Role of IFN-gamma in immune responses to *Candida albicans* infections

Daniel Gozalbo¹, Victoria Maneu², María Luisa Gil¹

¹Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot, Valencia, Spain, ²Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Interferon-gamma (IFN-γ)
4. IFN-γ in *Candida albicans* infections
 4.1. IFN-γ is essential for host defense against invasive candidiasis
 4.2. IFN-γ production by NK cells
 4.3. IFN-γ production by Th1/Th17 cells
 4.4. IFN-γ production by γδ T cells, NKT cells and CD8 T cells
5. Perspective
6. Acknowledgements
7. References

1. ABSTRACT

Candida albicans is the most frequent etiologic agent that causes opportunistic fungal infections called candidiasis, a disease whose systemic manifestation could prove fatal and whose incidence is increasing as a result of an expanding immunocompromised population. Here we review the role of interferon-gamma (IFN-γ) in host protection against invasive candidiasis. This cytokine plays an essential role in both the innate and adaptive arms of the immune response to candidiasis. We focus on recent progress on host-pathogen interactions leading to the production of IFN-γ by host cells. IFN-γ is produced by CD4 Th1, CD8, γδ T, and natural killer (NK) cells, essentially in response to both IL-12 and/or IL-18; more recently, a subset of *C. albicans*-specific Th17 cells have been described to produce both IL-17 and IFN-γ. IFN-γ plays an important role in the regulation of the immune system as well as in the control of the infectious process, as it is required for optimal activation of phagocytes, collaborates in the generation of protective antibody response, and favors the development of a Th1 protective response.

2. INTRODUCTION

Candida species are the most frequent cause of mucosal and invasive fungal infections (1-3). The leading cause of candidiasis, *Candida albicans*, resides as a commensal of the human mucosae and the gastrointestinal tract. In immunocompromised hosts, saprophytic colonization often leads to opportunistic mucosal or life-threatening deep organ infection. A wide range of factors that lead to various degrees of immunosuppression predispose patients to infections by *Candida*. These factors include a severe underlying disease (i.e. AIDS or leukaemia), impaired phagocytic function (i.e. neutropenia), and exogenous factors (such as wide spectrum antibiotic treatment, i.v. drug use, transplantation medicine, trauma, abdominal surgery). Haematogenous candidiasis is a frequent complication in the treatment of patients with acute leukaemia; oropharyngeal candidiasis, a common mucosal infection, occurs in the majority of AIDS patients, and vaginal candidiasis has been estimated to occur in approximately 75% of women at least once. Morbidity and mortality rates associated with haematogenous disseminated or invasive candidiasis
remain unacceptably high, mainly due to the lack of an early and accurate diagnostic procedure, the limited arsenal of antifungal drugs and the emergence of resistant strains (3-6).

Resistance to candidiasis requires the coordinated action of innate and adaptive immune defenses. The phagocytes, neutrophils and macrophages, can clear the pathogen, and furthermore macrophage activation leads to the release of several key mediators such as proinflammatory cytokines, which are important for protecting the host against disseminated candidiasis (6). The specific detection of microbes by macrophages and dendritic cells is mediated by pattern recognition receptors (PRRs), germline-encoded, nonclonal receptors, that recognize microbial structures referred to as microorganism-associated molecular patterns (MAMPs). Phagocytic cells recognize *C. albicans* by a variety of PRRs including receptors for mannosyl/fucosyl glycoconjugates (CR3, MR, DC-SIGN, galectin-3, dectin-2), receptor for β-glucan (dectin-1), and Toll-like receptors (TLRs) (7-11). TLRs are essential PRRs and constitute a family of receptors that mediate recognition of microbial challenges, subsequent inflammatory response and are also regulators of the adaptive responses (12, 13).

