular structures which make them inert and difficult to biodegrade when discharged into waste streams (144). The removal of these potentially carcinogenic (145,146,147,148) dyes from industrial effluents is, therefore, one of the most significant environmental problems. Of the biotechnological methods currently being investigated for dye removal, ligninolytic enzymes such as laccases, MnPs and LiPs are being extensively investigated because of the structural similarity of most of the commercially available dyes to lignin constituents. Consequently much research has been published reporting dye removal using these enzymes.

4.3.1. Peroxidases in dye decoloration/degradation

It has been suggested that the oxidation of a dye such as azo dye by peroxidases such as LiP at the phenolic group to produce a radical at the carbon bearing the azo linkage, followed by attack by a water molecule at this phenolic carbon and subsequent cleavage of the molecule, is the basis of dye degradation by peroxidases. A number of
Table 3. Application of peroxidases in dye degradation

<table>
<thead>
<tr>
<th>Dye removed</th>
<th>Enzyme</th>
<th>Source of enzyme</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymeric dyes</td>
<td>Phenol oxidase</td>
<td>P. chrysosporium</td>
<td>(149,150)</td>
</tr>
<tr>
<td>Crystal Violet</td>
<td>Lignolytic enzymes</td>
<td>P. chrysosporium</td>
<td>(150,151,152)</td>
</tr>
<tr>
<td>triphenylmethane dyes</td>
<td>Lignin peroxidase</td>
<td>P. chrysosporium</td>
<td>(142,150,153,154,155,156,157)</td>
</tr>
<tr>
<td>(Pararosaniline, Cresol Red, Bromphenol Blue, Ethyl Violet, Malachite Green, and Brilliant Green)</td>
<td>Horseradish peroxidase</td>
<td>P. chrysosporium Streptomyces chromofuscus</td>
<td></td>
</tr>
<tr>
<td>Azo dyes (Orange II, Tropoeolin O, Crocein Orange G and Congo Red), and the heterocyclic dyes e.g. Azure B</td>
<td>Lignin peroxidase</td>
<td>P. ostreatus</td>
<td>(150,151,152)</td>
</tr>
<tr>
<td>Sulfonated azo dyes</td>
<td>Lignin peroxidase, Manganese peroxidase</td>
<td>P. chrysosporium Streptomyces chromofuscus</td>
<td>(158,159)</td>
</tr>
<tr>
<td>Anthraquinone-type dyes, metal complex and Indigo</td>
<td>Lignin peroxidase</td>
<td>P. ostreatus</td>
<td>(142)</td>
</tr>
<tr>
<td>Anthraquinone-type dye (Remazol Brilliant Blue R)</td>
<td>Lignin peroxidase</td>
<td>T. versicolor</td>
<td>(160,161,162,163)</td>
</tr>
<tr>
<td>Anthraquinone-type dye</td>
<td>Horseradish peroxidase</td>
<td>Irpex lacteus</td>
<td></td>
</tr>
<tr>
<td>Azox, diazo and anthraquinone-type dyes</td>
<td>Unique dye-decolorizing peroxidase, DyP</td>
<td>Thanatephorus cucumeris Dec 1</td>
<td>(33,39)</td>
</tr>
<tr>
<td>Methylene Blue</td>
<td>Lignin peroxidase, Horseradish peroxidase (less efficiently)</td>
<td>P. chrysosporium, Horseradish</td>
<td>(167,168)</td>
</tr>
<tr>
<td>Azo, anthraquinone-type, triphenyl methane (Crystal Violet, Bromphenol Blue, Brilliant Green), and Pthalocyanine dyes (Procion Brilliant Blue II-7G)</td>
<td>Plant peroxidase (unidentified)</td>
<td>Leaves of Ipomea palmate and Saccharum spontaneum</td>
<td>(169)</td>
</tr>
<tr>
<td>Sulfonphthalein dyes (Phenol Red, ortho-Cresol Red, meta-Cresol Purple, Bromophenol Red, Bromocresol Purple, Bromophenol Blue, Bromocresol)</td>
<td>Manganese peroxidase manganese-independent peroxidase</td>
<td>P. chrysosporium, P. ostreatus</td>
<td>(170,171)</td>
</tr>
<tr>
<td>Azo-dyes (Amaranth, Reactive Black 5 (RB5) and Cibacron Brilliant Yellow)</td>
<td>Manganese peroxidase</td>
<td>T. versicolor</td>
<td>(172,173)</td>
</tr>
<tr>
<td>Reactive Black 5 (RB5)</td>
<td>Versatile peroxidase</td>
<td>Pleurotus eryngii</td>
<td>(25,174)</td>
</tr>
<tr>
<td>Azo reactive dye (Reactive Red 120)</td>
<td>Manganese peroxidase</td>
<td>Phanerochaete sordida</td>
<td>(175,176)</td>
</tr>
<tr>
<td>Azo dyes, Direct Red-80 and Mordant Blue-9</td>
<td>Lignin peroxidase and manganese peroxidase</td>
<td>P. chrysosporium</td>
<td>(177,178,179)</td>
</tr>
<tr>
<td>Ponceau 2R, Malachite Green and Anthraquinone Blue</td>
<td>Manganese peroxidase</td>
<td>T. trogii</td>
<td>(180)</td>
</tr>
<tr>
<td>Stilbene dye Direct Yellow 11, methine dye Basazol 46L</td>
<td>Soybean peroxidase</td>
<td>Soybean</td>
<td>(181)</td>
</tr>
</tbody>
</table>

