MALAT1-mediated tumorigenesis

Jianghua Liu¹, Wan-Xin, Peng²,³, Yin-Yuan Mo⁴, Dianzhong Luo⁵

¹Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, ²Cancer Institute, University of Mississippi Medical Center, Jackson, MS, ³Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China, ⁴Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, ⁵Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Structure and biogenesis of MALAT1
4. Expression of MALAT1 in cancer
5. Regulation of MALAT1
6. Regulation of gene expression by MALAT1
 6.1. MALAT1-mediated alternative splicing
 6.2. MALAT1-mediated transcriptional regulation
 6.3. MALAT1-mediated post-transcriptional regulation
7. MALAT1-associated signaling pathways in cancer and clinical significance
 7.1. Wnt/β-catenin pathway
 7.2. Epithelial-to-mesenchymal transition (EMT)
 7.3. PI3K/AKT pathway
 7.4. ERK/MAPK pathway
 7.5. Angiogenesis
8. Summary
9. Acknowledgement
10. References

1. ABSTRACT

Functional genomics studies over the past decades have unveiled that the human genome transcribes a large amount of long non-coding RNAs (lncRNAs) which have been implicated in regulation of diverse cellular functions. Dysregulation of lncRNAs are often associated with human diseases including cancer. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is among the most abundant and highly conserved lncRNAs. Emerging evidence has indicated that MALAT1 may have complex and extensive functions in the development and progression of cancer. In this review, we first update on the role of MALAT1 in tumorigenesis and then discuss possible molecular mechanisms that underline the MALAT1-mediated gene regulation, leading to cancer invasion and metastasis.

2. INTRODUCTION

Advances in functional genomics have revealed that protein-encoding genes only account for about 2% of the human transcripts whereas the vast majority of these transcripts are non-coding genes, including microRNAs and long non-coding RNAs (lncRNAs) (1). While microRNAs are ~22 nucleotides in length, lncRNAs are arbitrarily defined as RNA molecules with > 200 bp in length. Non-coding transcripts were once regarded as evolutionary junk or transcriptional noise for a long time, however, increasing evidence indicates that non-coding RNAs are emerging as important regulators of gene expression, and are implicated in developmental and tissue specific expression patterns, and human diseases. To date, over 50,000 human lncRNAs have been identified (2). Although IncRNAs can be transcribed by RNA polymerase III (pol III), the most of them are transcribed by RNA polymerase II (pol II) and are polyadenylated (3, 4). Moreover, IncRNAs have greater potential and versatility for both protein and target recognition through their complex secondary and higher order structures (5, 6). Despite being relatively newly discovered, emerging evidence indicates that IncRNAs play an important role in many important biological processes, including cell proliferation (7), survival (8), differentiation (9), organogenesis (10), dosage compensation (11), genomic imprinting (12) and chromatin remodeling (13). New functions of IncRNAs are still being discovered.

MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) is one of the most studied...
Regulation of tumorigenesis by MALAT1

IncRNAs (14). According to Thomson statistics, the number of publications on MALAT1 has been steadily increasing from year 2010 to 2015 (Figure 1). In this review, we discuss the latest understanding of the roles of MALAT1 in various aspects of tumorigenesis. We also touch on molecular mechanisms by which MALAT1 regulates tumorigenesis through various mechanisms.

3. STRUCTURE AND BIOGENESIS OF MALAT1

MALAT1 (also named NEAT2, HCN, LINC00047, NCRN00047 and PRO2853) is mapped to human chromosome 11q13 (15). MALAT1 RNA is 8.7 kb in length from a single exon, and is predominantly localized to nuclear speckles. MALAT1 was originally identified in a screen for transcripts associated with metastasis and patient survival in non-small cell lung cancer (NSCLC) (14). The half-life of MALAT1 is relatively long, ranging from ~ 9h to > 12h and appears to be unaffected by nuclear RNases or RNA helicases (16), which may contribute to its relative abundance (14). Yet unlike other IncRNAs, mature MALAT1 lacks a poly A tail. It has been shown that MALAT1 carries highly conserved triple helical structures which are capable of protecting its 3’ end from 3’-5’ exonucleases (17). However, RNase P cleaves the nascent MALAT1 transcript, generating the mature MALAT1 transcript (nuclear-retained MALAT1 as stem-loop structure) and the small cytoplasmic RNA (61-nt tRNA-like ncRNA referred to as mascRNA) (18). Phylogenetic analysis indicates that MALAT1 is highly conserved with up to 90% identity between human and mouse in the last 5 kb of the RNA. Analysis of crystal structure of a 3’-stem-loop structure of human MALAT1 indicates that the unique triple-helical structure of the MALAT1 is a key factor responsible for MALAT1 stability (19). In addition, the Drosha-DGCR8 complex can also control the abundance of MALAT1 by interaction with the 5’ end of MALAT1 (20).

