The crossroads between cancer immunity and autoimmunity: antibodies to self antigens

Monica Benvenuto¹, Rosanna Mattera¹, Laura Masuelli², Ilaria Tresoldi¹, Maria Gabriella Giganti¹, Giovanni Vanni Frajese³, Vittorio Manzari¹, Andrea Modesti¹, Andrea Modesti¹, Roberto Bei¹,²

¹Department of Clinical Sciences and Translational Medicine, University of Rome, Tor Vergata, Rome, 00133 Italy, ²Department of Experimental Medicine, University of Rome, Sapienza, Rome, 00164 Italy, ³Department of Sports Science, Human and Health, University of Rome ‘Foro Italico’, Rome, 00135 Italy, ⁴Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, Rome, 00133 Italy

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Immune response to self antigens in cancer patients partly covers that characteristic of patients with autoimmune diseases
4. Features of self antigens involved in the autoreactive immune response: immunological properties and abnormal expression
5. Biological activities of autoantibodies to self antigens
6. Association of autoantibodies to self antigens with paraneoplastic autoimmune syndromes
7. Role of autoantibodies to self antigens as biomarkers for cancer detection and cancer patients prognosis
8. Paraneoplastic neurological syndromes, effects of therapy targeting immune-checkpoint receptors and Tregs dysregulation in autoimmune disease patients: the crossroad between autoimmunity and immune response in cancer patients
9. Conclusions
10. Acknowledgment
11. References

1. ABSTRACT

The production of autoantibodies to self antigens is dependent on the failure of immune tolerance. Cancer cells express antigens which elicit a spontaneous immune response in cancer patients. The repertoire of autoantibodies found in cancer patients partly covers that of patients with autoimmune diseases. Biological activities of autoantibodies to self antigens may induce paraneoplastic syndromes which reflect the attempt of cancer patients to counteract tumor growth. Autoantibodies with similar specificities may have different effects in cancer and autoimmune disease patients due to different immunological microenvironments. Tregs dysfunction has been observed in patients with paraneoplastic syndromes and/or with autoimmune diseases, while the increase of Tregs has been associated with poor cancer patients prognosis. Novel therapies have employed antibodies against Tregs immune-checkpoint receptors with the aim to boost immune response in cancer patients. The presence of autoantibodies to tumors antigens has also been investigated as a marker for cancer detection and cancer patients prognosis. This report reviews the current knowledge on the analysis and meaning of autoantibodies to self antigens detected in cancer and autoimmune disease patients.

2. INTRODUCTION

The production of autoantibodies to self antigens is dependent on the breakdown or failure of immune tolerance mechanisms toward self-antigens. The immune system does not recognizes self-antigens in physiological conditions, but after the failure of immune tolerance these antigens may elicit T and B cells immune response (1). The immune response of autoreactive B cells occurs via central and peripheral tolerance mechanisms. During the central tolerance the autoreactive B cells are eliminated by receptor editing, that leads to rearrangement of light-chain Ig genes to generate a new B cell with non-autoimmune serum. During the peripheral tolerance, the autoreactive B cells are removed via several mechanisms, including inhibition mediated by FcγRIIb, clonal inhibition by the Siglec/SlaE pathway, inhibition by T regulatory cells (Tregs) in an MHC class II- and CD40L-dependent manner, clonal deletion and anergy
Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients partly covers that characteristic of patients with autoimmune diseases (5). These autoantibodies might be useful as diagnostic or prognostic markers in cancer patients and as serological markers for the diagnosis of autoimmune diseases (6, 7). Table 1 reports examples of autoantibodies found both in cancer and autoimmune disease patients (5, 8-168).

Specific autoantibodies against nuclear antigens were detected both in cancer and in autoimmune disease patients. These autoantibodies recognized single- and double-stranded DNA, Ro/SS-A, La/SS-B, centromere, Jo-1, Smith antigens (Sm), small nuclear ribonucleoproteins (snRNPs), topoisomerase I and II, nucleolar phosphoprotein B23/nucleophosmin, nucleolar organizer antigen NOR-90 and RNA polymerase III (5, 8-30). For example, anti-Ro/SS-A and anti-La/SS-B were prevalent in patients with Sjogren’s syndrome (13) and systemic lupus erythematosus (SLE) (11) and in patients with hematological malignancies as well (5). Among the others, autoantibodies to p53, MDM-2, c-Myc and c-Myb were frequently detected in cancer and autoimmune disease patients. Autoantibodies against p53 were found in gastric, ovarian, colorectal, breast, head and neck cancer patients as well as in patients with SLE, rheumatoid arthritis (RA), dermatomyositis, autoimmune thyroiditis and hepatitis, primary biliary cirrhosis and systemic sclerosis (5, 31, 32). Autoimmune disease and cancer patients have also been found to exhibit autoantibodies against MDM-2, which is the p53 inhibitor (33, 34). Anti-c-Myc autoantibodies have been reported to occur in patients with gastric, breast, colon and ovarian cancer as well as in patients with SLE, Graves’ disease, mixed connective tissue disease, dermatomyositis and autoimmune hemolytic anemia (5, 27, 34-39). Patients with colon, ovarian, breast and lung cancer as well as patients with SLE have been found to produce autoantibodies against the c-Myb protein (40). Both categories of patients generate autoantibodies against cyclin-B1, survivin, p16, 14-3-3 proteins, eukaryotic translation initiation factor 4G (eIF-4G) and RAF1 (14, 27, 28, 34-36, 40-48). Autoantibodies against the cyclic citrullinated peptide (CCP) were detected in patients with Sjogren’s syndrome and psoriatic arthritis (51, 52) as well as in lymphoma patients (49). Anti-CCP antibodies are highly specific for RA and have recently been used in the clinical classification of this disease. These antibodies are more specific than rheumatoid factor (RF) for the diagnosis of RA (50). Furthermore, anti-RF antibodies are present in about 74% of patients with Sjogren’s syndrome, in particular in the early stage of disease, and also in patients with autoimmune pancreatitis (13). Serum of patients with melanoma, bladder and gastrointestinal cancers contain anti-CCP autoantibodies as well (53, 54). Circulating autoantibodies against smooth muscle antigens (ASMA), including actin, troponin and tropomyosin, have been detected in patients with hepatocarcinoma, lung, breast, gastric, ovarian, melanoma, cervix, thymoma cancers, as well as in patients with Sjogren’s syndrome, autoimmune hepatitis and pancreatitis, primary biliary cirrhosis and other autoimmune diseases (12, 19, 20, 55, 56, 58-62). The principal autoantibodies against the thyroid gland are anti-thyroid peroxidase (TPO), anti-thyroglobulin (TG) and anti-thyroid stimulating hormone receptor (TSH-R). Indeed, anti-TPO and anti-TG antibodies are mainly detected in patients with Hashimoto’s thyroiditis, but they also occur in 70% of patients with Graves’ disease (169). In addition, patients with diabetes, RA, systemic sclerosis, celiac disease, autoimmune gastritis, Sjogren syndrome as well as cancer patients with gastric MALT-type lymphoma, breast and thyroid cancer also display autoantibodies anti-TPO and anti-TG (5, 51, 63-73). Autoantibodies to extracellular matrix (ECM) components, including collagen, fibronectin and laminin, have been reported in RA, autoimmune thyroiditis, SLE, systemic sclerosis, Crohn’s disease, primary Raynaud’s disease, epidermolysis bullosa and pemphigus. Sera from patients with breast, prostate, lung and nasopharyngeal cancers displayed anti-ECM components autoantibodies (5, 11, 74-80). Autoimmune disease and cancer patients also exhibit autoantibodies against heat shock proteins (HSP), including HSP-60, -70, -90 and glucose-regulated protein 78 (GRP78). Autoantibodies against one or more HSPs have been found to occur in patients with SLE, RA, Sjogren’s syndrome, mixed connective tissue diseases, diabetes, Behçet’s disease, autoimmune retinopathy, enchephalomyelitis and hepatitis, dermatitis herpetiformis and juvenile dermatomyositis, as well as
Table 1. Examples of autoantibodies to self antigens found both in patients with cancer and autoimmune disease.

<table>
<thead>
<tr>
<th>Autoantibodies</th>
<th>Cancer site or histological subtype</th>
<th>Autoimmune disease</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Dna</td>
<td>Hematological malignancies, lymphoma, ovary, HCC, stomach, colon-rectum</td>
<td>SLE, AIH-PBC overlap</td>
<td>5, 8-12</td>
</tr>
<tr>
<td>Anti-Ro/SS-A</td>
<td>Lymphoma, hematological malignancies</td>
<td>SS, SLE, RA, PBC, dermatomyositis, SS-SLE overlap, systemic sclerosis</td>
<td>5, 8, 11, 13-15</td>
</tr>
<tr>
<td>Anti-La/SS-B</td>
<td>Breast, lymphoma, SCLC, hematological malignancies</td>
<td>SS, SLE</td>
<td>5, 8, 11, 13</td>
</tr>
<tr>
<td>Anti-CENP</td>
<td>Breast, SCLC, NHL, HCC</td>
<td>SS, SLE, RA, systemic sclerosis, PBC</td>
<td>5, 14, 16-19</td>
</tr>
<tr>
<td>Anti-Jo-1</td>
<td>Stomach, lymphoma</td>
<td>SS, polymyositis</td>
<td>8, 20, 21</td>
</tr>
<tr>
<td>Anti-Sm</td>
<td>Hematological malignancies, kidney, lymphoma, gastrointestinal, ovary</td>
<td>SLE, mixed connective tissue disease</td>
<td>5, 8, 11, 21</td>
</tr>
<tr>
<td>Anti-U1 snRNp</td>
<td>Lung</td>
<td>SLE, mixed connective tissue disease</td>
<td>5, 11, 22</td>
</tr>
<tr>
<td>Anti-U3 snRNp</td>
<td>HCC</td>
<td>Systemic sclerosis</td>
<td>5, 14</td>
</tr>
<tr>
<td>Anti-Topoisomerase I (Scl-70)</td>
<td>Stomach, lymphoma</td>
<td>Systemic sclerosis, SLE, mixed connective tissue disease</td>
<td>8, 14, 20, 21</td>
</tr>
<tr>
<td>Anti-Topoisomerase II</td>
<td>Breast, HCC</td>
<td>Juvenile RA, diabetes mellitus, SLE, localized scleroderma, systemic sclerosis, dermatomyositis</td>
<td>23-25</td>
</tr>
<tr>
<td>Anti-B23/ Nucleophosmin</td>
<td>HCC, breast, prostate, ovary, pancreas, lung, colon</td>
<td>Systemic sclerosis, RA, SLE, scleroderma</td>
<td>5, 26-29</td>
</tr>
<tr>
<td>Anti-NOR-90</td>
<td>HCC</td>
<td>Systemic sclerosis, Raynaud’s syndrome, RA, SLE</td>
<td>5, 14</td>
</tr>
<tr>
<td>Anti-RNA Polimerase III</td>
<td>Breast</td>
<td>Systemic sclerosis</td>
<td>14, 30</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Stomach, ovary, colon-rectum, breast, esophagus, head and neck, HCC, bladder, lung, cervix, uterus, pancreas, lymphoma, biliary tract, hematological malignancies, prostate, glioma, skin</td>
<td>SLE, RA, dermatomyositis, AITD, AIH, PBC, AIH-PBC overlap, systemic sclerosis</td>
<td>5, 31, 32</td>
</tr>
<tr>
<td>Anti-MDM2</td>
<td>Lung, prostate</td>
<td>SLE, systemic sclerosis</td>
<td>33, 34</td>
</tr>
<tr>
<td>Anti-c-Myc</td>
<td>Stomach, lung, breast, colon, ovary, HCC, hematological malignancies, prostate</td>
<td>SLE, Graves’ disease, mixed connective tissue disease, dermatomyositis, autoimmune hemolytic anemia</td>
<td>5, 27, 34-39</td>
</tr>
<tr>
<td>Anti-c-Myb</td>
<td>Colon, ovary, breast, lung</td>
<td>SLE</td>
<td>40</td>
</tr>
<tr>
<td>Anti-Cyclin-B1</td>
<td>Lung, breast, HCC, prostate</td>
<td>SLE, systemic sclerosis</td>
<td>27, 34, 36, 40</td>
</tr>
<tr>
<td>Anti-Survivin</td>
<td>Stomach, ovary, pancreas, lung, colon, breast, HCC, prostate</td>
<td>SLE, systemic sclerosis</td>
<td>14, 28, 34, 35, 41</td>
</tr>
<tr>
<td>Anti-p16</td>
<td>Lung, breast, HCC, prostate</td>
<td>SLE, systemic sclerosis</td>
<td>27, 34, 36, 42</td>
</tr>
<tr>
<td>Anti-14-3-3 proteins</td>
<td>Lung, HCC, prostate</td>
<td>RA, SLE, systemic sclerosis</td>
<td>27, 34, 43, 44</td>
</tr>
<tr>
<td>Anti-eIF-4G</td>
<td>Prostate</td>
<td>RA</td>
<td>45, 46</td>
</tr>
<tr>
<td>Anti-RAF1</td>
<td>Colon-rectum</td>
<td>Autoimmune inner ear disease</td>
<td>47, 48</td>
</tr>
<tr>
<td>Anti-CCP</td>
<td>Diffuse large B-cell lymphoma</td>
<td>RA, SS, psoriatic arthritis</td>
<td>49-52</td>
</tr>
<tr>
<td>Anti-RF</td>
<td>Bladder, melanoma, gastrointestinal</td>
<td>SS, autoimmune pancreatitis, RA, SLE</td>
<td>11, 53-57</td>
</tr>
<tr>
<td>ASMA</td>
<td>Stomach, HCC, melanoma, lung, breast, ovary, cervix, thymoma</td>
<td>SS, AIH, autoimmune pancreatitis, PBC, AIH-PBC overlap, celiac disease, primary sclerosing cholangitis</td>
<td>12, 19, 20, 55, 56, 58-62</td>
</tr>
</tbody>
</table>
Autoantibodies to self antigens in cancer patients