It is accepted that antifungal CD4+ T helper 1 (Th1)-mediated responses play a central role in anti-*C. albicans* defenses, providing control of fungal infectivity through production of IFN-γ, which is required for optimal activation of phagocytes and for helping in the generation of protective antibody response (6). Interestingly, although protective immunity to *C. albicans* is mediated by Th1 cells, some Th2 cytokines, such as IL-4 and IL-10, are required for the maintenance of the anti-fungal immune protection (6, 14, 15); in addition, regulatory T cells (Treg), activated by IL-10 producing dendritic cells, are involved in the induction of memory protective immunity by negative regulation of antifungal Th1 reactivity (16). More recently, it has been shown that Th17 cell activation also occurs in fungal infections and Th17 cell pathway plays an important regulatory function in promoting protective immune responses, particularly in mucocutaneous candidiasis (6, 17, 18).

Moreover, the immune system must tolerate colonization with commensal fungi (the mycobiome) but defends against fungal invasion; when this balance is disrupted (for example by immunosuppression) life-threatening fungal infections develop (19). Moreover, in addition to the host status, the pathogenicity of the fungus also depends on a set of virulence factors (adhescins, hydrolytic enzymes and morphological transition from yeast to hyphal form) whose expression is often environmentally regulated (20). Commensal *C. albicans* cells exhibit the yeast morphology, whereas the yeast to hyphal transition occurs when fungus invades target organs, and the immune system can distinguish these fungal forms through distinct PRRs, promoting different Th lineage development (8, 18, 21).

Here we review the role of IFN-γ in the host protection against invasive candidiasis and focus on recent progress on host-pathogen interactions at the molecular level leading to the production of IFN-γ by host cells.

3. INTERFERON-GAMMA

Immune, type II interferon, or interferon-gamma (IFN-γ), is a pleiotropic cytokine secreted by CD4 Th1, CD8, γδ T, and natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity (22), the properties of IFN-γ include regulation of the immune system and the control of infectious disease. This cytokine plays an essential role in both the innate and adaptive phases of an immune response (23, 24).

Human as well as mouse IFN-γ is encoded by a single-copy gene, generating a single 1.2-kb mRNA-species and a polypeptide of 166 residues containing a cleaved hydrophobic signal sequence of 23 residues. Biologically active IFN-γ is in the form of a noncovalent 34-kDa homodimer. IFN-γ exerts its effects by binding to the IFN-γ receptor, composed of the IFN-γ R1 and R2 chains, present on many lymphoid and nonlymphoid cell types (23). IFN-γ R complex utilizes the JAK/STAT signal pathway, specifically the receptor-associated Janus-family protein kinases Jak1 and Jak2. Upon ligand binding these kinases are activated, causing the phosphorylation, dimerization, and nuclear translocation of the Stat1 transcription factor (25). The signal transduction pathway stemming from IFN-γ is well established, but the manner in which IFN-γ-induced genes mediate this cytokine’s pleotropic functions remains unclear. Over 200 genes are known to be regulated by IFN-γ and several IFN-γ-regulated genes are themselves components of transcription factors. Additionally, IFN-γ exerts its effect on a wide variety of cell types owing to the broad expression pattern of the IFN-γR complex. Thus, determination of the cell types and gene products mediating IFN-γ’s *in vivo* effects remains difficult.

It is well established that one essential role of IFN-γ is to activate a number of phagocytic cell functions, including induction of superoxide formation, upregulation of surface molecule display (e.g. major histocompatibility complex (MHC) class II, FcγR, integrins), reduction of phagocytic vacuole pH, degradation of intracellular tryptophan, and enhanced killing of intracellular parasites (23). Mice deficient in either IFN-γ, or IFN-γ R1, or IFN-γ R2, or the signalling molecule Stat1 have severely impaired immune responses *in vivo*, as demonstrated by their increased susceptibility to microbial pathogens and certain viruses (26). Besides, humans with mutations in components of the IFN-γ receptor-signalling pathway have been identified. Such individuals have profound immunodeficiencies, particularly to intracellular microbial infections, with some individuals dying in early childhood as a consequence of mycobacterial infections (26).