Researchers have, therefore, investigated the potential of peroxidases in dye degradation (Table 3).

The involvement of LiP in dye decoloration has been clearly demonstrated (142,150,151,153,154) while dyes such as Azure B (182) and Poly R (183) have been proposed as standard substrates for determination of LiP activity. However, the failure of LiP to decolorize Congo Red which was decolorized by whole cells suggested the involvement of other enzymes (153) while substantial degradation of Crystal Violet by non-ligninolytic (nitrogen-sufficient) cultures of *P. chrysosporium*, suggests the existence of another mechanism complementary to the lignin-degrading system (151). Although supplementation with optimum veratryl alcohol and H$_2$O$_2$ increased dye decoloration by LiP, the dyes investigated were not decolorized by MnP (142). However, a number of studies have reported dye decoloration mediated by MnP (156,170,171). In the oxidation of sulfonphthalein dyes, the MnP was shown to prefer the position of methyl group at ortho than at meta on the chromophore while rate of oxidation and hence decoloration was reduced by halogenations (171). Similarly, in azo dye decoloration, Amaranth and Reactive Black 5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond (172).

The mechanism for the degradation of dyes carrying a phenolic group has been proposed (158,159). Generally the phenolic hydroxyl group is oxidized by the peroxidase through abstraction of a hydrogen atom to create radicals which are either degraded or polymerized to other molecules; in the case of azo dyes, the azo linkages are cleaved in the process. Using LC-MS and GC-MS, Goszczynski et al. (159) elucidated the mechanism of
Table 4. Application of laccases in dye degradation