<table>
<thead>
<tr>
<th>Autoantibodies to self antigens</th>
<th>Target Antigen(s)</th>
<th>Associated Conditions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoantibodies to Thyroid</td>
<td>Anti-TPO</td>
<td>Gastric MALT-type lymphoma, breast, papillary thyroid</td>
<td>AITD, type 1 diabetes, RA, celiac disease, systemic sclerosis, autoimmune gastritis</td>
</tr>
<tr>
<td></td>
<td>Anti-TG</td>
<td>DTC, papillary thyroid, gastric MALT-type lymphoma</td>
<td>AITD, type 1 diabetes, RA, SS, autoimmune gastritis</td>
</tr>
<tr>
<td>Anti-ECM components</td>
<td>Anti-Collagen</td>
<td>Lung, prostate</td>
<td>RA, PV, SLE, epidermolysis bullosa, systemic sclerosis, Hashimoto’s thyroiditis, Graves’ disease, Chron’s disease, Raynaud’s disease</td>
</tr>
<tr>
<td></td>
<td>Anti-Fibronectin</td>
<td>Nasopharyngeal, prostate</td>
<td>RA, SLE, Hashimoto’s thyroiditis</td>
</tr>
<tr>
<td></td>
<td>Anti-Laminin</td>
<td>Breast, prostate</td>
<td>SLE, PV, systemic sclerosis, Raynaud’s disease, Hashimoto’s thyroiditis</td>
</tr>
<tr>
<td>Anti-HSPs</td>
<td>Anti-HSP60</td>
<td>HCC, breast, ovary, osteosarcoma, colon-rectum, gastric MALT-type lymphoma</td>
<td>Behçet disease, type 1 diabetes, SLE, RA, mixed connective tissue disease, autoimmune retinopathy, dermatitis herpetiformis, juvenile dermatomyositis, AIH</td>
</tr>
<tr>
<td></td>
<td>Anti-HSP70</td>
<td>Breast, HCC, nasopharyngeal</td>
<td>Dermatitis herpetiformis, AIH</td>
</tr>
<tr>
<td></td>
<td>Anti-HSP90</td>
<td>Ovary, multiple myeloma, cholangiocarcinoma, breast, osteosarcoma, prostate</td>
<td>Dermatitis herpetiformis, autoimmune encephalomyelitis, RA, SLE, autoimmune bullous diseases, type 1 diabetes, AIH</td>
</tr>
<tr>
<td></td>
<td>Anti-GRP78</td>
<td>HCC, colon-rectum, prostate, ovary</td>
<td>RA, SLE, SS</td>
</tr>
<tr>
<td>Anti-onconeural antigens</td>
<td>Anti-Hu (ANNA-1)</td>
<td>SCLC</td>
<td>Autoimmune limbic encephalopathy non paraneoplastic</td>
</tr>
<tr>
<td></td>
<td>Anti-Ri (ANNA-2)</td>
<td>SCLC, breast, ovary</td>
<td>Opsoclonus myoclonus syndrome</td>
</tr>
<tr>
<td>Anti-enzymes</td>
<td>Anti-α-enolase</td>
<td>Lung, pancreatic ductal, breast, leukemia, head and neck, melanoma, esophagus</td>
<td>SLE, mixed connective tissue disease, systemic sclerosis, Behçet's disease, RA, Hashimoto’s encephalopathy, celiac disease, AIH, PBC, primary sclerosing cholangitis</td>
</tr>
<tr>
<td></td>
<td>Anti-GAD</td>
<td>Lung, breast, thymoma</td>
<td>Type 1 diabetes, non-paraneoplastic limbic encephalitis, Stiff-person syndrome, cerebellar ataxia, Batten disease</td>
</tr>
<tr>
<td></td>
<td>Anti-Tyrosinase</td>
<td>Melanoma</td>
<td>Vitiligo</td>
</tr>
<tr>
<td></td>
<td>Anti-Transglutaminase</td>
<td>Lymphoid malignancies</td>
<td>Celiac disease, autoimmune polyendocrine syndrome type 1, SS, type 1 diabetes</td>
</tr>
<tr>
<td></td>
<td>Anti-CA II</td>
<td>Pancreas, melanoma</td>
<td>SS, SLE, RA, autoimmune pancreatitis, autoimmune retinopathies, type 1 diabetes, PBC, Graves’ disease, systemic sclerosis, autoimmune endometriosis</td>
</tr>
<tr>
<td></td>
<td>Anti-GAPDH</td>
<td>HCC</td>
<td>SLE</td>
</tr>
<tr>
<td></td>
<td>Anti-Peroxiredoxin</td>
<td>Prostate, breast, esophagus, lung, HCC</td>
<td>SLE, RA, Behçet’s disease, vasculitis syndrome, systemic sclerosis</td>
</tr>
<tr>
<td></td>
<td>Anti-SOD</td>
<td>HCC, lung</td>
<td>RA, SLE</td>
</tr>
<tr>
<td></td>
<td>Anti-Factor XIII</td>
<td>Lymphoid malignancies</td>
<td>Celiac disease, autoimmune haemorrha-philia, primary anti-phospholipid syndrome, RA</td>
</tr>
<tr>
<td>Anti-Ribosomal P proteins</td>
<td></td>
<td>Head and neck, breast, prostate, colon-rectum</td>
<td>SLE, AIH, mixed connective tissue disease</td>
</tr>
<tr>
<td>Anti-Mitochondrial antigens</td>
<td></td>
<td>Breast</td>
<td>PBC, SS, AIH, RA, SLE</td>
</tr>
<tr>
<td>Anti-Centrosome</td>
<td></td>
<td>Breast</td>
<td>RA, SLE, scleroderma</td>
</tr>
</tbody>
</table>
Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

© 1996-2017

in patients with osteosarcoma, HCC, breast, ovarian and other types of cancer (5, 17, 28, 36, 74, 79, 81-95). Autoantibodies against oncoeneral antigens, like Hu (ANNA-1) and Ri (ANNA-2) and against enzymes, like α-enolase, glutamate decarboxylase (GAD), tyrosinase, transglutaminase, carbonic anhydrase II (CAII), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), peroxiredoxin, superoxide dismutase (SOD) and coagulation factor XIII, have been reported in both patients with autoimmune diseases and cancer (5, 14, 36, 40, 55, 56, 60, 87, 96-131). Circulating autoantibodies against the ribosomal P proteins (P0, P1 and P2) are directed mainly to the carboxy-terminal epitope common to all three proteins and have been identified for the first time in SLE patients. Patients with autoimmune hepatitis and mixed connective tissue diseases display these antibodies too. We have recently demonstrated the presence of autoantibodies against P proteins in head and neck, breast, prostate and colorectal cancer patients (11, 74, 132-136). Patients with autoimmune diseases and cancer also exhibit autoantibodies against mitochondrion and centrosome antigens (11, 13, 73, 137-139). In addition, the presence of autoantibodies against several membrane receptors, including Fas receptor, estrogen receptor (ER) and acetylcholine receptor (AChR) has been reported in sera of patients with various autoimmune diseases and with cancer (140-145). Anti-voltage-gated calcium channel (VGCC), anti-CD20, anti-annexin, anti-α-fetoprotein, anti-phospholipid, anti-desmoglein (DSG), anti-cytokeratin-8, anti-insulin-like growth factor II mRNA-binding proteins (IMP), anti-interferon (IFN)-α and anti-α2-HSG (Heremans Schmid-glycoprotein) autoantibodies have also been found in sera from patients with cancer and autoimmune disease (5, 11, 17, 34-36, 40, 47, 120, 122, 146-168).

HCC: Hepatocellular carcinoma; SLE: Systemic lupus erithematosus; AIH: Autoimmune hepatitis; PBC: Primary biliary cirrhosis; RA: Rheumatoid arthritis; SS: Sjögren’s syndrome; CENP: Centromere nuclear protein; NHL: non-Hodgkin lymphoma; Jo-1: Istitidil-tRNA sintetasii; Sm: Smith antigen; snRNP: small nuclear ribonucleoprotein; AITD: Autoimmune thyroid disease; eif-4G: Eukaryotic translation initiation factor-4G; CCP: Cyclic citrullinated peptide; RF: Rheumatoid factor; ASMA: Anti-smooth muscle antibodies; TPO: Thyroid peroxidase; DTC: Disseminated tumor cells; TG: Thyroglobulin; PV: Pemphigus vulgaris; HSP: Heat shock protein; GRP78: Glucose-regulated protein 78; ANNA: Anti-neuronal nuclear antibody; GAD: Glutamic acid decarboxylase; CA II: Carbonic anhydrase II; GADPH: Glyceraldehyde 3-phosphate dehydrogenase; SOD: Superoxide dismutase; ER: Estrogen receptor; AchR: Acetylcholine receptor; VGCC: Voltage-gated calcium channels; CD20: B-lymphocyte antigen CD20; CLL: Chronic lymphocytic leukemia; Dsg: Desmoglein; IMP: Insulin-like growth factor II mRNA-binding protein; IFN: Interferon; α2-HSG: α2-Hememans Schmid-glycoprotein.

4. FEATURES OF SELF ANTIGENS INVOLVED IN THE AUTOACTIVE IMMUNE RESPONSE: IMMUNOLOGICAL PROPERTIES AND ABNORMAL EXPRESSION

The events inducing the generation of autoantibodies recognizing common antigens in cancer and autoimmune disease patients are still not completely clear. However, some theories have been proposed. Plotz described that the features of self antigens that might induce the production of autoantibodies can be related to: a) their structural properties; b) their catabolism and fate after cell death;
c) their concentration and type of microenvironment; d) their immunological/pro-inflammatory properties (170).

Among the structural properties, the binding of a self antigen to nucleic acid or the presence of a highly charged surface, or repetitive surface elements, or a coiled-coil in a self antigen might promote autoreactive immune response (170). Other observations suggested that the removal of death cells could induce the production of antibodies to self antigens. Necrosis is commonly considered as a pro-inflammatory and immunogenic type of death, which furnishes “danger signals” able to activate the innate immune response and then the adaptive immunity (171, 172). Indeed, self antigens are expressed on the surface of apoptotic or necrotic cells or, are modified by cell-death-mediated protein proteolysis or by molecules cleavage as occurs for nucleic acid antigens (170). The presence of cleavage sites for caspases, Granzyme B or cathepsins in autoantigens may lead to presentation of cryptic epitopes capable of stimulating autoreactive T and B lymphocytes (170, 173).

Another important issue is related to changes in autoantigen cancer cells expression. The overexpression or the expression in aberrant place of a given self antigen could induce immune responses in cancer patients. In addition, autoantibodies generation may also be due to an altered protein structure. Neoepitopes exposure, mutations and post-translational antigens modifications, such as glycosylation, methylation, phosphorylation, sumoylation, citrullination, adenosine diphosphate-ribosylation, ubiquitination, and acetylation, can overcome self tolerance mechanisms. In particular, post-translational modifications can influence the recognition of self antigen by the immune system, by affecting antigen processing, by binding and interaction of the MHC with the T cell receptor (TCR) (3). Targeting neoepitopes/neoantigens is a new therapeutic strategy for cancer, because these antigens might elicit specific T cell responses and lead to tumor regression (174, 175).