4. INTERFERON-GAMMA IN Candida albicans INFECTIONS

4.1. IFN-γ is essential for host defense against invasive candidiasis

The important role of IFN-γ in the resistance against invasive candidiasis has been clearly demonstrated several years ago. Knockout mice deficient in either IFN-γ...
or IFN-γ receptor were more susceptible than wild-type mice to invasive C. albicans infection (27-29). These reports demonstrated (i) that IFN-γ is required for development of protective Th1-dependent immunity (27, 28), (ii) that IFN-γ knockout mice produce C. albicans specific immunoglobulins in lower titers than control mice, and (iii) that peritoneal macrophages from these mice have an impaired nitric oxide production (29). The administration of IFN-γ to mice infected with C. albicans showed a beneficial effect on the outcome of the infection (30), whereas the injection of a monoclonal antibody to IFN-γ resulted in the development of a nonprotective Th2 rather than a protective Th1 response (31). Recent experiments show that concanavalin-A injected to mice allows the survival after a lethal dose of C. albicans, probably by promoting Th1 and Th17 responses and therefore IFN-γ and IL-17 production (32).

Several mechanisms have been shown to mediate the protective effect of IFN-γ against C. albicans infections. Early in vitro studies demonstrated stimulatory effects of IFN-γ on the phagocytosis and killing of C. albicans by neutrophils and macrophages (33, 34). Exposure of adult macrophages to IFN-γ resulted in increased phagocytosis and killing of C. albicans (34); however, no enhancement with cord macrophages could be detected under the same experimental conditions (35). These data suggested that neonatal macrophages have a normal capacity to ingest and kill Candida but cannot be fully activated by IFN-γ, a finding that could not be attributed to lower expression or binding of IFN-γ receptor to its ligand on neonatal cells. Remarkably, a significantly decreased Stat-1 phosphorylation was detected in neonatal cells in response to IFN-γ, suggesting the possible existence of a negative regulation of IFN-γ receptor signaling in newborns (35).

More recently, mutations in the STAT1 gene have been related to chronic mucocutaneous candidiasis, a chronic disease characterized by persistent symptomatic infection of the nails, skin and mucosa mostly by C. albicans. These mutations lead to defective Th1 and Th17 responses characterized by reduced production of IFN-γ, IL-17 and IL-32, which may explain the higher susceptibility to fungal infections, although the IFN-γ receptor pathway was intact in these patients (36).

Oral mucosa is the first line of defense by acting as a physical barrier against C. albicans. In an experimental model of oral infection, C. albicans significantly decreased E-cadherin mRNA expression and protein production (37). E-cadherin is a structural protein that maintains a continuous epithelial cell attachment, and supports the structural barrier against injurious agents passing through the oral cavity. By decreasing its expression levels, C. albicans facilitates invasion. In this experimental model, IFN-γ did specifically prevent the effect of C. albicans on E-cadherin gene expression, suggesting a E-cadherin-mediated IFN-γ role in anti-candidal defense mechanisms at the epithelial level (37).

Interestingly, C. albicans cells did not activate NADPH oxidase in dendritic cells (DCs) and were poorly killed by these cells; however, the C. albicans killing activity increased upon treatment of DCs with IFN-γ, indicating that IFN-γ probably modulates NADPH oxidase activity, the enzyme responsible for ROS production (38).

Furthermore, the IFN-γ induced by the fungus during experimental candidiasis acts on the metabolic pathway involved in tryptophan catabolism by mediating the activation of the indoleamine 2,3-dioxygenase enzyme (IDO) in neutrophils and dendritic cells at the sites of infection. IDO activation in neutrophils leads to the activation of the killing machinery while sparing the inflammatory response, whereas in dendritic cells results in tipping the balance between IL-12 and IL-10 production leading to Th1 and Treg-mediated protective immunity. IDO blockade by an enzyme inhibitor exacerbates the infection process as well as the associated inflammatory pathology, and in addition, abolishes resistance to reinfection caused by deregulated innate and adaptive immune responses. Therefore, IDO activation represents one of the mechanisms by which IFN-γ exerts a fine control on the inflammatory and adaptive antifungal responses (6, 39, 40).