MALAT1 is subject to posttranscriptional modifications, thus, impacting MALAT1-mediated cellular function or gene expression. For example, N(6)-methyladenosine (m6A) is a reversible and abundant internal modification of mRNAs and IncRNAs with roles in RNA processing, transport, and stability. In this regard, m6A can modify MALAT1 hairpin to increase the accessibility of a US-tract for recognition and binding by hnRNP C and impact cellular processes (21). Moreover, as an important nuclear protein for pre-mRNA processing, hnRNP C preferentially binds to the m6A-modified hairpin composed of nucleotides 2556~2587 of MALAT1 (22). These findings suggest that with different structures, MALAT1 may be able to exert its specific functions in different cell types, tissues or cellular processes.

4. EXPRESSION OF MALAT1 IN CANCER

Although MALAT1 is also expressed in normal tissue (14, 23), its upregulation has been reported in a variety of cancer types through various detection methods. For example, by transcriptomic and genomic analysis, Luo et al., showed that MALAT1 is among several other protein-coding genes overexpressed in human hepatoblastomas (HPBL) versus human hepatocellular carcinomas (HCC) (24). In situ hybridization revealed that MALAT1 is upregulated in endometrial stromal sarcoma as compared with the stroma of normal endometrium (25). The same in situ hybridization assay also showed that MALAT1 is upregulated in endometrial stromal sarcoma as compared with the stroma of normal endometrium (25). The same in situ hybridization assay also showed that MALAT1 is upregulated in endometrial stromal sarcoma as compared with the stroma of normal endometrium (25).

More recent studies further support the upregulation of MALAT1 in cancer, including clear cell renal cell carcinoma (30), colorectal cancer (31), gastric cancer (32), colon cancer (33) pancreatic cancer (34-36), bladder cancer (37), glioma (38), myeloma (39), gallbladder cancer (40), lung cancer (41), HR-HPV (+) cervical cancer (42), esophageal squamous cell carcinoma (33, 43), and oral squamous cell carcinoma (44). Of interest, MALAT1 may serve as a prognosis marker in the following cancer types: HCC (27), clear cell renal cell carcinoma (30), colorectal cancer (31), gastric cancer (32), colon cancer (33) pancreatic cancer (34-36), bladder cancer (37), glioma (38), myeloma (39), gallbladder cancer (40), lung cancer (41), HR-HPV (+) cervical cancer (42), esophageal squamous cell carcinoma (33, 43), and oral squamous cell carcinoma (44). Of interest, MALAT1 may serve as a prognosis marker in the following cancer types: HCC (27), clear cell renal cell carcinoma (30), colorectal cancer (31), pancreatic cancer (34-36), bladder cancer (37), glioma (38), cervical cancer (45), thoracic esophageal squamous cell (43), prostate cancer (46) and myeloma (47). Moreover, MALAT1 has been shown to be a potential blood-based biomarker for prostate cancer (48) and pancreatic cancer (49). Together, these studies highlight the significance of MALAT1 in cancer (Table 1).
5. REGULATION OF MALAT1

Although MALT1 is relatively abundant in both normal and cancer cells compared to other lncRNAs, increasing evidence indicates that expression of MALAT1 is regulated by various factors. For example, MALAT1 is upregulated in both TK6 and WTK1 of lymphoblastoid cells at different time by ionizing radiation (50). In human SK-N-SH neuroblastoma cells, MALAT1 levels are upregulated by oxytocin through the binding of the CREB transcription factor to the MALAT1 promoter (51). JMJD1A, a histone H3K9 demethylase, binds to the MALAT1 promoter and demethylates histone H3K9 at the promoter, leading to upregulation of MALAT1 (52). Depletion of TDP-43 expression suppresses MALAT1, whereas TDP-43 overexpression increases MALAT1 (53). On the other hand, protocadherin 10 (PCDH10) suppresses MALAT1 through the Wnt/β-catenin pathway in endometrial cancer (54). In breast cancer cells, 17β-estradiol negatively regulates MALAT1 transcription by a dose-dependent (55). Finally, MALAT1 is suppressed by transcription factor SRY-box 17 via the SRY-mediated transcriptional regulation in esophageal cancer (56). Thus, these results demonstrate that expression of MALAT1 is subject to positive or negative regulators.