The selection of the autoantibody repertoire shared by patients with cancer and autoimmune disease can be further influenced by the immunological and pro-inflammatory properties of a given self antigen. It has been demonstrated that several self antigens, including asparaginyl and histidyl-tRNA synthetases, U3/fibrillarin, ssDNA plus La/SS-B, and topoisomerase I can act as chemoattractants for leukocytes when released from damaged cells, thus inducing inflammation and autoimmunity (5, 176).

Finally, an autoimmune response may be due to molecular mimicry. In fact an immune response against an infectious agent can elicit a cross-reaction against human proteins with structural similarity (173).

5. BIOLOGICAL ACTIVITIES OF AUTOANTIBODIES TO SELF ANTIGENS

Autoantibodies occurring both in cancer patients and in autoimmune diseases exert several biological and pathogenic effects, that can modulate tumor growth and survival. Table 2 reports examples of biological effects exerted by autoantibodies to self antigens (9, 64, 94, 132, 133, 154, 177-202).

Kowal et al. reported that autoantibodies against dsDNA found in cerebrospinal fluid have the ability to cross-react with the NR2 glutamate receptor, leading to apoptotic neuronal death in the mouse hippocampus (177). In addition, these autoantibodies generate an inflammatory response due to their deposition as immune complexes in kidney and are able to penetrate into living cells and triggering apoptosis in mesangial and endothelial cells (9). dsDNA autoantibodies possess both in vitro and in vivo anti-tumor activities through the induction of apoptosis in myeloma and fibrosarcoma cell lines (9). Antinuclear antibodies (ANAs) increase the inflammation through the formation of immune complexes that can induce the production of cytokines or can deposit in the kidney tissue leading to systemic lupus erythematosus. The extracellular release of nuclear antigens is essential for the formation of these immune complexes. It has suggested that the pyroptosis can trigger antigens release in genetically predisposed individuals (178). Robitaille et al. demonstrated that autoantibodies to CENP-B inhibited the CENP-B-mediated production of IL-8 and also the transactivation of EGFR in vascular smooth muscle cells (179). A recent study demonstrated the enhanced phagocytosis by neutrophils in RA patients owing RF and anti-CCP autoantibodies. They showed that these autoantibodies indirectly increased the phagocytic capacity of neutrophils. In addition, RF and anti-CCP antibodies possess the ability to activate the complement system cascades, leading to the increase of the inflammatory process and then tissue damage in RA (180). Anti-citrullinated protein antibodies (ACPAs) in patients with RA are associated with inflammation and subsequent joint destruction and deformity. ACPAs bind to monocyte surface-expressed citrullinated GRP78 and stimulate TNF-α production and decrease let-7a miRNA expression. Lu et al. demonstrated that ACPAs contribute to inflammation by stimulating TNF-β production via binding to citrullinated GRP78 protein and following NF-kB activation on monocyte/macrophages (181). Furthermore, Lu et al. recently observed the ACPAs bind to citrullinated HSP-60 on the plasmamembrane of the osteosarcoma cell line Saos-2 and induce apoptosis through Toll-like receptor 4 (TLR4) signaling. Furthermore, ACPAs increase the expression of IL-6 and IL-8 in Saos-2 cells. RA patients with higher titer of anti-citrullinated HSP-60 antibodies showed severe joint damage, suggesting
Autoantibodies to self antigens in cancer patients

Table 2. Examples of biological activities of autoantibodies to self antigens found in cancer and in autoimmune disease patients.

<table>
<thead>
<tr>
<th>Autoantibodies</th>
<th>Biological activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-dsDNA</td>
<td>Apoptotic neuronal death (mouse hippocampus)</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Deposition of immune complexes in kidney and generation of inflammation, penetration in living cells, induction of apoptosis (mesangial and endothelial cells)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Induction of apoptosis (myeloma and fibrosarcoma cells)</td>
<td>9</td>
</tr>
<tr>
<td>Anti-Nuclear antigens</td>
<td>Formation of immune complexes, increase of inflammation or deposition of immune complexes in the kidney</td>
<td>178</td>
</tr>
<tr>
<td>Anti-CENP-B</td>
<td>Inhibition of CENP-B-mediated production of IL-8 and transactivation of EGFR in vascular smooth muscle cells</td>
<td>179</td>
</tr>
<tr>
<td>Anti-CCP</td>
<td>Increase of phagocytic capacity of neutrophils and activation of complement cascade</td>
<td>180</td>
</tr>
<tr>
<td>ACPA</td>
<td>Stimulation of TNF-α and -β production and decrease of let-7a miRNA expression; NF-kB activation on monocyte/macrophages via binding to citrullinated GRP78</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Induction of apoptosis through TLR4 signaling via binding to citrullinated HSP-60</td>
<td>182</td>
</tr>
<tr>
<td>ANCA</td>
<td>Activation of cytokine-primed neutrophils and production of ROS</td>
<td>183</td>
</tr>
<tr>
<td>Anti-TPO</td>
<td>Activation of ADCC and CDC; anti-proliferative activity in papillary thyroid cancer cells</td>
<td>64, 184</td>
</tr>
<tr>
<td>Anti-GRP78</td>
<td>Induction of proliferation and protection of prostate cancer cells from TNF-induced apoptosis</td>
<td>94</td>
</tr>
<tr>
<td>Anti-GRP78 (COOH-terminal domain)</td>
<td>Inhibition of cellular proliferation and induction of apoptosis in melanoma and prostate cancer cells</td>
<td>186, 187</td>
</tr>
<tr>
<td></td>
<td>Increase invasion and increase H₂O₂-induced apoptosis of ovarian cancer cells</td>
<td>188</td>
</tr>
<tr>
<td>Anti-HSP60, -HSP70</td>
<td>Enhancement of pro-inflammatory cytokines and chemoattractants via TLR signaling</td>
<td>189</td>
</tr>
<tr>
<td>Anti-Hu</td>
<td>Induction of neuronal cell death in the absence of T cell-mediated immune response or ADCC</td>
<td>190</td>
</tr>
<tr>
<td>Anti-Yo</td>
<td>Induction of cytotoxicity through a non apoptotic cell death in Purkinje cells</td>
<td>191</td>
</tr>
<tr>
<td>Anti-α-enolase</td>
<td>Induction of apoptosis in endothelial and retinal cells</td>
<td>193, 194</td>
</tr>
<tr>
<td></td>
<td>Reduction of the migration and invasion capacity of pancreatic ductal adenocarcinoma cells</td>
<td>195</td>
</tr>
<tr>
<td>Anti-Ribosomal P proteins</td>
<td>Inhibition of apolipoprotein B synthesis in hepatoma cells</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Impairment of memory and induction of apoptosis in brain cells and in Jurkat cells; inhibition of cell proliferation by inhibition of activation of Erk and Akt</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Delay of mammary carcinoma growth in a murine model of breast cancer</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Inhibition of in vitro cancer cell growth in colon cancer cells</td>
<td>134</td>
</tr>
<tr>
<td>Anti-ER</td>
<td>Erk activation and cell proliferation in breast cancer cells</td>
<td>142</td>
</tr>
<tr>
<td>Anti-AchR</td>
<td>Activation of apoptosis in pemphigus vulgaris</td>
<td>197</td>
</tr>
<tr>
<td>Anti-VGCC</td>
<td>Block Ca²⁺ influx and inhibition of cell growth in SCLC cell lines</td>
<td>198</td>
</tr>
<tr>
<td>Anti-Phospholipids</td>
<td>Increase of leukocyte infiltration and tumor invasion in breast cancer</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Alteration of the inner mitochondrial membrane and of the normal apoptotic turnover of the syncytiotrophoblast</td>
<td>199</td>
</tr>
<tr>
<td>Anti-Dsg1, -Dsg3</td>
<td>Induction of apoptosis through the increase of Bax, p53, Fas ligand and receptor, and activation of caspases; activation of EGFR- and apoptosis (FasR)-mediated signaling pathways</td>
<td>200</td>
</tr>
<tr>
<td>Anti-Aquaporin-4</td>
<td>Induction of oligodendrocyte death, myelin loss and neuron death through complement-dependent astrocyte cytotoxicity</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Induction of astrocytopathy, in the absence of complement activation and immune cell infiltration in Devic’s neuromyelitis optica</td>
<td>202</td>
</tr>
</tbody>
</table>

dsDNA: Double-strand DNA; CENP-B: Centromere nuclear protein-B; IL: Interleukin; EGFR: Epidermal growth factor receptor; CCP: Cyclic citrullinated peptide; ACPA: Anti-citrullinated proteins antibody; TNF: Tumor necrosis factor; NF-kB: Nuclear factor-κB; GRP78: Glucose-regulated protein 78; TLR: Toll-like receptor; HSP: Heat shock protein; ANCA: Anti-neutrophil cytoplasmic antibody; ROS: Reactive oxygen species; TPO: Thyroid peroxidase; ADCC: Antibody-dependent cellular cytotoxicity; CDC: Complement-dependent cytotoxicity; Erk: Extracellular signal-regulated kinases; Akt: Protein kinase B; ER: Estrogen receptor; AchR: Acetylcholine receptor; VGCC: Voltage-gated calcium channels; SCLC: Small cell lung cancer; Dsg: Desmoglein.

A role of membrane-expressed citrullinated HSP-60 and ACPAs in the pathogenesis of RA (182). Falk et al. demonstrated that anti-neutrophil cytoplasmic antibodies (ANCA), through the binding to antigen on neutrophil surface, activate cytochrome-primed neutrophils and produce reactive oxygen species (ROS). ANCA also induces the release of primary granule contents. They suggested that ANCA can release toxic oxygen radicals and noxious granule constituents leading to vascular injury in patients with pauci-immune necrotizing vasculitis and pauci-immune crescentic glomerulonephritis (183).
Autoantibodies to self antigens in cancer patients

Anti-TPO autoantibodies play a role in the induction of thyroid dysfunction and also in the progression of the disease through cytotoxic mechanisms. TPO autoantibodies can damage thyroid cells by antibody- and complement-dependent cytotoxicity (ADCC and CDC). It has been demonstrated that monocytes are the effector cells and contribute with T cells to the destruction of thyroid gland mediated by anti-TPO antibodies in autoimmune thyroid disease (184). Anti-Tg autoantibodies are implicated in the destruction of thyroid gland and in the initiation of autoimmune thyroiditis (185). Furthermore, anti-TPO autoantibodies showed anti-proliferative activity in papillary thyroid cancer cells (64).

GRP78 is a chaperone protein of the endoplasmic reticulum and belong to the HSP70 family. It has been demonstrated that prostate cancer patients possess autoantibodies to GRP78, that bind to a site on the protein also recognized by its physiological agonist, α2-macroglobulin. These autoantibodies are able to induce proliferation of prostate cancer cells and protect them from TNF-induced apoptosis (94). In contrast, it has been reported that antibodies against the COOH-terminal domain of GRP78 inhibit cellular proliferation and induce apoptosis in melanoma and prostate cancer cells (186, 187). Patients with ovarian cancer possess autoantibodies against the COOH-terminal domain of GRP78 and these antibodies show the ability to decrease invasion and increase H₂O₂-induced apoptosis of ovarian cancer cells, suggesting a protective role of these antibodies in this type of cancer (188).

Several studies also demonstrated that autoantibodies against other HSPs exert biological activities. In particular anti-HSP60 autoantibodies are cytotoxic to endothelial cells, and anti-HSP60 and -HSP70 autoantibodies also enhance pro-inflammatory cytokines and chemochines production via TLR signaling in monocytes (189).

Anti-Hu and anti-Ri antibodies were shown to be internalized and accumulated into hippocampal and cerebellar neurons, but only anti-Hu antibodies were able to induce neurone cell death, in the absence of T cell-mediated immune response or antibody-dependent cellular cytotoxicity (190). It has also reported that anti-Yo antibodies have the capacity to induce citotoxicity through a non apoptotic cell death, but only in Purkinje cells (191). Indeed, anti-Yo antibodies recognize cytoplasmic 62 kDa Yo antigen in Purkinje cell. This antigen plays an essential role in Purkinje cell survival and thus the binding of the antibody can induce cell death (192).