The development of vaccines against C. albicans have shown that protective adaptive immunity against fungal infections is mediated by Th1-Th17 cells, through an increase in IFN-γ and IL-17, both in laboratory experiments and in clinical trials (41-44). Therefore, it has been suggested that different preparations/extracts should be analyzed in order to choose those that induce greater levels of IFN-γ for the development of new vaccines (45).

4.2. IFN-γ production by NK cells

A crucial step in the control of intracellular pathogens is the early production of IFN-γ by NK cells. NK cells are an essential component of the innate immune response and are recruited to the site of infection within minutes following pathogen invasion. At the site of infection, and as a consequence of interacting with various microbial products, macrophages and dendritic cells produce proinflammatory cytokines (TNF-α, IL-12, IL-15 and IL-18), which bind to their receptors on NK cells, leading to their activation and to the rapid production and secretion of IFN-γ. This IFN-γ produced by NK cells not only serves as a first line of defense against invading pathogens, but may also contribute to the induction of the appropriate adaptive immune response. Moreover, the expression of TLRs on NK cells has been reported and several data indicate that NK cells can directly recognize and respond to pathogen components through TLRs by secreting IFN-γ (46-51). However, controversies remain regarding the TLR expression in NK cells and their responsiveness to agonists, particularly the requirement for the presence of accessory cells, such as dendritic cells, or accessory cytokines to respond to TLR agonists (52).

Interaction of lymphokine activated killer (LAK) cells with C. albicans does not inhibit or kill the fungal pathogen by means of the LAK lytic machinery, but
through secretion of cytokines which have stimulatory effects on phagocytic cells (53). Therefore, the antifungal immunity mediated by NK cells appears to occur by secretion of cytokines that activate phagocytic cells, although whether NK cells are stimulated directly by the fungus or indirectly in response to signals generated by activated bystander host cells was not clearly established (53-55). Recent studies have shown that cytokine-primed human NK cells are activated by direct contact with *C. albicans* following actin-dependent engulfment of fungal cells; this NK cell activation results in degranulation and the release of granulocyte-macrophage colony stimulating factor, IFN-γ and TNF-α, and induces fungal damage (56). It should be noted that NK cells are unable to inhibit filamentation of engulfed *C. albicans*, and that antifungal activity of NK cells is mainly attributed to secreted perforin (56).

Interestingly, when the role of TLRs in triggering IFN-γ secretion by NK cells in response to yeasts and hyphae of *C. albicans* was studied, it was unexpectedly found that fungal cells cause an inhibition of IFN-γ secretion by murine NK cells. Killed yeasts and hyphae of *C. albicans* inhibited IFN-γ secretion by highly purified murine NK cells in response to TLR4 and TLR2 ligands, LPS and zymosan, respectively, and this effect was also observed in the presence of NK activating cytokines (IL-2, IL-12 and IL-15) (57). Since the role of NK cells in resistance to *C. albicans* appears to be basically mediated by cytokine production (including IFN-γ) that activates phagocytic cells (34, 53), its inhibition by *C. albicans* may favor the survival of the pathogen. Besides, this inhibitory effect may also: (i) inhibit IFN-γ production by NK cells in response to cytokines secreted by activated bystander cells (48), and (ii) disturb the crosstalk between NK and dendritic cells, as the IFN-γ secreted by NK cells controls dendritic cell maturation and their T cell stimulatory activity (58, 59). This finding suggests a mechanism of immune evasion, based on inhibition of NK cells, which may contribute to the virulence of *C. albicans*.

4.3. IFN-γ production by Th1 cells

The inflammatory environment established by the innate response influences the adaptive immune response: activation, expansion, and selection of pathogen-specific lymphocytes. Besides cell-cell contacts that provide activation signals via peptide-MHC class II/TCR and classical costimulatory interactions (B7/CD28), antigen presenting cells (APCs) communicate with T cells via cytokine production, which is responsible for the expansion and differentiation of naïve T cells to generate mature phenotype, such as Th1 and Th2 cells. Th1 cells secrete IFN-γ, IL-2, TNF-α and TNF-β, whereas Th2 cells secrete IL-4, IL-5, IL-6, IL-10, and IL-13, and down-regulate Th1 responses. IL-12 is the signature cytokine produced by cells of the innate immune system that influences adaptive cell immunity. IL-12 plays a central role in promoting the differentiation of naïve CD4+ T cells into mature Th1 effector cells and it is a potent stimulus for NK cells and CD8+ T cells to produce IFN-γ.