6. REGULATION OF GENE EXPRESSION BY MALAT1

6.1. MALAT1-mediated alternative splicing

Higher eukaryotes achieve transcriptome and proteomic complexity by utilizing alternative splicing (AS) of pre-mRNA. AS is regulated by trans-acting protein factors, including the small nuclear ribonucleoproteins (snRNPs), the serine/arginine-rich (SR) family of nuclear phosphoproteins, SR-related proteins, and the heterogeneous nuclear ribonucleoproteins (hnRNPs) (57). SR proteins are regarded as a class of RNA-binding proteins in constitutive splicing. Moreover, AS can recognize cis-acting exonic splicing enhancers through their sequence-specific and recruit other splicing factors to facilitate the assembly of the spliceosome (58). However, these splicing factors generally serve as basic machinery. Regulation of AS for a specific set of genes under a give circumstance may require additional factors where lncRNAs may play such a role. In this regard, MALAT1 is identified in nuclear SC35 speckles, including U snRNA-protein complexes (U snRNPs) and SR family splicing regulators. MALAT1 interacts with SR proteins including SRSF1, SRSF2, and SRSF5. MALAT1 can influence the distribution of these and other splicing factors including SF1, U2AF65, SF3a60.
Regulation of tumorigenesis by MALAT1

and U2B in nuclear speckle domains; it regulates pre-mRNA processing by modulating the phosphorylation levels of SR proteins (23, 59). In support of the role of MALAT1 in AS, whole genome analysis of breast cancer cells identified multiple mutations in the SRSF1-binding items of MALAT1 (29). Consistent with the reports that translocations and point mutations of MALAT1 have been reported in sarcoma (60) and colorectal cancer cell lines (61), depletion of MALAT1 suppresses the recruitment of SR splicing factors (SF2/ASF, SC35) to the transcription site (62). However, knockout mouse experiments suggest that depletion of MALAT1 does not affect the level of splicing factors or their phosphorylation status, or global effect on alternative splicing; instead it may play a potential cis-regulatory role (63), suggesting that MALAT1 may regulate AS for a specific set of genes in a cell type specific manner.

6.2. MALAT1-mediated transcriptional regulation

LncRNAs regulate transcription through various mechanisms (64). For example, IncRNAs may serve as 1) signals for transcription; 2) decoys to titrate transcription factors; 3) guides for chromatin-modifying enzymes to be recruited to target genes and 4) scaffolds to bring together multiple proteins to form functional ribonucleoprotein complexes (65-67). As such, IncRNAs may serve as master gene regulators. In particular, IncRNAs have been implicated in epigenetic regulation of gene expression through which IncRNAs can regulate large numbers of genes (68). For example, HOTAIR is one of the early identified IncRNAs and plays a critical role in cancer through epigenetic regulation mechanisms. HOTAIR is a 2.2 kb gene in the HOXC locus, which, however, can repress transcription in trans of HOXD genes. This repressive action is mediated by the interaction of HOTAIR with the Polycomb Repressive Complex 2 (PRC2) (69). In this regard, MALAT1 regulates the localization of PRC2 through cooperation with aurine up-regulated 1 (TUG1) (70). Moreover, unmethylated PRC2 preferentially interacts with MALAT1 in the nuclear speckles. Importantly, MALAT1 acts as a molecular scaffold to allow gene expression during serum stimulation though promoting the interaction among unmethylated PRC2, E2F, activation-associated histone markers, and the transcriptional coactivator complex. For example, MALAT1 along with NEAT1 has been mapped to hundreds of genomic sites in human cells (71), suggesting that MALAT1 is closely associated with actively transcribed genes. Furthermore, MALAT1 also tends to overlap the enrichment of histone H3K36me2 peaks, a marker of active transcriptional elongation by interacting with the 3' end of the gene body. In multiple myeloma from mesenchymal stem cells, MALAT1 regulates LTBP3 transcription by recruiting Sp1 to the LTBP3 promoter (72). In this way, MALAT1 positively regulates LTBP3 transcription. Interestingly, both genes are closely located on chromosome 11q13.1, which suggest that MALAT1 may regulate the expression of neighboring genes in cis.

