Role of histamine H4 receptors in the gastrointestinal tract

Gabriella Coruzzi, Maristella Adami, Cristina Pozzoli

Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, 43100 Parma, Italy

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Histamine in the GI tract: cellular sources, targets and receptors
4. Expression of H2Rs in the GI tract
5. Histamine H4R selective ligands
6. Effects of H4R ligands in the GI tract
 6.1. Gastric acid secretion
 6.2. Gastric mucosal defense
 6.3. Intestinal motility and secretion
 6.4. Visceral sensitivity
 6.5. Inflammation and immunity
 6.6. Carcinogenesis
7. Summary and perspective
8. Acknowledgements
9. References

1. ABSTRACT

The location and functional role of histamine H4 receptors (H4Rs) in the gastrointestinal tract (GI) is reviewed, with particular reference to their involvement in the regulation of gastric acid secretion, gastric mucosal defense, intestinal motility and secretion, visceral sensitivity, inflammation, immunity and carcinogenesis. H4Rs have been detected in different cell types of the gut, including immune cells, paracrine cells, endocrine cells and neurons; moreover, H4R expression was reported in human colorectal cancer specimens. Functional studies with selective H4R ligands demonstrated protective effects in several experimental models of gastric mucosal damage and intestinal inflammation, suggesting a potential therapeutic role of drugs targeting this new receptor subtype in GI disorders, such as allergic enteropathy, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and cancer.

2. INTRODUCTION

Histamine is a pleiotropic biogenic amine with a broad range of activities in both physiological and pathological conditions. Both histamine producing cells and receptors are extensively distributed within the body, suggesting that this amine is an important regulator of a wide variety of functions. Despite the intestinal effects of histamine were firstly described one century ago in the landmark paper by Dale and Laidlaw (1), research mainly focused on immunological and inflammatory effects of this amine, leading to the discovery of the histamine H1 receptor (H1R) antagonists, as the first anti-allergic drugs (2). In 1972, thanks to the pioneering work of Sir James Black and coworkers, the central role of histamine in the regulation of parietal cell acid secretion was clearly defined and histamine H2 receptor (H2R) antagonists became the standard therapy of gastric acid related diseases (3-5). Since then, two further receptor subtypes have been
Role of histamine H4 receptors in the gastrointestinal tract

Figure 1. Scheme illustrating the producing and target cells of histamine, together with the main biological effects of histamine in the gastrointestinal tract. Histamine can be released from granules of store cells or produced by "de novo synthesis" in immune cells. Moreover, histamine can be produced and released from cancer cells and regulates tumor growth. ECL: enterochromaffin-like.

In the GI tract, histamine is synthesized by histidine decarboxylase (HDC) enzyme and stored in various cell types, including mast cells, basophils, and enterochromaffin-like (ECL) cells; few reports suggest the occurrence of histamine in G cells and enteric neurons (Figure 1) (22-26). In addition, several myeloid and lymphoid cell types (dendritic cells, neutrophils, monocytes/macrophages, T cells, and platelets), which do not store histamine, show high HDC activity and are capable of producing histamine to a varying degree, following activation by allergens, mitogens or cytokines (27-30). Finally, most malignant cells contain high concentrations of histamine that can regulate tumor growth via a paracrine or autocrine pathway (Figure 1) (31). Histamine stores greatly vary among species: in dogs and humans, mast cells account for the major histamine content; they are predominantly located in the mucosal surfaces of the whole GI tract and are mainly involved in IgE-mediated hypersensitivity in response to allergens and in reactions against parasites (32). In rodents, ECL cells are recognized as the major histamine-producing cells in the gastric mucosa, thereby representing a central regulatory pathway for the secretion of acid via the parietal cell (33, 34). Elevated concentrations of histamine have been shown in various inflammatory and neoplastic diseases, such as Crohn’s disease, ulcerative colitis, irritable bowel syndrome (IBS), allergic enteropathy and colorectal cancer (32, 35-38).