It is well established that Th1, and not Th2, response confers protection against candidiasis. The activation of Th1 cells is instrumental (i) in the optimal activation of phagocytes at the sites of infection through the production of IFN-γ and (ii) in the help for the generation of opsonizing antibodies (6, 40). Th1 cells can exert cross-reactivity among different fungal species, as *C. albicans* and *Aspergillus fumigatus*, due to the conserved antigen molecules shared by fungi (60).

While the Th1 cytokines IFN-γ and TNF-α are required for the successful control of the infection (6, 8, 61), Th2 cytokines (IL-4 and IL-10) inhibit Th1 development and deactivate phagocytic effector cells. Th1 and Th2 cells derive from common T precursor cells, and they differentiate by the activity of several transcription factors. The transcription factor GATA-3 is recognized as a master regulator for Th2 differentiation and it is likely that GATA-3 is a critical host factor in the determination of susceptibility to systemic *Candida* infection. Haraguchi et al. (62) demonstrated that overexpression of GATA-3 modulates macrophage antifungal activity and enhances the susceptibility to systemic *Candida* infection, possibly by reducing the production of IFN-γ.

The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses (63). Recently, it has been reported that LAB is involved in anti-fungal immunity as Lat2-/- mice are more susceptible to *C. albicans* infection than wild type mice. Lat2 gene is expressed by dendritic cells and is involved in developing a Th1 response to *C. albicans*, as Lat2-/- dendritic cells showed a reduced Th1 polarization in *vitro* and Lat2-/- mice have a reduced production of IFN-γ (64).

Romani et al. (65, 66) developed a murine model of systemic candidiasis in which resistance to reinfection with virulent wild-type yeasts is induced by prior exposure of mice to a low-virulence agerminative strain of *C. albicans*. In this experimental model, the development of a protective anticanidal response correlated with the detection of Th1-associated immunity (66, 67). Using this model in MyD88-/- mice (which are defective in the adaptor molecule MyD88, which is essential for signal transduction through TLRs except TLR3) (12), it was shown a default of Th1 polarization in *MyD88*−/− mice. In this study, it was found that Th1-associated cytokines (IFN-γ, IL-12, TNF-α) in these mice, which correlated with a diminished frequency of IFN-γ producing CD4+ T lymphocytes and an increased susceptibility to infection (68). These results indicate that TLR/MyD88-dependent inflammatory pathway is essential for the development of a protective Th1 response against *C. albicans*. These observations agree with those reported by Bellacchio et al. (69) showing that MyD88-dependent signalling is crucial for antifungal responses. Since TLR2 and TLR4 have been implicated in anti-*Candida* responses (7, 10, 69, 70), similar studies were performed in TLR2−/− and TLR4−/− mice (7, 8). IL-12 could not be detected in TLR2−/− mice as opposed to wild type mice, and the IFN-γ production was significantly lower in TLR2−/− mice than in control mice in response to both *C. albicans* yeasts and...
hyphae (71). Moreover, TLR2−/− mice showed a lower frequency of Th1 cells than control mice (unpublished results). By contrast, TLR4−/− and C3H/HeJ mice (carrying a mutant TLR4 allele which confers defective TLR4-mediated signalling) showed an IL-12 and IFN-γ production similar to their respective control mice and accordingly, a similar frequency of IFN-γ producing CD4+ T lymphocytes (72). Therefore, these results indicate that TLR2 is the most important TLR involved in the interaction with C. albicans leading to a Th1 protective response, whereas TLR4 appears to be dispensable (7, 8, 72). However, some discrepancies about the recognition of C. albicans by TLR2 and TLR4 and its consequences in host protection against infection have been reported; this is probably due to different experimental approaches and/or the use of different yeast strains, as recognition by TLR4 appears to be strain dependent (7, 8, 69, 70, 73, 74).