Further experiments with RNAi revealed that MALAT1 regulates the expression of a set of genes involved in cellular motility (73). Other genes including those regulated by post-transcriptional mechanism are listed in Table 2. Together, these studies suggest that transcriptional regulation also plays an important role. Since many of these genes are involved in cell migration, invasion and metastasis, it is understandable that upregulation of MALAT1 is often associated with cancer progression. However, it remains to be determined as to how MALAT1 is involved in transcriptional regulation.

6.3. MALAT1-mediated post-transcriptional regulation

LncRNAs have complex post-transcriptional regulation function including mRNA stability, mRNA translation, pre-mRNA splicing or protein activities. The major mechanisms of post-transcriptional regulation of MALAT1 include alternative splicing, protein activities and competitive endogenous RNAs (ceRNAs) (74). Since we already discussed the gene splicing function early, we will mainly focus on MALAT1-mediated ceRNA mechanism.

The ceRNA concept was proposed initially for the interaction among miRNAs and protein-coding genes (75) where microRNA response elements (MREs) may serve as letters of a new language. Recent evidence indicates that this can also expand to IncRNAs including MALAT1. Evidently this ceRNA mechanism provides an additional level of post-transcriptional regulation (76, 77). Several recent studies showed that IncRNAs and microRNAs interaction in a reciprocal repression manner (78-81). Through this mechanism, IncRNAs may act as repressor to microRNAs; in contrast, microRNAs may reduce lncRNA expression in an AGO2-dependent manner (82, 83). For example, miR-9 targets MALAT1 for degradation in nucleus by directly binding to two microRNA binding sites of MALAT1 sequence at position 1,199 and 6,229, respectively (84). Further, MALAT1 acts as sponge for miR-9 in nucleus of U87MG and L428 cells through Ago2-mediated pathway (84). MALAT1 can also indirectly modulate RBG2 expression via competing with miR-124 to promote tumorigenesis in cervical cancer through the MALAT1-miR-124-RBG2 axis (42).

In addition, reciprocal interaction between MALAT1 and microRNAs are also observed in other types of cancer cells, such as MALAT1 and miR-205 in renal cell carcinoma (85), MALAT1 and miR-140 in glioma endothelial cells (86). By CeRNA mechanism, MALAT1 may de-repress expression of the target genes for the corresponding microRNAs, leading to phenotypic changes such as cell invasion. On the other hand,
Regulation of tumorigenesis by MALAT1

70

© 1996-2017

post-transcriptional regulation of MALAT1 by microRNAs such as miR-101 and miR-217 can suppress proliferation, migration, and invasion of ESCC cells (87). Furthermore, MALAT1 can promote clear cell kidney carcinoma proliferation and metastasis through miR-200s (88). miR-125b suppresses bladder cancer development via inhibiting SIRT7 and MALAT1 (89). It appears that interactions between MALAT1 and microRNAs are deeply involved in regulation of malignant phenotypes of cancer. Therefore, MALAT1 has also joined the CeRNA regulatory system through which MALAT1 and microRNAs can interact and negatively regulate each other.

7. MALAT1-ASSOCIATED SIGNALING PATHWAYS IN CANCER AND ITS CLINICAL SIGNIFICANCE

7.1. Wnt/β-catenin pathway

The Wnt/β-catenin signaling pathway is an important pathway in embryonic development and tumorigenesis (90). MALAT1 has been implicated in the Wnt/β-catenin signaling. For example, re-expression of wnt inhibitory factor 1 (WIF1) can inhibit cell migration by downregulating MALAT1 in a non-canonical Wnt signaling manner in glioblastoma (91). In colorectal cancer, resveratrol can downregulate MALAT1 such that it reduces the nuclear localization of β-catenin and attenuates Wnt/β-catenin signaling, leading to inhibition of invasion and metastasis (92). In endometrioid endometrial carcinoma, PCDH10 suppresses MALAT1 and attenuates Wnt/β-catenin signaling via TCF promoter binding (54). Finally, MALAT1 also promotes EMT by activating Wnt signaling in bladder cancer (37). However, the detailed mechanism of how MALAT1 is involved in Wnt/β-catenin signaling still remains to be determined yet.