Anti-α-enolase autoantibodies were able to induce apoptosis in endothelial and in retinal cells (193, 194). In particular, these antibodies were able to inhibit the catalytic function of enolase, to deplete ATP, to elevate intracellular Ca²⁺, leading to Bax translocation to the mitochondria and release of cytochrome c into the cytoplasm (194). In addition, it has been reported that the in vitro and in vivo inhibition of α-enolase-1 with specific monoclonal antibodies reduces the migration and invasion capacity of pancreatic ductal adenocarcinoma cells. This activity could be a characteristic of patients with pancreatic cancer who possess autoantibodies against α-enolase (195).

Several studies analyzed the biological activities of anti-ribosomal P protein antibodies. Anti-ribosomal P protein antibodies inhibit apolipoprotein B synthesis by inducing cellular dysfunction in hepatoma cell lines. In Jurkat cells the antibodies are able to penetrate in cells and induce apoptosis (196). Other studies reported that anti-ribosomal P protein antibodies interact with several neuronal surface P antigen in hippocampal neurons, leading to impaired memory and brain cell apoptosis. Indeed, these antibodies penetrate in neuronal cells and inhibit cell proliferation through the inhibition of the activation of Erk and Akt proteins (196). We have demonstrated that the cellular stress induce an increased expression of the C-22 P0 epitope on cell membrane of pharynx cancer cell lines (132). In addition, it was reported that ectopic overexpression of P0 increases cell proliferation in breast and liver carcinoma cell lines. In our study, we demonstrated that BALB-neuT mice vaccinated with the human P0 protein showed a significant delay of mammary carcinoma growth and that the inhibition of tumor growth was associated with high serum levels of antibodies against P0 (133). In addition, we demonstrated the presence of a spontaneous humoral immune response to ribosomal P0 protein in colorectal cancer patients and the inhibition of in vitro cancer cell growth after C-22 P0 epitope targeting (134).

A recent study showed that antibodies against estrogen receptor (ER) found in patients with breast cancer, contribute to the pathogenesis of this cancer, because are able to act as estrogen agonists, leading to Erk activation and cell proliferation (143). Chernyavskii et al. reported that patients with Phemphigus vulgaris (PV) produce antibodies that bind to AChR present in the cell membrane and on mitochondria.

The mitochondrial AChR can regulate the cytochrome c release by inhibiting mitochondrial permeability, leading to inhibition of the intrinsic pathway of apoptosis. In PV, this activity of mitochondrial AChR is abolished by the antibodies, leading to activation of apoptosis (197). Autoantibodies to presynaptic P/Q-type VGCC in Lambert-Eaton myasthenic syndrome are able to block Ca²⁺ influx through voltage-gated calcium channels in SCLC cell lines, thus suggesting that in vivo they may interfere with tumor growth (198).

Several studies showed that anti-phospholipid autoantibodies exert different biological activities. Wu et al. reported that the presence of
Anti-phospholipid autoantibodies are associated with invasive tumors in breast cancer patients. These autoantibodies are capable of increasing leukocyte infiltration and tumor invasion, leading to acceleration of tumor angiogenesis and progression. Anti-phospholipid autoantibodies can induce the expression of Tissue Factor (TF) and VEGF in endothelial cells and monocytes (154). In addition, it has been reported that anti-phospholipid autoantibodies are internalized into the syncytiotrophoblast and affect the inner mitochondrial membrane and alter the normal apoptotic turnover of the syncytiotrophoblast. Indeed, anti-phospholipid autoantibodies are able to increase proton leak through the inner mitochondrial membrane and to decrease the ability of the ATPase to produce ATP, leading to necrosis (199). Anti-Dsg1 and anti-Dsg3 are the main autoantibodies found in patients with PV. These autoantibodies are able to induce apoptosis through the increase of Bax, p53, Fas ligand and receptor (FasR) and activation of caspases. In addition, PV autoantibodies are able to bind to EGFR and to activate EGFR- and apoptosis (FasR)-mediated signaling pathways (200). Several studies have been demonstrated that antibodies to aquaporin-4 have the ability to diffuse in all central nervous system structures, including the optic nerve and spinal cord, and to induce oligodendrocyte death, myelin loss and neuron death. These effects are mediated by complement-dependent astrocyte cytotoxicity, through leukocyte infiltration, cytokines release and blood-brain barrier disruption (201). A recent report also demonstrated that aquaporin-4 antibodies can induce astrocytopathy, in the absence of complement activation and immune cell infiltration in Devic’s neuromyelitis optica (202).

6. ASSOCIATION OF AUTOANTIBODIES TO SELF ANTIGENS WITH PARANEOPLASTIC AUTOIMMUNE SYNDROMES

The presence of autoantibodies to self antigens can be associated with paraneoplastic autoimmune syndromes and revealed by the occurrence of neurological syndromes as well as metabolic, rheumatic, cutaneous and haematological disorders in cancer patients due to the biological activities of the elicited immunoglobulins (40, 98, 203-228). Autoantibodies to onconeural antigens can induce in cancer patients cerebellar degeneration (anti-Hu, anti-neuronal Na(+)/K(+)-ATPase, anti-ZIC4, anti-Yo, anti-CV2, anti-Tr, anti-mGluR1, Anti-Ma2, anti-Ri and anti-VGCC autoantibodies), encephalomyeloneuropathy (anti-PCA2, anti-Hu, anti-CV2, anti-Amphiphysin and anti-VGCC autoantibodies), sensory neuropathy (anti-Hu, anti-CV2 and anti-amphiphysin autoantibodies), retinopathy (anti-CV2, anti-TRMP1 and anti-Recoverin autoantibodies), DADS neuropathy (anti-MAG and anti-CENP-F autoantibodies), myasthenia gravis (anti-AchR autoantibodies), Lambert-Eaton myasthenic syndrome (anti-SOX1 and anti-VGCC autoantibodies), neuromyelitis optica (anti-Aquaporin-4 autoantibodies), Stiff-person syndrome (anti-Ampiphysin autoantibodies) and limbic encephalitis (anti-Hu, anti-Ma2, anti-NMDAR and anti-AMPAR autoantibodies) (98, 203-219). Anti-GAD autoantibodies induce paraneoplastic diabetes mellitus in SCLC or PGA2 in hepatocellular carcinoma patients (220, 221). Paraneoplastic pemphigus is characterized by the occurrence of autoantibodies to plakin family proteins in patients with haematological neoplasms, carcinomas and melanoma (222). The occurrence of anti-nuclear antibodies induces the lupus-like syndrome, the polyarteritis nodosa and the Raynaud’s phenomenon in cancer patients (223). Anti-CCP autoantibodies were reported to induce polyarthritis in lung cancer patients (224). The paraneoplastic autoimmune multiorgan syndrome can arise in cancer patients for the presence of anti-plakins, anti-plectin and a2-macroglobulin-like-1 molecule autoantibodies (225, 226). Finally, anti-red cells and -platelets autoantibodies can induce autoimmune hemolytic anemia and thrombocytopenia in cancer patients, respectively (40, 227, 228). An example of the occurrence of autoantibodies in cancer patients associated with paraneoplastic autoimmune syndromes are reported in Table 3.

7. ROLE OF AUTOANTIBODIES TO SELF ANTIGENS AS BIOMARKERS FOR CANCER DETECTION AND CANCER PATIENTS PROGNOSIS

The presence of autoantibodies to self-antigens has been investigated as a marker for cancer detection and for predicting survival of cancer patients. Examples of these autoantibodies are reported in Table 4. Several techniques were used to discover novel tumor antigens able to elicit autoantibodies, including serological analysis of tumor antigens by recombinant cDNA expression cloning (SEREX), serological proteome analysis (SERPA), multiple affinity protein profiling (MAPPing) and high-density protein microarrays (229). However, the confirmation of the association of antibodies to tumor antigens with clinical parameters, and thus their potential use as biomarkers for early detection of cancer and cancer patients prognosis, needs validation by employing recombinant protein ELISA (Enzyme-Linked Immunosorbent Assay), protein microarrays and bead-based immunoassay (166, 229). However, the usefulness of autoantibodies as markers for cancer patients prognosis is still controversial (229). In addition, immune response to tumor antigens could also be enhanced or decreased after standard therapies. For example, we have demonstrated that radiotherapy increased the levels of autoantibodies to P0 protein and decreased those to collagens, fibronectin and HSP90 in prostate cancer patients (74). In addition, a recent study reported that the levels
Autoantibodies to self antigens in cancer patients

Table 3. Pattern of autoantibodies to self antigens detected in cancer patients and associated with paraneoplastic syndromes.

<table>
<thead>
<tr>
<th>Autoantibodies</th>
<th>Cancer site or histological subtype</th>
<th>Paraneoplastic Autoimmune Syndromes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-PCA2</td>
<td>SCLC</td>
<td>Encephalomyeloneuropathy</td>
<td>208</td>
</tr>
<tr>
<td>Anti-Hu (ANNA-1)</td>
<td>SCLC, prostate, neuroblastoma, Hodgkin lymphoma</td>
<td>Encephalomyelitis, sensory neuropathy, cerebellar ataxia, limbic encephalitis</td>
<td>98, 203</td>
</tr>
<tr>
<td>Anti-neuronal Na⁺/K⁺ ATPase</td>
<td>Colon</td>
<td>Brainstem and cerebellar syndrome</td>
<td>204</td>
</tr>
<tr>
<td>Anti-ZIC4</td>
<td>Ovary, SCLC</td>
<td>Paraneoplastic cerebellar syndrome</td>
<td>205, 206</td>
</tr>
<tr>
<td>Anti-Yo (PCA-1)</td>
<td>Ovary, breast, uterus</td>
<td>Paraneoplastic cerebellar degeneration</td>
<td>98, 207</td>
</tr>
<tr>
<td>Anti-CV2/CRMP-5</td>
<td>SCLC, thymoma</td>
<td>Encephalomyeloneuropathy with corea, encephalomyelitis, sensory-motor neuropathy, uveitis, retinopathy, cerebellar ataxia</td>
<td>98, 208</td>
</tr>
<tr>
<td>Anti-Aquaporin-4</td>
<td>Lung, ovarian teratoma</td>
<td>Neuromyelitis optica, longitudinally extensive transverse myelitis</td>
<td>216, 217</td>
</tr>
<tr>
<td>Anti-Amphiphysin</td>
<td>SCLC, breast</td>
<td>Stiff-person syndrome, sensory-motor neuropathy, encephalomyelitis</td>
<td>98</td>
</tr>
<tr>
<td>Anti-SOX1</td>
<td>SCLC</td>
<td>Lambert-Eaton myasthenic syndrome</td>
<td>215</td>
</tr>
<tr>
<td>Anti-MAG</td>
<td>Colon</td>
<td>DADS neuropathy</td>
<td>214</td>
</tr>
<tr>
<td>Anti-CENP-F</td>
<td>Colon-rectum</td>
<td>DADS neuropathy</td>
<td>214</td>
</tr>
<tr>
<td>Anti-Ri (ANNA-2)</td>
<td>SCLC, breast</td>
<td>Opsoclonus-myoclonus, cerebellar ataxia</td>
<td>98</td>
</tr>
<tr>
<td>Anti-Ma2 (Ta)</td>
<td>Testis, lung</td>
<td>Limbic-diencephalic encephalitis, subacute cerebellar degeneration, myeloradiculopathy</td>
<td>98, 210</td>
</tr>
<tr>
<td>Anti-TRMP1</td>
<td>Melanoma</td>
<td>Retinopathy</td>
<td>212, 213</td>
</tr>
<tr>
<td>Anti-Recoverin</td>
<td>SCLC</td>
<td>Retinopathy</td>
<td>98</td>
</tr>
<tr>
<td>Anti-Tr (PCA-Tr)</td>
<td>Hodgkin’ disease</td>
<td>Cerebellar ataxia</td>
<td>98</td>
</tr>
<tr>
<td>Anti-mGlU1 R1</td>
<td>Prostate</td>
<td>Cerebellar degeneration</td>
<td>209</td>
</tr>
<tr>
<td>Anti-AchR</td>
<td>Thymoma</td>
<td>Myasthenia gravis</td>
<td>98</td>
</tr>
<tr>
<td>Anti-NMDAR</td>
<td>Ovarian teratoma</td>
<td>Limbic Encephalitis</td>
<td>218</td>
</tr>
<tr>
<td>Anti-VGCC</td>
<td>SCLC, breast, lymphoma</td>
<td>Encephalopathy, ataxia, myelopathy, neuropathy, neuromuscular junction disorder, myopathy, Lambert-Eaton myasthenic syndrome, subacute cerebellar degeneration</td>
<td>98, 211</td>
</tr>
<tr>
<td>Anti-AMPAR</td>
<td>Breast</td>
<td>Limbic encephalitis</td>
<td>219</td>
</tr>
<tr>
<td>Anti-GAD</td>
<td>SCLC, HCC</td>
<td>Diabetes mellitus</td>
<td>220, 221</td>
</tr>
<tr>
<td>Anti-Plakin family proteins</td>
<td>Haematological neoplasms, carcinomas and melanoma</td>
<td>Pemphigus</td>
<td>222</td>
</tr>
<tr>
<td>Anti-Plektin, α2-macroglobulin-like-1 molecule</td>
<td>NHL, CLL, Castleman disease, pancreas, colon, breast, prostate, liver, tongue, bronchi, cervix, kidney</td>
<td>Paraneoplastic autoimmune multiorgan syndrome</td>
<td>225, 226</td>
</tr>
<tr>
<td>Anti-CCP</td>
<td>Lung</td>
<td>Poliarthritis</td>
<td>224</td>
</tr>
<tr>
<td>ACA, ANA</td>
<td>Liver, ovary, testis, kidney, melanoma, lymphoma, multiple myeloma</td>
<td>Raynaud’s phenomenon</td>
<td>223</td>
</tr>
<tr>
<td>ANA</td>
<td>Ovary, breast, head and neck, meningioma</td>
<td>Lupus-like syndrome</td>
<td>223</td>
</tr>
<tr>
<td>ANCA</td>
<td>Kidney, colon</td>
<td>ANCA-associated vasculitis</td>
<td>223</td>
</tr>
</tbody>
</table>
Autoantibodies to self antigens in cancer patients