One important advantage of C. albicans hyphae appears to be the ability to polarize the adaptive immunity towards a nonprotective Th2 response. Although the mechanism for this effect is not completely understood, some relevant information has been achieved. The most important difference in the secretory response to both fungal morphotypes is the well-documented higher production of IL-12 in response to yeasts, which is accompanied by a Th1 type response. IL-12 production by human blood monocytes, as well as mouse and human dendritic cells, basically occurs in response to the yeast form, whereas a reduced IL-12 production at the sites of infection and causes recruitment of neutrophils to infected organs (85). It has been described that the Th17 pathway does develop in response to C. albicans (87, 88). Although one report suggested that the Th17 pathway acts as negative regulator of the Th1 mediated immune resistance to C. albicans (89), most data are consistent with a protective role of IL-17 in systemic candidiasis (85, 90) and, in addition, it has been shown that C. albicans-specific Th17 cells produced IFN-γ and IL-17 but no IL-10, in a IL-1β mediated manner (42). Furthermore, immunization with a recombinant vaccine causes a Th1, Th17, and Th1/17 mediated protective immunity against C. albicans infection in mice, and this response involves CD4+ T-cell-derived IFN-γ and IL-17, as well as functional phagocytic effectors (41).

4.4. IFN-γ production by γδ T cells, NKT cells and CD8 T cells

A minority of T cells expresses a TCR consisting of γ and δ chains, and those cells are primarily CD4+. These chains are encoded by few genes and accordingly, the γδ repertoire is very limited. Despite sharing many similarities with αβ T cells, their method of activation differs markedly as the recognition of antigen by γδ T cells may be not MHC-restricted. There are two main population subsets of γδ T cells: γδ2 T cells comprise a very small percentage of circulating lymphocytes, and γδ1 T cells are resident in the mucosal-associated lymphoid tissue (91, 92). Although the function of γδ T cells appears to be dependent on several factors, including tissue distribution, local microenvironment, and stage of the immune response, one attribute of these cells is the production of IFN-γ upon activation. It was early shown that the γδ T cells enhance macrophage nitric oxide production and anti-Candida activity in vitro (93). γδ T cells may contribute to immunosurveillance at the body surface, as mice deficient in γδ T cells or depleted in these cells are highly susceptible to orogastric candidiasis (94). γδ1 T circulating population can proliferate and produce IFN-γ and IL-17 in response to C. albicans in vitro, and therefore may play an important role in the defense against infection (92, 95).

NKT cells constitute a subset of mature T lymphocytes characterized by the coexpression of αβ TCR as well as the NK1.1 cell marker. These cells recognize lipid antigens in the context of the nonclassical MHC molecule CD1, and are able to rapidly release vast quantities of diverse effector cytokines, including IFN-γ. NKT cells play a role in immunity against fungal infections, including candidiasis, probably by IFN-γ production and polarization towards Th1 response (96–98). It has been recently reported that coinfection with commensal bacteria, or treatment with bacterial glicolipids, exacerbates systemic C. albicans infection through IFN-γ produced in part by NKT cells; the increased levels of IFN-γ in the early phase of infection caused a dramatic decrease in the blood and bone marrow neutrophils, suggesting the hypothesis that the timing and quantity of IFN-γ determine the effect on neutrophils and other bone marrow cells, and therefore may modulate the fate of fungal infection (99).