7.2. Epithelial-to-mesenchymal transition (EMT)

EMT is a fundamental process for distant metastasis during which tumor cells lose their epithelial properties and acquire a fibroblast-like phenotype for tumor invasion and dissemination (93). EMT is an

Table 2. Regulation of target protein expression or activity by MALAT1

<table>
<thead>
<tr>
<th>Effect</th>
<th>Target protein</th>
<th>Regulation mechanism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>CA2</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>down</td>
<td>E-cadherin</td>
<td>Transcriptional regulation</td>
<td>(41, 96)</td>
</tr>
<tr>
<td>down</td>
<td>HNF5G</td>
<td>Transcriptional regulation</td>
<td>(114)</td>
</tr>
<tr>
<td>down</td>
<td>MAIA3</td>
<td>Transcriptional regulation</td>
<td>(115)</td>
</tr>
<tr>
<td>down</td>
<td>RASSF7</td>
<td>Transcriptional regulation</td>
<td>(116)</td>
</tr>
<tr>
<td>down</td>
<td>ROBO2</td>
<td>Transcriptional regulation</td>
<td>(117)</td>
</tr>
<tr>
<td>down</td>
<td>HNF4G</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>down</td>
<td>MA2</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>down</td>
<td>RASSF6</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>down</td>
<td>ROBO1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>ABCA1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>ADAMTS12</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>AIM1</td>
<td>Transcriptional regulation</td>
<td>(73)</td>
</tr>
<tr>
<td>up</td>
<td>AKAP9</td>
<td>Transcriptional regulation</td>
<td>(110)</td>
</tr>
<tr>
<td>up</td>
<td>BMPER</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>CDCP1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>COL6A1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>CPM</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>CSF1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>CXCL5</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>DRD1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>GPC6</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>HMMR</td>
<td>Transcriptional regulation</td>
<td>(73)</td>
</tr>
<tr>
<td>up</td>
<td>LAYN</td>
<td>Transcriptional regulation</td>
<td>(73)</td>
</tr>
<tr>
<td>up</td>
<td>LPAR1</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>LPHN2</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>LY6K</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>MCAM</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>NNMT</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>PRKCE</td>
<td>Transcriptional regulation</td>
<td>(113)</td>
</tr>
<tr>
<td>up</td>
<td>Slug</td>
<td>Transcriptional regulation</td>
<td>(37)</td>
</tr>
<tr>
<td>up</td>
<td>Zb1</td>
<td>Transcriptional regulation</td>
<td>(37)</td>
</tr>
<tr>
<td>up</td>
<td>Zb2</td>
<td>Transcriptional regulation</td>
<td>(37)</td>
</tr>
<tr>
<td>up</td>
<td>Snail</td>
<td>Transcriptional regulation</td>
<td>(96)</td>
</tr>
<tr>
<td>up</td>
<td>vimentin</td>
<td>Transcriptional regulation</td>
<td>(96)</td>
</tr>
<tr>
<td>up</td>
<td>MMP9</td>
<td>Transcriptional regulation</td>
<td>(98)</td>
</tr>
<tr>
<td>up</td>
<td>PCNA</td>
<td>Transcriptional regulation</td>
<td>(98)</td>
</tr>
</tbody>
</table>

(Contd..)
essential process in invasion and metastasis, and is regarded as a major mechanism for cancer metastasis. MALAT1 is involved in EMT-mediated cell migration and invasion in various malignant tumors (94). In bladder cancer, MALAT1 silencing leads to a decrease of ZEB1, ZEB2 and Slug levels, and an increase of E-cadherin levels (37); further, TGF-β can induce MALAT1 expression and promote EMT. For instance, MALAT1 knockdown inhibits TGF-β-induced EMT though suppressor of zeste 12 (suz12) (95). MALAT1 is associated with colon cancer progression by TADC-derived CCL5, whereas blocking MALAT1 significantly reduces CCL5-induced migration and invasion by suppression of Snail (33). Moreover, MALAT1 knockdown significantly suppresses expression of N-cadherin and vimentin, but induces expression of E-cadherin in oral squamous cell carcinoma (OSCC) cell line TSCCA and Tca8113 (44). Similarly, MALAT1 knockdown decreases EMT marker genes expression including Snail, Slug, N-cadherin and vimentin, while it increases E-cadherin expression in pancreatic cancer AsPC-1 and CFPAC-1 cells (34). Overexpression of MALAT1 suppresses E-cadherin expression, promotes vimentin expression and enhances the proliferation, invasion, and metastasis of nasopharyngeal carcinoma CNE-1 cells (96). Of interest, in contrast to its role in breast cancer, knockdown of MALAT1 induces an EMT and enhances breast cancer cell migration and invasion by activating the phosphatidylinositide-3 kinase (PI3K)-AKT pathway (97), but this remains to be confirmed by further studies. In summary, there is a large body of evidence that MALAT1 plays an important role in EMT-mediated program, leading to cell invasion and metastasis.