In the GI tract, histamine plays a role in a number of processes, including acid secretion, mucosal defense, fluid transport, neurotransmission, inflammation, immunity and carcinogenesis, targeting a variety of cell types (Figure 1) (28, 31, 32, 39-42). These different biological functions involve the four known histamine receptor subtypes, identified to date, H1, H2, H3 and H4, which are differently expressed along the gut. Histamine H1Rs mediate vasodilatation and increase in vascular permeability, smooth muscle contraction, intestinal fluid transport and visceral sensitivity; H2Rs are mainly responsible for the physiological regulation of acid secretion from parietal cells, but also influence intestinal...
Role of histamine H4 receptors in the gastrointestinal tract

Table 1. Histamine H4R expression in the GI tract.

<table>
<thead>
<tr>
<th>Species</th>
<th>Technique</th>
<th>Expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>RT-PCR</td>
<td>Stomach</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Small intestine</td>
<td>7-10, 47</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Colon</td>
<td>8, 49, 53</td>
</tr>
<tr>
<td></td>
<td>RT-PCR, Western blot analysis, immunohistochemistry</td>
<td>Whole intestine</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Colorectal cancer specimens</td>
<td>49, 53</td>
</tr>
<tr>
<td>Monkey</td>
<td>RT-PCR</td>
<td>Colon</td>
<td>50</td>
</tr>
<tr>
<td>Dog</td>
<td>RT-PCR</td>
<td>Small intestine</td>
<td>54</td>
</tr>
<tr>
<td>Pig</td>
<td>RT-PCR</td>
<td>Colon</td>
<td>48</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Immunofluorescence</td>
<td>Stomach (ghrelin-producing cells)</td>
<td>52, 55</td>
</tr>
<tr>
<td>Rat</td>
<td>Immunohistochemistry</td>
<td>Stomach (myenteric plexus)</td>
<td>52</td>
</tr>
<tr>
<td>Mouse</td>
<td>RT-PCR</td>
<td>Peritoneal exudate</td>
<td>58</td>
</tr>
<tr>
<td>Pig</td>
<td>RT-PCR</td>
<td>Small intestine (intra-epithelial lymphocytes)</td>
<td>59</td>
</tr>
<tr>
<td>Dog</td>
<td>RT-PCR</td>
<td>Distal colon</td>
<td>56</td>
</tr>
</tbody>
</table>

RT-PCR: Reverse transcription-polymerase chain reaction

secretion, neurotransmission and immune responses; H4Rs are primarily involved in gastric mucosal defense, inhibition of enteric neurotransmission and feedback regulation of histamine release (32, 43-46). Preliminary functional studies in transfected cells and in vivo experimental models seem to suggest the participation of H4Rs in the GI effects of histamine. The H4R has been shown to mediate a number of proinflammatory effects, including neutrophil, mast cell and eosinophil chemotaxis and release of inflammatory cytokines, thus representing a novel target in inflammatory GI diseases (17).

4. EXPRESSION OF H4Rs IN THE GI TRACT

In the last decade, the occurrence of H4Rs in the GI tract of different species, including humans, was demonstrated by the use of several techniques, such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot analysis and immunostaining (summarized in Table 1) (7-12, 47-59). Under physiological conditions, H4R expression is rather low, as compared with bone marrow, spleen or liver, but it may be regulated by inflammatory stimuli. A recent study demonstrated a significant increase in H4R density after treatment of mice with trinitrobenzensulphonic acid (TNBS), a widely used model of inflammation, which reproduces human Crohn’s disease (56, 60). More recently, it was reported that H4R expression increases in the colon of mice genetically deficient of the Gi protein alpha2 subunit and the increase in receptor density parallel the colitis progression (61). The presence of H4Rs was demonstrated in the human normal intestine and their distribution pattern was described in detail by histological analysis (49, 51, 53); H4R staining was detected in leukocytes inside the small mucosal and submucosal vessels, neuroendocrine cells and, finally, in enterocytes at the apical end of the crypts of Lieberkun (51). The same study reported an increased expression of both H1Rs and H3Rs in patients with IBS or food allergies, with no change in H4R mRNA levels (51). By contrast, H4R expression was found to be reduced in colorectal cancer specimens, as compared to normal colonic tissue (49, 53).