<table>
<thead>
<tr>
<th>Dye removed</th>
<th>Source of laccase</th>
<th>Mediator</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic azo dye (Methyl-, methoxy-, chloro-, and nitro-substituted derivatives of 4- (4 ppm)-sulphophenazo)-phenol)</td>
<td>Pycnoporus cinnabarinus</td>
<td>None</td>
<td>(187)</td>
</tr>
<tr>
<td>Azo dyes (amaranth, Reactive Black 5 (RBS) and Cibacon Brilliant Yellow), anthraquinone-type dye (Remazol Brilliant Blue R)</td>
<td>T. versicolor</td>
<td>None</td>
<td>(172,173,188)</td>
</tr>
<tr>
<td>Acetosyringone, synthetic mediators (ABTS, HBT, VIO, TEMPO, HNNS, NDLS, PZ, HAA).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignin</td>
<td>P. eryngii, P. cinnabarinus, T. villosa; Streptomyces cyaneus</td>
<td>HBT and ABTS</td>
<td>(201,202,203)</td>
</tr>
<tr>
<td>Azo dye Direct Red 28, the indigoid Acid Blue 74 and anthraquinonic dyes (Reactive Blue 19, Acid Blue 25)</td>
<td>T. versicolor, Polyporus pinisitus and the ascomycete Myceliophthora thermophila</td>
<td>HBT and ABTS</td>
<td>(204)</td>
</tr>
<tr>
<td>Acid Blue 74 (indigoid dye), Reactive Blue 19 (anthraquinoid dye), and Aniline Blue (triarylmethane-type dye) Reactive Black 5 (diazodye) and Azure B (heterocyclic dye)</td>
<td>Lignin-Derived Compounds (2,6-dimethylphenol, 2,4,6-trimethoxyphenol, ethyl vanillin, vanillin alcohol, p-coumaric acid, vanillin, acetovalinone, methyl vanillate, syringaldehyde and acetosyringone), synthetic mediators (ABTS, HBT, VIO, TEMPO, HNNS, NDLS, PZ, HAA).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignin</td>
<td>P. eryngii, P. cinnabarinus, T. villosa, Streptomyces cyanus, T. versicolor</td>
<td>HBT and ABTS</td>
<td>(204)</td>
</tr>
<tr>
<td>Reactive Red 180, Reactive Blue 39, Reactive Yellow 114, Reactive Black 5, Reactive Yellow 176, Reactive Yellow 15, Reactive Red 239, Reactive Red 180, Reactive Blue 114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Blue 74, Anthraquinone-type dye (Remazol Brilliant Blue R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Blue 19</td>
<td>Ganoberma sp.</td>
<td>None</td>
<td>(211)</td>
</tr>
<tr>
<td>Reactive Blue 198 and Reactive Red 35</td>
<td>Pleurotus floridus</td>
<td>None</td>
<td>(212)</td>
</tr>
<tr>
<td>Remazol Brilliant Blue R (RBBR, anthraquinone dye) and Coomassie Brilliant Blue G-250 (CBB, triphenylmethane dyes), Acid Red (diazol dye), Indigo Carmine (indigoid dye) Azure A (heterocyclic dye).</td>
<td>Pichia pastoris (genetically modified)</td>
<td>Thymol, and VA</td>
<td>(213)</td>
</tr>
<tr>
<td>Acid Blue 62, Reactive Blue 81 Acid Blue 49 C.I. Direct Black 22 and Acid Red 27</td>
<td>C. unicolor</td>
<td>None</td>
<td>(214,215)</td>
</tr>
<tr>
<td>Diamond Black</td>
<td>Sclerotium rolfsii</td>
<td>None</td>
<td>(216)</td>
</tr>
<tr>
<td>Reactive Blue 198</td>
<td>Coriolus gallicus</td>
<td>HBT</td>
<td>(217)</td>
</tr>
<tr>
<td>Indigo Carmine, Methyl Orange and Methyl Green</td>
<td>Coriolus rigida</td>
<td>None</td>
<td>(218)</td>
</tr>
<tr>
<td>Drimarene Blue X3LR</td>
<td>Funalia trogii</td>
<td>HBT</td>
<td>(79)</td>
</tr>
<tr>
<td>Remazol Brilliant Blue R (RBBR) and Drimaren Blue CL-BR</td>
<td>P. ostreatus, C. versicolor F. trogii and I. lacteus</td>
<td>None</td>
<td>(163,220)</td>
</tr>
<tr>
<td>Reactive Orange 16, Naphthol Blue Black, Remazol Brilliant Blue R, copper (Hyphthaloacryamine Bromophenol Blue)</td>
<td>I. lacteus</td>
<td>None</td>
<td>(221)</td>
</tr>
<tr>
<td>Anthraquinone-type dye SN4R</td>
<td>P. ostreatus</td>
<td>With or without ABTS</td>
<td>(222)</td>
</tr>
<tr>
<td>Indigo Carmine</td>
<td>Streptomyces coelicolor</td>
<td>Syringaldehyde</td>
<td>(223)</td>
</tr>
</tbody>
</table>
Oxidoreductases for environmental purposes