<table>
<thead>
<tr>
<th>Autoantibodies</th>
<th>Signature of cancer as compared to control groups or prevalence</th>
<th>Survival or Prognosis or Recurrences</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>Stomach, lung angiomiocytoid fibrous histiocytoma</td>
<td>Polycarteritis nodosa</td>
<td>223</td>
</tr>
<tr>
<td>Hematological Syndromes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-red cells</td>
<td>B cell lymphoma, colon, leukemia, kidney</td>
<td>AIHA</td>
<td>227, 228</td>
</tr>
<tr>
<td>Anti-phospholipids, platelet glycoproteins</td>
<td>Lymphoproliferative disease</td>
<td>AITP</td>
<td>228</td>
</tr>
</tbody>
</table>

PCA: Purkinje cell cytoplasmic antibody; SCLC: Small cell lung cancer; ANNA: Anti-neuronal nuclear antibody; ZIC4: Zinc finger protein of cerebellum; CV2/CRMP-5: Collapsin response-mediator protein-5; MAG: Myelin-associated glycoprotein; DADS: Distal acquired demyelinating symmetric; CENP-F: Centromere nuclear protein-F; TRMP1: transient receptor potential cation channel, subfamily M, member 1; mGluR1: Metabotropic glutamate receptor type 1; AchR: Acetylcholine receptor; NMDAR: N-methyl-D-aspartate receptor; VGCC: Voltage-gated calcium channels; AMPAR: Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; GAD: Glutamic acid decarboxylase; HCC: Hepatocellular carcinoma; PGA2: Polyglandular autoimmune syndrome type 2; Dsg: Desmoglein; NHL: Non Hodgkin lymphoma; CCP: Cyclic citrullinated peptide; ACA: Anti-centromere antibody; ANA: Anti-nuclear antibodies; ANCA: Anti-neutrophil cytoplasmic antibodies; AIHA: Autoimmune hemolytic anemia, AITP: Autoimmune thrombocytopenia.

Table 4. Examples of autoantibodies to self antigens proposed as biomarkers or associated with cancer patients prognosis.

<table>
<thead>
<tr>
<th>Type of tumor</th>
<th>Autoantibodies</th>
<th>Signature of cancer as compared to control groups or prevalence</th>
<th>Survival or Prognosis or Recurrences</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>Anti-P0</td>
<td>Significant (Prevalence of 10.6%)</td>
<td>No correlation with clinical stage</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Anti-Annexin XI-A, -Ku, -Ribosomal protein S6</td>
<td>Significant</td>
<td>NA</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Anti-MUC-1 glycoforms</td>
<td>Significant</td>
<td>Lower incidence of metastases</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Anti-CENP-B</td>
<td>Significant (Prevalence of 33%)</td>
<td>Longer DFS and OS</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant</td>
<td>Shorter 5-year survival</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Prevalence of 9%</td>
<td>Shorter survival</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Anti-SOX2</td>
<td>Significant (Prevalence of 18.4%)</td>
<td>NA</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>Anti-FKBp52, -PPIA, -PRDX2</td>
<td>Significant</td>
<td>NA</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Anti-PARP1, -BRCA2</td>
<td>Significant (Prevalence of 15.3% and 36.6% respectively)</td>
<td>NA</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Anti-HER2, -p53, -CEA, -Cyclin-B1</td>
<td>Significant</td>
<td>NA</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Anti-EPHA2, -IGFBP2, -CST2, -GAL1, -HER2, -LAMC2, -ANGPTL4, -DFFK1, -MUC1, -SSR2, -SPINT2, -SPON2</td>
<td>Significant</td>
<td>NA</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Anti-c-Myc, -Survivin, -Cyclin-B1, -Cyclin-D1, -p62, -p53, -p16, -CDK2</td>
<td>Significant (Sensitivity of 61%, specificity of 89%)</td>
<td>NA</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Anti-Imp1, -p16, -Koc, -Survivin, -Cyclin-B1, -c-Myc</td>
<td>Significant (Sensitivity of 67.3%, specificity of 92.2%)</td>
<td>NA</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Anti-p90/CIP2A</td>
<td>Significant</td>
<td>NA</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Anti-IMP2/p62</td>
<td>Significant (Prevalence of 14.3%)</td>
<td>NA</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Anti-MDM2, -c-Myc</td>
<td>Significant</td>
<td>Shorter DFS (anti-c-Myc)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Anti-HuC or -HuD</td>
<td>Significant (Prevalence of 23.3%)</td>
<td>NA</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant (Prevalence of 20.6%)</td>
<td>Poor prognosis</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant</td>
<td>No association with survival or disease stage</td>
<td>245, 246, 247</td>
</tr>
<tr>
<td></td>
<td>Anti-ANXA1</td>
<td>Significant (Sensitivity of 23%, specificity of 90%)</td>
<td>NA</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Anti-CCNY</td>
<td>Significant (Sensitivity of 23.5%, specificity of 95.5%)</td>
<td>Poor prognosis</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Anti-IGFBP-2</td>
<td>Significant (Sensitivity of 73.2%, specificity of 90%)</td>
<td>NA</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Anti-p16</td>
<td>Significant (Sensitivity of 19.7%, specificity of 60.6%)</td>
<td>Association with advanced stage</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Anti-Chromogranin A</td>
<td>Significant (Sensitivity of 47.6%, specificity of 80.0%)</td>
<td>NA</td>
<td>252</td>
</tr>
<tr>
<td>Cancer Type</td>
<td>Autoantibody</td>
<td>Significance Details</td>
<td>Additional Information</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>Anti-SMOX, -NOLC1, -MALAT1, -HMMR</td>
<td>Significant (Sensitivity of 47.5%, specificity of 97.3%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-NY-ESO-1, -XAGE-1, -ADAM29, -MAGEC1</td>
<td>Significant (Sensitivity of 33%, specificity values of 96%)</td>
<td>Association with advanced stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53, -NY-ESO-1, -CAGE, -SOX2, -GBU4-5, -Annexin 1</td>
<td>Significant (Sensitivity of 34%, specificity of 91%)</td>
<td>No differences between disease stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-14-3-3ζ, -c-Myc, -MDM2, -p16, -p53, -Nucleophosmin, -Cyclin-B1</td>
<td>Significant (Sensitivity of 68.9%, specificity of 79.5%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-KIAA037, -ROCK1, -PRKCB1, -TACC2, -C14orf145, -ARFGAP3, -YBX1, -SOX2 homologous</td>
<td>Significant (Prevalence of 15%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Anti-monophosphate dehydrogenase, -fumarate hydratase, -o-enolase, endoplasmic reticulum protein 29, -Annexin 1, -hydrosterol 17β dehydrogenase, -MTAP</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-TTC14, -BRAF, -CTAG1B, -ACTL6B, -MORC2</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p62, -BIRC, -Livin-1, -p53, -PRDX, -NY-ESO-1, -Ubiquitin</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>NA</td>
<td>Lower probability of OS and DFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>NA</td>
<td>No association with survival</td>
<td></td>
</tr>
<tr>
<td>Esophagus cancer</td>
<td>Anti-CD25</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-FOXP3</td>
<td>Significant (Sensitivity of 22.7%, specificity of 95%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p16</td>
<td>Significant (Prevalence of 5.7%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-c-Myc, -HCCR, -p53, -p62</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>Anti-p53</td>
<td>Significant</td>
<td>Longer survival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Prevalence of 20.3%</td>
<td>Poorer prognosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Prevalence of 31%</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Prevalence of 12.2%</td>
<td>Shorter prognosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-GRP78</td>
<td>Prevalence of 28.3%</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-MAGEA4, -CTAG1, -p53, -ErbB2_C, -SDCCAG8</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53, -Koc, -p62, -c-Myc, -IMP1, -Survivin, -p16</td>
<td>Prevalence of 64%</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-CT antigens (-MAGEC1, -MAGEA3, -CTAG2, -CTAG1B)</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Anti-dsDNA</td>
<td>Significant</td>
<td>Less incidence of recurrences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant</td>
<td>No association with survival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Prevalence of 10.4%</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-P proteins</td>
<td>Prevalence of 25%</td>
<td>Shorter survival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-PIM1, -MAPKAPK3, -ACVR2B</td>
<td>Significant (Sensitivity of 84.1%, specificity of 71.4%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>Anti-Nucleophosmin 1</td>
<td>Significant (Prevalence 24.4%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-c-Myc, -p53, -Cyclin-B1, -p62, -Koc, -IMP, -Survivin</td>
<td>Significant (Prevalence of 59.9%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant</td>
<td>Shorter survival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-p53</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-Sui1, -RalA</td>
<td>Significant (Prevalence of 11.7% and 19.5%, respectively)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-DDX3, -eEF2, -AIF, -hnRNPA2, -PBP, -TIM</td>
<td>Significant</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