CD8γ T cells play a pivotal role in immune responses against many viruses and tumors, and may also contribute to immunity to fungi (4, 100). These T cells
recognize antigens that are presented on the surface of host cells by MHC class I molecules, leading to their destruction, and therefore are also known as cytotoxic T cells. The possible role of CD8+ T cells in resistance to candidiasis has been somewhat controversial, although some early reports suggested a role of these cells during infection (100, 101). It is accepted that both CD4+ and CD8+ T cells are necessary for elimination of some fungal pathogens; in the primary stages of many fungal diseases the presence of CD4+ T cells is essential for host survival, whereas CD8+ T cells are only necessary to restrict infection (100, 102). The main effector mechanisms of CD8+ T cells are cytotoxicity and cytokine secretion (IFN-γ). The role of cytotoxicity in host defense against fungi is not well delineated, whereas the activity of cytokines is better understood. The Th1 cytokine IL-12 is also a potent stimulus for CD8+ T cells to produce IFN-γ. The frequency of IFN-γ producing CD8+ T lymphocytes is diminished in MyD88-deficient mice as compared with wild-type mice, in agreement with the default of production of Th1 cytokines (IFN-γ, IL-12, TNF-α) detected in these mice, as well as with their strong susceptibility to candidiasis (8, 68).

As a conclusion, CD8, NKT and γδ T cells may have a role in protection against candidiasis. Probably the major role of these cells is the cytokine production, which is instrumental in mobilizing and activating antifungal effectors, thus providing prompt and effective control of infectivity once the fungus has been established itself in mucosal tissues or spread to internal organs.

5. PERSPECTIVE

The level of our understanding of fungal-host interactions has clearly progressed in the last few years. Although the important role of IFN-γ secreting Th1 responses in protection against C. albicans infections has been well established several years ago, recently there has raised increasing interest in how adaptive immune responses are controlled by the innate immune system. Researchers have focused on the discovery of PRRs that, upon recognition of MAMPs on fungal cells, initiate adaptive responses through activation and maturation of dendritic cells. Considerably new information has been gained in this field concerning the role of TLRs, dendin-1, galectin-3 and dendin-2, as well as cooperation between dendin-1 and TLR2, although we are far to completely discerning the intricate molecular mechanisms leading to the elicitation of a protective immune response to C. albicans infections.

The discovery of IL-23/Th17 pathway in response to C. albicans has represented a significant advance in the field of adaptive immune response. Modulation of this inflammatory Th17 response is a potential target for development of new strategies to stimulate protective immunity to C. albicans. Two types of human Th17 cells with distinct effector function and differentiation requirements have been described; C. albicans-specific Th17 cells produced IFN-γ and IL-17 but no IL-10, in a IL-1β mediated manner. Therefore, strategies to generate this subpopulation can be of potential interest for anti C. albicans immunotherapies (42). It has been shown that immunization with a recombinant vaccine primed Th1, Th17 and Th1/17 lymphocytes, which produced proinflammatory cytokines that enhanced phagocytic killing of Candida (41).

The ultimate objective is to apply our knowledge of how C. albicans stimulates the immune response to improve the therapy of candidiasis and thus the clinical control of fungal infections in the at-risk population. There are several strategies for immunotherapy related to IFN-γ; one of them is the use of recombinant (r) IFN-γ as adjunctive therapeutic. Despite the widespread use of prophylactic rIFN-γ in chronic granulomatous disease (a genetic disorder characterized by recurrent bacterial and fungal infections and tissue granuloma formation), invasive fungal infection has remained a persistent problem in these patients (103). However, on the basis of a large volume of other preclinical studies and phase I and II clinical trials (104), adjunctive rIFN-γ (in combination with antifungal agents) have been further evaluated, with no relevant advances. Alternatively, the generation of functionally active anti-C. albicans IFN-γ secreting T cells is feasible, and this was suggested as a potential treatment option for patients with candidiasis after allogeneic haematopoietic stem-cell transplant (105).

Vaccination strategies against C. albicans components that bias the immune responses towards Th1/17 may represent an effective immunotherapeutic tool (106). For instance, vaccination with recombinant Als3p N-terminal portion protects mice from both systemic and mucosal infections by stimulating peripheral blood mononuclear cell production of both IFN-γ and IL-17A. This vaccine has been recently tested in a phase I clinical trial with promising results, as it was found to be safe, well tolerated and induced strong humoral and cellular immune responses, with increased IL-17 and IFN-γ production (43, 44). Also, a new synthetically prepared glycoligoaaccharides conjugates mimicking Candida cell wall antigens have been assessed in vivo and in vitro to test their immunobiological efficacy. The conjugates biased the immune responses towards Th1 and Th17, and represent prospective immunobiological components for further immunopharmacologically relevant Candida vaccine design (107).