5. HISTAMINE H4R SELECTIVE LIGANDS

Since the cloning of the H4R, a variety of ligands have been identified in search of selective tools to unravel H4R-mediated tissue functions and of potential drug candidates (18-20, 62). In accordance with the high homology between H4R and H3R, most of the first-generation H4R ligands (like imetit, immepep, thioperamide and clobenpropl) are now known to bind to the H3R (16). The first highly selective histamine H4R antagonist, namely JNJ7777120, was developed by Johnson and Johnson Pharmaceuticals and it became the reference antagonist for pharmacological investigation, displaying more than a thousand fold selectivity over other receptor subtypes (19, 63, 64). Other H4R antagonists were developed by academic research groups and by several pharmaceutical companies (58, 62, 65, 66). Histamine H4R agonists were also described, such as 4-methylhistamine and VUF8430; these compounds, however, still retain affinity for the other histamine receptor subtypes (67, 68). To complicate matters, the selectivity profile of most H4R ligands was found to greatly vary according to the species; in addition, some ligands were found to behave as “protean” ligands, displaying antagonism, partial, total or inverse agonism activity, depending on the experimental assay (69,70). This hampers a clear understanding of H4R pharmacology; in line with this, some studies were unable to ascribe the observed effects to agonism or antagonism at H4Rs (71, 72). To support this, a recent study in rats reported that ischemia/reperfusion liver injury was reduced by H4R stimulation and not blockade, as expected from the supposed inflammatory activity mediated by H4Rs (73).

6. EFFECTS OF H4R LIGANDS IN THE GI TRACT

Several studies have reported functional effects of H4R ligands in both in vitro assays and in intact animals. Most data were obtained in rodents by the use of the reference H4R antagonist JNJ7777120 (Tables 2 and 3).

6.1. Gastric acid secretion

The major role of histamine and of H2Rs in the stomach is the regulation of acid secretion by the parietal

<table>
<thead>
<tr>
<th>Species</th>
<th>Technique</th>
<th>Expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>RT-PCR</td>
<td>Stomach</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Small intestine</td>
<td>7-10, 47</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Colon</td>
<td>8, 49, 53</td>
</tr>
<tr>
<td></td>
<td>RT-PCR, Western blot analysis, immunohistochemistry</td>
<td>Whole intestine</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Colorectal cancer specimens</td>
<td>49, 53</td>
</tr>
<tr>
<td>Monkey</td>
<td>RT-PCR</td>
<td>Colon</td>
<td>50</td>
</tr>
<tr>
<td>Dog</td>
<td>RT-PCR</td>
<td>Small intestine</td>
<td>54</td>
</tr>
<tr>
<td>Pig</td>
<td>RT-PCR</td>
<td>Colon</td>
<td>48</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Immunofluorescence</td>
<td>Stomach (ghrelin-producing cells)</td>
<td>52, 55</td>
</tr>
<tr>
<td>Rat</td>
<td>Immunohistochemistry</td>
<td>Stomach (myenteric plexus)</td>
<td>52</td>
</tr>
<tr>
<td>Mouse</td>
<td>RT-PCR</td>
<td>Peritoneal exudate</td>
<td>58</td>
</tr>
<tr>
<td>Pig</td>
<td>RT-PCR</td>
<td>Small intestine (intra-epithelial lymphocytes)</td>
<td>59</td>
</tr>
<tr>
<td>Dog</td>
<td>RT-PCR</td>
<td>Distal colon</td>
<td>56</td>
</tr>
</tbody>
</table>
Role of histamine H4 receptors in the gastrointestinal tract