1300 © 1996-2017
Autoantibodies to self antigens in cancer patients

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Tumor Type</th>
<th>Prevalence</th>
<th>Association with Survival</th>
<th>OS Rate</th>
<th>DFS Rate</th>
<th>HR (pooled uni-multivariate)</th>
<th>Multivariate HRs (4 studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-p53</td>
<td>Pancreatic</td>
<td>Prevalence of 7%</td>
<td>Higher survival rate without recurrence</td>
<td>286</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Pancreatic</td>
<td>Prevalence of 7%</td>
<td>No association with OS</td>
<td>290</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Pancreatic</td>
<td>Prevalence of 12.4%</td>
<td>No association with survival</td>
<td>293</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Ovarian</td>
<td>Prevalence of 19%</td>
<td>Shorter OS and DFS</td>
<td>294</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Ovarian</td>
<td>Prevalence of 19%</td>
<td>No association with OS (pooled uni-multivariate HRs)</td>
<td>297</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 19%</td>
<td>No association with survival</td>
<td>299</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 15%</td>
<td>No association with OS</td>
<td>290</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Ovarian</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Ovarian</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Ovarian</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-p53</td>
<td>Prostate</td>
<td>Prevalence of 25% (serum) and of 19% (ascites)</td>
<td>Unfavorable DFS and OS (Ascites autoantibodies)</td>
<td>291</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:
- **NA:** Not Available
- **MUC:** mucin
- **CENP-B:** centromere nuclear protein-B
- **DFS:** disease-free survival
- **OS:** overall survival
- **FKBP:** FK506 binding protein
- **PPIA:** Peptidylprolyl isomerase A
- **PRDX:** peroxiredoxin
- **PARP1:** Poly(ADP-ribose) polymerase 1
- **BRCA2:** Breast related cancer antigen 2
- **HER2:** Receptor tyrosine-protein kinase erbB-2
- **CEA:** carcinoembryonic antigen
- **EPHA2:** Ephrin type-A receptor 2
- **IGFBP:** Insulin-like growth factor-binding protein 2
- **CST2:** Cystatin-S-A
- **GAL1:** Galactokinase 1
- **LAMC2:** Laminin subunit gamma 2
- **ANGPTL4:** Angiopoietin-like 4
- **DKK1:** Dickkopf-related protein 1
- **SSR2:** serine-rich repeat protein 2
- **CSRP2:** Cysteine and glycine-rich protein 2
- **SPOP:** Speckle-type POZ protein
- **ZNF671:** Zinc finger protein 671
- **ALK:** Anaplastic lymphoma kinase
- **DHFR:** Dihydrofolate reductase
- **PRL:** Prolactin
- **PSMC1:** Proteasome 26S subunit, ATPase 1
- **HR:** Hazard ratio
- **MUT:** Methylmalonyl-CoA mutase
- **PTGFR:** Prostaglandin F receptor
- **PP1A:** Protein tyrosine phosphatase, receptor type A
- **ACSBG1:** Acyl-CoA synthetase bubblegum family member 1
- **CSNK1A1L:** Casein kinase 1 alpha 1 like
- **SERF2:** Small EDRK-rich factor 2
- **TUBA1C:** Tubulin alpha 1C
- **JUP:** Junction plakoglobin
- **PTPRA:** Protein tyrosine phosphatase receptor type C
- **HSPA9:** Heat shock protein family A (Hsp70) member 9
- **PDZD11:** PDZ domain-containing protein 11
- **PFN1:** Profilin-1
- **PP1A:** Protein tyrosine phosphatase receptor type 1A
- **T-cell immunoglobulin and mucin-domain
- **AFP:** Alpha-fetoprotein
- **GPC-3:** Glypican-3
- **CFL1:** Cofilin 1
- **EZR:** Ezrin
- **HIST1H1C:** Histone cluster 1 H1
- **Eukaryotic elongation factor 2
- **AIF:** Apoptosis-inducing factor
- **hnRNP:** Heterogeneous nuclear ribonucleoprotein
- **PBP:** Prostatic binding protein
- **TIM:** Tumor invasion and metastasis
- **MAPKAPK3:** MAP kinase-activated protein kinase 3
- **MAGEC1:** MAGE family member C1
- **CAGE:** Cancer-associated gene
- **ROCK1:** Rho-associated, coiled-coil-containing pseudoprotein 1
- **MARCKS1:** MARCKS homologous
- **AFP:** Alpha-fetoprotein
- **CSNK1A1L:** Casein kinase 1 alpha 1 like
- **SOX-2:** Sex-determining region Y-box 2
- **NY-ESO-1:** New York esophageal squamous cell carcinoma 1
- **GBU4-5:** G protein-coupled receptor 45
- **HuD:** Heat shock protein family D (Hsp70) member E
- **Survivin:** Survivin
- **MAGEA4:** MAGE family member A4
- **p16:** CDKN1A
- **p53:** TP53
- **p73:** TP73
- **p62:** SQSTM1
- **Cyclin-B1:** Cyclin B1
- **BIRC:** Baculoviral inhibitors of apoptosis repeat containing
- **CD25:** Alpha chain of the IL-2 receptor
- **TACC2:** Transforming acidic coiled-coil-containing protein 2
- **CEA:** carcinoembryonic antigen
- **EPHA2:** Ephrin type-A receptor 2
- **IGFBP2:** Insulin-like growth factor-binding protein 2
- **CST2:** Cystatin-S-A
- **GAL1:** Galactokinase 1
- **LAMC2:** Laminin subunit gamma 2
- **ANGPTL4:** Angiopoietin-like 4
- **DKK1:** Dickkopf-related protein 1
- **SSR2:** serine-rich repeat protein 2
- **CSRP2:** Cysteine and glycine-rich protein 2
- **SPOP:** Speckle-type POZ protein
- **ZNF671:** Zinc finger protein 671
- **ALK:** Anaplastic lymphoma kinase

References:
- © 1996-2017
Autoantibodies to self antigens in cancer patients

Autoantibodies to a single antigen including p53, CENP-B, annexin XI-A, the p80 subunit of the Ku antigen, ribosomal protein S6, ribosomal P0 protein, p90/CIP2A, SOX2, IMP2/p62 and glycoforms of MUC1 could significantly discriminate breast cancer patients from healthy donors (26, 133, 231-236). To improve cancer detection, recent studies have analyzed the presence of autoantibodies to a panel of antigens. For example autoantibodies to FKBP52, PPIA, and PRDX2, to PARP1 and BRCA1/BRCA2 or to HER2, p53, CEA, and cyclin-B1 were significantly detected in cancer patients as compared to healthy controls (237-239). Overall a combination of autoantibodies against different antigens allowed to discriminate cancer patients from healthy donors and autoantibodies to HER2 and p53 could be detected in prediagnostic cancer patient sera (239-242). Anti-p53 autoantibodies were associated with a shorter patients survival (234, 235). Conversely, the presence of anti-CENP-B autoantibodies was associated with prolonged DFS and OS, and that to MUC1 glycoforms to a lower incidence of metastases and increased time to metastasis (232, 233).

Several studies have demonstrated the presence of significant levels of autoantibodies in lung cancer patients as compared to healthy donors (33, 96, 243-265). Circulating autoantibodies to individual p53, annexin A1-derived peptide antigens, CCNY, IGFBP-2, p16, chromogranin A-derived peptides were significantly higher in cancer patients than control subjects (243-252). Autoantibodies to two or more antigens including HuC/HuD, SMOX/NOLC1/MALAT1 and HMMR, NY-ESO-1/XAGE-1/ADAM29, and MAGEC1, p53/NY-ESO-1/CAGE, GBU4-5/Annexin 1 and SOX2, 14-3-3ζ/c-Myc/MDM2/Nucleophosmin 1/p16/p53 and cyclin-B1, p62/BIRC/Livin-1/p53/Peroxiredoxin/NY-ESO-1 and Ubiquitin, and several other antigen combinations were analyzed for improving the sensitivity and specificity of the assays for discriminating cancer patients from healthy donors (33, 96, 253-260). In addition, autoantibodies to p16, NY-ESO-1, XAGE-1, ADAM29, and MAGEC1 were associated with advanced disease stages, those to c-Myc were related to shortened DFS and those to p53 or to CCNY were linked to shorter survival or worse prognosis (33, 243, 244, 249, 251, 254, 261, 262). Conversely, ANAs were linked to a better patients survival (263). Other reports detecting autoantibodies to p53 could not reveal any association with patients survival or disease stage (245-247, 255, 264, 265).

Serum of patients with digestive tract tumors was analyzed for the presence of autoantibodies to self antigens too (266-277). The prevalence of autoantibodies to CD25, or FOXP3, or p16 was significantly higher in esophageal squamous cell carcinoma patients than in the control groups (266-268). In addition, autoantibodies to a panel of four antigens (c-Myc, HCCR, p53 and p62) showed high diagnostic accuracy for esophageal cancer (269). Autoantibodies to p53 or GRP78 were detected with higher prevalence in gastric carcinoma patients than in healthy donors (270-274). The survival time of gastric carcinoma patients testing positive for anti-p53 autoantibodies was significantly longer than that of testing negative patients (270). However, p53 autoantibodies were predictor of an unfavorable prognosis in other studies (271, 273). Combination of autoantibodies against five tumor-associated antigens (TAAs) (MAGEA4 + CTA1 + TP53 + ERBB2_C + SDCCAG8) was able to increase the percentage of positive gastric cancer patients (275). In the study performed by Zhou et al., the sensitivity and the specificity for autoantibodies against seven TAAs (Anti-p53, -Koc, -p62, -c-Myc, -IMPI, -Survivin and -p16) in diagnosing gastric cardia adenocarcinoma reached up to 64% and 87%, respectively (276). By applying a T7 phage display-based serological analysis of recombinant cDNA expression libraries technique it was identified a representative set of antigens eliciting humoral responses in gastric cancer patients. 45-autoantibodies signature could discriminate gastric cancer patients from healthy donors (277).

The prevalence of autoantibodies to dsDNA or p53 or P proteins were higher in patients with colorectal cancer than in healthy subjects (10, 31, 134, 278). The prevalence of simultaneous autoantibodies to PIM1, MAPKAPK3, and ACVR2B were able to discriminate between colorectal cancer and control samples with a sensitivity of 84.1% and a specificity of 71.4% (279). No correlation was found between colorectal cancer patients survival and anti-p53 autoantibodies (31). Conversely, in another study a shorter survival characterized patients positive for anti-p53 autoantibodies (278). In addition, patients with anti-dsDNA autoantibodies showed a less incidence of recurrences after a 3-year follow-up (10).

The prevalence of autoantibodies against p53, or, nucleophosmin was higher in HCC patients than that in healthy donors (26, 280, 281). Autoantibodies to multiple tumor-associated antigens were shown to enhance detection of HCC showing higher prevalence in HCC patients than in chronic hepatitis and normal donor sera (42, 282-284). A shorter patients survival time was observed in HCC patients displaying anti-p53 autoantibodies (280, 285). On the other hand, a study reported that HCC patients having anti-p53 autoantibodies had higher survival rate without recurrence (286). In addition, autoantibodies to α-fetoprotein were more prevalent in HCC patients.
Autoantibodies to self antigens in cancer patients

than in healthy donors or liver cirrhosis and chronic hepatitis patients (287, 288).

Reactivity to DDX48 was observed in 20 of 60 (33.33%) pancreatic cancer patients while none of the 60 normal individuals analyzed had anti-DDX48 autoantibodies (289).

The high prevalence of autoantibodies to p53, IMP1 and IMP2/p62, PARP1 and BRCA1, or to a panel of different antigens suggested that autoantibodies could be potential biomarkers in immunodiagnosis of ovarian cancer (43, 238, 290-296). However, there is not an agreement for the prognostic value of anti-p53 autoantibodies. Shortened OS and RFS or unfavorable DFS and OS were reported in ovarian cancer patients harboring serum or ascites anti-p53 autoantibodies, respectively (291, 294). Conversely, one study reported that anti-p53-autoantibodies were prognostic for improved OS (292). Other studies reported no association with patients survival (290, 293). Finally, the presence of anti-p53 autoantibodies was significantly associated to a better OS when only multivariate HRs were pooled together (4 studies) (297).

Autoantibodies to multiple antigens were detected in prostate cancer patients (298-300). Massoner et al. found autoantibodies to 408 different antigens and reported that 174 of these were solely detected in cancer patients compared to healthy donors (298). Autoantibodies to antigens fragments with homology to 60S ribosomal protein L7, and MARCKS1 were able to discriminate prostate cancer patients from patients with benign prostatic hyperplasia (299). The presence of autoantibodies to MUT, RAB11B, CSRP2, SPOP and ZNF671 was able to distinguish prostate cancer patients with low from those with high inflammation with a sensitivity of 80% and a diagnostic specificity of 67% (300). None of these studies investigated the prognostic values of autoantibodies.

Finally, high antibody titers to ALK (prevalence 38%) correlated with significantly lower cumulative incidence of relapses in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (301).

8. PARANEOPLASTIC NEUROLOGICAL SYNDROMES, EFFECTS OF THERAPY TARGETING IMMUNE-CHECKPOINT RECEPTORS AND Tregs DYSREGULATION IN AUTOIMMUNE DISEASE PATIENTS: THE CROSSROAD BETWEEN AUTOIMMUNITY AND IMMUNE RESPONSE IN CANCER PATIENTS