<table>
<thead>
<tr>
<th>Azo dyes (Acid Orange 52, Acid Orange 5 and Direct Blue 71, Reactive Black 5 and Reactive Orange 16 and 107)</th>
<th>Sclerotium rolfsii, Trametes hirsuta</th>
<th>T. villosa</th>
<th>(224,225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Sky Blue, poly B-411, Remazol Brilliant Blue R, Trypan Blue and Reactive Blue 2</td>
<td>Daedalea quercina</td>
<td>None</td>
<td>(229)</td>
</tr>
<tr>
<td>Luginam dye, Sella Solid Red</td>
<td>T. hirsuta</td>
<td>None</td>
<td>(230)</td>
</tr>
<tr>
<td>Azo-dye Diamond Black PV 20</td>
<td>T. modesta</td>
<td>None</td>
<td>(231)</td>
</tr>
<tr>
<td>Ranomill Yellow, Texacid Fast Red A</td>
<td>Cyathus bulleri</td>
<td>With or without ABTS</td>
<td>(232)</td>
</tr>
<tr>
<td>Triarylmethane, indigoid, azo, and anthraquinonic dyes</td>
<td>T. hirsuta</td>
<td>None</td>
<td>(233)</td>
</tr>
<tr>
<td>Anthraquinone-type dyes (Reactive Blue 19 and Dispersed Blue 3), indigoid (Acid Blue 74), azo (Acid Red 27 and Reactive Black 5) dyes</td>
<td>T. versicolor</td>
<td>None</td>
<td>(236)</td>
</tr>
<tr>
<td>Remazol Brilliant Blue R, Remazol Black B, Reactive Orange 122 and Reactive Red 251</td>
<td>T. versicolor</td>
<td>None</td>
<td>(237)</td>
</tr>
<tr>
<td>Indigo Carmine, Phenol Red, Bromophenol Blue, Lanaset Marine, Malachite Green, Methyl Orange, Methyl Green</td>
<td>T. hirsuta, T. versicolor</td>
<td>None</td>
<td>(238,239,240,241,242,243,244)</td>
</tr>
<tr>
<td>Leuflax Blue CA and Cibacon Blue FN-R</td>
<td>Trametes sp.</td>
<td>None</td>
<td>(245)</td>
</tr>
<tr>
<td>Lissamine Green B, Nickel (II) phthalocyanine, Lissamine Green B and Acid Black 48</td>
<td>T. hirsuta</td>
<td>None</td>
<td>(246,247)</td>
</tr>
<tr>
<td>Poncetan 2R, Malachite Green and Anthraquinone Blue</td>
<td>T. trogii</td>
<td>None</td>
<td>(248)</td>
</tr>
<tr>
<td>Blue Tubarin GLL 300, Black Tubarin VSF 600, Blue Solophenyl</td>
<td>T. trogii</td>
<td>None</td>
<td>(249)</td>
</tr>
<tr>
<td>Poly R-478</td>
<td>T. versicolor</td>
<td>None</td>
<td>(250)</td>
</tr>
<tr>
<td>Acid Fuchsine, Congo Red, Indigo Carmine</td>
<td>T. versicolor</td>
<td>None</td>
<td>(251)</td>
</tr>
<tr>
<td>Triphenylmethane dyes (Acid Fuchsine, Brilliant Green 1, Basic Fuchsine, Methyl Green, Acid Green 16)</td>
<td>T. villosa</td>
<td>None</td>
<td>(252)</td>
</tr>
<tr>
<td>3-(4-Dimethylamino-1-phenylazo)benzenesulfonic acid, 3-(2-hydroxy-1-naphthylazo)benzenesulfonic acid</td>
<td>T. villosa</td>
<td>None</td>
<td>(253)</td>
</tr>
<tr>
<td>Stilbene dye Direct Yellow 11, methine dye Basazol 46L</td>
<td>T. villosa</td>
<td>ABTS, HBT, VA</td>
<td>(181,253)</td>
</tr>
<tr>
<td>Blue Paper Color</td>
<td>T. villosa</td>
<td>TEMPO</td>
<td>(254)</td>
</tr>
<tr>
<td>Derma Pardo 5 GL, Direct Black 168, Acid Red 119, Direct Blue 78, Acid Yellow 166</td>
<td>T. hirsuta</td>
<td>None</td>
<td>(255)</td>
</tr>
<tr>
<td>Grey Lanaset G</td>
<td>T. versicolor</td>
<td>None</td>
<td>(256)</td>
</tr>
</tbody>
</table>

peroxidase-catalyzed sulfonated azo dye degradation by peroxidases. Their findings showed that azo linkage is split both asymmetrically and symmetrically (Figure 1) to produce unstable intermediates which underwent further redox, oxidation, and hydrolytic transformation to more stable organic compounds and ammonia (Figure 2). Recently a mechanism for the degradation pathway of a hydroxyl-free anthraquinone-type dye by a unique peroxidase, DyP, was shown (33). Using LC-MS and nuclear magnetic resonance (NMR), it was shown that an anthraquinone-type dye, Reactive Blue 5 was oxidized to red-brown compounds, one of which was generated by peroxidase action, and phthalic acid which was produced through a hydrolase- or oxygenase-catalyzed reaction (33).

4.3.2. Laccases in dye decoloration/degradation

One of the most promising applications of laccase is in the decoloration of dye effluent. The wide substrate range of laccase which can be further widened by use of mediator systems makes them particularly useful in the remediation of wastewater contaminated with many different dye compounds. Consequently several studies have reported the involvement of laccase in dye decoloration (184,185,186). Some of the research output within the last two decades is summarized in Table 4.