Table 2. Functional in vitro studies from the literature with H4R ligands

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental assay</th>
<th>Ligand</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Submucous plexus from surgical samples of small and large bowel</td>
<td>4-methylhistamine + JNJ7777120</td>
<td>Neuronal excitation</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Myenteric plexus from colon surgical specimens</td>
<td>JNJ7777120 VUF8430</td>
<td>No effect on electrically-evoked contractions</td>
<td>C. Pozzoli, unpublished</td>
</tr>
<tr>
<td></td>
<td>COX2-expressing colon cancer cells</td>
<td>Histamine + JNJ7777120</td>
<td>Proliferation and angiogenesis</td>
<td>49</td>
</tr>
<tr>
<td>Guinea pig (sensitized)</td>
<td>Esophagus (antigen challenge)</td>
<td>Thioperamide</td>
<td>Inhibition of mast cell chemotaxis and eosinophil infiltration</td>
<td>57</td>
</tr>
<tr>
<td>Rat</td>
<td>Duodenum</td>
<td>VUF8430 VUF10148 VUF10214</td>
<td>No effect on electrically-evoked contractions</td>
<td>95</td>
</tr>
</tbody>
</table>

COX-2: Cyclooxygenase-2

cell, as demonstrated in humans by the clinical efficacy of H4R antagonists in various clinical settings (4, 5). Whereas gastric H3Rs are mainly involved in the vasodilation and reactive hyperemia in response to acid challenge (39, 45, 74, 75), the role of H4Rs is unclear. H3Rs were detected in various cell types of the gastric mucosa, including ECL cells, cholinergic neurons and somatostatin D cells (39, 40, 43, 55); however, functional data were dependent on the species and the experimental assay (40, 44, 46). The negative regulation of histamine release from ECL cells has been proposed by several authors as the main function mediated by H4Rs in the rat stomach (33, 43).

Early studies have reported a low H4R expression in the human and rat stomach (Table 1); recently, more detailed information about the cell distribution of H4Rs in the rat gastric mucosa was obtained by immunohistochemistry (55). In particular, as opposed to H1Rs, H4Rs do not occur in ECL cells and seem to be selectively located in endocrine cells (A-like cells) of the fundic mucosa producing the orexigenic peptide ghrelin (55). Functional experiments obtained in our lab in the anaesthetised rats with lumen-perfused stomach showed that the selective H4R antagonist JNJ7777120 and its benzimidazole derivative VUF6002 (76) did not modify basal acid secretion or the hypersecretion induced by histamine; in addition, only JNJ7777120 reduced the acid secretion induced by pentagastrin (M. Adami, unpublished observations). The hypothesis of gastric secretory effects induced by H4R activation, was not confirmed by the use of the H4R agonist VUF8430, since the increase in acid secretion induced by this compound was fully prevented by the H4R antagonist ratidine and not by JNJ7777120 (77).

In conclusion, the relevance of histamine H4Rs in parietal cell function is still to be elucidated.

6.2. Gastric mucosal defense

As opposed to the key role played by histamine in the regulation of parietal cell function, its role in gastric mucosal defense has long been debated, since H1R or H3R selective ligands displayed either ulcerogenic or protective effects (44). The discovery of histamine H4Rs and the use of (R)-alpha-methylhistamine and thioperamide have highlighted the protective effect of histamine in the gastric mucosa, since H4R activation prevented the acute mucosal damage induced in rats by absolute ethanol, non-steroidal anti-inflammatory drugs, ammonia, concentrated HCl or stress (78-83). The protective effect was related to increase in mucus production, gastric mucosal blood flow, epithelial cell proliferation and activation of sensory nerves (83-85).

Data from our group have suggested a possible involvement of H4Rs in histamine-mediated effects on mucusal defense (86). HCl-induced gastric lesions were not reduced by immepip and imetit, two formerly described as highly selective H3R agonists, which are now known to display considerable affinity at histamine H4Rs (16, 67). Indeed, subsequent data from our lab obtained with the selective H4R antagonist JNJ7777120, would indicate that H4Rs are involved in the ulcerogenic effects of histamine (71, 87). This compound was found to protect the rat and mouse gastric mucosa from the damaging effect of non steroidal anti-inflammatory agents and the mast cell degranulator compound 48/80 (Table 3). However, preliminary experiments from our group showed that in rats, but not in mice, the selective H4R agonist VUF8430 significantly reduced indomethacin-induced lesions (Figure 2, Table 3) (71). From the available data, it is difficult to make a clear picture of the functional role of H4Rs in the rat gastric mucosa, due to the similar behaviour displayed by H4R agonists and antagonists. The occurrence of H4Rs in endocrine cells of the rat fundus producing ghrelin (55, 88) could lead to speculate a possible role of histamine in the secretion of this peptide (Figure 3). In line with this, a link between histamine and ghrelin was indicated by recent data from our group, showing that ghrelin-induced gastroprotection is prevented by both H4R and H3R antagonists (89).