7.3. PI3K/AKT pathway

PI3K/AKT signaling pathway regulates multiple cellular processes such as cell proliferation, survival or migration. Over-activation of this pathway is frequently seen in many human malignancies and it plays a key role in cancer progression. Emerging evidence suggests that MALAT1 plays an oncogenic role through PI3K/AKT pathway. For instance, MALAT1 knockdown significantly suppresses PI3Kp85α and pAKT level in osteosarcoma cells; Ectopic expression of MALAT1 promotes tumor growth and metastasis by activating PI3K/AKT signaling cascade (97). In contrast, knockdown of MALAT1 increases phosphorylated AKT (pS473) levels in breast cancer MDA-MB-231 and MCF-7 cells (97). It remains to be determined whether this is due to cell type specific. In osteosarcoma cells, MALAT1 induces proliferation and metastasis through activation of PI3Kp85α at post-transcriptional level (98). MALAT1 can also regulates AKT activity through the miR-22-3p-CXCR2 axis, leading to aggravating the oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury, a process associated with the AKT pathway (99). Given the importance of MALAT1 in various aspects of tumorigenesis cancer, targeting MALAT1 may enhance the AKT pathway-cancer therapy (100).

7.4. ERK/MAPK pathway

Extracellularly Regulated Kinase/Mitogen Activated Protein Kinase (ERK/MAPK) signaling pathway is a key regulator of cellular processes such as proliferation, differentiation, development, survival and apoptosis (101). Most functions of ERK/MAPK kinases depend on their ability to phosphorylate multiple target proteins (101). MALAT1 promotes tumor growth and metastasis though activating this signaling cascade (102). In glioma stem cells, knockdown of MALAT1 promotes proliferation in SHG139 cell by activating ERK/MAPK signaling (103). ERK/MAPK pathway is found to be inactivated in the gallbladder cancer SGC-996 and NOZ cells after MALAT1 knockdown. MALAT1 knockdown significantly reduces the expression of phosphorylated MEK1/2, ERK 1/2, MAPK, and JNK 1/2/3, which suggests MALAT1 might promote proliferation and metastasis of gallbladder cancer by activating the ERK/MAPK pathway (40). MALAT1 has also been implicated in retinal endothelial cell function and pathological microvascular growth under diabetic condition by activating p38/MAPK signaling pathway (104).

7.5. Angiogenesis

One important aspect of tumorigenesis is tumor angiogenesis. A main driving factor for angiogenesis is hypoxia. In this regard, MALAT1 is often upregulated in cancer cells under hypoxic conditions. For example, hypoxia induces MALAT1 in human neuroblastoma cells whereas MALAT1 suppression reduces expression of fibroblast growth factor 2 (FGF2) which is a well-known growth factor (105). Moreover, conditioned media from neuroblastoma cells transfected with MALAT1 siRNA causes significantly less endothelial cell migration, invasion and vasculature formation. Finally, addition of recombinant FGF2 to the cell culture media reversed the effects of MALAT1 siRNA on vasculature formation (105). Consistent with this finding, MALAT1 expression is also significantly increased by hypoxia in endothelial cells. In vivo studies indicate that genetic ablation of MALAT1 inhibits proliferation of endothelial cells (106). Thus, the MALAT1 level appears to control the balance between proliferative and migratory phenotype of endothelial cells although the underlying mechanism remains to be determined yet.