Usually hydroxyl-free anthraquinone-type dye Remazol Brilliant Blue R require redox mediator for decoloration to occur (189,192,193), although some
Oxidoreductases for environmental purposes

Figure 1. Proposed mechanism for degradation of sulfonated azo dyes by *P. chrysosporium* and *S. chromofuscus* peroxidases (ligninases). The compounds represented by structures in brackets were found in the reaction mixture. Azo dye 1, R = R2 = CH3 and B = O; azo dye 2, R = H, R2 = OCH3, and B = NH (159). Reproduced with permission from the American Society for Microbiology.

Efficient laccases can work without mediators (196,198). Similarly a diazo Reactive Black 5 was not decolorized without mediator (189,190). It was suggested that the high-redox potential of the dye (1.4 V), together with steric hindrances which reduced the accessibility of the –NH2 and –OH, were the reasons for failure to decolorize the dye (189). In contrast other anthraquinone-type dyes such as Acid Blue 25 and Acid Green 27 can be directly decolorized without mediators by high redox potential laccases (189,205).

Apart from mediator systems, ultrasound has been used successfully to complement laccase oxidation systems in azo dye degradation with volumetric scale-up showing a positive correlation between the energy input and the absolute amount of dye degraded (225,226,227,228). Although higher energy tend to inactivate the enzyme which must be compensated by higher doses of enzyme, it was shown that a combination of laccase and ultrasound treatments can have synergistic effects in dye degradation (225,228).
Redox processes

\[\begin{align*}
 \text{a. } & \quad \text{Oxidation of an azo dye} \\
 & \quad \left[\text{O} - \text{N} = \text{N} - \text{SO}_2 - \text{R} \right] + \text{NH} = \text{N} - \text{SO}_2 - \text{R} \rightarrow \left[\text{O} - \text{N} \rightarrow \text{N} - \text{OH} - \text{R} \right] + \text{NH} = \text{N} - \text{SO}_2 - \text{R} \\
 \text{b. } & \quad \text{Reduction and oxidation of azo dyes} \\
 & \quad \left[\text{HB-O}_2 \text{S} - \text{N} = \text{N} \right] + 2 \text{NH} = \text{N} - \text{SO}_2 - \text{R} \rightarrow \left[\text{HB-O}_2 \text{S} - \text{NH}_2 - \text{N} \right] + 2 \text{HB} = \text{N} - \text{SO}_2 - \text{R} \\
 \text{c. } & \quad \text{Reduction of azo dyes} \\
 & \quad \left[\text{HN} = \text{N} - \text{SO}_2 - \text{R} \right] \rightarrow \left[\text{H}_2 \text{N} - \text{NH}_2 \text{SO}_2 - \text{R} \right] + \text{HN} = \text{N} - \text{SO}_2 - \text{R} \\
 \text{d. } & \quad \text{Decomposition of azo dyes} \\
 & \quad \left[\text{HB-O}_2 \text{S} - \text{N} = \text{N} \right] + \text{NH} = \text{N} - \text{SO}_2 - \text{R} \rightarrow \left[\text{HB-O}_2 \text{S} - \text{OH} \right] + \text{HN} = \text{N} - \text{SO}_2 - \text{R} \\
\end{align*} \]

Hydrolysis

\[\begin{align*}
 \text{a. } & \quad \text{Hydrolysis of an azo dye} \\
 & \quad \left[\text{HN} = \text{N} - \text{SO}_2 - \text{R} \right] + \text{H}_2 \text{O} \rightarrow \left[\text{O} = \text{N} - \text{SO}_2 - \text{R} \right] + \text{NH}_3 \\
 \text{b. } & \quad \text{Hydrolysis of azo dyes} \\
 & \quad \left[\text{HB-O}_2 \text{S} - \text{N} = \text{N} \right] + \text{H}_2 \text{O} \rightarrow \left[\text{HB-O}_2 \text{S} - \text{OH} \right] + \text{N}_2 \\
\end{align*} \]

Figure 2. Transformations of the intermediate products of the initial sulfonated azo dye degradation. The compounds represented by structures in brackets were found in the azo dye reaction mixtures. Original azo dye 1, RI = R2 = CH₃ and B = 0; azo dye 2, RI = H, R2 = OCH₃, and B = NH (159). Reproduced with permission from the American Society for Microbiology.