6.3. Intestinal motility and secretion

The intestinal effects of histamine were among the first effects of histamine described by Dale and Laidlaw (1). Nevertheless, most attention was devoted to the functional activity of histamine in the stomach and the effects on the bowel were disregarded. In the recent years, it has become apparent that intestinal mast cell mediators and enteric nervous system are key players in the intricate neuroimmune network, that regulates intestinal homeostasis and the inflammatory response to noxious stimuli (90). Histamine can influence neurotransmission at both submucous and myenteric plexus, thereby modifying intestinal secretion and motility, through the activation of the three receptors H1, H2 and H3 (32, 39, 45, 46, 91-93). The occurrence of a new receptor subtype in the intestine was firstly hypothesized by Schworer et al (94), who identified in the porcine small intestine an H3-like receptor
Role of histamine H4 receptors in the gastrointestinal tract

Figure 2. Effect of H4R ligands on indomethacin–induced gastric damage in rats. Upper panel: macroscopic aspects of gastric mucosa from rats treated with subcutaneous (sc) injections of vehicle (A) or indomethacin (20 mg/kg), in the absence (B) or in the presence (C) of JNJ7777120 (10 mg/kg, sc). Lower panel: effects of indomethacin in the presence of vehicle or H4R ligands (D). On the ordinate, macroscopic damage reported as lesion index in mm. Differences among multiple groups were made by using one-way analysis of variance (ANOVA), followed by Dunnett’s test: *p < 0.05 and **p < 0.01 compared to the vehicle-treated group. Mean values ± SEM from 6-8 rats.

that was pharmacologically distinct from the proposed H3a and H3b receptors. These findings were subsequently confirmed by Oda et al (8), who characterized a new histamine receptor (called GPRv53) expressed in the small intestine, and afterwards by several independent groups (Table 1) (7-12).

Despite the presence of H4Rs in the rodent myenteric plexus (52), the role of this receptor in the regulation of intestinal motility is apparently absent. In our lab, we were unable to detect any effect of either agonists or antagonists of H4Rs on cholinergic neurotransmission in the isolated rat duodenum (95). Likewise, histamine H4R ligands did not modify spontaneous or electrically-evoked motility in surgical specimens from human colon, suggesting that this receptor subtype does not play a role in the regulation of intestinal muscle contractility in humans (Table 2).

The stimulatory effects of histamine on intestinal transport were widely demonstrated in guinea pigs and humans (32, 92, 93, 96, 97). However, the receptor involved seems to differ across species: in the guinea pig, histamine increases intestinal ion and water secretion in both small and large intestine, via activation of H2Rs located on epithelial cells and on colonic submucous plexus (96). In addition, prejunctional H3Rs negatively modulate cholinergically-mediated intestinal secretion by removing the inhibitory control exerted by the adrenergic system (96). As opposed to animal findings, in the human intestine, histamine-induced increase in chloride secretion by colonic epithelium was exclusively related to activation of H1Rs (92). A recent study in human submucous plexus from surgical specimens suggests, however, that histamine may induce excitation of enteric neurons through activation of all four histamine receptors (H1R-H4R) (98). The H1R-
Table 3. Functional in vivo studies with H4R ligands