From studies regarding patients with paraneoplastic neurological syndromes we have learned that antibodies to self antigens might reflect the attempt to counteract tumor growth and might affect cancer patients survival (302, 303). Patients survival analysis showed a significantly shorter median survival time from the diagnosis of SCLC in SCLC patients without Lambert-Eaton myasthenic syndrome than in those with Lambert-Eaton myasthenic syndrome (304). Dalmay et al. analyzed 71 patients with “paraneplastic” encephalomyelitis or sensory neuronopathy, or both who had serum anti-Hu antibodies. Most of the patients (78%) had small-cell lung cancer. In 9 patients no tumor was revealed. Thus, the authors searched for the presence of the tumor that when detected was frequently small and localized or was detected only at autopsy (305). Peterson et al. reviewed the clinical findings in 55 patients with cerebellar degeneration associated with the anti-Yo autoantibodies. Fifty-two of them had cancers, mainly limited to the involved organs (breast and gynecological tract) and local lymph nodes. One woman had lung adenocarcinoma, and in three no malignancy was identified. In 34 of 52 patients with cancer, the neurologic syndrome preceded the cancer diagnosis and in many led to the diagnosis (306). Graus et al. found that the presence of anti-Hu autoantibodies in patients with paraneoplastic encephalomyelitis/sensory neuropathy and SCLC is a strong and independent predictor of complete response to the therapy and that this feature accounts for the association between anti-Hu autoantibodies and longer cancer patients survival (307). Honnorat et al. found that the median survival time was significantly longer in patients with SCLC and anti-CV2/CRMP5 autoantibodies as compared to patients with SCLC and anti-Hu autoantibodies, thus suggesting that the prognosis of the same type of tumor may be dependent on the type of onconeural autoantibodies (308). Hetzel et al. suggested that the immune response evoked against cancer cells and probably cross-reactive with cerebellar cells, might affect the metastatic process. Indeed, the authors found that in 8 patients who had primary stage III gynecological cancer and anti-Parkin autoantibodies as compared to 24 control patients without paraneoplastic cerebellar degeneration there was no difference in the volume of the primary tumor but a significantly smaller volume of the metastatic tumor in the autoantibodies-positive group (309). In a prospective analysis of the presence of self-antigens autoantibodies and of mortality in 238 SCLC patients, Gozzard et al., observed an independent survival advantage associated with anti-neuronal nuclear antibodies (ANNA) (310). On the other hand, Rojas et al. by retrospectively analyzing the clinical outcome and prognostic factors in a series of 34 patients with paraneoplastic cerebellar degeneration and anti-Yo autoantibodies found that the overall prognosis of cancer patients was rather poor, particularly for patients with gynecologic tumors (311). In addition, in some reports tumor was shown to regress in patients.
Autoantibodies to self antigens in cancer patients

with paraneoplastic neurological degeneration (303). Zaheer et al. described a case of small SCLC that spontaneously regressed in concomitant with the occurrence of a paraneoplastic neurological syndrome and the presence of anti-neuronal antibodies (312). Darnell described a spontaneous regression of a lung mass in a patient with both the anti-Hu and atypical anti-neuronal antibodies and subacute sensory neuropathy (302). In addition they found that one patient survived 8 years free of disease and was positive for the anti-Hu autoantibodies and another patient survived 6 years after spontaneous tumor regression and had anti-neuronal autoantibodies (302). Mawhinney et al. reported that a paraneoplastic sensory neuropathy with high titers of anti-Hu autoantibodies, was associated with lung tumor regression (313). Similarly, Gill et al. reported a case of a patient with anti-Hu autoantibodies associated paraneoplastic sensory neuronopathy who had a spontaneous regression of the small cell lung cancer (314). Hirano et al. observed a partial spontaneous regression of a SCLC tumor associated with a progression of paraneoplastic sensory neuropathy and the presence of anti-neuronal autoantibodies in a 55-year-old woman (315). Villers et al. reported a paraneoplastic amyopathic dermatomyositis associated with the regression of a primary melanoma (316).

The microenvironment within the tumor can support the growth of cancer cells through the release of growth factors and immunosuppressive cytokines by endothelial cells, immune cells and mesenchymal stromal cells (MSC) (317). Among the others, Tregs are key regulators of the immune responses, avoiding abnormal immune system activation and autoimmunity (318). Tregs have shown to suppress the activity of effector T cells, Natural Killer (NK) cells and dendritic cells either by cell-cell contact or by the secretion of immunosuppressive cytokines (IL-10 and TGFβ) and indoleamine-2,3-dioxygenase (IDO) (318). On the other hand, MDSCs stimulate chronic tissue inflammation and suppression of immune response by the release of reactive oxygen species, nitric oxide, arginase-1 and cytokines and by the recruitment and induction of Tregs and immunosuppressive tumor-associated macrophages (TAM) in the tumor microenvironment (318). Several inhibitory pathways are involved in maintaining immune self-tolerance thus preventing autoimmune diseases and exaggerate immune responses to pathogens (319). The occurrence of an autoimmune disease is a sign of a merged deficiency of both central and peripheral immune tolerance inducing the activation of autoreactive T cells (5). Tregs express immune-checkpoint receptors, including cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein 1 (PD1), T cell membrane protein 3 (TIM3), adenosine A2a receptor (A2aR), lymphocyte activation gene 3 (LAG3) that are essential for the development of self-tolerance (319). In addition, the negative regulatory checkpoint receptors can be dysregulated by cancer cells to suppress anti-tumor activity of immune response (319). CTLA4 regulates the magnitude of T cells activation during the initial stage of the immune response. Indeed, CTLA4 expression on the membrane of T cells reduces their activation by competing with CD28 in the binding with B7.1 and B7.2 in addition to provide inhibitory signals to T cells, thus activating the immune suppressive functions of Tregs (319). On the other hand, PD1 reduces the activation of T cells in peripheral tissue by directly interfering with T cell receptor signaling and restricts autoimmune phenomena (320). Cancer cells expressing PD1 ligands (PDL1 and PDL2) lead to T cells exhaustion or anergy (319, 320). In addition, PD1 is expressed by B and NK cells (321). The upregulation of PD1 ligands on cancer cells may be constitutive due to tumor cells abnormal signaling pathways activation and may lead to innate immune resistance or may mirror cancer cells adaptation to the anti-tumor response thus leading to adaptive immune resistance (319). Accordingly, CTLA4 (ipilimumab), PD1 (nivolumab and pembrolizumab) and PD-L1 antibodies were employed in clinical trials in patients with a variety of tumor types showing a clinical response (321, 322). Of note, two phase III clinical trials employing the ipilimumab have shown improved survival of patients with advanced melanoma (321). Nivolumab treatment of metastatic melanoma patients induced an objective response rate of 40% and overall survival rate of 72.9% as compared to an objective response rate of 13.9% and overall survival rate of 42.1% obtained with dacarbazine chemotherapy (321). Since the mechanisms of CTLA4 and PD1 are distinct, combined treatment with both antibodies CTLA4 and PD1 were employed (321). A Phase I clinical trial conducted in patients with advanced melanoma, showed that concurrent therapy with nivolumab and ipilimumab induced rapid and deep tumor regression in a substantial proportion of patients which appears to be distinct from that observed employing single therapy (323). Recently an anti-PDL1 monoclonal antibody, avelumab, was proven to block PD1/PDL1 interaction, to mediate ADCC of cancer cells (324). In addition, a phase I study reported its non toxicity (324).

Other clinical trials are ongoing to evaluate the efficacy of combination therapies by using anti-CTLA4 or anti-PD1 antibodies and epacadostat, an IDO1 enzyme inhibitor. Indeed, IDO1 is an intracellular immunoregulatory enzyme involved in tumor escape, tolerance and immunosuppression. IDO-expression has been identified as a prognostic marker of survival in several cancers and IDO upregulation is a critical mechanism of resistance to anti-cancer immunotherapy with CTLA4 antibodies. It has been recently demonstrated that epacadostat was able to increase dendritic cells antigen presentation, to
Autoantibodies to self antigens in cancer patients

decrease Tregs proliferation and to increase CTLs activity. Thus the combined therapies by using an inhibitor of IDO1 represent a promising strategy in cancer immunotherapy (325).

On the other hand, the blockade of immune-checkpoint receptors by antibodies induces inflammatory adverse effects that mimic an autoimmune response (320). A patient with advanced mucosal melanoma who received four doses of a fully human monoclonal antibody against PD1 (MK-3475) had a durable near-complete response but developed severe hypothyroidism, rhabdomyolysis, and acute kidney injury (326). Therapy with a combination of ipilimumab and nivolumab, was associated with a 22% incidence of either thyroiditis or hypothyroidism and a 9% incidence of hypophysitis in melanoma patients (327). Michot et al. reviewed the immune-related adverse events (IRAE) found in cancer patient after immune-checkpoint receptors blockade (328). The authors reported that skin immune-related event especially vitiligo is the most frequent IRAE after blockade of the immune-checkpoint receptors in patients with melanoma. Other dermatological reactions encompassed rash/erythema and toxic epidermal necrosis (328). A small percentage (5%) of patients declared dry mouth and showed the presence of ANAs. Diarrhoea was developed in about 30% of the patients after anti-CTLA4 therapy while colitis after the same treatment resembled the characteristic of Crohn’s disease. In addition, by reviewing the literature they found that some patients (5-10%) receiving antibodies to immune-checkpoint receptor developed endocrine diseases such as thyroid dysfuction and hypophysitis for a deficient release of ACTH, TSH, FSH, LH, growth hormone or prolactin (328). IRAE might be also characterized by autoimmune hepatitis, immune-related- and organizing inflammatory-pneumonitis. Ophthalmological IRAEs (episcleritis, conjunctivitis, uveitis, etc) and neurological syndromes (posterior reversible encephalopathy, transverse myelitis, Guillan Barré syndrome, etc) have been described in patients receiving anti-CTLA4 antibodies (328). The presence of ANAs and anti-CCP autoantibodies characterized IRAE such as polyarthritis in patients after anti-CTLA4 therapy. Renal and pancreatic disorders were also seen in a small percentage of CTLA4 and PD1 antibodies-treated patients. Finally, hematological disorders including autoimmune neutropenia or pancytopenia, red cells aplasia have been described after patients anti-CTLA4 therapy (328). The authors concluded that the dysimmune toxicity might be associated with the antitumor response in cancer patients (328).

The value of Tregs dysfunction in generating an immune response has been consolidated in patients with paraneoplastic syndromes while the increase of Tregs has been associated with poor prognosis in cancer patients (329). Zhang et al. reported that patients with paraneoplastic neurological syndrome, anti-Hu autoantibodies and SCLC showed lymphopenia of CD3+ and CD4+ T cells, increased proportions of total activated T cells and activated CD4+ T cells, and reduced numbers of Tregs (329). Tani et al. found that the expression levels of FOXP3, TGF-β and CTLA4 mRNA in Treg-rich subsets of paraneoplastic neurological syndrome patients were down-regulated compared with that of SCLC patients without paraneoplastic neurological syndrome (330). Wang et al. showed that Treg infiltration was an indicator of a poorer prognosis for breast cancer patients (331). Higher Tregs frequencies were observed in early phase of bladder cancer growth and in larger tumors with more aggressive type of invasion (332). A strong immunosuppressive microenvironment in metastatic lymph nodes from patients with cervical cancer with high Tregs levels, low CD8+ T cell/Tregs ratio, and high levels of PD-L1+ and HLA-DR+ myeloid cells was reported by Heeren et al. (333). Therefore, immune suppression through Tregs or other types of suppressive cells resident within the tumor microenvironment, appears to be a major mechanism of tumor immune escape (334).

The association between autoimmunity, immune response to self antigens in cancer patients and anti-tumor effects obtained targeting Tregs in cancer patients is disclosed by the dysfunction of Tregs observed in patients developing autoimmune diseases (335). Tregs dysfunctions including loss of Foxp3 expression (exTreg), self-skewed TCR repertoire and atypical Treg functions including the expression of vascular endothelial growth factor or expression of RANKL have been shown to turn in pathogenic Tregs in several disease models (335). The alteration of Tregs is a key pathogenic occurrence which induces a multi-organ autoimmunity that characterizes the immune dysregulation, polyendocrinopathy, enteropathy and X-linked (IPEX) syndrome (336). Tregs alterations may lead to melanocyte loss in vitiligo, rheumatoid arthritis, type 1 diabetes and autoimmune thyroiditis (337-340) (Figure 1).

In view of all these findings, the biological activity of antibodies observed in cancer patients showing paraneoplastic syndrome might resemble the activation of immune response in cancer patients in the absence of immunosuppression. Indeed, the IRAE observed after immune-checkpoint receptors antibodies therapy might reflect a humoral and cell-mediated antitumor response.

9. CONCLUSIONS

Several studies have shown that cancer patients develop autoantibodies to self antigens with higher prevalence than healthy donor or patients.
Autoantibodies to self antigens in cancer patients

with inflammatory disease. The repertoire of cancer patients autoantibodies in part overlaps that of autoimmune disease patients. Overall, the occurrence of autoantibodies is not followed by a better survival of cancer patients. However, the tumor-targeting autoantibodies induced in cancer patients deal with the immunosuppressive milieu in which they are developed and in which they would trigger their biological effects. On the other hand, autoimmune disorders often develop after alterations of tolerance checkpoints which induce Tregs dysfunctions and drive towards pro-inflammatory responses. Due to these different immunological microenvironments, autoantibodies with similar specificities may have different effects in cancer and autoimmune disease patients. Biological activities of autoantibodies to self antigens may induce paraneoplastic syndrome in cancer patients which might reflect the attempt of the patients to counteract the tumor growth. Recent studies have shown that patients with paraneoplastic syndrome have a spontaneous regression of tumors. The value of Tregs dysfunction in generating an immune response has been consolidated in patients with paraneoplastic syndromes while the increase of Tregs has been associated with poor prognosis in cancer patients. Accordingly, novel therapies have employed antibodies which target Tregs immune-checkpoint receptors. Encouraging results have been obtained following such therapy in cancer patients. The blockade of immune-checkpoint receptors by antibodies in cancer induces inflammatory adverse effects that mimic an autoimmune response in absence of immunosuppression.