The mechanism of laccase-catalyzed azo dye oxidation is similar to that proposed for peroxidases (187,195,252). The azo dye undergoes one electron oxidation to form a phenoxy radical which is further oxidized to a carbonium ion in which the charge is localized on the phenolic ring carbon with the azo linkage (195,252). This is followed by a nucleophilic attack by water on the phenolic ring carbon bearing the azo linkage and subsequent cleavage of the molecule as shown in Figure 3 for a disazo dye (195).

5. PERSPECTIVE

Enzymatic transformation using oxidative enzymes is a promising environmentally friendly, energy efficient and potentially cost-effective way of environmental remediation. However, limited quantities of commercially available robust and inexpensive enzymes and cheap environmentally friendly mediators are major barriers to the widespread application of oxidative enzymes in various industrial sectors. Many of the recalcitrant xenobiotics are also effective enzyme inhibitors while increasing doses of mediators beyond certain levels can also inactivate enzymes. Although remarkable progress has been made to solve these problems through for example, genetic engineering to increase enzyme quantities and biochemical and chemical modification to enhance stability, there are still challenges related to optimization of the processes since the enzymes will need to work in highly variable environments. More research especially focused on simulating contaminated environments is required so that enzymes which are active and stable over wide environmental conditions can be selected and produced in large quantities.
There has also been evidence that some products of biotransformation are actually more toxic than the starting material and hence the need to monitor toxicity of intermediates and final products of a bioremediation process. A recent research showed a reduction in toxicity of azo and indigo-type dyes accompanied by an increase in toxicity of anthraquinone-type dyes during a laccase mediated decoloration process (236), emphasizing the importance of tailoring these processes to specific dyes. In addition, during prolonged azo dye decoloration, the
polymerization reactions of laccase can result in the formation of polymeric phenolics which retain azo group integrity and consequently unacceptable color levels, limiting the application of laccases as bioremediation agents (252). Thus research efforts need to be also directed at synergistic processes such as the recent efforts to complement laccase oxidation of dyes with use of ultrasound (227) or a use of a cocktail of different enzyme systems. For example a laccase from Streptomyces psammoticus which is stable at alkaline pH range of 6.5–9.5 (optimum 8.5) and capable of degrading phenolic compounds (96) can be combined with fungal laccases (active in acidic conditions) for treatment of wastes in highly variable conditions. A recent observation that the organism itself was more effective than laccase in degrading triphenylmethane dyes, with no aromatic residues detected after fungal treatment (251), emphasizes the potential of enzyme mixtures to mineralize dyes and other xenobiotics and also opens an opportunity to widen substrate range.

6. ACKNOWLEDGEMENTS

The authors (TK and SB) are grateful to the National Research Foundation of South Africa for financial assistance.

7. REFERENCES

21. M Kjalke, MB Andersen, P Schneider, B Christensen, M Schulein, KG Welinder: Comparison of structure and activities of peroxidases from *Coprinus cinereus*, *Coprinus macrorhizus* and *Arthromyces ramosus*. *Biochim Biophys Acta* 1120, 248–256 (1992)

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

53. CJ Wang, S Thiele, JM Bollag: Interaction of 2,4,6-Trinitrotoluene (TNT) and 4-Amino-2,6-Dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch Environ Contam Toxicol 42, 1–8 (2002)

54. GS Nyanhongo, S Rodríguez Couto, GM Gübitz: Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64, 359–370 (2006)

57. KL Shuttleworth, JM Bollag: Soluble and immobilized laccase as catalysts for the transformation of substituted phenols. Enzyme Microb Technol 8, 171–177 (1986)

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

167. VS Ferreira-Leitão, MEA de Carvalho, EPS Bon: Lignin peroxidase efficiency for methylene blue decoloration: Comparison to reported methods *Dyes and Pigments* 74, 230-236 (2007)

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

Oxidoreductases for environmental purposes

244. M Lorenzo, D Moldes, S Rodríguez Couto, A Sanromán: Improving laccase production by employing different lignocellulosic wastes in submerged cultures of *Trametes versicolor*. *Bioreour Technol* 82, 109–113 (2002)

Oxidoreductases for environmental purposes

Key Words: Oxidative Enzymes, Environmental Remediation, Review

Send correspondence to: Tukayi Kudanga, Biocatalysis and Technical Biology Research group, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville 7535, Cape Town, South Africa, Tel: 27 21 953 8497, Fax: 27 21 953 8494, E-mail: tikudanga@yahoo.co.uk

http://www.bioscience.org/current/vol4E.htm