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental assay</th>
<th>Ligand</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Indomethacin-induced gastric damage</td>
<td>JNJ7777120</td>
<td>Gastroprotection</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VUF6002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VUF8430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compound 48/80</td>
<td>JNJ7777120</td>
<td>Gastroprotection</td>
<td>M. Adami, unpublished</td>
</tr>
<tr>
<td></td>
<td>0.6N HCl-induced gastric damage</td>
<td>JNJ7777120</td>
<td>No effect</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VUF6002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNBS-induced colitis</td>
<td>JNJ7777120</td>
<td>Inhibition of macroscopic and histological damage, neutrophil infiltration, TNFalpha and IL-6</td>
<td>116, 117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JNJ10191584</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNBS-induced colitis</td>
<td>Thioperamide</td>
<td>Inhibition of macroscopic damage, neutrophil infiltration and TNFalpha</td>
<td>118</td>
</tr>
<tr>
<td>Mouse</td>
<td>Indomethacin-induced gastric damage</td>
<td>JNJ7777120</td>
<td>Gastroprotection</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VUF8430</td>
<td>No effect</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Cold/restraint stress</td>
<td>JNJ7777120</td>
<td>No effect</td>
<td>M. Adami, unpublished</td>
</tr>
<tr>
<td></td>
<td>Ischemia/reperfusion-induced intestinal damage</td>
<td>Thioperamide</td>
<td>Inhibition of neutrophil infiltration</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Zymosan-induced peritonitis</td>
<td>JNJ7777120</td>
<td>Inhibition of neutrophil infiltration</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-940894</td>
<td>Inhibition of neutrophil infiltration, PGD2 and PGE2</td>
<td>58, 111*</td>
</tr>
<tr>
<td></td>
<td>Thioglycollate-induced peritonitis</td>
<td>JNJ7777120</td>
<td>No effect</td>
<td>64</td>
</tr>
</tbody>
</table>

TNBS: Trinitrobenzene sulphonylic acid; JNJ7777120 inactive in mast cell-deficient mice

Figure 3. Scheme illustrating a proposed interaction between histamine and ghrelin in the rat gastric mucosa. Histamine and ghrelin are stored by ECL cells and A-like cells, respectively. Histamine release from ECL cells is under the negative regulation operated by the histamine H3 receptor (H3R); no functional role has been so far evidenced for the histamine H4 receptor (H4R) occurring in A-like cells. In the rat gastric mucosa the effects of ghrelin on mucosal protection are mediated by both the growth hormone secretagogue receptor type 1a (GHS-R1a) and the H3R, suggesting the involvement of histamine in ghrelin-induced protection.

Mediated excitatory effects on secretory neurons reported in this study are unexpected, in view of data from the literature showing lack of H3R expression in the human bowel or of H3R-mediated effects on intestinal contractility (51, 99). The pathophysiological significance of the excitatory action of histamine on secretory neurons is uncertain; hyperactivity of these neurons leads to neurogenic secretory diarrhea, as observed in various pathological conditions, such as ulcerative colitis, Crohn’s disease, allergic enteropathy or parasitic infection (90). In this connection, mast cells in colonic mucosal biopsies from IBS patients with diarrhea release more histamine than in normal subjects (37); thus, it can be speculated that H4R antagonists may be of therapeutic value in these GI disorders, as observed for mast cell stabilizers or H2R antagonists (100, 101).
Role of histamine H4 receptors in the gastrointestinal tract

6.4. Visceral sensitivity

Visceral hypersensitivity is widely accepted as a mechanism that can explain many clinical symptoms associated with organic and functional bowel diseases (90, 102). Histamine, as other inflammatory mediators, has an important role in GI hypersensitivity reactions; once released from mast cells, it can easily reach the afferent sensory nerves nearby and activate neuron discharge, thus increasing visceral sensitization to painful stimuli (103). In line with this, treatment with mast cell stabilizers prevents lowering of pain threshold, which occurs during mucosal inflammation (90). According to the species, H1R, H2R or H4R subtypes have been involved in the alteration of visceral pain perception induced by histamine (104-107). As opposed to the early studies, it is now clear that H4Rs are expressed and are functionally active on neurons of the mammalian central and peripheral nervous system (52, 98, 108-110). To the best of our knowledge, no study has examined to date whether H4Rs are located on afferent fibers of the enteric nervous system; in view of the inhibitory effects of H4R antagonists in different pain models, it might be of interest to explore the effects of H4R ligands in models of visceral pain (65, 111-113).