Finally, it should be noted that recent findings have demonstrated a significant role of type I IFN in host defense against C. albicans. Smeekens et al. (108) have shown that type I IFN has a crucial role in anti-Candida host defense in humans and that type I IFN induced by Candida modulates Th1/Th17 cytokine profiles, with an increase in IFN-γ and a decrease in IL-17. Other reports have shown that conventional DCs are able to mount a type I IFN response against C. albicans (109) and that IFN-β production by DCs is crucial for immunity to C. albicans (110). Although the precise effect of type I IFNs on anti Candida host defense is still being debated, mechanisms inducing type I IFN production may also represent a target for immunointervention against C. albicans.
IFN-γ in Candida albicans infections

6. ACKNOWLEDGEMENTS

Research in the M.L. Gil and D. Gozalbo laboratory is supported by Grant SAF2010-18256 (Ministerio de Economia y Competitividad, Spain).

7. REFERENCES

8. ML Gil and D Gozalbo: Role of Toll-like receptors in systemic Candida albicans infections. Front Biosci 14, 570-582 (2009)

IFN-γ in Candida albicans infections

42. CE Zielinski, F Mele, D Aschenbrenner, D Jarrossay, F Ronchi, M Gattorno, S Monticelli, A Lanzavecchia and F Gallust: Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514-518 (2012)

48. OM Hart, V Athie-Morales, GM O'Connor and CM Gardiner: TLR7/8-mediated activation of human NK cells
IFN-γ in Candida albicans infections

69. S Bellocchio, C Montagnoli, S Bozza, R Gaziano, G Rossi, SS Mambula, A Vecchi, A Mantovani, SM Levitz and L Romani: The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to

73. MG Netea, JW van der Meer and BJ Kullberg: Both TLR2 and TLR4 are involved in the recognition of Candida albicans. Reply to "TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae" by Gil and Gozalbo, Microbes and Infection 8, 2823-2824 (2006). Microbes Infect 8, 2821-2822 (2006)

74. ML Gil and D Gozalbo: Candida albicans, to be or not to be recognized by TLR4? Response to "Both TLR2 and TLR4 are involved in the recognition of Candida albicans" by M.G.Netea et al. Microb Infect 8, 2823-2824 (2006)

90. FL van de Veerdonk, BJ Kullberg, IC Verschueren, T Hendriks, JW van der Meer, LA Joosten and MG Netea: Differential effects of IL-17 pathway in disseminated candidiasis and zymosan-induced multiple organ failure. Shock 34, 407-411 (2010)

92. D Fenoglio, A Poggi, S Catellani, F Battaglia, A Ferrera, M Setti, G Murdaca and MR Zocchi: Vdelta1 T
lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113, 6611-6618 (2009)

100. RB Ashman, A Fulurija and JM Papadimitriou: Both CD4+ and CD8+ lymphocytes reduce the severity of tissue lesions in murine systemic candidiasis, and CD4+ cells also demonstrate strain-specific immunopathological effects. Microbiology 145, 1631-1640 (1999)

108. SP Smeekens, A Ng, Kumar, MD Johnson, TS Plantinga, C van Diemen, P Arts, ET Verwiel, MS Gresnigt, K Fransen, S van Sommeren, M Oosting, SC Cheng, LA Joosten, A Hoischen, BJ Kullberg, WK Scott, JR Perfect, JW van der Meer, C Wijmenga, MG Netea and RJ Xavier: Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4, 1342 (2013)

Key Words: Candida albicans, Candidiasis, Infection, IFN-gamma, Review
IFN-γ in Candida albicans infections

Send correspondence to: M. Luisa Gil, Departamento de Microbiología y Ecología, Universitat de València, Edificio de Investigación, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain, Tel: 34-963543410, Fax: 34-963544570, E-mail: m.luisa.gil@uv.es