Overall, the biological activities of autoantibodies in cancer might depend on their specificity, on their immunological properties and on the presence of a favorable microenvironment.

Autoantibodies found in cancer patients can be used as tool for the diagnosis of cancer.

The current knowledge on the spontaneous humoral responses occurring in cancer patients, on the mechanisms that trigger self antigens autoantibodies and on the mechanisms of their biological activities might help to furnish a rationale to design anti-cancer immunotherapeutic protocols.

10. ACKNOWLEDGMENT

This work was supported by a grant from the Department of Defence (Project aptamers). We thank Evelyn Carpenter for her help in English language editing. Rosanna Mattera is a recipient of the Sapienza PhD program in Molecular Medicine. We apologize to the colleagues whose articles have not been cited in this review because of space limitations.

11. REFERENCES

Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

DOI: 10.1111/j.1346-8138.2010.00814.x

DOI: 10.1002/1097-0142(19831201)52:11<2156::AID-CNCR2820521130>3.0.CO;2-2

DOI: 10.1016/j.jaut.2013.11.001

DOI: 10.1016/j.autrev.2009.07.003

DOI: 10.1136/rmdopen-2014-000009

DOI: 10.1016/b978-0-444-50331-2/50016-3

DOI: 10.1158/1078-0432.CCR-04-0735

DOI: 10.1155/2010/431913

DOI: 10.1007/s10549-014-2893-y

DOI: 10.1038/sj.bjc.6605464

DOI: 10.1159/000363161

DOI: 10.17219/acem/38149

DOI: 10.1097/01.mcg.0000190756.63799.0f

DOI: 10.1155/2015/648670

Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

DOI: 10.1016/j.imlet.2015.06.008

DOI: 10.1089/omi.2010.0131

DOI: 10.1002/pmic.200500384

DOI: 10.3233/CBM-2009-0604

DOI: 10.1097/CMR.0000000000000207

DOI: 10.1016/j.autrev.2006.10.004

DOI: 10.1016/j.diabet.2012.02.005

DOI: 10.1016/j.jaut.2011.05.005

DOI: 10.1212/01.WNL.0000145836.72059.3B

DOI: 10.1186/1472-6882-12-109

DOI: 10.1126/scitranslmed.aaa9186

DOI: 10.1002/pmic.201000206

DOI: 10.1007/s13317-011-0024-x

DOI: 10.1158/1078-0432.CCR-05-0816
Autoantibodies to self antigens in cancer patients

128. R. B. Mansour, S. Lassoued, B. Gargouri, A. El Gaïd, H. Attia, F. Fakhfakh: Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid

142. A. Maselli, S. Capoccia, P. Pugliese, C. Raggi, F. Cirulli, A. Fabi, W. Malorni, M.
Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

DOI: 10.1111/sji.12335

DOI: 10.1002/art.24765

DOI: 10.1186/s12891-015-0616-0

DOI: 10.1002/art.27386

DOI: 10.1016/j.imbio.2015.07.019

DOI: 10.1073/pnas.87.11.4115

DOI: 10.1210/jc.2007-2042

DOI: 10.1006/clin.1996.4243

DOI: 10.1007/s10495-009-0430-y

DOI: 10.1097/CMR.0b013e32835312fd

DOI: 10.1016/j.canlet.2011.05.022

DOI: 10.1111/j.1348-0421.2010.00214.x

DOI: 10.1186/s12974-014-0160-0

DOI: 10.1097/NEN.0b013e3181f82b

DOI: 10.1371/journal.pone.0123446

Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

1320
© 1996-2017

BMJ Case Rep, 2016, pii: bcr2016215158
(2016)
DOI: 10.1136/bcr-2016-215158

DOI: 10.1016/j.jneuroim.2013.07.015

DOI: 10.1136/jnnp.2010.223271

DOI: 10.1002/mus.25027

DOI: 10.1371/journal.pone.0069506

DOI: 10.1371/journal.pone.0019911

DOI: 10.1002/mus.24510

DOI: 10.1212/01.wnl.0000281663.81079.24

DOI: 10.1016/j.jneuroim.2013.07.003

DOI: 10.5414/NP300855

DOI: 10.1136/bcr.02.2011.3851

DOI: 10.1212/WNL.0b013e3181cb3e52

DOI: 10.2169/internalmedicine.54.4478

DOI: 10.1016/j.jns.2009.12.006

DOI: 10.1111/j.1440-0960.2012.00921.x
Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

Oncotarget, 6, 11575-11584 (2015)
DOI: 10.18632/oncotarget.3428

DOI: 10.1158/1940-6207.CAPR-11-0558

DOI: 10.1158/1940-6207.CAPR-13-0416

DOI: 10.3892/ol.2012.1062

DOI: 10.1007/s13277-014-2756-5

DOI: 10.3892/or.7.3.669

DOI: 10.1002/(SICI)1097-0215(20000120)89:1<81::AID-IJC13>3.0.CO;2-I

DOI: 10.1016/S0169-5002(02)00449-X

DOI: 10.1093/jnci/89.5.381

DOI: 10.1038/bjc.1998.557

DOI: 10.1007/s13277-014-1643-4

DOI: 10.1155/2013/935943

DOI: 10.3892/ijo.2012.1699

DOI: 10.1007/s13277-013-1271-4

DOI: 10.1007/s13277-015-3794-3

Autoantibodies to self antigens in cancer patients

Biochem Biophys Res Commun, 423, 613-619 (2012)
DOI: 10.1016/j.bbrc.2012.06.050

268. Y. Jin, S. Guan, L. Liu, S. Sun, K. H. Lee, J. Wei: Anti-p16 autoantibodies may be a useful biomarker for early diagnosis of
Autoantibodies to self antigens in cancer patients

DOI: 10.1111/ajco.12198

DOI: 10.1007/s00262-016-1886-6

DOI: 10.3109/00365529709002995

DOI: 10.1016/j.cdp.2006.12.005

DOI: 10.1038/sj.bjc.6690382

DOI: 10.3892/or_00000719

DOI: 10.1038/srep25467

DOI: 10.1111/dote.12206

DOI: 10.1002/ijc.27667

DOI: 10.1023/A:1005473729976

DOI: 10.1074/mcp.M800596-MCP200

DOI: 10.1016/j.clinbiochem.2008.06.006

Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

J Proteome Res, 14, 578-586 (2015)
DOI: 10.1021/pr500908n

DOI: 10.1371/journal.pone.0140351

DOI: 10.1002/pros.21444

DOI: 10.1371/journal.pone.0128235

DOI: 10.1371/journal.pone.0147739

DOI: 10.1182/blood-2009-11-251892

DOI: 10.1016/0140-6736(93)92485-C

DOI: 10.1038/nrc1255

DOI: 10.1136/jnnp.70.2.212

DOI: 10.1097/00005792-199203000-00001

DOI: 10.1212/WNL.42.10.1931

DOI: 10.1093/brain/124.6.1138

DOI: 10.1136/jnnp.2007.138016

DOI: 10.1016/S0025-6196(12)62189-2

DOI: 10.1371/journal.pone.0143558

311. I. Rojas, F. Graus, F. Keime-Guibert, R. Reñé, J. Y. Delattre, J. M. Ramón, J. Dalmau,
Autoantibodies to self antigens in cancer patients

Autoantibodies to self antigens in cancer patients

Abbreviations: Treg: regulatory T cell; MHC: Major histocompatibility complex; Jo-1: lstidil-tRNA sintetasi; Sm: Smith antigens; snRNP: Small nuclear ribonucleoproteins; SLE: Systemic lupus erythematosus; RA: Rheumatoid arthritis; elf4G: Eukaryotic translation initiation factor-4G; CCP:
Autoantibodies to self antigens in cancer patients

Cyclic citrullinated peptide; RF: Rheumatoid factor; ASMA: Anti-smooth muscle antibodies; TPO: Thyroid peroxidase; TG: Thyroglobulin; TSH-R: Thyroid stimulating hormone receptor; ECM: extracellular matrix; HSP: Heat shock protein; GRP78: Glucose-regulated protein 78; HCC: Hepatocellular carcinoma; GAD: Glutamic acid decarboxylase; CA II: Carbonic anhydrase II; GADPH: Glyceraldehyde 3-phosphate dehydrogenase; SOD: Superoxide dismutase; ER: Estrogen receptor; AchR: Acetylcholine receptor; VGCC: Voltage-gated calcium channels; CD20: B-lymphocyte antigen CD20; Dsg: Desmoglein; IMP: Insulin-like growth factor II mRNA-binding protein; IFN: Interferon; α2-HSG: α2-Heremans Schmid-glycoprotein; TCR: T-cell receptor; ANA: Anti-nuclear antibodies; CENP: centromere nuclear protein; IL: Interleukin; EGFR: Epidermal growth factor receptor; ACPA: Anti-citrullinated proteins antibodies; TNF: Tumor necrosis factor; NF-kB: Nuclear factor-kB; TLR: Toll-like receptor; ANCA: Anti-neutrophil cytoplasmic antibody; ROS: Reactive oxygen species; ADCC: Antibody-dependent cellular cytotoxicity; CDC: Complement-dependent cytotoxicity; Erk: Extracellular signal-regulated kinases; Akt: Protein kinase B; PV: Pemphigus vulgaris; SCLC: Small cell lung cancer; TF: Tissue factor; VEGF: Vascular endothelial growth factor; FasR: Fas receptor; ZIC4: Zinc finger protein of cerebellum; CV2/CRMP-5: Collapsin response-mediator protein-5; mGluR1: Metabotropic glutamate receptor type 1; PLA2: Purkinje cell cytoplasmic antibody; TRMP1: transient receptor potential cation channel, subfamily M, member 1; SPOP: Speckle-type POZ protein; ZNF671: Zinc finger protein 671; ALK: Anaplastic lymphoma kinase; MSC: Mesenchymal stromal cell; TGF: Transforming growth factor; MDSC: Myeloid-derived suppressor cell; TAM: Tumor-associated macrophage; CTLA4: Cytotoxic T-lymphocyte associated protein 4; NKG2D: Natural killer cell activating receptor; PDCD 1: Programmed cell death protein 1; TIM3: T-cell membrane protein 3; FDA: Food and Drug Administration; REA: Reactive element; PARP1: Poly(ADP-ribose) polymerase 1; BRCA2: Breast related cancer antigen 2; HER2: Receptor tyrosine-protein kinase erbB-2; CEA: carcinoembryonic antigen; DFS: disease-free survival; OS: overall survival; CCNY: Cyclin Y; IGFBP2: Insulin-like growth factor-binding protein 2; SMOX: Sperm oxide; NOLC1: Nucleolar and coiled-body phosphoprotein 1; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; HMMR: Hyaluronan mediated motility receptor; XAGE-1: X antigen family member-1; ADAM29: ADAM metallopeptidase domain 29; MAGEC1: MAGE family member C1; CAGE: Cancer-associated gene; BIRC: Baculoviral inhibitors of apoptosis repeat containing; CD25: Alpha chain of the IL-2 receptor; FOXP3: Forkhead box P3; CTAG: cancer/testis antigen 1; SDCCAG8: Serologically defined colon cancer antigen 8; MAPKAPK3: MAP kinase-activated protein kinase 3; ACVR2B: Activin receptor type-2B; DDX: DEAD-box protein; MUT: Methylmalonyl-CoA mutase; CSRP2: Cysteine and glycine-rich protein 2; SPOP: Speckle-type POZ protein; ZNF671: Zinc finger protein 671; ALK: Anaplastic lymphoma kinase; MSC: Mesenchymal stromal cell; TGF: Transforming growth factor; MDSC: Myeloid-derived suppressor cell; TAM: Tumor-associated macrophage; CTLA4: Cytotoxic T-lymphocyte associated protein 4; PD1: Programmed cell death protein 1; TIM3: T-cell membrane protein 3; A2aR: Adenosine A2a receptor; LAG3: Lymphocyte activation gene 3; IRAE: Immune-related adverse events; ACTH: Adrenocorticotropic hormone; FSH: follicle-stimulating hormone; LH: luteinising hormone; RANKL: Receptor activator of nuclear factor kappa-B ligand

Key Words: Tumor antigens, Autoantibodies, Paraneoplastic Syndromes, Autoimmunity, Tregs, Review

Send correspondence to: Roberto Bei, Dept. of Clinical Sciences and Translational Medicine, Faculty of Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy, Tel: 39 06-72596522, Fax: 39 06-72596506, E-mail: bei@med.uniroma2.it.