6.5. Inflammation and immunity

Accumulating evidence has suggested that histamine plays a key role in inflammation, immediate hypersensitivity reaction and cellular and humoral immune response (28, 30, 41). Preformed or neosynthesized histamine is produced during inflammatory response in several GI disorders, such as food allergy, IBD and IBS, and exerts multiple regulatory effects through the activation of both H1Rs and H4Rs (32, 37, 41, 114-116). However, the efficacy of medical therapy based on the use of antihistamines or mast cell stabilizers is unproven (115). The recent discovery of H4Rs, mainly located in immune and inflammatory cells has further strengthened the role of histamine at this level. Given the ability of H4Rs to modulate the function of mast cells, T cells, dendritic cells and eosinophils, it is natural to foresee a therapeutic potential of H4R antagonists in inflammatory disorders of the GI tract. Indeed, both in vitro and in vivo studies provided evidence for a beneficial effect of H4R antagonists as anti-inflammatory agents (Tables 2 and 3). Histamine H4R antagonists were effective against the intestinal damage induced in rats by TNBS, a hapten which induces a chronic enteritis in rodents (99). The recent study investigated the distribution of the different histamine receptor subtypes in the colorectal tumours compared to the normal mucosa, by different techniques such as RT-PCR. Western blot analysis and immunostaining (98). The study demonstrated the presence of H1R, H2R and H4R expression in adenoma and human colon carcinoma at protein level; in addition, in line with previous studies ruled out the presence of H2Rs in the human intestinal tissue (49, 51, 99). Histamine receptor expression pattern in neoplastic tissue was altered as compared to normal colonic mucosa, with significantly reduced expression of both H1Rs and H4Rs in tumour (98); this could favour H4R-mediated regulation of tumour cell growth. Further studies are required to clarify whether H4R downregulation has relevance in tumour progression and whether agonism at H4Rs combined with H4R antagonism would shift the process in the direction of tumour inhibition. It is of interest that H4R activation reduced cell proliferation in a pancreatic carcinoma cell line and in human hematopoietic progenitor cell (135, 136). Recently, however, it was reported that the H4R antagonist hypothesis than JNJ7777120 is acting on mast cells (64, 122). In line with this, analysis of peritoneal cell exudate in mice unreeled an expression of H4R mRNA higher in naive animals, as compared to genetically modified mice, devoid of mast cells, suggesting that resident mast cells may be the predominant H4R-expressing cell in the peritoneum (113).

Finally, the involvement of H4Rs in the ischemia/reperfusion-induced damage was recently reported in mice (123); this findings, however, were obtained with the H4 receptor blocker tipiperamide, thus the evidence for a specific involvement of H4Rs is lacking; in line with this, previous data obtained in rats showed that the effect of histamine on intestinal ischemia was related to activation of H4Rs (124).

6.6. Carcinogenesis

The stimulatory effect of histamine on tumor growth has been known for long time (31). High levels of HDC activity and high concentrations of histamine have been detected in both experimental and human tumours, such as breast cancer, melanoma, small cell lung carcinoma, endometrial cancer and colorectal carcinoma (38, 49, 125-129). In addition, histamine content was correlated with the presence of lymph node and/or distant metastasis in colorectal cancer (49). Histamine was reported to act also as an angiogenic factor and induce vascular endothelial growth factor (VEGF) production, thus influencing the process of tumour invasion and metastasis (130, 131). The tumour promoting effects of histamine appear to be predominantly mediated by H4Rs; in line with this, some encouraging results of clinical trials have shown increased survival of gastric and colon cancer patients after treatment with the H4R antagonists cimetidine and ranitidine (132-134).

The recent discovery that histamine H1R expression was detected in colorectal specimens has renewed the interest for the role of histamine in carcinogenesis and opened new horizons in this field. A recent study investigated the distribution of the different histamine receptor subtypes in the colorectal tumours compared to the normal mucosa, by different techniques such as RT-PCR. Western blot analysis and immunostaining (98). The study demonstrated the presence of H1R, H2R and H4R expression in adenoma and human colon carcinoma at protein level; in addition, in line with previous studies ruled out the presence of H2Rs in the human intestinal tissue (49, 51, 99). Histamine receptor expression pattern in neoplastic tissue was altered as compared to normal colonic mucosa, with significantly reduced expression of both H1Rs and H4Rs in tumour (98); this could favour H4R-mediated regulation of tumour cell growth. Further studies are required to clarify whether H4R downregulation has relevance in tumour progression and whether agonism at H4Rs combined with H4R antagonism would shift the process in the direction of tumour inhibition. It is of interest that H4R activation reduced cell proliferation in a pancreatic carcinoma cell line and in human hematopoietic progenitor cell (135, 136). Recently, however, it was reported that the H4R antagonist
Role of histamine H4 receptors in the gastrointestinal tract