8. SUMMARY

MALAT1 is a multi-functional IncRNAs, which might be attributed to its relative large RNA molecule and highly structural nature. It is evident now that MALAT1 plays an oncogenic role through regulation of gene expression or various pathways. Although there are many ways that MALAT1 can impact gene expression, our discussion mainly focuses on transcriptional/post-transcriptional regulation, alternative splicing and CeRNA mechanisms as outlined in Figure 2. Evidently, these mechanisms are often overlapped through cross-talk and
thus, it may be difficult to delineate them. Nevertheless, a consequence of these actions is increased invasion and metastasis for cancer cells. Future work will be focused on dissection of the underlying mechanism by which MALAT1 promotes tumorigenesis. For example, it would be interesting to determine how hypoxia induces MALAT1 which causes migratory phenotype endothelial cells. Finally, given its clinical significance, it would be also interesting to determine whether MALAT1 serve as a potential therapeutic target.

9. ACKNOWLEDGEMENT

This work was supported by NIH grant R01 CA154989 (Y.M.) and National Natural Science Foundation of China (NSFC) grant No. 815604480 (D.L.).

10. REFERENCES

Regulation of tumorigenesis by MALAT1

DOI: 10.1038/nature07943

Regulation of tumorigenesis by MALAT1

Regulation of tumorigenesis by MALAT1

DOI: 10.1016/j.bbrc.2015.08.027

64. X. Wang, X. Song, C. K. Glass and M. G. Rosenfeld: The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol, 3(1), a003756 (2011) DOI: 10.1101/cshperspect.a003756

Regulation of tumorigenesis by MALAT1

DOI: 10.1016/j.molcel.2014.07.012

DOI: 10.1074/jbc.M114.572693

DOI: 10.1016/j.febslet.2010.10.008

DOI: 10.1007/s13277-015-3106-y

DOI: 10.1016/j.cell.2011.07.014

DOI: 10.6026/97320630008731

DOI: 10.1016/j.cell.2011.09.028

78. J. Li, J. Yang, P. Zhou, Y. Le and Z. Gong: (The biological functions and regulations of competing endogenous RNA). *Yi Chuan*, 37(8), 756-64 (2015)
DOI: 10.16288/j.yczz.15-073

DOI: 10.1155/2014/896206

DOI: 10.1002/wrna.1213

DOI: 10.1038/srep13445

DOI: 10.1371/journal.pone.0053823

DOI: 10.1038/cdd.2013.1.10

DOI: 10.1038/srep02535

DOI: 10.1158/0008-5472.can-14-2931

DOI: 10.1016/j.bbagrm.2015.11.008

DOI: 10.1016/j.taap.2015.09.016

103. Y. Han, L. Zhou, T. Wu, Y. Huang, Z. Cheng, X. Li, T. Sun, Y. Zhou and Z. Du: Downregulation of IncRNA-MALAT1 Affects Proliferation and the Expression of Stemness Markers in
Regulation of tumorigenesis by MALAT1

DOI: 10.1007/s10571-015-0303-6

DOI: 10.1038/cddis.2014.466

DOI: 10.18632/oncotarget.6675

DOI: 10.1161/CIRCRESAHA.114.303265

DOI: 10.1038/sj.onc.1209846

DOI: 10.1016/j.fobo.2014.03.004

DOI: 10.18632/oncotarget.2691

DOI: 10.1016/j.bbadis.2014.11.013

111. X. Cao, R. Zhao, Q. Chen, Y. Zhao, B. Zhang, Y. Zhang, J. Yu, G. Han, W. Cao, J. Li and X. Chen: MALAT1 might be a predictive marker of poor prognosis in patients who underwent radical resection of middle thoracic esophageal squamous cell carcinoma. Cancer Biomark, 15(6), 717-23 (2015)
DOI: 10.3233/cbm-150513

DOI: 10.1186/s13046-015-0123-z

DOI: 10.1158/0008-5472.can-12-2850

DOI: 10.1.111/jpc.12222

DOI: 10.1016/j.devcel.2013.04.021

DOI: 10.1007/s11010-013-1713-8

117. A. Lawniczek-Walczyk, R. L. Gorn,
Regulation of tumorigenesis by MALAT1

Key Words: MALAT1, IncRNA, Tumorigenesis, Cancer, Epigenetic Regulation, Review

Send correspondence to: Dianzhong Luo, Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China, Tel: 0771-5356534, Fax: 0771-5356534, E-mail: 13878802796@163.com