JNJ7777120 and the H3R antagonist zolantidine prevented the effects of histamine on cell proliferation, VEGF production and cyclooxygenase-2 (COX-2) induction in several colon cancer cell lines, without affecting basal cell proliferation (49). Collectively, these findings suggest that further studies are needed to assess the role of H3Rs on tumor cell growth.

7. SUMMARY AND PERSPECTIVE

Over the past few years research on histamine H4Rs has provided significant evidence for a role of this new receptor in a variety of histamine functions, emphasizing the concept that there is still much to learn about histamine and its versatile biology. The findings reviewed here strongly suggest that histamine H4Rs may participate in the GI effects of histamine; H4R expression was found in different cell types and can vary under pathological conditions characterized by inflammation and malignancies. The beneficial effects demonstrated by H4R antagonists in several models of GI mucosal damage, would lead to conclude that the H4R could be a potential target candidate in the therapy of functional GI diseases. However, further studies with more selective ligands are needed to characterize the GI H4R under both physiological and pathological conditions. This would be of utmost importance, when considering that H4R antagonists are being proposed as new anti-inflammatory/anti-allergic drugs and that most of the therapeutically available drugs for inflammation and pain are endowed with significant gastric and intestinal toxicity (137, 138).

8. ACKNOWLEDGEMENTS

The Authors acknowledge support from COST BM0806 (European Cooperation in Science and Technology).

9. REFERENCES

17. M. Zhang, R.L. Thurmond and P.J. Dunford: The histamine H4 receptor: a novel modulator of inflammatory
Role of histamine H4 receptors in the gastrointestinal tract

44. G. Coruzzi, E. Poli, G. Morini and G. Bertaccini: The histamine H4 receptor. In: Molecular Targets for Drug
Role of histamine H4 receptors in the gastrointestinal tract

Role of histamine H4 receptors in the gastrointestinal tract

72. D. Neumann, S. Beermann and R. Seifert: Does the histamine H4 receptor have a pro- or anti-inflammatory role in murine bronchial asthma? *Pharmacology* 85, 217-223 (2010)

86. G. Morini, H. Timmerman, W. Schunack and D. Grandi: Agonists for the histamine H4-receptor differ in...
their gastroprotective activity in the rat. Inflamm Res 51 Suppl 1, S75-S76 (2002)

89. M. Adami, C. Pozzoli, R. Leurs, H. Stark and Coruzzi G: Histamine H3 receptors are involved in the protective effect of ghrelin on against HCl-induced gastric damage in rats. Pharmacology (2010) DOI: 10.1159/000320110

Role of histamine H4 receptors in the gastrointestinal tract

Role of histamine H4 receptors in the gastrointestinal tract

Abbreviations: ANOVA: Analysis of variance; COX-2: Cyclooxygenase-2; ECL: enterochromaffin like; GI: gastrointestinal; H1R: Histamine H1 receptor; H2R: Histamine H2 receptor; H3R: Histamine H3 receptor; H4R: Histamine H4 receptor; HDC: Histidine decarboxylase; IBD: Inflammatory bowel disease; IBS: Irritable bowel syndrome; RT-PCR: Reverse transcription-polymerase chain reaction; TNBS: Trinitrobenzene sulphonic acid; VEGF: Vascular endothelial growth factor

Key Words Histamine, Histamine H4 receptors, Gastrointestinal tract

Send correspondence to: Professor Gabriella Coruzzi, Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, Via Volturno 39, 43100 Parma Italy, Tel: 0039-0521-903851, Fax, 0039-0521-903852, E-mail: gabriella.coruzzi@unipr.it

http://www.bioscience.org/current/vol4S.htm